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Abstract

The performance of maximum-likelihood (ML) decoded binarylinear block codes is addressed via the derivation
of tightened upper bounds on their decoding error probability. The upper bounds on the block and bit error
probabilities are valid for any memoryless, binary-input and output-symmetric communication channel, and their
effectiveness is exemplified for various ensembles of turbo-like codes over the AWGN channel. An expurgation of
the distance spectrum of binary linear block codes further tightens the resulting upper bounds.
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I. I NTRODUCTION

Since the advent of information theory, the search for efficient coding systems has motivated the introduction of
efficient bounding techniques tailored to specific codes or some carefully chosen ensembles of codes. The incentive
for introducing and applying such bounds has strengthened with the introduction of various families of codes
defined on graphs which closely approach the channel capacitywith feasible complexity (e.g., turbo codes, repeat-
accumulate codes, and low-density parity-check (LDPC) codes). Clearly, the desired bounds must not be subject
to the union bound limitation, since for long blocks these ensembles of turbo-like codes perform reliably at rates
which are considerably above the cutoff rate(R0) of the channel (recalling that union bounds for long codes are
not informative at the portion of the rate region aboveR0, where the performance of these capacity-approaching
codes is most appealing). Although maximum-likelihood (ML)decoding is in general prohibitively complex for long
codes, the derivation of bounds on the ML decoding error probability is of interest, providing an ultimate indication
of the system performance. Further, the structure of efficientcodes is usually not available, necessitating efficient
bounds on performance to rely only on basic features, such asthe distance spectrum and the input-output weight
enumeration function (IOWEF) of the examined code (for the evaluation of the block and bit error probabilities,
respectively, of a specific code or ensemble).

A basic inequality which serves for the derivation of many previously reported upper bounds is the following:

Pr(word error| c) ≤Pr(word error| c,y ∈ R)

+ Pr(y /∈ R | c) (1)

wherey denotes the received vector at the output of the receiver,R is an arbitrary geometrical region which can be
interpreted as a subset of the observation space, andc is an arbitrary transmitted codeword. This category includes
the Berlekamp tangential bound [4] where the volumeR is a half-space separated by a plane, the sphere bound
by Herzberg and Poltyrev [11] whereR is a hyper-sphere, Poltyrev’s tangential-sphere bound [15](TSB) whereR
is a circular cone, and Divsalar’s bound [6] whereR is a hyper-sphere with an additional degree of freedom with
respect to the location of its center.

Another approach is the Gallager bounding technique which provides a conditional upper bound on the ML
decoding error probability given an arbitrary transmitted(length-N ) codewordcm (Pe|m). The conditional decoding
error probability is upper bounded by
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Pe|m ≤





∑

m′ 6=m

∑

y

pN (y|cm)
1
ρ ψm

N (y)1−
1
ρ

(

pN (y|cm′)

pN (y|cm)

)λ





ρ

(2)

where0 ≤ ρ ≤ 1 andλ ≥ 0 (see [8], [20]; in order to make the presentation self-contained, it will be introduced
shortly in the next section as part of the preliminary material). Here,ψm

N (y) is an arbitrary probability tilting
measure (which may depend on the transmitted codewordcm), andpN (y|c) designates the transition probability
measure of the channel. Connections between these two seemingly different bounding techniques in (1) and (2)
were demonstrated in [22], showing that many previously reported bounds (or their Chernoff versions) whose
derivation originally relied on the concept shown in inequality (1) can in fact be re-produced as particular cases
of the bounding technique used in (2). To this end, one simplyneeds to choose the suitable probability tilting
measureψm

N which serves as the “kernel” for reproducing various previously reported bounds. The observations in
[22] relied on some fundamental results which were reportedby Divsalar [6].

The tangential-sphere bound (TSB) of Poltyrev often happens to be the tightest upper bound on the ML decoding
error probability of block codes whose transmission takes place over a binary-input AWGN channel. However, in
the random coding setting, it fails to reproduce the random coding exponent [10] while the second version of the
Duman and Salehi (DS2) bound, to be reviewed in the next section, does (see [22]). The Shulman-Feder bound
(SFB) can be derived as a particular case of the DS2 bound (see [22]), and it achieves the random coding error
exponent. Though the SFB is informative for some structured linear block codes with good Hamming properties,
it appears to be rather loose when considering sequences of linear block codes whose minimum distance grows
sub-linearly with the block length, as is the case with most capacity-approaching ensembles of LDPC and turbo
codes. However, the tightness of this bounding technique issignificantly improved by combining the SFB with the
union bound; this approach was exemplified for some structured ensembles of LDPC codes (see e.g., [14] and the
proof of [19, Theorem 2.2]).

In this paper, we introduce improved upper bounds on both thebit and block error probabilities. Section II
presents some preliminary material. In Section III, we introduce an upper bound on the block error probability
which is in general tighter than the SFB, and combine the resulting bound with the union bound. Similarly, an
appropriate upper bound on the bit error probability is introduced. The effect of an expurgation of the distance
spectrum on the tightness of the resulting bounds is considered in Section IV. By applying the new bounds to
ensembles of turbo-like codes over the binary-input AWGN channel, we demonstrate the usefulness of the new
bounds in Section V, especially for some coding structures ofhigh rates. We conclude our discussion in Section VI.
For an extensive tutorial paper on performance bounds of linear codes, the reader is referred to [20].

II. PRELIMINARIES

We introduce in this section some preliminary material which serves as a preparatory step towards the presentation
of the material in the following sections.

A. The DS2 Bound

The bounding technique of Duman and Salehi [7], [8] originatesfrom the 1965 Gallager bound. Letψm
N (y)

designate an arbitrary probability measure (which may alsodepend on the transmitted codewordxm). The Gallager
bound [10] can then be put in the form (see [22])

Pe|m

≤
∑

y

ψm
N (y)ψm

N (y)−1pN (y|cm)





∑

m′ 6=m

(

pN (y|cm′)

pN (y|cm)

)λ





ρ

=
∑

y

ψm
N (y)



ψm
N (y)−

1
ρ pN (y|cm)

1
ρ

∑

m′ 6=m

(

pN (y|cm′)

pN (y|cm)

)λ





ρ

,

∀ λ, ρ ≥ 0. (3)
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By invoking the Jensen inequality in (3) for0 ≤ ρ ≤ 1, the DS2 bound results

Pe|m

≤





∑

m′ 6=m

∑

y

pN (y|cm)
1
ρ ψm

N (y)1−
1
ρ

(

pN (y|cm′)

pN (y|cm)

)λ





ρ

,

0 ≤ ρ ≤ 1, λ ≥ 0. (4)

Let Gm
N (y) be an arbitrary non-negative function ofy, and let the probability density functionψm

N (y) be

ψm
N (y) =

Gm
N (y) pN (y|cm)

∑

y

Gm
N (y) pN (y|cm)

(5)

The functionsGm
N (y) andψm

N (y) are referred to as the un-normalized and normalized tiltingmeasures, respectively.
The substitution of (5) into (4) yields the following upper bound on the conditional ML decoding error probability

Pe|m ≤
(

∑

y

Gm
N (y)pN (y|cm)

)1−ρ

·





∑

m′ 6=m

∑

y

pN (y|cm)Gm
N (y)1−

1

ρ

(

pN (y|cm′)

pN (y|cm)

)λ





ρ

,

0 ≤ ρ ≤ 1, λ ≥ 0. (6)

The upper bound (6) was also derived in [6, Eq. (62)].

For the case of memoryless channels, and for the choice ofψm
N (y) as ψm

N (y) =
N
∏

i=1

ψm(yi) (recalling that

the functionψm
N may depend on the transmitted codewordcm), the upper bound (4) is relatively easily evaluated

(similarly to the standard union bounds) for linear block codes. In that case, (4) is calculable in terms of the distance
spectrum of the code, not requiring the fine details of the codestructure. Moreover, (4) is also amenable to some
generalizations, such as for the class of discrete memoryless channels with arbitrary input and output alphabets.

B. The Shulman and Feder bound

We consider here the transmission of a binary linear block code C where the communication takes place over a
memoryless binary-input output-symmetric (MBIOS) channel. The analysis refers to the decoding error probability
under soft-decision ML decoding.

