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Abstract

The performance of maximum-likelihood (ML) decoded binkngar block codes is addressed via the derivation
of tightened upper bounds on their decoding error proligbilthe upper bounds on the block and bit error
probabilities are valid for any memoryless, binary-inpat autput-symmetric communication channel, and their
effectiveness is exemplified for various ensembles of tlikl®codes over the AWGN channel. An expurgation of
the distance spectrum of binary linear block codes furtlgrténs the resulting upper bounds.
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I. INTRODUCTION

Since the advent of information theory, the search for efftotling systems has motivated the introduction of
efficient bounding techniques tailored to specific codes orescanefully chosen ensembles of codes. The incentive
for introducing and applying such bounds has strengtheni#ul the introduction of various families of codes
defined on graphs which closely approach the channel capaithyfeasible complexity (e.g., turbo codes, repeat-
accumulate codes, and low-density parity-check (LDPC) cdod&early, the desired bounds must not be subject
to the union bound limitation, since for long blocks thessambles of turbo-like codes perform reliably at rates
which are considerably above the cutoff réf,) of the channel (recalling that union bounds for long codes ar
not informative at the portion of the rate region abaRg where the performance of these capacity-approaching
codes is most appealing). Although maximum-likelihood (Mlecoding is in general prohibitively complex for long
codes, the derivation of bounds on the ML decoding error gindity is of interest, providing an ultimate indication
of the system performance. Further, the structure of effidentes is usually not available, necessitating efficient
bounds on performance to rely only on basic features, su¢headistance spectrum and the input-output weight
enumeration function (IOWEF) of the examined code (for thduatin of the block and bit error probabilities,
respectively, of a specific code or ensemble).

A basic inequality which serves for the derivation of mangyiously reported upper bounds is the following:

Pr(word error ¢) < Pr(word errofic,y € R)
+Pr(y ¢ R|c) 1)

wherey denotes the received vector at the output of the receRés, an arbitrary geometrical region which can be
interpreted as a subset of the observation spaceg¢anén arbitrary transmitted codeword. This category inctude
the Berlekamp tangential bound [4] where the voluRéds a half-space separated by a plane, the sphere bound
by Herzberg and Poltyrev [11] whef@ is a hyper-sphere, Poltyrev’s tangential-sphere bound (LSB) whereR
is a circular cone, and Divsalar’s bound [6] whéReis a hyper-sphere with an additional degree of freedom with
respect to the location of its center.

Another approach is the Gallager bounding technique whidviges a conditional upper bound on the ML
decoding error probability given an arbitrary transmit{eshgth-V) codewordc,,, (F,,,). The conditional decoding
error probability is upper bounded by
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where0 < p <1 andX > 0 (see [8], [20]; in order to make the presentation self-coetd, it will be introduced
shortly in the next section as part of the preliminary mafgriHere,43}(y) is an arbitrary probability tilting
measure (which may depend on the transmitted codewgid and py (y|c) designates the transition probability
measure of the channel. Connections between these two regdgmdifferent bounding techniques in (1) and (2)
were demonstrated in [22], showing that many previouslyoregal bounds (or their Chernoff versions) whose
derivation originally relied on the concept shown in inelgyal) can in fact be re-produced as particular cases
of the bounding technique used in (2). To this end, one sinmglgds to choose the suitable probability tilting
measure); which serves as the “kernel” for reproducing various prasly reported bounds. The observations in
[22] relied on some fundamental results which were repooedivsalar [6].

The tangential-sphere bound (TSB) of Poltyrev often happene thdtightest upper bound on the ML decoding
error probability of block codes whose transmission takasgover a binary-input AWGN channel. However, in
the random coding setting, it fails to reproduce the randoxlirgg exponent [10] while the second version of the
Duman and Salehi (DS2) bound, to be reviewed in the next sedioes (see [22]). The Shulman-Feder bound
(SFB) can be derived as a particular case of the DS2 bound (sPe 2@ it achieves the random coding error
exponent. Though the SFB is informative for some structureehlirblock codes with good Hamming properties,
it appears to be rather loose when considering sequenceéseaf Iblock codes whose minimum distance grows
sub-linearly with the block length, as is the case with magiacity-approaching ensembles of LDPC and turbo
codes. However, the tightness of this bounding techniqeggisificantly improved by combining the SFB with the
union bound; this approach was exemplified for some strudtarsembles of LDPC codes (see e.g., [14] and the
proof of [19, Theorem 2.2]).

In this paper, we introduce improved upper bounds on bothbihend block error probabilities. Section Il
presents some preliminary material. In Section lll, we idtrce an upper bound on the block error probability
which is in general tighter than the SFB, and combine the riegultound with the union bound. Similarly, an
appropriate upper bound on the bit error probability isddtrced. The effect of an expurgation of the distance
spectrum on the tightness of the resulting bounds is coregidim Section IV. By applying the new bounds to
ensembles of turbo-like codes over the binary-input AWGHMrutel, we demonstrate the usefulness of the new
bounds in Section V, especially for some coding structurdsgif rates. We conclude our discussion in Section VI.
For an extensive tutorial paper on performance bounds eéititodes, the reader is referred to [20].

II. PRELIMINARIES

We introduce in this section some preliminary material atserves as a preparatory step towards the presentation
of the material in the following sections.

A. The DS2 Bound
The bounding technique of Duman and Salehi [7], [8] origindtesn the 1965 Gallager bound. Lefty(y)

designate an arbitrary probability measure (which may dégmend on the transmitted codeward). The Gallager
bound [10] can then be put in the form (see [22])
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By invoking the Jensen inequality in (3) for< p < 1, the DS2 bound results
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0<p<1,A>0. @

Let G7}(y) be an arbitrary non-negative function pf and let the probability density functiofij}(y) be

m GRN(y) pn(ylem)
,lp —
V) = ZGm p(ylem)

(5)

The functionsG'%} (y) andvy}}(y) are referred to as the un-normalized and normalized tiltie@sures, respectively.
The substitution of (5) into (4) yields the following upperumal on the conditional ML decoding error probability
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m'#m Y
0<p<1, X>0. (6)

The upper bound (6) was also derived in [6, Eq. (62)].
For the case of memoryless channels, and for the choicgiify) as ¥} (y H Y™ (y;) (recalling that

the functiony3} may depend on the transmitted codewaergl), the upper bound (4) is relatlvely easily evaluated

(similarly to the standard union bounds) for linear blockies. In that case, (4) is calculable in terms of the distance
spectrum of the code, not requiring the fine details of the idecture. Moreover, (4) is also amenable to some
generalizations, such as for the class of discrete menssybannels with arbitrary input and output alphabets.

B. The Shulman and Feder bound

We consider here the transmission of a binary linear blodecbwhere the communication takes place over a
memoryless binary-input output-symmetric (MBIOS) chaniéle analysis refers to the decoding error probability
under soft-decision ML decoding.

