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Graphs and Lovasz Function

Graph Spectrum

Throughout this presentation,
o G=(V(G),E(G)) is a finite, undirected, and simple graph of order
|V(G)| = n and size |E(G)| = m.
o A = A(G) is the adjacency matrix of the graph.

@ The eigenvalues of A are given in decreasing order by
Amax(G) = A1(G) > X2(G) > ... > A\ (G) = Amin(G). (1)

@ The spectrum of G consists of the eigenvalues of A, including their
multiplicities.
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Graphs and Lovasz Function

Orthogonal Representation of Graphs

Definition

Let G be a finite, undirected and simple graph.
An orthogonal representation of G in R?

ieV(G) —» u; eR?
such that
uu; =0, V{i,j}¢E(G).

An orthonormal representation of G: ||u;|| = 1 for all i € V(G).
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Graphs and Lovasz Function

Orthogonal Representation of Graphs

Definition

Let G be a finite, undirected and simple graph.
An orthogonal representation of G in R?

ieV(G) — u; eR?
such that
uu; =0, V{i,j}¢E(G).

An orthonormal representation of G: ||u;|| = 1 for all i € V(G).

In an orthogonal representation of a graph G:
@ non-adjacent vertices: mapped to orthogonal vectors;
@ adjacent vertices: not necessarily mapped to non-orthogonal vectors.
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Graphs and Lovasz Function

An Orthonormal Representation of a Pentagon

w ¢

Figure: A 5-cycle graph and its orthonormal representation (Lovdsz umbrella).
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Graphs and Lovasz Function

Lovasz 6-function
Let G be a finite, undirected and simple graph.

The Lovdsz O-function of G is defined as

0(G) £ min max %, (2)
u,c eV(G) (cTui)
where the minimum is taken over
o all orthonormal representations {u; : i € V(G)} of G, and
o all unit vectors c.
The unit vector c is called the handle of the orthonormal representation.

v
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Graphs and Lovasz Function

Lovasz 6-function
Let G be a finite, undirected and simple graph.

The Lovdsz O-function of G is defined as

: (2)

1
0(G) £ min max ———
u,c ieV(G) (cTui)
where the minimum is taken over
o all orthonormal representations {u; : i € V(G)} of G, and

@ all unit vectors c.

The unit vector c is called the handle of the orthonormal representation.

v

M| < el il =1 = 6(G) > 1,

with equality if and only if G is a complete graph.
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Graphs and Lovasz Function

Lovész O-function (Cont.)

@ A is the n x n adjacency matrix of G (n £ |V(G)|);
@ J, is the all-ones n x n matrix;
@ S is the set of all n x n positive semidefinite matrices.

Semidefinite program (SDP), with strong duality, for computing 6(G):

maximize Trace(BJ,)
subject to

B € S}, Trace(B) =1,
Ai,j =1 = Bi,j =0, 1,7€ [n]

Computational complexity: 3 algorithm (based on the ellipsoid method)
that numerically computes 6(G), for every graph G, with precision of r
decimal digits, and polynomial-time in n and r.
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Lovész O-function (Cont.)
@ Sandwich theorem: a(G) < 6(G) < (G),
w(G) < 6(G)

X(G).

=] & = E DA
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Graphs and Lovasz Function

Lovész O-function (Cont.)
ich th : _
@ Sandwich theorem 8(G) < (G),
0(G) < x(G).
@ Computational complexity:
a(G), w(G), and x(G) are NP-hard problems.

However, the numerical computation of §(G) is in general
feasible by convex optimization (SDP problem).
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Graphs and Lovasz Function

Lovész O-function (Cont.)
@ Sandwich theorem: a(G) < 0(G) < x(G),
9(G) < x(G).

@ Computational complexity:

a(G), w(G), and x(G) are NP-hard problems.
However, the numerical computation of §(G) is in general
feasible by convex optimization (SDP problem).

Hoffman-Lovdsz inequality: Let G be d-regular of order n. Then

n A (G)
(G < ——— 2
( ) - d - )\n(G)’
with equality if G is edge-transitive.