The Shulman and Feder bound (SFB) [21] on the block error probability of an (N, K) binary linear block code
C, transmitted over a memoryless channel is given by

Pe ≤ 2−NEr(R+ log α(C)

N
) (7)

where

Er(R) = max
0≤ρ≤1

(E0(ρ) − ρR) (8)

E0(ρ) , − log2

{

∑

y

[

1

2
p(y|0)

1

1+ρ +
1

2
p(y|1)

1

1+ρ

]1+ρ
}

. (9)

Er is the random coding error exponent [10],R , K
N

designates the code rate in bits per channel use, and

α(C) , max
1≤l≤N

Al

2−N(1−R)
(

N
l

) . (10)

On the right-hand side (RHS) of (10),{Al} denotes the distance spectrum of the code. Hence, for fully random
block codes,α(C) is equal to 1, and the Shulman-Feder bound (SFB) particularizes to the random coding bound
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[10]. In general, the parameterα(C) in the SFB (7) measures the maximal ratio of the distance spectrum of a code
(or ensemble) and the average distance spectrum which corresponds to fully random block codes of the same block
length and rate.

The original proof of the SFB is quite involved. In [22], a simpler proof of the SFB is derived, and by doing
so, the simplified proof reproduces the SFB as a particular case of the DS2 bound (see Eq. (4)). In light of the
significance of the proof concept to the continuation of our paper, we outline this proof briefly.

Since we deal with linear block codes and the communication channel is MBIOS, one can assume without any
loss of generality that the all zero codewordc0 is the transmitted vector. In order to facilitate the expression of
the upper bound (6) in terms of distance spectrum of the blockcode C, we consider here the case where the
un-normalized tilting measureG0

N (y) can be expressed in the following product form:

G0
N (y) =

N
∏

i=1

g(yi) (11)

whereg is an arbitrary non-negative scalar function, and the channel is by assumption MBIOS, so the transition
probability measure is expanded in the product form

pN (y|cm′) =
N
∏

i=1

p(yi|cm′,i) (12)

wherecm′ = (cm′,1, . . . , cm′,N ). Hence, the upper bound on the conditional ML decoding errorprobability given
in (6) can be rewritten as

Pe = Pe|0

≤
(

∑

y

g(y)p(y|0)

)N(1−ρ) {

N
∑

l=1

Al

(

∑

y

g(y)1−
1
ρ p(y|0)

)N−l

·
(

∑

y

g(y)1−
1
ρ p(y|0)1−λp(y|1)λ

)l}ρ

λ ≥ 0,
0 ≤ ρ ≤ 1

≤
(

max
0<l≤N

Al

2−N(1−R)
(

N
l

)

)ρ (

∑

y

g(y)p(y|0)

)N(1−ρ)

2−N(1−R)ρ

·
{

∑

y

g(y)1−
1
ρ p(y|0) +

∑

y

g(y)1−
1
ρ p(y|0)1−λp(y|1)λ

}Nρ

. (13)

By setting

g(y) =

[

1

2
p(y|0)

1

1+ρ +
1

2
p(y|1)

1

1+ρ

]ρ

p(y|0)−
ρ

1+ρ ,

λ =
1

1 + ρ
(14)

and using the symmetry of the channel (wherep(y|0) = p(−y|1)), the SFB follows readily.

III. I MPROVED UPPERBOUNDS

A. Upper Bound on the Block Error Probability

It is well known that at rates below the channel capacity, theblock error probability of the ensemble of fully
random block codes vanishes exponentially with the block length. In the random coding setting, the TSB [15]
fails to reproduce the random coding exponent, while the SFB [21] particularizes to the 1965 Gallager bound for
random codes, and hence, the SFB reproduces the random coding exponent. The SFB is therefore advantageous
over the TSB in the random coding setting when we let the block length be sufficiently large. Equations (7) and
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(10) imply that for specific linear codes (or ensembles), the tightness of the SFB depends on the maximal ratio
between the distance spectrum of the code (or the average distance spectrum of the ensemble) and the average
distance spectrum of fully random block codes of the same length and rate which has a binomial distribution.

In order to tighten the SFB bound for linear block codes, Millerand Burshtein [14] suggested to partition the
original linear codeC into two subcodes, namelyC′ andC′′; the subcodeC′ contains the all-zero codeword and all
the codewords with Hamming weights ofl ∈ U ⊆ {1, 2, ..., N}, while C′′ contains the other codewords which have
Hamming weights ofl ∈ Uc = {1, 2, ..., N} \U and the all-zero codeword. From the symmetry of the channel, the
union bound provides the following upper bound on the ML decoding error probability:

Pe = Pe|0 ≤ Pe|0(C′) + Pe|0(C′′) (15)

wherePe|0(C′) andPe|0(C′′) designate the conditional ML decoding error probabilitiesof C′ andC′′, respectively,
given that the all zero codeword is transmitted. We note thatalthough the codeC is linear, its two subcodesC′ and
C′′ are in generalnon-linear. One can rely on different upper bounds on the conditional error probabilitiesPe|0(C′)
andPe|0(C′′), i.e., we may boundPe|0(C′) by the SFB, and rely on an alternative approach to obtain an upper bound
on Pe|0(C′′). For example, if we consider the binary-input AWGN channel,then the TSB (or even union bounds)
may be used in order to obtain an upper bound on the conditional error probabilityPe|0(C′′) which corresponds to
the subcodeC′′. In order to obtain the tightest bound in this approach, one should look for an optimal partitioning
of the original codeC into two sub-codes, based on the distance spectrum ofC. The solution of the problem is quite
tedious, because in general, if the subsetU can be an arbitrary subset of the set of integers{1, . . . , N}, then one
has to compare

∑N
i=0

(

N
i

)

= 2N different possibilities forU . However, we may use practical optimization schemes
to obtain good results which may improve the tightness of both the SFB and TSB.

An easy way to make an efficient partitioning of a linear block codeC is to compare its distance spectrum (or
the average distance spectrum for an ensemble of linear codes) with the average distance spectrum of the ensemble
of fully random block codes of the same rate and block length.Let us designate the average distance spectrum of
the ensemble of fully random block codes of lengthN and rateR by

Bl , 2−N(1−R)

(

N

l

)

l = 0, 1, . . . , N. (16)

Then, it is suggested to partitionC in a way so that all the codewords with Hamming weightl for which Al

Bl
is

greater than some threshold (which should be larger than 1 but close to it) are associated withC′′, and the other
codewords are associated withC′. The following algorithm is suggested for the calculation ofthe upper bound on
the block error probability under ML decoding:

Algorithm 1
1. Set

U = Φ, Uc = {1, 2, ...N}, l = 1

whereΦ designates an empty set, and set the initial value of the upper bound to be 1.
2. Compute the ratioAl

Bl
where{Al} is the distance spectrum of the binary linear block code (or the average

distance of an ensemble of such codes), and{Bl} is the binomial distribution introduced in (16).
3. If this ratio is smaller than some threshold (where the value of the threshold is typically set to be slightly

larger than 1), then the elementl is added to the setU , i.e.,

U := U + {l}, Uc := Uc \ {l}.
4. Update correspondingly the upper bound on the RHS of (15) (we will derive later the appropriate upper

bounds onPe|0(C′) andPe|0(C′′).
5. Set the bound to be the minimum between the RHS from Step 4 and its previous value.
6. Setl = l + 1 and go to Step 2.
7. The algorithm terminates whenl gets the valueN (i.e., the block length of the code) or actually, the

maximal value ofl for which Al does not vanish.1

1The number of steps can be reduced by factor of 2 for binary linear codes which contain the all-ones codeword (hence maintain the
propertyAl = AN−l). For such codes, the update equation in Step 3 becomes:U := U + {l, N − l}, Uc := Uc − {l, N − l} and the
algorithm terminates whenl gets the valuedN

2
e.