The Shulman and Feder bound (SFB) [21] on the block error probabflian (N, K') binary linear block code
C, transmitted over a memoryless channel is given by

P < 2—NEr(R+lOga(C)) (7)
where
Er(R) = JBax, (Eo(p) — pR) 8)
A 1 a1 R R
Eo(p) & —logy{ > [210(3/\0)“0 +5p(ylL) ”P] : 9)
)

E, is the random coding error exponent [10],% % designates the code rate in bits per channel use, and
A
a(C) £ :

On the right-hand side (RHS) of (10)A4;} denotes the distance spectrum of the code. Hence, for failgam
block codesn(C) is equal to 1, and the Shulman-Feder bound (SFB) particularizésetrandom coding bound

(10)



[10]. In general, the parametesC) in the SFB (7) measures the maximal ratio of the distance spaadf a code
(or ensemble) and the average distance spectrum whichspormrds to fully random block codes of the same block
length and rate.

The original proof of the SFB is quite involved. In [22], a simpf@oof of the SFB is derived, and by doing
so, the simplified proof reproduces the SFB as a particular chieedS2 bound (see Eq. (4)). In light of the
significance of the proof concept to the continuation of oysgrawe outline this proof briefly.

Since we deal with linear block codes and the communicati@nicll is MBIOS, one can assume without any
loss of generality that the all zero codewatgl is the transmitted vector. In order to facilitate the expras of
the upper bound (6) in terms of distance spectrum of the blme C, we consider here the case where the
un-normalized tilting measur€é$;(y) can be expressed in the following product form:

N
=[] o) (11)
i=1

where g is an arbitrary non-negative scalar function, and the cbharmnby assumption MBIOS, so the transition
probability measure is expanded in the product form

|Cm’ Hp yz|cm K (12)

wherec,, = (¢ 1,- .., v, v). HeNce, the upper bound on the conditional ML decoding gurobability given
in (6) can be rewritten as

Pe:Pe\O
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A>0,
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9= N(1-R)p

Np
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By setting

p
o) = 50010075 + o) 7| i0) 7,
1
T4y
and using the symmetry of the channel (whefg|0) = p(—y|1)), the SFB follows readily.

(14)

Il1. 1 MPROVED UPPERBOUNDS
A. Upper Bound on the Block Error Probability

It is well known that at rates below the channel capacity, liteek error probability of the ensemble of fully
random block codes vanishes exponentially with the blocigtle. In the random coding setting, the TSB [15]
fails to reproduce the random coding exponent, while the SHB particularizes to the 1965 Gallager bound for
random codes, and hence, the SFB reproduces the random cogiogeat. The SFB is therefore advantageous
over the TSB in the random coding setting when we let the blonktle be sufficiently large. Equations (7) and



(10) imply that for specific linear codes (or ensembles), thbthess of the SFB depends on the maximal ratio
between the distance spectrum of the code (or the averagmnclisspectrum of the ensemble) and the average
distance spectrum of fully random block codes of the samgtheand rate which has a binomial distribution.

In order to tighten the SFB bound for linear block codes, Milkexd Burshtein [14] suggested to partition the
original linear code’ into two subcodes, namely andC”; the subcod&’ contains the all-zero codeword and all
the codewords with Hamming weights b€ ¢/ C {1,2,..., N}, while C” contains the other codewords which have
Hamming weights of € &¢ = {1,2,..., N} \ U and the all-zero codeword. From the symmetry of the chanhel, t
union bound provides the following upper bound on the ML dieg error probability:

Pe = Py < Pgo(C') + Pyo(C") (15)

where Py, (C") and Py,(C") designate the conditional ML decoding error probabili#s’’ andC”, respectively,
given that the all zero codeword is transmitted. We note aitabugh the cod€ is linear, its two subcoded’ and
C" are in generahon-linear One can rely on different upper bounds on the conditionalrgarobabilities P (C’)
and Py (C"), i.e., we may boundy,(C’) by the SFB, and rely on an alternative approach to obtain anrljgpend
on Py, (C"). For example, if we consider the binary-input AWGN chantiegn the TSB (or even union bounds)
may be used in order to obtain an upper bound on the conditesrar probability Peo(C”) which corresponds to
the subcod€”. In order to obtain the tightest bound in this approach, draikl look for an optimal partitioning
of the original cod& into two sub-codes, based on the distance spectruih ©he solution of the problem is quite
tedious, because in general if the suldgatan be an arbitrary subset of the set of integdrs .., N}, then one
has to compar@z 0 ( ) = 2V different possibilities foi/. However, we may use practical optimization schemes
to obtain good results which may improve the tightness ohltbe SFB and TSB.

An easy way to make an efficient partitioning of a linear blockleC is to compare its distance spectrum (or
the average distance spectrum for an ensemble of lineasytodi the average distance spectrum of the ensemble
of fully random block codes of the same rate and block leng#t.us designate the average distance spectrum of
the ensemble of fully random block codes of lengthand rateR by

N
B,éz—N<1—R><l) 1=0,1,...,N. (16)
Then, it is suggested to partitiah in a way so that all the codewords with Hamming weighobr which Al is

greater than some threshold (which should be larger thant tlbse to it) are associated witH’, and the other

codewords are associated with The following algorithm is suggested for the calculationttod upper bound on
the block error probability under ML decoding:

Algorithm 1
1. Set
U=9e, U={1,2..N} I=1

where® designates an empty set, and set the initial value of theruppend to be 1.

2. Compute the raticg—j where{A4;} is the distance spectrum of the binary linear block codeleraverage
distance of an ensemble of such codes), &Bd} is the binomial distribution introduced in (16).
3. If this ratio is smaller than some threshold (where theealf the threshold is typically set to be slightly

larger than 1), then the elemehis added to the sét, i.e.,
U:=U+{l}, U :=U\A{l}.

4. Update correspondingly the upper bound on the RHS of {@8)will derive later the appropriate upper

bounds onPy,(C’) and Py, (C”).

Set the bound to be the minimum between the RHS from Step 4tamevious value.

Setl =1+ 1 and go to Step 2.

7. The algorithm terminates whengets the valueV (i.e., the block length of the code) or actually, the
maximal value ofl for which A; does not vanish.

oo

The number of steps can be reduced by factor of 2 for binary linedescavhich contain the all-ones codeword (hence maintain the
property A; = Ax_;). For such codes, the update equation in Step 3 becathes: U/ + {I, N — 1}, U° :=U° —{l,N — [} and the
algorithm terminates whehgets the valug 5'].