(5)
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Graphs and Lovasz Function

Strongly Regular Graphs
Let G be a d-regular graph of order n. It is a strongly regular graph (SRG)
if there exist nonnegative integers A and p such that
@ Every pair of adjacent vertices have exactly A\ common neighbors;

@ Every pair of distinct and non-adjacent vertices have exactly p
common neighbors.

Such a strongly regular graph is denoted by srg(n,d, \, u).
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Graphs and Lovasz Function

Bounds on the Lovasz function of Regular Graphs

Theorem (1.S., '23):
Let G be a d-regular graph of order n, which is a non-complete and

non-empty graph. Then, the following bounds hold for the Lovész
f-function of G and its complement G:

1)

n—d+ X\ (G) nAn(G)
1+ X2(G) <06 < Cd—M(G) (6)

e Equality holds in the leftmost inequality if G is both vertex-transitive
and edge-transitive, or if G is a strongly regular graph;

@ Equality holds in the rightmost inequality if G is edge-transitive, or if
G is a strongly regular graph.
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Graphs and Lovasz Function

Bounds (cont.)

n(1+ Aa(G))
n—d+ \(G)

<6(G) < (7)

@ Equality holds in the leftmost inequality if G is both vertex-transitive
and edge-transitive, or if G is a strongly regular graph;

e Equality holds in the rightmost inequality if G is edge-transitive, or if
G is a strongly regular graph.
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Graphs and Lovasz Function

Bounds (cont.)

n(1+ As(G))
n—d+ \(G)’

<6(G) < (7)

@ Equality holds in the leftmost inequality if G is both vertex-transitive
and edge-transitive, or if G is a strongly regular graph;

e Equality holds in the rightmost inequality if G is edge-transitive, or if
G is a strongly regular graph.

A Common Sufficient Condition

All inequalities hold with equality if G is strongly regular. (Recall that the
graph G is strongly regular if and only if G is so).
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Graphs and Lovasz Function

Lovész Function of Strongly Regular Graphs (1.S., '23)
Let G be a strongly regular graph with parameters srg(n,d, \, ). Then,
_on(t+p—2A)
60 = g v n (8)
— 2d
(G =1+——
@ =1+ )
where
t2 = P+ 1d— ). (10,
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Graphs and Lovasz Function

Lovész Function of Strongly Regular Graphs (1.S., '23)
Let G be a strongly regular graph with parameters srg(n,d, \, ). Then,
n(t+p—2A)
0(G) = ———— 8
(©) 2d+t+pu— N ()
— 2d
0G) =1+ ——— 9
@ =147 )
where
t2 = A2+ 4d—p). (10),
New Relation for Strongly Regular Graphs
9(G)0(G) = n, (11)
holding not only for all vertex-transitive graphs (Lovasz '79), but also for
all strongly regular graphs (that are not necessarily vertex-transitive).
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Graphs and Lovasz Function

Corollary: Bounds on Parameters of SRGs (I.S., '23)
Let G be a strongly regular graph with parameters srg(n,d, \, ). Then,

n(t+p—2AN)
«©% |y (2
X(G) 2 1 o ’Vt—l—i—d—)\-‘, (14)
— n(t+u—A)
x(G) > [m-‘, (15)
with
t2 /(=22 +4(d—p). (16)

o
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Graphs and Lovasz Function

Examples: Bounds on Parameters of SRGs

Figure: The Petersen graph is srg(10,3,0,1) (left), and the Shrikhande graph is
srg(16,6,2,2) (right). Their chromatic numbers are 3 and 4, respectively.
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Graphs and Lovasz Function

Schlafli Graph
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Figure: Schlafli graph is srg(27, 16,10, 8) with chromatic number x(G) =9
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Graphs and Lovasz Function

Examples: Bounds on Parameters of SRGs (Cont.)

@ Let Gy be the Petersen graph. Then, the bounds on the
independence, clique, and chromatic numbers of G are tight:

a(G) =4, w(G)=2 x(G1)=3. (17)

@ The bounds on the chromatic numbers of the Schlafli graph (G2),
Shrikhande graph (Gz) and Hall-Janko graph (Gy) are tight:

© For the Shrikhande graph (Gs),
the bound on its independence number is also tight: a(G3) = 4,
its upper bound on its clique number is, however, not tight (it is
equal to 4, and w(G3) = 3).
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Graphs and Lovasz Function

Strong Product of Graphs

Let G and H be two graphs. The strong product G X H is a graph with
@ vertex set: V(GXH) = V(G) x V(H),

@ two distinct vertices (g, h) and (¢',h’) in GX H are adjacent if the
following two conditions hold:

@ g=4g or{g, g} cE(G),
@ h="h or{hh'} €E(H).