6

Fig. 1(a) shows a plot of the ratioAl

Bl
as a function ofδ , l

N
for an ensemble of uniformly interleaved turbo-random

codes. The calculation of the average distance spectrum of these ensemble relies on the results of Soljanin and
Urbanke in [23].
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Fig. 1. Plots ofAl
Bl

and A′

l
Bl

as a function of the normalized Hamming weight
(

l
N

)

, on a logarithmic scale. The plots refer to ensembles
of random turbo-block codes with two identical systematic binary linear block codes as components. The upper and lower plots refer to
Al
Bl

and A′

l
Bl

with N = 1000 and R = 0.72 bits/Symbol (which corresponds to the analysis of the block and bit errorerror probabilities,
respectively).

From the discussion above, it is clear that the combination ofthe SFB with another upper bound has the
potential to tighten the overall upper bound on the ML decoding probability; this improvement is expected to be
especially pronounced for ensembles whose average distance spectrum resembles the binomial distribution of fully
random block codes over a relatively large range of Hamming weights, but deviates significantly from the binomial
distribution for relatively low and large Hamming weights (e.g., ensembles of uniformly interleaved turbo codes
possess this property, as indicated in [16, Section 4]). This bounding technique was successfully applied by Miller
and Burshtein [14] and also by Sason and Urbanke [19] to ensembles of regular LDPC codes where the SFB
was combined with union bounds. If the range of Hamming weights where the average distance spectrum of an
ensemble resembles the binomial distribution is relatively large, then according to the above algorithm, one would
expect thatC′ typically contains a very large fraction of the overall number of the codewords of a code from this
ensemble. Hence, in order to obtain an upper bound onPe|0(C′′), whereC′′ is expected to contain a rather small
fraction of the codewords inC, we may use a simple bound such as the union bound while expecting not to pay a
significant penalty in the tightness of the overall bound on the decoding error probability(Pe).
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The following bound introduced in Theorem 3.1 is derived as a particular case of the DS2 bound [8]. The
beginning of its derivation is similar to the steps in [22, Section 4A], but we later deviate from the analysis there
in order to modify the SFB. We finally obtain a tighter version of this bound.

Theorem 3.1 (Modified Shulman and Feder Bound): Let C be a binary linear block code of lengthN and rate
R, and let{Al} designate its distance spectrum. Let this code be partitioned into two subcodes,C′ andC′′, where
C′ contains the all-zero codeword and all the other codewords of C whose Hamming weights are in an arbitrary set
U ⊆ {1, 2, , . . . , N}; the second subcodeC′′ contains the all-zero codeword and the other codewords ofC which are
not included inC′. Assume that the communication takes place over a memoryless binary-input output-symmetric
(MBIOS) channel with transition probability measurep(y|x), x ∈ {0, 1}. Then, the block error probability ofC
under ML decoding is upper bounded by

Pe ≤ Pe|0(C′) + Pe|0(C′′)

where for0 ≤ ρ ≤ 1

Pe|0(C′) ≤ SFB(ρ)

·
[

∑

l∈U

(

N

l

) (

A(ρ)

A(ρ) + B(ρ)

)l (
B(ρ)

A(ρ) + B(ρ)

)N−l
]ρ

(17)

A(ρ) ,
∑

y

{

[p(y|0)p(y|1)]
1

1+ρ

[

1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ−1
}

(18)

B(ρ) ,
∑

y

{

p(y|0)
2

1+ρ

[

1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ−1
}

. (19)

The multiplicative term, SFB(ρ), on the RHS of (17) designates the conditional Shulman-Feder upper bound of
the subcodeC′ given the transmission of the all-zero codeword, i.e.,

SFB(ρ) = 2−N
(

E0(ρ)−ρ(R+ log(α(C′))

N
)
)

, 0 ≤ ρ ≤ 1 (20)

andE0 is introduced in (9). An upper bound on the conditional blockerror probability for the subcodeC′′, Pe|0(C′′),
can be either a standard union bound or any other bound.

Proof: Since the block codeC is linear and the channel is MBIOS, the conditional block error probability
of C is independent of the transmitted codeword. Hence, the union bound gives the following upper bound on the
block error probability:Pe ≤ Pe|0(C′) + Pe|0(C′′).

In order to prove the theorem, we derive an upper bound onPe|0(C′). Let {Al(C′)} denote the weight spectrum
of the subcodeC′, and letGN (y) be an arbitrary non-negative function of the received vector y = (y1, y2, . . . , yN )
where this function is assumed to be expressible in the product form (11). Then, we get from (6) and (11) the
following upper bound on the conditional ML decoding error probability of the subcodeC′:
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Pe|0(C′) ≤
(

∑

y

g(y)p(y|0)

)N(1−ρ)

·
{

∑

l

Al(C′)

(

∑

y

g(y)1−
1
ρ p(y|0)

)N−l

·
(

∑

y

g(y)1−
1
ρ p(y|0)1−λp(y|1)λ

)l}ρ

λ ≥ 0,
0 ≤ ρ ≤ 1

=

(

∑

y

g(y)p(y|0)

)N(1−ρ)

2−N(1−R)ρ

·
{

∑

l∈U

(

Al

2−N(1−R)
(

N
l

)

)

(

N

l

)

(

∑

y

g(y)1−
1
ρ p(y|0)

)N−l

(

∑

y

g(y)1−
1
ρ p(y|0)1−λp(y|1)λ

)l}ρ

≤
(

max
l∈U

Al

2−N(1−R)
(

N
l

)

)ρ(
∑

y

g(y) p(y|0)

)N(1−ρ)

· 2−N(1−R)ρ

{

∑

l∈U

(

N

l

)

(

∑

y

g(y)1−
1
ρ p(y|0)

)N−l

(

∑

y

g(y)1−
1
ρ p(y|0)1−λp(y|1)λ

)l}ρ

. (21)

The transition in the first equality above follows sinceAl(C′) ≡ 0 for l /∈ U , and Al(C′) coincide with the
distance spectrum of the codeC for all l ∈ U . Note that (21) is a tighter version of the bound in [22, Eq. (32)]. The
difference between the modified and the original bounds is that in the former, we only sum over the indicesl ∈ U
while in the latter, we sum over the whole set of indices, i.e., l ∈ {1, 2, . . . , N}. By setting the tilting measure in
(14), the symmetry of the MBIOS channel gives the equality

∑

y

g(y)p(y|0) =
∑

y

[

1

2
p(y|0)

1

1+ρ +
1

2
p(y|1)

1

1+ρ

]ρ+1

(22)

and from (18) and (19)
∑

y

p(y|0)1−λp(y|1)λg(y)1−
1

ρ

=
∑

y

{

[p(y|0)p(y|1)]
1

1+ρ

[

1

2
p(y|0)

1

1+ρ +
1

2
p(y|1)

1

1+ρ

]ρ−1
}

= A(ρ) (23)

∑

y

p(y|0)g(y)1−
1

ρ

=
∑

y

{

p(y|0)
2

1+ρ

[

1

2
p(y|0)

1

1+ρ +
1

2
p(y|1)

1

1+ρ

]ρ−1
}

= B(ρ) (24)
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where the RHS of (23) and (24) are obtained by settingλ = 1
1+ρ

. Finally, based on (14) and the symmetry of the
channel, one can verify that

∑

y

g(y)p(y|0) =
A(ρ) + B(ρ)

2
. (25)

Substituting (22)–(25) into (21) gives the following conditional upper bound on the ML decoding error probability
of the subcodeC′:

Pe|0(C′) ≤α(C′)ρ

(

A(ρ) + B(ρ)

2

)N(1−ρ)

2−N(1−R)ρ

·
(

∑

l∈U

(

N

l

)

Al(ρ)BN−l(ρ)

)ρ

(26)

where we use the notation
α(C′) , max

l∈U

Al

2−N(1−R)
(

N
l

) .