Fig. 1(a) shows a plot of the ratrg as a function of £ ’ for an ensemble of uniformly interleaved turbo-random
codes. The calculation of the average distance spectrumeeétlansemble relies on the results of Soljanin and
Urbanke in [23].
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Fig. 1. Plots ofAl and 3 41 as a function of the normalized Hamming Welgm{;) on a logarithmic scale. The plots refer to ensembles
of random turbo- block codes with two identical systematic binary linearkbtmrles as components. The upper and lower plots refer to

Al and Ai with N = 1000 and R = 0.72 bits/Symbol (which corresponds to the analysis of the block and bit emror probabilities,
respectlvely)

From the discussion above, it is clear that the combinatiorthef SFB with another upper bound has the
potential to tighten the overall upper bound on the ML dengdirobability; this improvement is expected to be
especially pronounced for ensembles whose average distgectrum resembles the binomial distribution of fully
random block codes over a relatively large range of Hammieglts, but deviates significantly from the binomial
distribution for relatively low and large Hamming weights.d., ensembles of uniformly interleaved turbo codes
possess this property, as indicated in [16, Section 4]). Thisbing technique was successfully applied by Miller
and Burshtein [14] and also by Sason and Urbanke [19] to erlssrmad regular LDPC codes where the SFB
was combined with union bounds. If the range of Hamming wisighhere the average distance spectrum of an
ensemble resembles the binomial distribution is relativetge, then according to the above algorithm, one would
expect thatC’ typically contains a very large fraction of the overall nienlof the codewords of a code from this
ensemble. Hence, in order to obtain an upper bound@i{C”), whereC” is expected to contain a rather small
fraction of the codewords id, we may use a simple bound such as the union bound while éxgeutt to pay a
significant penalty in the tightness of the overall bound amdicoding error probabilityFe).



The following bound introduced in Theorem 3.1 is derived as diqudar case of the DS2 bound [8]. The
beginning of its derivation is similar to the steps in [22, BatT 4A], but we later deviate from the analysis there
in order to modify the SFB. We finally obtain a tighter version listbound.

Theorem 3.1 Nlodified Shulman and Feder Bound): Let C be a binary linear block code of lengiti and rate
R, and let{4,} designate its distance spectrum. Let this code be partdiame two subcodeg;’ andC”, where
C’ contains the all-zero codeword and all the other codewofdswhose Hamming weights are in an arbitrary set
U c{1,2,,...,N}; the second subcod¥ contains the all-zero codeword and the other codewordswatiich are
not included inC’. Assume that the communication takes place over a memsriesry-input output-symmetric
(MBIOS) channel with transition probability measuséy|z), = € {0,1}. Then, the block error probability af
under ML decoding is upper bounded by

Pe < Pe|O(C/) + PelO(CH)
where for0 < p <1
Pe|0(cl) < SFB(p)

_ N A \'(_ B '

l;, () Gort50) (o 2zm) ] 4
N a1 [1 a1 a1t

Alp) £ {[P(yO)p(yll)] T+ [2p(yl0) e+ op(ylt) 1+”} } (18)
A =2 |1 a1 I L

B(p) &> {p(ylo) e [zp(yO) 4 5pyl) 1+ﬂ] } : (19)

The multiplicative term, SFB), on the RHS of (17) designates the conditional Shulman-Fepeerubound of
the subcod&’ given the transmission of the all-zero codeword, i.e.,

SFB(p) = 2—N(E0(P)—P(R+7l°g(jv(c/)))) L 0<p<1 (20)

andE is introduced in (9). An upper bound on the conditional blector probability for the subcod®’, Py (C"),
can be either a standard union bound or any other bound.

Proof: Since the block cod€ is linear and the channel is MBIOS, the conditional block epmbability
of C is independent of the transmitted codeword. Hence, thenuipéund gives the following upper bound on the
block error probability:Pe < Pgjo(C") + Pgo(C").

In order to prove the theorem, we derive an upper boundgyiC’). Let {A;(C’)} denote the weight spectrum
of the subcod€’, and letG y(y) be an arbitrary non-negative function of the received vegte- (y1,v2,...,yn)
where this function is assumed to be expressible in the ptotum (11). Then, we get from (6) and (11) the
following upper bound on the conditional ML decoding erroolmability of the subcodé€’:
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Iyp
(Zg p(yl0)'*p(yl1) ) } : (21)

The transition in the first equality above follows singe(C’) = 0 for I ¢ U, and A;(C’) coincide with the
distance spectrum of the codefor all [ € U. Note that (21) is a tighter version of the bound in [22, Eq.)]32he
difference between the modified and the original bounds isiththe former, we only sum over the indicés U/
while in the latter, we sum over the whole set of indices, i.e {1,2,..., N}. By setting the tilting measure in
(14), the symmetry of the MBIOS channel gives the equality

and from (18) and (19)

1 a1 e
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= B(p) (24)



where the RHS of (23) and (24) are obtained by setfing ﬁp. Finally, based on (14) and the symmetry of the
channel, one can verify that
A(p) + B(p)

5 (25)

> g(y)p(yl0) =

Substituting (22)—(25) into (21) gives the following conalital upper bound on the ML decoding error probability
of the subcod&’’:

(1-p)
Peo(C) =a(C) <W>N Ty Namy

' (Z (7) Al<p>BNl<p>> (26)

leu
where we use the notation

A
ch 2 e
a(C) = max 2-NG=R) (V)

The latter parameter measures the deviation of the (expestedber of codewords in the subcodefrom the
binomial distribution which characterizes the averagedatice spectrum of the ensemble of fully random block
codes of lengthV and rateR. By straightforward algebra, we obtain that

Pe\o(cl)

<a(C)” (A(P)J;B(P)> Y (;) o

B0 ) ()|

= a(C’)p <A(p)+B(p)>N oNRp

P

2

Eﬁ: (];f> <A(,0)AJ(rpg(p) )l (A(pfipg (p) ) N_l] p

= SFB(p) [Z <le)< A(p;lj_p)B(p))ZA(p)Bj-p)B(p)>N_l‘| ;

leu
0<p<l (27)

The second equality follows from (20) and (9), and since

A 1 1 1 1 I+p
Ep(p) = —log, {Z [2p(yl0)1+ﬂ + 2p(y\1)1+p} }

Y

~ log, (A(p) : B<P>) | (28)

This concludes the proof of the theorem. ]

The improvement of the bound introduced in Theorem 3.1 overstaerdard combination of the SFB and the
union bound [14], [19] stems from the introduction of thetéaonvhich multiplies SFBp) on the RHS of (17); this
multiplicative term cannot exceed 1 since

= <]ZV) <A<Pfipf)9<p>>l (A(fi%(p))]v_l

: g <7> <A(p)AJ(rpl)T3(p)>l (A(pffrp!)??(pﬂ - -

This multiplicative factor which appears in the new boundssful for finite-length codes with small to moderate
block lengths. The upper bound (17) éh,(C’) is clearly at least as tight as the corresponding conditiSik.
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We refer to the upper bound (17) as the modified SFB (MSFB). The donditblock error probability of the
subcodeC”, given that the all-zero codeword is transmitted, can bentded by a union bound or any improved
upper bound conditioned on the transmission of the all-oeeword (note that the subcodé is in general a
non-linear code). In general, one is looking for an appatprbalance between the two upper boundsPgn(C’)
and Pgo(C") (see Algorithm 1). The improvement that is achieved by usiggMISFB instead of the corresponding
SFB is exemplified in Section V for ensembles of uniformly intavied turbo-Hamming codes.