Strong products are commutative and associative.
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Graphs and Lovasz Function

Strong Product of Graphs

Let G and H be two graphs. The strong product G X H is a graph with
o vertex set: V(GK H) = V(G) x V(H),

@ two distinct vertices (g, h) and (¢',h’) in GX H are adjacent if the
following two conditions hold:

@ g=g or{g,g'} €E@G),
@ h="hn"or{hh'}€EH).
Strong products are commutative and associative.

Strong Powers of Graphs
Let
GRF 4 GN...RG, keN (19)
—_—

G appears k times

denote the k-fold strong power of a graph G.

™7 i - = = A
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Graphs and Lovasz Function

Properties of the Lovasz 6-Function with Strong Products
© Factorization for strong product graphs: For all graphs G and H,
O(GXH) =6(G)O(H), (20)

9(GE H) = 6(G) o(H). (21)
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Graphs and Lovasz Function

Properties of the Lovasz 6-Function with Strong Products

© Factorization for strong product graphs: For all graphs G and H,

O(GXH) =0(G)o(H), (20)
O(GXH) = 0(G) O(H). (21)
@ The equality

holds for every simple, finite, and undirected graph G, where the
supremum is taken over all such graphs H.
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Graphs and Lovasz Function

Independence Numbers of Strong Powers of Graphs

Proposition: Let G be a finite, undirected, and simple graph.
If a(G®) = 6(G)* for some £ € N, then for every k that is an integral
multiple of ¢,

a(GEF) = 9(G)*. (23)

o
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Graphs and Lovasz Function

Independence Numbers of Strong Powers of Graphs

Proposition: Let G be a finite, undirected, and simple graph.
If a(G®) = 6(G)* for some £ € N, then for every k that is an integral
multiple of /,

a(GEF) = 9(G)*. (23)

o

Proof

Let £ = ¢p with p € N. Then, since o(GX H) > «(G) a(H) for all graphs
G and H,

0(G)F = a(GBHP < o(GE¥) < 9(GZF) = 9(G)*.
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Graphs and Lovasz Function

Independence Numbers of Strong Powers of Graphs

Proposition: Let G be a finite, undirected, and simple graph.
If a(GH) = 0(G) for some £ € N, then for every k that is an integral
multiple of ¢,

a(GBF) = 9(G)*. (23)

v

Proof
Let k = ¢p with p € N. Then, since «(GX H) > a(G) a(H) for all graphs
G and H,

9(G)* = a(GFP < a(GEF) < H(GFF) = 9(G)F.

Corollary 1: If a(G) = 6(G), then for all £ € N, the k-fold strong power of
G satisfies

a(GE*) = 9(G)*, VkeN. (24)

™ = = — Tyt

|. Sason SICGT23, Kranjska Gora, Slovenia June 22, 2023 18 /32




Graphs and Lovasz Function

Example: the Tietze Graph (1.S., '23)

Let G be the Tietze graph, which is a 3-regular graph on 12 vertices that
is not strongly regular, nor vertex- or edge-transitive.

Figure: Tietze graph.

It can be verified that

a(G) =5 =0(G) = a(G®¥) =5% VkeN.
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Graphs and Lovasz Function

Example: the Tietze Graph (Cont.)

© A largest independent set of G is {0,3,5,7,11}, so a(G) = 5.
@ The result 0(G) = 5 is obtained by solving the SDP problem:

maximize Trace(B J;2)
subject to

B € S!2, Trace(B) =
Ahj:]-:> B@jZ(L

=
. 7
<
m
—
—_
—_
[N}
—

= B=

s
HHEOORRFHHHFON
OO OHROOHORO
O—ROOO—ROFROFOR
HORFFFFEONOR

y OHOOOHO—OROR
—HOOOHOFOHOOR
HOOOHOHOHROOR
OOHHOHROOHOFO

Ol co~—orooorRo
O—ROOOFROFROFO
HOOOHROHROHROOR

s}

—_
[\
~— OFRFFONORFFFE—

= 0(G) = Trace(

T = =

et
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Graphs and Lovasz Function

Example: the Tietze Graph (Cont.)