The latter parameter measures the deviation of the (expected) number of codewords in the subcodeC′ from the
binomial distribution which characterizes the average distance spectrum of the ensemble of fully random block
codes of lengthN and rateR. By straightforward algebra, we obtain that

Pe|0(C′)

≤ α(C′)ρ

(

A(ρ) + B(ρ)

2

)N

2−N(1−R)ρ

(

1

2

)−Nρ

·
[

∑

l∈U

(

N

l

)(

A(ρ)

A(ρ) + B(ρ)

)l (
B(ρ)

A(ρ) + B(ρ)

)N−l
]ρ

= α(C′)ρ

(

A(ρ) + B(ρ)

2

)N

2NRρ

[

∑

l∈U

(

N

l

)(

A(ρ)

A(ρ) + B(ρ)

)l (
B(ρ)

A(ρ) + B(ρ)

)N−l
]ρ

= SFB(ρ)

[

∑

l∈U

(

N

l

)(

A(ρ)

A(ρ) + B(ρ)

)l(
B(ρ)

A(ρ) + B(ρ)

)N−l
]ρ

,

0 ≤ ρ ≤ 1. (27)

The second equality follows from (20) and (9), and since

E0(ρ) , − log2

{

∑

y

[

1

2
p(y|0)

1

1+ρ +
1

2
p(y|1)

1

1+ρ

]1+ρ
}

= − log2

(

A(ρ) + B(ρ)

2

)

. (28)

This concludes the proof of the theorem.
The improvement of the bound introduced in Theorem 3.1 over thestandard combination of the SFB and the

union bound [14], [19] stems from the introduction of the factor which multiplies SFB(ρ) on the RHS of (17); this
multiplicative term cannot exceed 1 since

∑

l∈U

(

N

l

) (

A(ρ)

A(ρ) + B(ρ)

)l ( B(ρ)

A(ρ) + B(ρ)

)N−l

≤
N

∑

l=0

(

N

l

) (

A(ρ)

A(ρ) + B(ρ)

)l ( B(ρ)

A(ρ) + B(ρ)

)N−l

= 1.

This multiplicative factor which appears in the new bound is useful for finite-length codes with small to moderate
block lengths. The upper bound (17) onPe|0(C′) is clearly at least as tight as the corresponding conditional SFB.
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We refer to the upper bound (17) as the modified SFB (MSFB). The conditional block error probability of the
subcodeC′′, given that the all-zero codeword is transmitted, can be bounded by a union bound or any improved
upper bound conditioned on the transmission of the all-zerocodeword (note that the subcodeC′′ is in general a
non-linear code). In general, one is looking for an appropriate balance between the two upper bounds onPe|0(C′)
andPe|0(C′′) (see Algorithm 1). The improvement that is achieved by using the MSFB instead of the corresponding
SFB is exemplified in Section V for ensembles of uniformly interleaved turbo-Hamming codes.

B. Upper Bounds on Bit Error Probability

Let C be a binary linear block code whose transmission takes placeover an arbitrary MBIOS channel, and let
Pb designate the bit error probability ofC under ML decoding. In [17, Appendix A], Sason and Shamai derived an
upper bound on the bit error probability of systematic, binary linear block codes which are transmitted over fully
interleaved fading channels with perfect channel state information at the receiver. Here we generalize the result of
[17] for arbitrary MBIOS channels. In order to derive the desired upper bound we use the following lemma due to
Divsalar [6], and provide a simplified proof to this lemma:

Lemma 3.1:[6, Section III.C] LetC be a binary block code of dimensionK whose transmission takes place
over an MBIOS channel. LetC(w) designate a sub-code ofC which includes the all-zero codeword and all the
codewords ofC which are encoded byinformation bitswhose Hamming weight isw. Then the conditional bit error
probability of C under ML decoding, given that the all-zero codeword is transmitted, is upper bounded by

Pb|0 ≤
∑

y

pN (y|0)1−λρ















K
∑

w=1

( w

K

)

∑

c ∈ C(w)
c 6= 0

pN (y|c)λ















ρ

,

λ > 0, 0 ≤ ρ ≤ 1. (29)
We introduce here a somewhat simpler proof than in [6]. Proof: The conditional bit error probability under
ML decoding admits the form

Pb|0 =
∑

y

(

w0(y)

K

)

pN (y|0) (30)

where w0(y) ∈ {0, 1, ..., K} designates the weight of the information bits in the decodedcodeword, given the
all-zero codeword is transmitted and the received vector isy. In particular, if the received vectory is included in
the decision region of the all-zero codeword, thenw0(y) = 0. The following inequalities hold:

w0(y)

K
≤

(

w0(y)

K

)ρ

, 0 ≤ ρ ≤ 1

(a)

≤















(

w0(y)

K

)

∑

c ∈ C(w0(y))
c 6= 0

[

pN (y|c)
pN (y|0)

]λ















ρ

λ ≥ 0

≤















K
∑

w=1

( w

K

)

∑

c ∈ C(w)
c 6= 0

[

pN (y|c)
pN (y|0)

]λ















ρ

. (31)

Inequality (a) holds since the received vectory falls in the decision region of a codeword̃c which is encoded by
information bits of total Hamming weightw0(y); hence, the quotientpN (y|c̃)

pN (y|0) is larger than1 while the other terms
in the sum are simply non-negative. The third inequality holds because of adding non-negative terms to the sum.
The lemma follows by substituting (31) into the RHS of (30).

Theorem 3.2:(The SFB Version on the BER)Let C be a binary linear block code of lengthN and dimension
K, and assume that the transmission of the code takes place over an MBIOS channel. LetAw,l designate the
number of codewords inC which are encoded by information bits whose Hamming weight is w and their Hamming
weight after encoding isl. Then, the bit error probability ofC under ML decoding is upper bounded by

Pb ≤ 2−NEr(R+
log αb(C)

N
) (32)
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whereR = K
N

is the code rate ofC, and

αb(C) , max
0<l≤N

A′
l

2−N(1−R)
(

N
l

) , A′
l ,

K
∑

w=1

( w

K

)

Aw,l.

Proof: Due to the linearity of the codeC and the symmetry of the channel, the conditional bit error probability
of the code is independent on the transmitted codeword; hence, without any loss of generality, it is assumed that the
all-zero codeword is transmitted. From (29), the following upper bound on the bit error probability ofC follows:

Pb =Pb|0

≤
∑

y

pN (y|0)1−λρ















K
∑

w=1

( w

K

)

∑

c ∈ C(w)
c 6= 0

pN (y|c)λ















ρ

,

λ > 0, 0 ≤ ρ ≤ 1

=
∑

y

ψ0
N (y)















ψ0
N (y)−

1
ρ pN (y|0)

1
ρ

K
∑

w=1

( w

K

)

∑

c ∈ C(w)
c 6= 0

[

pN (y|c)
pN (y|0)

]λ















ρ

(33)

whereψ0
N is an arbitrary probability tilting measure. By invoking Jensen inequality on the RHS of (33) and

replacingψ0
N (y) with the un-normalized tilting measureG0

N (y) which appears on the RHS of (5), the upper bound
in (33) transforms to

P b|0 ≤
(

∑

y

G0
N (y) pN (y|0)

)1−ρ

·















K
∑

w=1

( w

K

)

∑

c ∈ C(w)
c 6= 0

∑

y

pN (y|0)G0
N (y)1−

1
ρ

[

pN (y|c)
pN (y|0)

]λ















ρ

,

0 ≤ ρ ≤ 1, λ > 0. (34)

We consider an un-normalized tilting measureG0
N (y) which is expressible in the product form (11). Since the

communication channel is MBIOS andC is a binary linear block code, one obtains the following upper bound on
the bit error probability:
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Pb|0 ≤

(

∑

y

g(y) p(y|0)

)N(1−ρ)

0 ≤ ρ ≤ 1, λ > 0

·







K
∑

w=1

( w

K

)

N
∑

l=0

Aw,l

(

∑

y

p(y|0)g(y)
1− 1

ρ

)N−l

·

(

∑

y

p(y|1)λ
p(y|0)1−λ

g(y)
1− 1

ρ

)l






ρ

=

(

∑

y

g(y) p(y|0)

)N(1−ρ)






N
∑

l=0

A
′
l

(

∑

y

p(y|0)g(y)
1− 1

ρ

)N−l

·

(

∑

y

p(y|1)λ
p(y|0)1−λ

g(y)
1− 1

ρ

)l






ρ

≤

(

∑

y

g(y) p(y|0)

)N(1−ρ)(

max
1≤l≤N

A′
l

2−N(1−R)
(

N

l

)

)ρ

2−N(1−R)ρ

·

(

∑

y

p(y|0)g(y)
1− 1

ρ +
∑

y

p(y|1)λ
p(y|0)1−λ

g(y)
1− 1

ρ

)Nρ

(35)

By setting g(y) as in (14), we obtain an upper bound which is the same as the original SFB, except that the
distance spectrum{Al} is replaced by{Al

′}. This provides the bound introduced in (32), and concludes the proof
of the theorem.