B. Upper Bounds on Bit Error Probability

Let C be a binary linear block code whose transmission takes maee an arbitrary MBIOS channel, and let
Py, designate the bit error probability 6funder ML decoding. In [17, Appendix A], Sason and Shamai ddrave
upper bound on the bit error probability of systematic, biniénear block codes which are transmitted over fully
interleaved fading channels with perfect channel statgrinftion at the receiver. Here we generalize the result of
[17] for arbitrary MBIOS channels. In order to derive the ided upper bound we use the following lemma due to
Divsalar [6], and provide a simplified proof to this lemma:

Lemma 3.1:[6, Section 11I.C] LetC be a binary block code of dimensiali whose transmission takes place
over an MBIOS channel. Lef(w) designate a sub-code 6f which includes the all-zero codeword and all the
codewords of® which are encoded byformation bitswhose Hamming weight is. Then the conditional bit error
probability of C under ML decoding, given that the all-zero codeword is tnaitted, is upper bounded by

P

K
Poo <> p(¥10)' 33 () D payle) p
w=1

y zig(w)
A>0, 0<p<1. (29)
We introduce here a somewhat simpler proof than in [6]. Proof: The conditional bit error probability under
ML decoding admits the form
Ppo=)_ <wol((y)> pn(¥]0) (30)

y

wherewy(y) € {0,1,..., K} designates the weight of the information bits in the decodedeword, given the
all-zero codeword is transmitted and the received vectgr. i particular, if the received vector is included in
the decision region of the all-zero codeword, thej(y) = 0. The following inequalities hold:

wo(y) < (wO(Y)>p, 0<p<1

K K
P

@) ) (wo(y) pn(yle) ]
= < K )ceg(;ﬂo(y)J:pN(Y|0):| =

c#0

p
K A
w pn(¥le)

12 (%) ;(w[my\oﬂ | (1)

c#0

Inequality (a) holds since the received vecyofalls in the decision region of a codewoédwhich is encoded by

information bits of total Hamming weight(y); hence, the quotierﬁ% is larger thanl while the other terms

in the sum are simply non-negative. The third inequality bddécause of adding non-negative terms to the sum.

The lemma follows by substituting (31) into the RHS of (30). ]
Theorem 3.2:(The SFB Version on the BER)Let C be a binary linear block code of lengfii and dimension

K, and assume that the transmission of the code takes placeanv®iBIOS channel. Letd,,; designate the

number of codewords i@ which are encoded by information bits whose Hamming weight and their Hamming

weight after encoding i$. Then, the bit error probability of under ML decoding is upper bounded by

P, < 9~ NE(RHED) (32)
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whereR = % is the code rate of, and

Al K
A 1 A W
(C) = 0<l<N 9—N(1- R)(];’)’ A Z (K) Auwy
Proof: Due to the linearity of the codé and the symmetry of the channel the conditional bit errobpbility

of the code is independent on the transmitted codeword;ehavithout any loss of generality, it is assumed that the
all-zero codeword is transmitted. From (29), the followingpar bound on the bit error probability 6ffollows:

Py =Py
o
1-X S w A
<l () X ealer
y w=1 c € C(w)
c#0
A>0, 0<p<1
=> UR(y)
y
p
0 0) 1 = pn(ylc) A 33
Y (¥) ppN (vl pZ( ) Z n(v]0) (33)
w=1 c € C(w)
c#0

wherewl8 is an arbitrary probability tilting measure. By invokingnden inequality on the RHS of (33) and
replacmg & (y) with the un-normalized tilting measurt&?, (y) which appears on the RHS of (5), the upper bound
in (33) transforms to

1—p
Pyjo < (ZGN PN Y|0>

P

= (w s [ le)]?
3 (%) X St el
c#£0

0<p<1, A>0. (34)

We consider an un-normalized tilting meas#®, (y) which is expressible in the product form (11). Since the
communication channel is MBIOS aritlis a binary linear block code, one obtains the following uppeund on
the bit error probability:
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: {f} (52) 2= Aua (memg(yﬁ‘l)]vl

Y

1 P
: (Zp(yumymﬂ*g<y>1‘i> }
(1—p) N . N—1
= (Z 9() p(ylo)j {ZA{ <Z p(yIO)g(y)lf’>

(1-p) A, P
l —N(1—-R)p
< (Z 9(y) p(ylo)j <lf§nﬁ§>§v SNG—R) () (Jl\f)) 2
Yy

: (Zp(mmg(y)l—i +2p<y|1>kp<y|o>1*g<y)1‘i) (35)

By settingg(y) as in (14), we obtain an upper bound which is the same as tiggakiSFB, except that the
distance spectruniA;} is replaced by{ A;'}. This provides the bound introduced in (32), and concludesptioof
of the theorem. ]

Similarly to the derivation of the combined upper bound on hi@ck error probability in Theorem 3.1, we

suggest to partition the code into two subcodes in order tonggroved upper bounds on the bit error probability;
however, since we consider the bit error probability indteiblock error probability, the threshold in Algorithm 1

is typically modified to a value which is slightly abo%e(instead of 1). Since the code is linear and the channel
is MBIOS, the conditional decoding error probability is ipeéadent of the transmitted codeword (so, we assume
again that the all-zero codeword is transmitted). By thenrbound

Py = Py < Byo(C') + Pyo(C”) (36)

where Py o(C’) and B, ((C”) denote the conditional ML decoding bit error probabilitiafstwo disjoint subcodes
C’ andC” which partition the block cod€ (except that these two subcodes have the all-zero vectorrimmon),
given that the all-zero codeword is transmitted. The coositn of the subcode§’ andC” is characterized later.
Upper bound onf,o(C'): Let A,,; designate the number of codewords of Hamming weighhich are encoded
by a sequence of information bits of Hamming weightSimilarly to the discussion on the block error probability,
we use the bit-error version of the SFB (see Eg. (32)) as an ugparon P, (C’). From Theorem 3.2, it follows
that the conditional bit error probability of the subca@le given that the all-zero codeword is transmitted is upper
bounded by
_NEr(R_i_logaAt;(C'))

Pyo(C) <2 (37)
Where A/(C/) ZNR ( )A 'f
na 1 1Ay A w=1 ﬁ w,l | leld
a(C) & B ANC) { 0 otherwise (38)

and the setl/ in (38) stands for an arbitrary subset of, ..., N}.

