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Abstract

New lower bounds on the total variation distance betweendibtibution of a sum of independent Bernoulli random
variables and the Poisson random variable (with the sama&aea derived via the Chen-Stein method. The new bounds rely
on a non-trivial modification of the analysis by Barbour anallH{1984) which surprisingly gives a significant improveme
A use of the new lower bounds is addressed.
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. INTRODUCTION

Convergence to the Poisson distribution, for the numbercoficences of possibly dependent events, naturally
arises in various applications. Following the work of Poigsthere has been considerable interest in how well the
Poisson distribution approximates the binomial distiiouit

The basic idea which serves for the starting point of the #ec¢&hen-Stein method for the Poisson approximation
is the following (see Chen (1975)). LéX;}” , be independent Bernoulli random variables withX;) = p;. Let
W3, X, andV; £ 3., X; for everyi € {1,...,n}, andZ ~ Po(\) with mean\ £ Y77 p;. It is easy to
show that

EN(Z+1) - 2f(2)] =0 (1)

holds for an arbitrary bounded functigh: Ny — R whereN, = {0,1,...}. Furthermore (see, e.g., Chapter 2 in
Ross and Pekdz (2007))

EAf(W +1) - ij FVi+2) = f(V; +1)] )

which then serves to provide rigorous bounds on the difiezdretween the distributions @ andZ, by the Chen-
Stein method for Poisson approximations. This method, aotgenerally the so callegtein methodserves as a
powerful tool for the derivation of rigorous bounds for \ars distributional approximations. Nice expositions of
this method are provided by, e.g., Arratia et al. (1990),9Rasd Pekdz (2007) and Ross (2011). Furthermore, some
interesting links between the Chen-Stein method and irdition-theoretic functionals in the context of Poisson
and compound Poisson approximations are provided by Bardtoal. (2010).

Throughout this letter, the term ‘distribution’ refers tadescrete probability mass function of an integer-valued
random variable. In the following, we introduce known résthat are related to the presentation of the new results.
Definition 1: Let P and @ be two probability measures defined on a &etThen, the total variation distance

betweenP and(@ is defined by

dv(P,Q) £ sup (P(4) - Q(4)) ®)
Borel ACX
where the supremum is taken w.r.t. all the Borel subgetsf X. If X' is a countable set then (3) is simplified to
1P —Qllx
dry(P,Q) = Z;( P@) - Q)| = 5+ 4)

so the total variation distance is equal to half of thedistance between the two probability distributions.
Among old and interesting results that are related to thed@ai approximation, Le Cam’s inequality (see Le Cam

(1960)) provides an upper bound on the total variation distebetween the distribution of the suin = >"" , X;

of n independent Bernoulli random variabl¢X;}" ,, where X; ~ Bern(p;), and a Poisson distribution P9
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with mean = 3°7 | p;. This inequality states thatry (P, Po(\)) < %, p? so if, e.g.,X; ~ Bern(2) for
everyi € {1,...,n} (referring to the case whed is binomially distributed) then this upper bound is equal to
2 decaying to zero as — co. The following theorem combines Theorems 1 and 2 of BarbadrHall (1984),
and its proof relies on the Chen-Stein method:

Theorem 1:Let W = > | X; be a sum ofn independent Bernoulli random variables will{X;) = p; for
i € {l,...,n}, andE(W) = \. Then, the total variation distance between the probghdistribution of W and
the Poisson distribution with mean satisfies

3—12 (1 %) 3" p? < div(Pw, Po(A) < <1
=1

wherea A b £ min{a, b} for everya,b € R.