Similarly to the derivation of the combined upper bound on theblock error probability in Theorem 3.1, we
suggest to partition the code into two subcodes in order to get improved upper bounds on the bit error probability;
however, since we consider the bit error probability instead of block error probability, the threshold in Algorithm 1
is typically modified to a value which is slightly above12 (instead of 1). Since the code is linear and the channel
is MBIOS, the conditional decoding error probability is independent of the transmitted codeword (so, we assume
again that the all-zero codeword is transmitted). By the union bound

Pb = Pb|0 ≤ Pb|0(C′) + Pb|0(C′′) (36)

wherePb|0(C′) and Pb|0(C′′) denote the conditional ML decoding bit error probabilitiesof two disjoint subcodes
C′ andC′′ which partition the block codeC (except that these two subcodes have the all-zero vector in common),
given that the all-zero codeword is transmitted. The construction of the subcodesC′ andC′′ is characterized later.

Upper bound onPb|0(C′): Let Aw,l designate the number of codewords of Hamming weightl which are encoded
by a sequence of information bits of Hamming weightw. Similarly to the discussion on the block error probability,
we use the bit-error version of the SFB (see Eq. (32)) as an upper bound onPb|0(C′). From Theorem 3.2, it follows
that the conditional bit error probability of the subcodeC′, given that the all-zero codeword is transmitted is upper
bounded by

Pb|0(C′) ≤ 2
−NEr

(

R+
log αb(C

′)

N

)

(37)

where

αb(C′) , max
l∈U

A′
l(C′)

Bl

, Al
′(C′) ,

{
∑NR

w=1

(

w
NR

)

Aw,l if l ∈ U
0 otherwise

(38)

and the setU in (38) stands for an arbitrary subset of{1, . . . , N}.
Upper bound onPb|0(C′′): We may bound the conditional bit error probability of the subcodeC′′, Pb|0(C′′), by

an improved upper bound. For the binary-input AWGN, the modified version of the TSB, as shown in [16] is
an appropriate bound. This bound is similar to the TSB for the block error probability, except that the distance
spectrum{Al} is replaced by{Al

′(C′′)} where

Al
′(C′′) ,











NR
∑

w=1

( w

NR

)

Aw,l if l ∈ Uc

0 otherwise

(39)
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andUc stands for an complementary set ofU in (38), i.e.,Uc , {1, . . . , N} \ U . As the simplest alternative to
obtain an upper bound on the conditional bit error probability of the subcodeC′ given that the all-zero codeword
is transmitted, one may use the union bound (UB) for the binary-input AWGN channel

Pb|0(C′′) ≤
NR
∑

w=1

( w

NR

)

∑

l∈Uc

Aw,l Q

(
√

2lREb

N0

)

=
N

∑

l=1

A′
l(C′′) Q

(
√

2lREb

N0

)

(40)

whereEb is the energy per information bit andN0
2 is the two-sided spectral power density of the additive noise.

The reader is referred to [24, Section 2.2] for preliminary material regarding the TSB.
In order to tighten the upper bound (37), we obtain the bit-error version of the MSFB (see Eq. (17)), by following

the steps of the proof of Theorem 3.1. In a similar manner to thetransition from (7) to (32), we just need to replace
the termsAl(C′) in (17) with A′

l(C′) to get the conditional modified SFB (MSFB) on the bit error probability of
C′, given the all-zero codeword is transmitted. The resulting upper bound is expressed in the following theorem:

Theorem 3.3 (Modified SFB on the Bit Error Probability): Let C be a binary linear block code of lengthN
and rateR, and letAw,l be the number of codewords ofC which are encoded by information bits whose Hamming
weight is w and their Hamming weight after encoding isl (where 0 ≤ w ≤ NR and 0 ≤ l ≤ N ). Let the
codeC be partitioned into two subcodes,C′ andC′′, whereC′ contains all codewords ofC with Hamming weight
l ∈ U ⊆ {1, 2, , . . . , N} and the all-zero codeword, andC′′ contains the all-zero codeword and all the other
codewords ofC which are not inC′. Assume that the communication takes place over an MBIOS channel. Then,
the bit error probability ofC under ML decoding is upper bounded by

Pb ≤ Pb|0(C′) + Pb|0(C′′)

where

Pb|0(C′) ≤ 2
−N

(

E0(ρ)−ρ(R+
log(αb(C

′))
N )

)

·
[

∑

l∈U

(

N

l

)(

A(ρ)

A(ρ) + B(ρ)

)l(
B(ρ)

A(ρ) + B(ρ)

)N−l
]ρ

,

0 ≤ ρ ≤ 1 (41)

αb(C′) , max
l∈U

A′
l

2−N(1−R)
(

N
l

) , A′
l ,

NR
∑

w=1

( w

NR

)

Aw,l

and the functionsA, B, E0 are introduced in (18), (19) and (9), respectively. An upperbound on the conditional
bit error probability for the subcodeC′′, Pb|0(C′′), can be either a union bound (40), the tangential-sphere bound
(TSB) or any other improved bound.

Discussion:Note thatαb (C′) ≤ α(C′), therefore the bound on the bit error probability in (41) is always smaller
than the bound on the block error probability in (17), as one could expect.

In the derivation of the MSFB on the conditional block and bit error probabilities (see Eqs. (17) and (41),
respectively), we obtain simplified expressions by taking out the maximum of

{

Al(C′)
Bl

}

and
{

A′

l(C
′)

Bl

}

from the
corresponding summations in (21) and (35). This simplification was also done in [22] for the derivation of the SFB
as a particular case of the DS2 bound. When considering the case of an upper bound on the block error probability,
this simplification is reasonable because we consider the terms

{

Al(C′)
Bl

}

which vary slowly over a large range of
the Hamming weightsl (see Fig. 1(a) when referring to ensembles of turbo-like codes whose average distance
spectrum resembles the binomial distribution). However, by considering the terms

{

A′

l(C
′)

Bl

}

whose values change
considerably withl (see Fig. 1(b)), such simplification previously done for the block error analysis (i.e., taking out
the maximal value ofA

′

l(C
′)

Bl
from the summation) is expected to significantly reduce the tightness of the bound on
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the bit error probability. Thus, the modification which results in (41) does not seem in general to yield a good
upper bound.2 In order to get a tighter upper bound on the bit error probability we introduce the following theorem:

Theorem 3.4 (Simplified DS2 Bound): Let C be a binary linear block code of lengthN and rateR, and let
Aw,l designate the number of codewords which are encoded by information bits whose Hamming weight isw and
their Hamming weight after encoding isl (where0 ≤ w ≤ NR and0 ≤ l ≤ N ). Let the codeC be partitioned into
two subcodes,C′ andC′′, whereC′ contains all the codewords inC with Hamming weightl ∈ U ⊆ {1, 2, , . . . , N}
and the all-zero codeword, andC′′ contains all the other codewords ofC and the all-zero codeword. Let

Al
′(C′) ,

{
∑NR

w=1

(

w
NR

)

Aw,l if l ∈ U
0 otherwise

.

Assume that the communication takes place over an MBIOS channel. Then, under ML decoding, the bit error
probability of C, is upper bounded by

Pb ≤ Pb|0(C′) + Pb|0(C′′)

where

Pb|0(C′) ≤ 2
−N

(

E0(ρ)−ρ

(

R+
log ᾱρ(C′)

N

))

, 0 ≤ ρ ≤ 1 (42)

ᾱρ(C′)

,

N
∑

l=0

{

A′
l(C′)

2−N(1−R)
(

N
l

)

(

N

l

)(

A(ρ)

A(ρ) + B(ρ)

)l(
B(ρ)

A(ρ) + B(ρ)

)N−l
}

. (43)

A(ρ), B(ρ) andE0 are defined in (18), (19) and (9), respectively. As before, an upper bound on the conditional
bit error probability for the subcodeC′′, Pb|0(C′′), can be either a union bound or any other improved bound.