For comparison, since the Tietze graph is 3-regular on 12 vertices with
Amin(G) = —2.30278, the Hoffman-Lovasz bound on 6(G) is equal to

G(G) < n)\mm(G)

- =52111
S B W (5 R

so it is not tight. The fact that the bound is not tight is consistent with

the fact that G is not an edge-transitive graph.

(25)
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By Corollary 1 and our closed-form expression for the Lovasz 6-function of
SRGs, we calculate a(G®*) for some SRGs.
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Graphs and Lovasz Function

© © © © e

6 ©6 6 €6

Independence Numbers of All Strong Powers of SRGs

The Hall-Janko graph G is srg(100, 36, 14, 12), and a(G®*) = 10*.
The Hoffman-Singleton graph G is srg(50,7,0,1), and a(G¥*) = 15
The Janko-Kharaghani graphs of orders 936 and 1800 are

srg(936, 375, 150, 150) and srg(1800, 1029, 588, 588), respectively. For
both graphs o(G¥¥) = 36F.

Janko-Kharaghani-Tonchev: G = srg(324, 153,72, 72), a(G®*) = 18F.
The graphs introduced by Makhnev are G = srg(64, 18,2,6) and

G = srg(64, 45, 32,30). We have a(GZ*) = 16, and a(G") = 4F.
The Mathon-Rosa graph G is srg(280,117,44,52): a(G**) = 28%.
The Schlafli graph G is srg(27, 16,10, 8), and a(G¥F) = 3.

The Shrikhande graph is srg(16, 6,2, 2); its capacity is o(G¥¥) = 4%,
The Sims-Gewirtz graph G is srg(56, 10,0, 2), and a(G®*) = 16".
The graph G by Tonchev is srg(220, 84, 38,28), and a(G¥F) = 10*.
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Graphs and Lovasz Function

Corollary: Clique and Chromatic Numbers of Ramanujan Graphs (1.S.)
Let G be a Ramanujan d-regular graph on n vertices. Then,
14+2vd—-1
n—d+2Vd—-1
n—d+2vd—-1
1+2vd—1
n—d+2vd—1 -‘
1+2v/d—1 |

(26)

0(G) >

(27)

(28)

v

x(G) > {
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Graphs and Lovasz Function

Corollary: Asymptotic Bounds (I.S., '23)

Let {Gy}ren be a sequence of Ramanujan d-regular graphs where d € N is
fixed, Gy is a graph on ny vertices, and Zlim ny = 00. Then,
—00

limsup w(Gy) <1+ |2vd—1], (29)
L—o0

... x(Gp) 1

| f > . 30
oo mp C1+2vd-1 (30)

v
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Graphs and Lovasz Function

Theorem: Second-Largest and Least Eigenvalues (1.S., '23)

Let G be a d-regular graph of order n, which is non-complete and
non-empty. Then,
d(n—d+ X2(G))

“a1 (1) (G)’ (31)

An(G) <

or equivalently,
_d(n —d+ M (G))
d+ (n—1)\(G)’

A2(G) > (32)

These inequalities hold with equality if and only if G is strongly regular.
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Graphs and Lovasz Function

Theorem: Second-Largest and Least Eigenvalues (1.S., '23)

Let G be a d-regular graph of order n, which is non-complete and
non-empty. Then,
d(n—d+ X2(G))

EICEEN Ok (31)

An(G) <

or equivalently,
d(n—d+ M\(G))

A+ = 1) Am(G)’ (32)

X2(G) >

These inequalities hold with equality if and only if G is strongly regular.

© From our earlier bounds, it follows that the inequality holds with
equality if G is a strongly regular graph.

@ We prove that if G is regular, then equality holds if and only if G is
strongly regular (1.S., '23).