Upper bound onR,,(C”): We may bound the conditional bit error probability of théosadeC”, Py,(C”), by
an improved upper bound. For the binary-input AWGN, the rfiediversion of the TSB, as shown in [16] is
an appropriate bound. This bound is similar to the TSB for thelblerror probability, except that the distance
spectrum{ 4;} is replaced by{ A,/(C")} where

M=

(w )Aw,l if 1€y

A'(C") 2 NR (39)

1

(=g
Il

otherwise
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andU¢ stands for an complementary setisfin (38), i.e.,U¢ = {1,..., N} \ U. As the simplest alternative to
obtain an upper bound on the conditional bit error probgbdf the subcod&’ given that the all-zero codeword
is transmitted, one may use the union bound (UB) for the irgout AWGN channel

NR
Pyo(C”) < Z(X}UEJZ wlcg( 2%?)
€eUe

w=1
N 2IRE}
= ;AI(C)Q< N ) (40)

where Ej, is the energy per information bit an@ is the two-sided spectral power density of the additive eois
The reader is referred to [24, Section 2.2] for preliminary emiat regarding the TSB.

In order to tighten the upper bound (37), we obtain the liitreversion of the MSFB (see Eq. (17)), by following
the steps of the proof of Theorem 3.1. In a similar manner tdréngsition from (7) to (32), we just need to replace
the termsA;(C’) in (17) with 4;(C’) to get the conditional modified SFB (MSFB) on the bit error probgbf
C', given the all-zero codeword is transmitted. The resultipges bound is expressed in the following theorem:

Theorem 3.3Nlodified SFB on the Bit Error Probability): Let C be a binary linear block code of lengfk
and rateR, and letA,,; be the number of codewords 6fwhich are encoded by information bits whose Hamming
weight isw and their Hamming weight after encoding liswhere0 < w < NR and0 < [ < N). Let the
codeC be partitioned into two subcode8, andC”, whereC’ contains all codewords af with Hamming weight
l eU C {1,2,,...,N} and the all-zero codeword, ar@’ contains the all-zero codeword and all the other
codewords ofC which are not inC’. Assume that the communication takes place over an MBIO&re&iHaThen,
the bit error probability ofC under ML decoding is upper bounded by

Py < Byjo(C") + Bypo(C")

where

_N(E _ R+1“E(°b(0’))
PolC') < 2 (001 —pr 240N )

' l; <];f)<A(P;4j'p)3(p)>l<A(pB_E_p)B(p))Nl] ;

0<p<1 (41)

=

N A A; N Akl w
ap(C) = max m, A= Z:l (ﬁ) Awy
and the functionsA, B, Ey are introduced in (18), (19) and (9), respectively. An uppeund on the conditional
bit error probability for the subcod€”, P,,(C”), can be either a union bound (40), the tangential-spheredou
(TSB) or any other improved bound.

Discussion:Note thatay, (C') < «a(C'), therefore the bound on the bit error probability in (41) lisays smaller
than the bound on the block error probability in (17), as ooeld expect.

In the derivation of the MSFB on the conditional block and bitoerprobabilities (see Egs. (17) and (41),
respectively), we obtain simplified expressions by taking the maximum of %ﬂz/)} andenglC')} from the
corresponding summations in (21) and (35). This simplificati@s also done in [22] for the derivation of the SFB
as a particular case of the DS2 bound. When considering tleeatas upper bound on the block error probability,
this simplification is reasonable because we consider tmest rﬂ which vary slowly over a large range of
the Hamming weights (see Fig. 1(a) when referring to ensembles of turbo-like sodkose average distance
spectrum resembles the binomial distribution). Howevgrcbnsidering the termi l((f) whose values change
considerably with (see Flg 1(b)), such simplification previously done for thecklerror analysis (i.e., taking out
the maximal value o& from the summation) is expected to significantly reduce thbttiess of the bound on
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the bit error probability. Thus, the modification which results in (41) does not seem imeg# to yield a good
upper bound.In order to get a tighter upper bound on the bit error prolitghile introduce the following theorem:

Theorem 3.4 $implified DS2 Bound): Let C be a binary linear block code of lengtN and rateR, and let
A, designate the number of codewords which are encoded bymaton bits whose Hamming weight is and
their Hamming weight after encoding igwhere0 < w < NR and0 <[ < N). Let the code&’ be partitioned into
two subcodes¢’ andC”, whereC’ contains all the codewords @ with Hamming weight € &/ C {1,2,,...,N}
and the all-zero codeword, adf contains all the other codewords 6éfand the all-zero codeword. Let

1ol O Zi\,ff ﬁAw’l iflel
ACC) = { o (#%) otherwise

Assume that the communication takes place over an MBIOSreHamhen, under ML decoding, the bit error

probability of C, is upper bounded by
Py < Pyyo(C') + Byo(C”)

where
Pyo(C) < g N(B-o(m ) p<1 42)
a,(C’)
A al A,(C/) N A( ) l B( ) N—1
- ;{M( ! ><A(P) +pB(p)> <A(,0) +pB(,o)> } (43)

A(p), B(p) and Ey are defined in (18), (19) and (9), respectively. As before, gpeu bound on the conditional
bit error probability for the subcod€”, P,,(C”), can be either a union bound or any other improved bound.

Proof: Starting from the first equality in (35), and using the definition A(p), B(p) in (18) and (19) we
get

Pyjo N
Alp o
( N ) B(p) N—-I A(p) 1
{ZZ_EA i 1) (A<p>+3<p>>}

A P)) 9NRp  9Np(1-R)

, von [ Blo) N A Y
{;AZ(C)@@HB@)) (509 }

— 9~ N(Eo(p)—pR)

B0 Gartm) ()
(44)

where

l
designates the distance spectrum of fully random block €aildength N and rateR. Using the definition for
a,(C’") in (43) we get the upper bound (42). [ ]
EV|dentIy, the upper bound (42) is tighter than the bit-ewersion of the SFB in (37), becausg(C’) which is
the expected value G?% is not larger thanv,(C’) which is the maximal value of; We note that the upper

B,é2N(1R>(N), 1=0,...,N

2Note that for an ensemble of fully random block codes, all the te%énare equal tcr hence, the simplification above does not reduce
the tightness of the bound at all when considering this ensemble.
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bound (42) is just the DS2 bound [8], with the un-normalizétth measure (14). This tilting measure is optimal
only for the ensemble of fully random block codes, and is gptimal for other codes. We refer to the upper
bound (42) as theimplified DS2 From the discussion above, we conclude that the simplified Bfs@d (which

is also valid as an upper bound on the conditianiakck error probability if we replaced;(C’) in (44) by A;(C"))

is advantageous over the MSFB wheh (or A; for the case of block error probability) changes considgratser
the Hamming weight range of interest. This is demonstratedHe block error probability of the ensemble of
multiple turbo-Hamming codes where there is no noticeatlprovement if we use the simplified DS2 to bound
Pyo(C') instead of the MSFB, where for the case of bit-error probabiie get tighter upper bound when using
the simplified DS2 to upper boung,,(C’) rather than the MSFB.

IV. EXPURGATION

In this section we consider a possible expurgation of thiadée spectrum which yields in general tighter upper
bounds on the ML decoding error probability when transroissakes place over a binary-input AWGN (BIAWGN)
channel. To this end, we rely on some properties of the Varmegions of binary linear block codes, as presented
in [1], [2], [3].