Proof: Starting from the first equality in (35), and using the definitionfor A(ρ), B(ρ) in (18) and (19) we
get

Pb|0

≤
(

A(ρ) + B(ρ)

2

)N

2Nρ

·
{

N
∑

l=0

A′
l(C′)

(

B(ρ)

A(ρ) + B(ρ)

)N−l (
A(ρ)

A(ρ) + B(ρ)

)l
}ρ

=

(

A(ρ) + B(ρ)

2

)N

2NRρ · 2Nρ(1−R)

·
{

N
∑

l=0

A′
l(C′)

(

B(ρ)

A(ρ) + B(ρ)

)N−l (
A(ρ)

A(ρ) + B(ρ)

)l
}ρ

= 2−N(E0(ρ)−ρR)

·
{

N
∑

l=0

A′
l(C′)

Bl

(

N

l

) (

B(ρ)

A(ρ) + B(ρ)

)N−l (
A(ρ)

A(ρ) + B(ρ)

)l
}ρ

(44)

where

Bl , 2−N(1−R)

(

N

l

)

, l = 0, . . . , N

designates the distance spectrum of fully random block codes of lengthN and rateR. Using the definition for
ᾱρ(C′) in (43) we get the upper bound (42).
Evidently, the upper bound (42) is tighter than the bit-errorversion of the SFB in (37), becausēαρ(C′) which is
the expected value ofA

′

l(C
′)

Bl
is not larger thanαb(C′) which is the maximal value ofA

′

l(C
′)

Bl
. We note that the upper

2Note that for an ensemble of fully random block codes, all the termsA′

l
Bl

are equal to1
2
; hence, the simplification above does not reduce

the tightness of the bound at all when considering this ensemble.
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bound (42) is just the DS2 bound [8], with the un-normalized tilting measure (14). This tilting measure is optimal
only for the ensemble of fully random block codes, and is sub-optimal for other codes. We refer to the upper
bound (42) as thesimplified DS2. From the discussion above, we conclude that the simplified DS2 bound (which
is also valid as an upper bound on the conditionalblock error probability if we replaceA′

l(C′) in (44) by Al(C′))
is advantageous over the MSFB whenA′

l (or Al for the case of block error probability) changes considerably over
the Hamming weight range of interest. This is demonstrated for the block error probability of the ensemble of
multiple turbo-Hamming codes where there is no noticeable improvement if we use the simplified DS2 to bound
Pe|0(C′) instead of the MSFB, where for the case of bit-error probability we get tighter upper bound when using
the simplified DS2 to upper boundPb|0(C′) rather than the MSFB.

IV. EXPURGATION

In this section we consider a possible expurgation of the distance spectrum which yields in general tighter upper
bounds on the ML decoding error probability when transmission takes place over a binary-input AWGN (BIAWGN)
channel. To this end, we rely on some properties of the Voronoi regions of binary linear block codes, as presented
in [1], [2], [3].

Let C be a binary linear block code of lengthN and rateR. Without any loss of generality, let us assume that
the all-zero codeword,c0, was transmitted over the BIAWGN channel. For any received vectory, an ML decoder
checks whether it falls within the decision region of the allzero vector. This decision region (which is also called
the Voronoi region ofc0) is defined as the setV0 of vectors inR

N that are closest (in terms of Euclidian distance)
to the all-zero codeword, i.e.,

V0 =
{

x ∈ R
N : d(x, c0) ≤ d(x, c), ∀ c ∈ C

}

. (45)

Not all of the 2NR inequalities in (45) are necessarily required to define the Voronoi region. The minimal set of
codewords that determine the Voronoi region ofc0, forms the set of Voronoi neighbors ofc0 (to be designated by
N0). So the region (45) can be defined by

V0 =
{

x ∈ R
N : d(x, c0) ≤ d(x, c), ∀ c ∈ N0

}

. (46)

It is clear that the block error probability ofC is equal to the conditional block error probability of the expurgated
subcodeCex, assuming the all-zero codeword is transmitted, whereCex designates the subcode ofC which contains
the all-zero codeword and all its (Voronoi) neighbors. Hence, any upper bound that solely depends on the code
distance spectrum of the code can be tightened by replacing the original distance spectrum withthe distance
spectrum of the expurgated code. It should be noted, however, that the argument above cannotbe applied to thebit
error probability. This stems from the fact that while the block error event is solely defined by the Voronoi region
of the transmitted codeword, the bit error event also depends on the Hamming weight of the information bits of
each decoded codeword; hence, the above expurgation cannotbe applied to the analysis of the bit error probability.
The distance spectrum of the Voronoi neighbors of an arbitrary codeword of some popular linear block codes (e.g.,
Hamming, BCH and Golay codes) is given in [1]. A simple way to find a subcode ofC which contains the subcode
Cex is given in the following theorem from [2]:

Theorem 4.1:(On the Voronoi Regions of Binary Linear Block Codes [2]): For any binary linear block code
C with rateR and lengthN

N0 ⊇ {c ∈ C : 1 ≤ WH(c) ≤ 2dmin − 1}
and

N0 ⊆ {c ∈ C : 1 ≤ WH(c) ≤ N(1 − R) + 1}
wheredmin is the minimal Hamming weight of the codewords inC.
Note that according to the theorem above, one should expect the expurgation to have maximal impact on the
tightness of an upper bound for high rate codes, where most ofthe codewords can be expurgated. We should
also observe that the expurgated codewords have large distances from the all-zero codeword (all the expurgated
codewords have a Hamming weight larger than2dmin−1). Thus, the improvement due to the expurgation process is
especially substantial at low SNRs. One can use this theorem to achieve an immediate improvement of an arbitrary
upper bound by expurgating all the codewords whose Hamming weight is greater thanN(1 − R) + 1. We refer
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to this kind of expurgation as thetrivial expurgation. The trivial expurgation, though very simple toapply, does
not produce satisfactory results in many cases, because in many cases, the portion of the distance spectrum which
corresponds to Hamming weights aboveN(1−R) + 1 has a negligible effect on the overall bound. In [2], Agrell
introduces a method (calledC rule) in order to determine whether a codewordc is a zero-neighbor.

C rule: A codeword is a 0-neighbor if and only if it covers3 no other nonzero codeword.
In [3] , Ashikmin and Barg used this rule to derive explicit formulas for the weight spectrums of zero-neighbors

for various codes. This includes the families of Hamming codes and second-order Reed-Muller codes.
In order to upper bound the block error probability using thebounding technique introduced in this paper, we

split the subcodeCex into two subcodes,C′
ex andC′′

ex, whereC′
ex contains all the codewords ofCex with Hamming

weight l ∈ U ⊆ {1, 2, ..., N(1−R) + 1}, andC′′
ex contains the all-zero codeword and all the other codewords.The

following upper bound holds:
Pe(C) = Pe|0(Cex) ≤ Pe|0(C′

ex) + Pe|0(C′′
ex) (47)

werePe|0(C′
ex) andPe|0(C′′

ex) are the conditional block error probabilities of the subcodesC′
ex andC′′

ex, respectively,
given that the all-zero codeword was transmitted. We can upper boundPe|0(C′′

ex) by the union bound or the TSB,
and we upper boundPe|0(C′

ex) by the MSFB (17). The partitioning of the subcodeCex into two subcodesC′
ex and

C′′
ex is done following the adaptive algorithm introduced in Section III.

V. A PPLICATIONS

This section demonstrates some numerical results of the improved upper bounds on the ML decoding error
probability of linear block codes. We apply the bounds introduced in Sections III and IV to various ensembles of
parallel and serially concatenated codes. Throughout this section, it is assumed that the encoded bits are BPSK
modulated, transmitted over an AWGN channel, and coherently detected. The effect of an expurgation of the distance
spectrum on the tightness of some upper bounds on the decoding error probability is exemplified as well.