V.
™ = —y = —a
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Graphs and Lovasz Function

Theorem: Chromatic Numbers of Strong Product of SRGs (I.S., '23)

Let Gy, ..., Gy be strongly regular graphs srg(ng, dg, A, pie) for £ € [k]
(they need not be distinct). Then, the chromatic number of their strong
product satisfies

kl 2dy < (G X xc<kc 33
H( +m) _X( 1 XL k)_gX( k)v ( )

/=1

where {t;}¥_, in the leftmost term is given by

te £ /(Mo — o) +4(de — o), £ € [ (34)

The above lower bound is also larger than or equal to the product of the
clique numbers of the factors {G,}5_,.
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Graphs and Lovasz Function

Example: Chromatic Numbers of Strong Products

Let
G =srg(27,16,10,8), H =srg(16,6,2,2), J=srg(100,36,14,12)

be the Schlafli, Shrikhande, and Hall-Janko graphs, respectively.
The upper and lower bounds (in the previous slide) coincide here: for all
integers k1, ko, k3 > 0,

X(ngl X Hg ko X Jgkii) = 9’“1 4k2 10k3. (35)

For comparison, the lower bound that is given by the product of the clique
numbers of each factor is looser, and it is equal to 6%13+24F3,

v
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Shannon Capacity of Graphs

Shannon Capacity of a Graph (1956)
@ The capacity of a graph G was introduced by Claude E. Shannon

(1956) to represent the maximum information rate that can be
obtained with zero-error communication.

@ A channel is represented by a proper graph G, and the Shannon
capacity of a graph G is given by

O(G) = sup {/ a(G¥F)

keN

= lim ¢/ a(G%F).
k—ro0

@ The last equality holds by Fekete's Lemma since the sequence
{log a(G®F*)}22 | is super-additive, i.e.,

a(GIXI(k1+k2)) > a(GIXIk:l) Oé(ngz).
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Shannon Capacity of Graphs

On the Computability of the Shannon Capacity of Graphs

@ The Shannon capacity of a graph can be rarely computed exactly. ©

@ However, the Lovasz #-function of a graph is a computable (and
sometimes tight) upper bound on the Shannon capacity. ©

Lovédsz Bound on the Shannon Capacity of Graphs (1979)

Theorem: For every finite, simple and undirected graph G,

0(G) < 6(G). (38)
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Shannon Capacity of Graphs

Capacity of Graphs

Proposition: Let G be a finite, undirected, and simple graph. If
a(G¥) = 0(G)" for some ¢ € N, then

6(G) = 0(G), VkeN. (39)
Jne22,2003  30/32



Shannon Capacity of Graphs

Capacity of Graphs

Proposition: Let G be a finite, undirected, and simple graph. If
a(G¥) = 0(G)" for some ¢ € N, then

O(G) = 0(G), VkeN. (39)

Corollary 1: If a(G) = 6(G), then for all £ € N, the k-fold strong power of
G satisfies

a(G)F = o(G®*) = O(G®*) = 9(G®*) = (G)*, VEkeN. (40)

v
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By Corollary 1, we calculate the Shannon capacity of some regular graphs.
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Shannon Capacity of Graphs

© e © © 6

6 66 €6

Shannon Capacities of Some Strongly Regular Graphs
The Hall-Janko graph G is srg(100, 36, 14,12), and ©(G) = 10.
The Hoffman-Singleton graph G is srg(50,7,0,1), and ©(G) = 15.

The Janko-Kharaghani graphs of orders 936 and 1800 are
srg(936, 375, 150, 150) and srg(1800, 1029, 588, 588), respectively.
The capacity of both graphs is 36.

Janko-Kharaghani-Tonchev: G = srg(324,153,72,72),0(G) = 18.
The graphs introduced by Makhnev are G = srg(64, 18,2, 6) and

G = srg(64, 45, 32,30). Capacities: ©(G) = 16, and O(G) = 4.

The Mathon-Rosa graph G is srg(280, 117,44, 52), and ©(G) = 28.

The Schiifli graph G is srg(27, 16, 10,8), and ©(G) = 3.

The Shrikhande graph is srg(16, 6,2, 2); its capacity is O(G) = 4.
The Sims-Gewirtz graph G is srg(56, 10,0, 2), and ©(G) = 16.
The graph G by Tonchev is srg(220, 84, 38, 28), and ©(G) = 10.
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