Let C be a binary linear block code of lengfli and rateR. Without any loss of generality, let us assume that
the all-zero codeword;y, was transmitted over the BIAWGN channel. For any receivectory, an ML decoder
checks whether it falls within the decision region of thezato vector. This decision region (which is also called
the Voronoi region ok) is defined as the seét, of vectors inR" that are closest (in terms of Euclidian distance)
to the all-zero codeword, i.e.,

Vo = {x e RY 1 d(x,¢c9) < d(x,¢), VeceC}. (45)

Not all of the 2V% inequalities in (45) are necessarily required to define theni region. The minimal set of
codewords that determine the Voronoi regioncgf forms the set of Voronoi neighbors of (to be designated by
MNy). So the region (45) can be defined by

Vo = {x e RY 1 d(x,¢cp) < d(x,c), YeceNy}. (46)

It is clear that the block error probability @f is equal to the conditional block error probability of thepexgated
subcodeC®, assuming the all-zero codeword is transmitted, wliE¥edesignates the subcode @fwhich contains
the all-zero codeword and all its (Voronoi) neighbors. Henany upper bound that solely depends on the code
distance spectrum of the code can be tightened by replatieagotiginal distance spectrum witthe distance
spectrum of the expurgated codeshould be noted, however, that the argument above cdreapplied to théit
error probability. This stems from the fact that while thedidarror event is solely defined by the Voronoi region
of the transmitted codeword, the bit error event also depamdthe Hamming weight of the information bits of
each decoded codeword; hence, the above expurgation daamqiplied to the analysis of the bit error probability.
The distance spectrum of the Voronoi neighbors of an arlyitadeword of some popular linear block codes (e.g.,
Hamming, BCH and Golay codes) is given in [1]. A simple way tafansubcode of which contains the subcode
C® is given in the following theorem from [2]:

Theorem 4.1:(On the Voronoi Regions of Binary Linear Block Codes [2): For any binary linear block code
C with rate R and lengthV

NoQ{CEC:lSWH(C)SQdmin—l}

and
MC{ceC:1<Wu(c) < N(1—-R)+1}

where dmin is the minimal Hamming weight of the codewordsdn

Note that according to the theorem above, one should expecexpurgation to have maximal impact on the

tightness of an upper bound for high rate codes, where mosheofcodewords can be expurgated. We should
also observe that the expurgated codewords have largencstdérom the all-zero codeword (all the expurgated

codewords have a Hamming weight larger tl2ah,, — 1). Thus, the improvement due to the expurgation process is
especially substantial at low SNRs. One can use this theaveantieve an immediate improvement of an arbitrary

upper bound by expurgating all the codewords whose Hammieighw is greater thatv(1 — R) + 1. We refer
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to this kind of expurgation as thigivial expurgation. The trivial expurgation, though very simpleagply, does
not produce satisfactory results in many cases, becausary oases, the portion of the distance spectrum which
corresponds to Hamming weights abaVé1 — R) + 1 has a negligible effect on the overall bound. In [2], Agrell
introduces a method (called rule) in order to determine whether a codewards a zero-neighbor.

C rule: A codeword is a 0-neighbor if and only if it covérao other nonzero codeword.

In [3] , Ashikmin and Barg used this rule to derive explicitfwulas for the weight spectrums of zero-neighbors
for various codes. This includes the families of Hamming soded second-order Reed-Muller codes.

In order to upper bound the block error probability using Hmeinding technique introduced in this paper, we
split the subcod&,y into two subcodesC,, and CZ,, whereC}, contains all the codewords 6%« with Hamming
weight! e Y C {1,2,..., N(1 — R) + 1}, andC{, contains the all-zero codeword and all the other codewdrts.
following upper bound holds:

Pe(C) = Pejo(Cex) < Peo(Cex) + Pejo(Cexd) (47)

were Py (Cey) and Py (Cgy) are the conditional block error probabilities of the subesd,, andCg,, respectively,
given that the all-zero codeword was transmitted. We careuppundPg(Cey) by the union bound or the TSB,
and we upper boundy,(Ce,) by the MSFB (17). The partitioning of the subcodg into two subcodegy, and

CY, is done following the adaptive algorithm introduced in Saetill.

V. APPLICATIONS

This section demonstrates some numerical results of theoiwedrupper bounds on the ML decoding error
probability of linear block codes. We apply the bounds idtroed in Sections Ill and IV to various ensembles of
parallel and serially concatenated codes. Throughout #gas, it is assumed that the encoded bits are BPSK
modulated, transmitted over an AWGN channel, and cohegreetected. The effect of an expurgation of the distance
spectrum on the tightness of some upper bounds on the decedior probability is exemplified as well.

For the binary-input additive white Gaussian noise (BIAWGHXannel with BPSK modulation, the conditional
probability density functionfddf) for a single letter input is:

p(yl0) = \/i—NOeXp {— (v+ \/E)Q/No}, )
pol) = e {~ (v = VE) /30

where FEs designates the energy of the symbol, aﬁédis the two-sided spectral power density of the channel. In
order to calculate the SFB oRy,(C’), we first calculate the termd(p) and B(p), as defined in (18) and (19),
respectively. Clearly, for a continuous-output chanriet, sums in (18) and (19) are replaced by integrals.

o 2 |1 a1 El e
Bo) = [ o) | 50107 + G|y

A TN oL M TN ==
:/ e No(1+p) ( )
—eo \V/TNg VTN
2 2 —1
[1 (v+/Bs) 1 (-vE) r
. dy

—e No(+p) —|—*€7 No(1+p)
2

oo (-5) [ e

= X —_— gy 0

PAT™N ) ) A

4y /B {1 2B ] zymrld
y

e No(pFD §eNo(ler) + 56_ N (1+p)

1+p (49)

NG Coshp_1< V2Es/No X ) 1

3A binary codeworde; is said tocoveranother codewordss, if co has zeros in all the positions wheeg has a zero.
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whereE denotes the statistical expectation, akid~ N(0, 1). We also obtain that

A(p)
00 4 T1 . 1 L p—1
N O R U U e
~ow (-5 ) B [cou” (Wﬂ (50)
and
A(p) + B(p) = 2exp (_]%)E cosh!™” <\/T/JZOX> . (51)

Plugging (49) — (51) into (17), and (41) and minimizing ovee ihterval0 < p < 1 give the desired bounds for
Pyo(C") and B,y (C'), respectively.