For the binary-input additive white Gaussian noise (BIAWGN) channel with BPSK modulation, the conditional
probability density function (pdf) for a single letter input is:

p(y|0) =
1√
πN0

exp

{

−
(

y +
√

Es

)2
/N0

}

,

p(y|1) =
1√
πN0

exp

{

−
(

y −
√

Es

)2
/N0

} (48)

whereEs designates the energy of the symbol, andN0

2 is the two-sided spectral power density of the channel. In
order to calculate the SFB onPe|0(C′), we first calculate the termsA(ρ) and B(ρ), as defined in (18) and (19),
respectively. Clearly, for a continuous-output channel, the sums in (18) and (19) are replaced by integrals.

B(ρ) =

∫ ∞

−∞
p(y|0)

2
ρ+1

[

1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ−1

dy

=

∫ ∞

−∞

(

1√
πN0

)
2

ρ+1

e
−

2(y+
√

Es)
2

N0(1+ρ)

( 1√
πN0

)
ρ−1
ρ+1

·
[

1

2
e
− (y+

√
Es)

2

N0(1+ρ) +
1

2
e
− (y−

√
Es)

2

N0(1+ρ)

]ρ−1

dy

= exp

(

− Es

N0

)∫ ∞

−∞

1√
πN0

e−
y2

N0

· e−
4y

√
Es

N0(ρ+1)

[

1

2
e

2y
√

Es
N0(1+ρ) +

1

2
e
− 2y

√
Es

N0(1+ρ)

]ρ−1

dy

= exp

(

− Es

N0

)

E

[

e−
2X

√
2Es/N0

ρ+1 coshρ−1

(

√

2Es/N0X

1 + ρ

)]

(49)

3A binary codewordc1 is said tocoveranother codeword,c2, if c2 has zeros in all the positions wherec1 has a zero.
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whereE denotes the statistical expectation, andX ∼ N(0, 1). We also obtain that

A(ρ)

=

∫ ∞

−∞
[p(y|0)p(y|1)]

1
1+ρ

[

1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ−1

dy

= exp

(

− Es

N0

)

E

[

coshρ−1

(

√

2Es/N0X

1 + ρ

)]

(50)

and

A(ρ) + B(ρ) = 2 exp

(

− Es

N0

)

E

[

cosh1+ρ

(

√

2Es/N0X

1 + ρ

)]

. (51)

Plugging (49) – (51) into (17), and (41) and minimizing over the interval0 ≤ ρ ≤ 1 give the desired bounds for
Pe|0(C′) andPb|0(C′), respectively.

A. Ensemble of Serially Concatenated Codes

The scheme in Fig. 2 depicts the encoder of an ensemble of serially concatenated codes where the outer code
is a (127, 99, 29) Reed-Solomon (RS) code, and the inner code is chosen uniformly at random from the ensemble
of (8, 7) binary linear block codes. Thus, the inner code extends every symbol of 7 bits from the Galois field
GF(27) to a sequence of 8 bits. The decoding is assumed to be performedin two stages: the inner (8, 7) binary
linear block code is soft-decision ML decoded, and then a hard decision ML decoding is used for the outer (129,
99, 29) RS code. Due to the hard-decision ML decoding of the (127, 99, 29) RS code, its decoder can correct
up to t = bdmin−1

2 c = 14 erroneous symbols. Hence, an upper bound on the average block error probability of the
considered serially concatenated ensemble is given by

Pe ≤
127
∑

i=t+1

(

127

i

)

pi
s(1 − ps)

127−i (52)

whereps is the average symbol error probability of the inner code under soft-decision ML decoding. The symbol
error probabilityps of the inner code is either upper bounded by the ubiquitous union bound or the TSB, and this
upper bound is substituted on the RHS of (52). Since the rate ofthe inner code is rather high (it is equal to7

8 bits
per channel use), an expurgation of the distance spectrum seems to be attractive in order to tighten the upper bound
on the overall performance of the concatenated ensemble. Ashikmin and Barg [3] show that the average expurgated
distance spectrum of the ensemble of random linear block codes of lengthN and dimensionK is given by

E[Al] =











(

N

l

)

2−(N−K)
l−2
∏

i=0

(

1 − 2−(N−K−i)
)

l = 0, . . . , N − K + 1

0 otherwise.

(53)

We rely on the expurgated distance spectrum in (53) in order to get a tighter version of the union bound or
the TSB on the symbol error probabilityps of the inner code (whereN = 8 and K = 7). The expurgated union
bound in Fig. 3 provides a gain of 0.1 dB over the union bound or TSBat block error probability of10−4, and
the improvement in the tightness of the bound due to the distance spectrum expurgation is especially prominent at
low values of SNR. Clearly, we take 1 as the trivial bound onps (as otherwise, for low values of SNR, the union
bound onps may exceed 1, which gives in turn a useless upper bound on the decoding error probability of the
ensemble).

B. Turbo-Hamming Codes

Let us consider an ensemble of uniformly interleaved parallel concatenated turbo-Hamming codes. The encoder
consists of two identical(2m − 1, 2m − m − 1) Hamming codes as component codes, and a uniform interleaver
operating on the2m − m − 1 information bits. The comparison here refers to the case where m = 10, so the two
component codes are (1023, 1013) Hamming codes, and the overall rate of the ensemble isR = 2m−m−1

2m+m−1 = 0.9806

bits per channel use. The value of the energy per bit to one-sided spectral noise density( Eb
N0

) which corresponds to
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Fig. 2. A scheme for an ensemble of serially concatenated codes wherethe outer code is a (127, 99, 29) Reed-Solomon (RS) code, and
the inner code is chosen uniformly at random from the ensemble of (8,7) binary linear block codes.
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Fig. 3. Various upper bounds on the block error probability of the ensemble of serially concatenated codes depicted in Fig. 2. The compared
bounds are the tangential-sphere bound (TSB) and the union bound with and without expurgation of the distance spectrum; this expurgation
refers to the ensemble of inner codes, chosen uniformly at random from the ensemble of (8,7) binary linear block codes.

the channel capacity for this coding rate is 5.34 dB, where itis assumed that the communication takes place over
a binary-input AWGN channel. In order to obtain performancebounds for the ensemble of uniformly interleaved
turbo-Hamming codes, we rely on an algorithm for the calculation of the average input-output weight enumerator
function (IOWEF) of this ensemble, as provided in [18, Section 5.2]. As noted in [18], the average distance
spectrum of this ensemble is very close to the binomial distribution for a rather large range of Hamming weights
(see Fig. 1(a)). Hence, one can expect that the upper bound introduced in Theorem 3.1 provides a tight bounding
technique on the average block error probability of this ensemble. For this coding scheme, we note that regarding
Pe, there is no substantial improvement in the tightness of theoverall upper bound if we upper boundPe|0(C′′) by
the TSB instead of the simple union bound (see Fig. 4). Among the bounds introduced in Section III, the upper
bound which combines the TSB and the MSFB is the tightest bound, especially for the low SNR range (see Fig. 4);
referring to the bound in Theorem 3.1, the partitioning of codes in the considered ensemble relies on Algorithm 1
(see Section III). In Fig. 5, we provide a comparison between various upper bound on thebit error probability of
this turbo-like ensemble. The tightest bound for the bit error analysis is the one provided in Theorem 3.4, combining
the simplified DS2 bound with the union bound. It is shown in Fig. 5that the simplified DS2 provides gains of
0.16 dB and 0.05 dB over the MSFB at bit error probabilities of10−1 and10−2, respectively. The simplified DS2
also provides gain of 0.08 dB over the TSB at bit error probability of 10−1. Unfortunately, a trivial expurgation of
the average distance spectrum of uniformly interleaved turbo codes with two identical(2m−1, 2m−m−1) Hamming
codes as components (i.e., by nullifying the average distance spectrum at Hamming weights above2m + 1) has no
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impact on tightening the performance bounds of this ensemble.
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Fig. 4. Comparison between various upper bounds on the ML decoding block error probability where the comparison refers to the ensemble
of uniformly interleaved turbo-Hamming codes whose two component codes are (1023, 1013) Hamming codes. The compared bounds are the
union bound (UB), the tangential-sphere bound (TSB), and two instances of the improved upper bound from Theorem 3.1: the UB+MSFB
combines the MSFB with the union bound, and the TSB+MSFB is the upper bound which combines the MSFB with the tangential-sphere
bound.

C. Multiple Turbo-Hamming Codes

Multiple turbo codes are known to yield better performance,and hence, it is interesting to apply the new bounding
techniques in Section III to these ensembles. The encoder of a multiple turbo-Hamming code is depicted in Fig. 6.

Consider the ensemble of uniformly and independently interleaved multiple-turbo codes, where the components
codes are identical systematic binary linear block codes oflengthN . Let Sw,hi

denote the number of codewords
of the ith component code with weight of the systematic bits equal tow and the weight of the parity bits equal to
hi. The average number of codewords of the ensemble of multiple-turbo codes, with systematic-bits weight ofw
and overall weightl is given by

Aw,l =
∑

h1, h2, h3 s.t.
w + h1 + h2 + h3 = l

Sw,h1
Sw,h2

Sw,h3

(

N
w

)2 . (54)

From (54) and the algorithm to calculate the input-output weight enumerators of Hamming codes (see [18,
Appendix A]), it is possible to verify that the average distance spectrum of the ensemble of multiple turbo-Hamming
codes with two independent uniform interleavers is very close to the binomial distribution for a relatively large
range of Hamming weights (similar to the plot in Fig. 1(a)). Hence, the improved bounds provided in Section III
are expected to yield good upper bounds on the decoding errorprobability. The comparison here refers to the case
of m = 10, so the three component codes are (1023, 1013) Hamming codes. The overall rate of the ensemble is
2m−m−1
2m+2m−1 = 0.9712 bits per channel use, and the channel capacity for this coding rate corresponds toEb

N0
= 5 dB.

All the improved bounds that are evaluated here, incorporate the union bound as an upper bound onPe(C′′) (or
Pb(C′′) for bit error probabilities). The numerical results of various upper bounds are shown in Fig. 7 for the block
and bit error probabilities. As expected, the improvementsthat were obtained by the improved bounds (Theorems
3.1–3.4) are more pronounced here than for the ensemble of turbo-Hamming code. For example, at bit error rate
of 10−1, the simplified DS2 bound yields a gain of 0.12 dB over the TSB. A modest improvement of 0.05 dB was
obtained at bit error rate of10−2.
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Fig. 5. Comparison between various upper bounds on the ML decoding bit error probability of the ensemble of (1033,1013) uniformly
interleaved turbo-Hamming code. The compared bounds are the union bound (UB), the tangential-sphere bound (TSB), the upper bound
from Theorem 3.3 which combines the union bound with the MSFB (UB+MSFB), and the upper bound from Theorem 3.4 which combines
the union bound with the simplified DS2 bound (UB+simplified DS2).
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Fig. 6. A multiple turbo-Hamming encoder. The encoder consists of parallel concatenated Hamming codes with two uniform, statistically
independent interleavers. The code length is2m + 2m − 1 and the code rate isR = 2m−m−1

2m+2m−1
bits per channel use.

D. Random Turbo-Block Codes with Systematic Binary Linear Block Codes as Components

Finally, we evaluate improved upper bound for the ensemble ofuniformly interleaved parallel concatenated (turbo)
codes, having two identical component codes chosen uniformly at random and independently from the ensemble
of systematic binary linear block codes. We assume that the parameters of the overall code are(N, K), so the
parameters of its component codes are(N+K

2 , K). In addition, the length of the uniform interleaver isK.
According to the analysis in [23], the input-output weight enumeration of the considered ensemble is given by

S(W,Z) =
∑

w,j

Sw,jW
wZj

= 1+

K
∑

w=1







Ww



2−(N−K)

((

K

w

)

− 1

)N−K
∑

j=0

(

N − K

j

)

Zj

+2−
N−K

2

N−K
2

∑

j=0

(

N−K
2

j

)

Z2j











whereSw,j denotes the number of codewords whose information sub-words have Hamming weight ofw and the
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Fig. 7. Comparison between various upper bounds on the ML decoding error probability, referring to the ensemble of uniformly interleaved
multiple turbo-Hamming codes where the three component codes are (1023, 1013) Hamming codes (see Fig. 6). The upper plot refers to
upper bounds on the block error probability, and the compared boundsare the union bound (UB), the tangential-sphere bound (TSB), and the
upper bound of Theorem 3.1 which combines the union bound with the MSFB (UB+modified SFB). The lower plot refers to upper bounds
on the bit error probability, and the compared bounds are the union bound (UB), the tangential-sphere bound (TSB), the upper bound of
Theorem 3.3 which combines the union bound with the MSFB, and the upperbound of Theorem 3.4 which combines the union bound with
the simplified DS2 bound (UB+simplified DS2).

parity sub-word has Hamming weightj. We apply the improved bounds introduced in Section III to this ensemble
where the parameters are set to(N, K) = (1144, 1000) (hence, the rate of the parallel concatenated ensemble is
R = 0.8741 bits per channel use). The plots of various upper bounds on theblock and bit error probabilities are
shown in Fig. 8. The improved bounds yield the best reported upper bound on the block and bit error probabilities.
For the block error probability, the upper bound which combines the MSFB with the union bound is the tightest
bound; it achieve a gain of0.1 dB over the TSB, referring to a block error probability of10−4. A similar gain of
0.11 dB is obtained for the bit error probability, referring to a BER of 10−4, referring to the bound which combined
the union bound with the simplified DS2 bound (see Theorem 3.4).

VI. CONCLUSIONS ANDOUTLOOK

We derive in this paper tightened versions of the Shulman and Feder bound (SFB) [21]. This work was motivated
by the observation that some recently introduced versions of the tangential-sphere bound (TSB) do not provide
any improvement on the error exponent of the TSB [24], and in particular, they vanish at a portion of the rate
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Fig. 8. Comparison between upper bounds on the block and bit error probabilities for an ensemble of uniformly interleaved turbo codes
whose two component codes are chosen uniformly at random from theensemble of (1072, 1000) binary systematic linear block codes; its
overall code rate is 0.8741 bits per channel use. The compared bounds under ML decoding are the tangential-sphere bound (TSB), and the
bounds in Theorems 3.1 and 3.4. The upper and lower plots provide upper bounds on the block and bit error probabilities, respectively.

region which is strictly below the channel capacity. On the other hand, the SFB reproduces the random coding
error exponent [21], but it is not necessarily useful for finite length codes with short to moderate block lengths.
Gallager bounds and their variations provide a framework for the derivation of upper bounds on the decoding error
probability under ML decoding (see, e.g., [22] and [20, Chapter 4]), but in general, the computation of some of
these bounds is difficult. Following the observation made in [20], [22] where the SFB emerges as a special instance
of the Gallager and DS2 bounds (see Section II), and in light of the strength of a bounding technique combining the
union bound with the SFB (see, e.g., [13], [14] and [19, Theorem 2.2]), the aim of our study is twofold. It is first
targeted to improve the error exponent of the TSB and reproducethe random coding error exponent, and secondly,
it aims to provide tightened versions of the SFB which are proved useful for the error analysis of relatively short
block codes (as exemplified in some examples in Section V). The bounds introduced in this paper are applied to the
analysis of the bit and block error probabilities of binary linear block codes under ML decoding. The effectiveness
of these bounds is exemplified for some ensembles of turbo-like codes over the AWGN channel. An expurgation
of the distance spectrum of binary linear block codes further tightens, in some cases, the resulting upper bounds.

A possible direction for further research, currently pursued by the authors, is the generalization of the bounds
studied in this paper to non-binary linear block codes. Applications to ensembles of non-binary LDPC codes
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transmitted over memoryless channels are also of interest.As another direction for further research, it is suggested
to use the recent guidelines in [25] for the computation of the local weight distributions of binary linear block
codes; this will be used for further studying the effect of the expurgation of the distance spectrum on tightening
the bounds introduced in this paper and various other boundsintroduced in [20].
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