A. Ensemble of Serially Concatenated Codes

The scheme in Fig. 2 depicts the encoder of an ensemble oflgertaicatenated codes where the outer code
is a (127, 99, 29) Reed-Solomon (RS) code, and the inner cod®m#&en uniformly at random from the ensemble
of (8, 7) binary linear block codes. Thus, the inner code aldeevery symbol of 7 bits from the Galois field
GF(2") to a sequence of 8 bits. The decoding is assumed to be perfdnea stages: the inner (8, 7) binary
linear block code is soft-decision ML decoded, and then a li@cision ML decoding is used for the outer (129,
99, 29) RS code. Due to the hard-decision ML decoding of tt# (P9, 29) RS code, its decoder can correct
up tot = L%J = 14 erroneous symbols. Hence, an upper bound on the average éxiar probability of the
considered serially concatenated ensemble is given by

127

127 % 127—1

=) ()1 - (52
whereps is the average symbol error probability of the inner codeenrsbft-decision ML decoding. The symbol
error probabilityps of the inner code is either upper bounded by the ubiquitousnubound or the TSB, and this
upper bound is substituted on the RHS of (52). Since the ratbeoinner code is rather high (it is equal gobits
per channel use), an expurgation of the distance spectramss® be attractive in order to tighten the upper bound
on the overall performance of the concatenated ensemblekrg and Barg [3] show that the average expurgated
distance spectrum of the ensemble of random linear blocksod lengthN and dimensionk is given by

-2
ElA)] = {(7)2‘<N‘K) [[(1-2" ) 1=0 N =K 41 (53)
=0

0 otherwise.

We rely on the expurgated distance spectrum in (53) in ordaget a tighter version of the union bound or
the TSB on the symbol error probabilipy of the inner code (wher&/ = 8 and K = 7). The expurgated union
bound in Fig. 3 provides a gain of 0.1 dB over the union bound or &8Block error probability ofl0—4, and
the improvement in the tightness of the bound due to themist@pectrum expurgation is especially prominent at
low values of SNR. Clearly, we take 1 as the trivial boundpgrias otherwise, for low values of SNR, the union
bound onps may exceed 1, which gives in turn a useless upper bound onedbedihg error probability of the
ensemble).

B. Turbo-Hamming Codes

Let us consider an ensemble of uniformly interleaved pdraflacatenated turbo-Hamming codes. The encoder
consists of two identica(2™ — 1,2™ — m — 1) Hamming codes as component codes, and a uniform interleaver
operating on the™ — m — 1 information bits. The comparison here refers to the case eviner= 10, so the two
component codes are (1023, 1013) Hamming codes, and thalloate of the ensemble B = gzlzj = 0.9806
bits per channel use. The value of the energy per bit to oredsgectral noise densi(yg—g) which corresponds to
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Symbols (.wf 7 (127,99,29)
bits Reed-Solomon (8,7) random code
’ encoder Symbols of 8
bits
B
I
A
A
G
N
(127,99,29)
Reed-Solomon (8,7) random

decoder « decoder

Fig. 2. A scheme for an ensemble of serially concatenated codes wWieermiter code is a (127, 99, 29) Reed-Solomon (RS) code, and
the inner code is chosen uniformly at random from the ensemble of [§8)ary linear block codes.

T
— - TSB
° gt e iy — Expurgated UB
10 | e

\";,,’ 1| - *- Expurgated TSB

Upper bounds for the block error probability
s
&

25 3
Eb/No [dB]

Fig. 3. Various upper bounds on the block error probability of the ebteof serially concatenated codes depicted in Fig. 2. The compared
bounds are the tangential-sphere bound (TSB) and the union boundnwiitivithout expurgation of the distance spectrum; this expurgation
refers to the ensemble of inner codes, chosen uniformly at randmm thie ensemble of (8,7) binary linear block codes.

the channel capacity for this coding rate is 5.34 dB, wherie #ssumed that the communication takes place over
a binary-input AWGN channel. In order to obtain performahoends for the ensemble of uniformly interleaved
turbo-Hamming codes, we rely on an algorithm for the catimtaof the average input-output weight enumerator
function (IOWEF) of this ensemble, as provided in [18, SectioR].5As noted in [18], the average distance
spectrum of this ensemble is very close to the binomial ibigtion for a rather large range of Hamming weights
(see Fig. 1(a)). Hence, one can expect that the upper bourdiinted in Theorem 3.1 provides a tight bounding
technique on the average block error probability of thiseemtsle. For this coding scheme, we note that regarding
Pe, there is no substantial improvement in the tightness ofbtrexall upper bound if we upper bourig,(C") by

the TSB instead of the simple union bound (see Fig. 4). Among thunds introduced in Section IlI, the upper
bound which combines the TSB and the MSFB is the tightest boupécisdly for the low SNR range (see Fig. 4);
referring to the bound in Theorem 3.1, the partitioning ofe®th the considered ensemble relies on Algorithm 1
(see Section ). In Fig. 5, we provide a comparison betweaioua upper bound on thiit error probability of
this turbo-like ensemble. The tightest bound for the bitearmalysis is the one provided in Theorem 3.4, combining
the simplified DS2 bound with the union bound. It is shown in Figh&t the simplified DS2 provides gains of
0.16 dB and 0.05 dB over the MSFB at bit error probabilities1of ' and 102, respectively. The simplified DS2
also provides gain of 0.08 dB over the TSB at bit error probighdf 10~!. Unfortunately, a trivial expurgation of
the average distance spectrum of uniformly interleaveliteodes with two identicgR™ —1, 2™ —m—1) Hamming
codes as components (i.e., by nullifying the average distapectrum at Hamming weights ab®e + 1) has no
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impact on tightening the performance bounds of this ensembl

\ :
g — TsB
\,\ ',’ o UB
'\\ . #%. UB+MSFB
N - - TSB+MSFB

10+

10°F

10°F

Upper bounds on the BLOCK error probability

10 F

5.4 5.6 5.8 6 6.2 6.4 6.6 6.8
Eb/No [dB]

Fig. 4. Comparison between various upper bounds on the ML decottioly error probability where the comparison refers to the ensemble
of uniformly interleaved turbo-Hamming codes whose two componeie€are (1023, 1013) Hamming codes. The compared bounds are the
union bound (UB), the tangential-sphere bound (TSB), and two instamicthe improved upper bound from Theorem 3.1: the UB+MSFB
combines the MSFB with the union bound, and the TSB+MSFB is the upperdbahich combines the MSFB with the tangential-sphere
bound.

C. Multiple Turbo-Hamming Codes

Multiple turbo codes are known to yield better performarare] hence, it is interesting to apply the new bounding
techniques in Section Il to these ensembles. The encoder afitipha turbo-Hamming code is depicted in Fig. 6.

Consider the ensemble of uniformly and independently lieé&ed multiple-turbo codes, where the components
codes are identical systematic binary linear block codelemgth V. Let S, ,, denote the number of codewords
of the i" component code with weight of the systematic bits equal tand the weight of the parity bits equal to
h;. The average number of codewords of the ensemble of muttiple> codes, with systematic-bits weight of
and overall weight is given by

St Sur s Suw g
Ay = 3 o Dwhe Dl (54)

El N 2
h1,h2,h3 S.t. (w)
w4+ h1+ha+hs =1

From (54) and the algorithm to calculate the input-outputghtienumerators of Hamming codes (see [18,
Appendix A)]), it is possible to verify that the average dista spectrum of the ensemble of multiple turbo-Hamming
codes with two independent uniform interleavers is veryselto the binomial distribution for a relatively large
range of Hamming weights (similar to the plot in Fig. 1(a)).nde, the improved bounds provided in Section Il
are expected to yield good upper bounds on the decoding gmbability. The comparison here refers to the case
of m = 10, so the three component codes are (1023, 1013) Hamming.cbdesoverall rate of the ensemble is
% = 0.9712 bits per channel use, and the channel capacity for this godite corresponds t%% =5 dB.

All the improved bounds that are evaluated here, incorpotia® union bound as an upper bound ®RC"”) (or

P, (C") for bit error probabilities). The numerical results of varsoupper bounds are shown in Fig. 7 for the block
and bit error probabilities. As expected, the improvemeinéd were obtained by the improved bounds (Theorems
3.1-3.4) are more pronounced here than for the ensemblelmd-tliamming code. For example, at bit error rate
of 107!, the simplified DS2 bound yields a gain of 0.12 dB over the TSB. A @sbémprovement of 0.05 dB was
obtained at bit error rate af0—2.
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L[ uB+msFB
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+ @' Union bound

Upper bounds on the BIT error probability
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Fig. 5. Comparison between various upper bounds on the ML decodliregrbr probability of the ensemble of (1033,1013) uniformly
interleaved turbo-Hamming code. The compared bounds are the uaiomd{UB), the tangential-sphere bound (TSB), the upper bound
from Theorem 3.3 which combines the union bound with the MSFB (UB+B)SEnd the upper bound from Theorem 3.4 which combines
the union bound with the simplified DS2 bound (UB+simplified DS2).

2" —m—1 information bits

(2" =1,2" =m—1) | m parity bits
—

Hamming code

IT, 2" om-1
(2" =1,2" —m—1) | m parity bits coded bits
—
A
2

Hamming code
A

(2" =1,2" =m—1) | m parity bits
[ S AN
Hamming code

Fig. 6. A multiple turbo-Hamming encoder. The encoder consists oflpacancatenated Hamming codes with two uniform, statistically

independent interleavers. The code lengt@is+ 2m — 1 and the code rate iR = % bits per channel use.

D. Random Turbo-Block Codes with Systematic Binary Linear Blame€ as Components

Finally, we evaluate improved upper bound for the ensembleiddrmly interleaved parallel concatenated (turbo)
codes, having two identical component codes chosen unioatnrandom and independently from the ensemble
of systematic binary linear block codes. We assume that #ranpeters of the overall code af#/, K), so the

parameters of its component codes &¥X, K). In addition, the length of the uniform interleaveris.
According to the analysis in [23], the input-output weighumeration of the considered ensemble is given by

SW,2)=>_ 8 ,W*Z/

w,J

s e ORI E

w=1

N—K
2 N-K

w27 Y (?)ZZJ’

i=o N 7

where S, ; denotes the number of codewords whose information subsveaste Hamming weight of and the
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Fig. 7. Comparison between various upper bounds on the ML decodimgpeobability, referring to the ensemble of uniformly interleaved
multiple turbo-Hamming codes where the three component codes a8,(1013) Hamming codes (see Fig. 6). The upper plot refers to
upper bounds on the block error probability, and the compared barnedfie union bound (UB), the tangential-sphere bound (TSB), and the
upper bound of Theorem 3.1 which combines the union bound with theBSB+modified SFB). The lower plot refers to upper bounds
on the bit error probability, and the compared bounds are the uniondb@uB), the tangential-sphere bound (TSB), the upper bound of
Theorem 3.3 which combines the union bound with the MSFB, and the ugzperd of Theorem 3.4 which combines the union bound with
the simplified DS2 bound (UB+simplified DS2).

parity sub-word has Hamming weight We apply the improved bounds introduced in Section Il t@ #msemble
where the parameters are set(f¥, K) = (1144, 1000) (hence, the rate of the parallel concatenated ensemble is
R = 0.8741 bits per channel use). The plots of various upper bounds omltek and bit error probabilities are
shown in Fig. 8. The improved bounds yield the best reporte@tuppund on the block and bit error probabilities.
For the block error probability, the upper bound which camelsi the MSFB with the union bound is the tightest
bound; it achieve a gain df.1 dB over the TSB, referring to a block error probability tf—*. A similar gain of

0.11 dB is obtained for the bit error probability, referring to &B of 10—, referring to the bound which combined
the union bound with the simplified DS2 bound (see Theorem 3.4).

VI. CONCLUSIONS ANDOUTLOOK

We derive in this paper tightened versions of the Shulman addrHsound (SFB) [21]. This work was motivated
by the observation that some recently introduced versidnfie tangential-sphere bound (TSB) do not provide
any improvement on the error exponent of the TSB [24], and itiquaar, they vanish at a portion of the rate
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Fig. 8. Comparison between upper bounds on the block and bit embabilities for an ensemble of uniformly interleaved turbo codes
whose two component codes are chosen uniformly at random frorarntbemble of (1072, 1000) binary systematic linear block codes; its
overall code rate is 0.8741 bits per channel use. The comparedi®aunder ML decoding are the tangential-sphere bound (TSB), and the
bounds in Theorems 3.1 and 3.4. The upper and lower plots proviger igpunds on the block and bit error probabilities, respectively.

region which is strictly below the channel capacity. On thieeo hand, the SFB reproduces the random coding
error exponent [21], but it is not necessarily useful for &niéngth codes with short to moderate block lengths.
Gallager bounds and their variations provide a frameworkte derivation of upper bounds on the decoding error
probability under ML decoding (see, e.g., [22] and [20, Gbag@]), but in general, the computation of some of
these bounds is difficult. Following the observation made2iy,[[22] where the SFB emerges as a special instance
of the Gallager and DS2 bounds (see Section Il), and in lighh@ftrength of a bounding technique combining the
union bound with the SFB (see, e.g., [13], [14] and [19, Theore2l),2the aim of our study is twofold. It is first
targeted to improve the error exponent of the TSB and reprotheceandom coding error exponent, and secondly,
it aims to provide tightened versions of the SFB which are ptoyseful for the error analysis of relatively short
block codes (as exemplified in some examples in Section V). Thadmintroduced in this paper are applied to the
analysis of the bit and block error probabilities of binainelr block codes under ML decoding. The effectiveness
of these bounds is exemplified for some ensembles of turleoelddes over the AWGN channel. An expurgation
of the distance spectrum of binary linear block codes furtlghtens, in some cases, the resulting upper bounds.
A possible direction for further research, currently pexiby the authors, is the generalization of the bounds
studied in this paper to non-binary linear block codes. Agions to ensembles of non-binary LDPC codes
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transmitted over memoryless channels are also of intebssanother direction for further research, it is suggested
to use the recent guidelines in [25] for the computation @ lical weight distributions of binary linear block
codes; this will be used for further studying the effect of #axpurgation of the distance spectrum on tightening
the bounds introduced in this paper and various other boumdsduced in [20].
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