As a consequence of Theorem 1, it follows that the ratio betabe upper and lower bounds in (5) is not larger
than 32, irrespectively of the values ¢p;}. The factor32 in the lower bound was claimed to be improvable to
14 with no explicit proof (see Remark 3.2.2 in Barbour et al.92p. This shows that, for independent Bernoulli
random variables, these bounds are essentially tighth&umore, note that the upper bound in (5) improves Le
Cam’s inequality; for large values df, this improvement is by approximately a factork).f

This letter presents new lower bounds on the total variatimtance between the distribution of a sum of
independent Bernoulli random variables and the Poissodoranvariable (with the same mean). The derivation
of these new bounds generalizes and improves the analydaitiyour and Hall (1984), based on the Chen-Stein
method for the Poisson approximation. This letter condull outlining a use of the new lower bounds for the
analysis in Sason (2012), followed by a comparison of the beunds to previously reported bounds.

This work forms a continuation of the line of work in BarboundaChen (2005)—Kontoyiannis et al. (2005)
where the Chen-Stein method was studied in the context oPtieson and compound Poisson approximations,
and it was linked to an information-theoretic context by lam et al. (2010), Kontoyiannis et al. (2005), and
Sason (2012).

4) gpf (5)

1. IMPROVED LOWERBOUNDS ON THETOTAL VARIATION DISTANCE

In the following, we introduce an improved lower bound on toéal variation distance and then provide a
loosened version of this bound that is expressed in closeu. fo

Theorem 2:In the setting of Theorem 1, the total variation distancevieen the probability distribution o’
and the Poisson distribution with meansatisfies the inequality

n A n
2 So0# < dry(PwPo) < (S ) Yo ©)
i=1 i=1

where Ky 2 sup (1 — ha(ar, g, 9)) @)
1,05 €R, 2gx(a1,a2,0)
(%) S A + %,
6>0
and ABAF(2—az+ A3 —(1—az+ )3
ha(ar, az,0) =
O
a1 = a2l (20 +[3 = 2as]) exp (— 1552 ) .
+ o (8)
z4 2 max{z,0}, 212 (z;1)% VzeR 9)
gx(a1,as,0) max{ ‘( Jog — oa\) A +max{x U; } ,
(26 i o — a2]> A— mln{w(uz)}' } (10)
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z(u) £ (co + cru + cou?) exp(—u?), YueR (11)
{u;} & {u e R: 2c0u> + 2c1u® — 2(eg — co)u — 1 = 0} (12)
Co é (042 — 011)(/\ — 042) (13)
c1 2 Vo A+ a1 — 2a3) (14)
C9 é —9)\ (15)

Proof: See Section IV-A. The derivation relies on the Chen-Steithoe for the Poisson approximation, and
it improves (significantly) the constant in the lower bourfdTheorem 2 of Barbour and Hall (1984). [ |
Remark 1: The upper and lower bounds on the total variation distancg)rscale like>"!_, p?, similarly to
the known bounds in Theorem 1, but they offer a significantrowpment in their tightness (see Section V).

Remark 2: The cardinality of the sefu;} in (12) is equal to 3 (see Section IV-A).

Remark 3: The optimization that is required for the computation/of in (7) w.r.t. the three parametets, as €
R andd € R is performed numerically.

In the following, we introduce a looser lower bound on thaletriation distance as compared to the lower bound
in Theorem 2, but its advantage is that it is expressed inedidsrm. Both lower bounds improve (significantly)
the lower bound in Theorem 2 of Barbour and Hall (1984). THi¥dng lower bound follows from Theorem 2
via the special choice ofy; = as = A that is included in the optimization set fdt; on the right-hand side
of (7). Following this sub-optimal choice, the lower boumdthe next corollary is obtained by a derivation of a
closed-form expression for the third free paraméter R* (in fact, this was our first step towards the derivation
of an improved lower bound on the total variation distance).

Corollary 1: Under the assumptions in Theorem 2, then

Ki()\) ZX:;P? < drv(Pw,Po)) < (1 _/\e_/\> gp? (16)

where
9334—;4—%-\/(3)\+7)[(3—|—2e—1/2)/\—|—7]. (18)
Proof: See Section IV-B. [ |

1. OUTLOOK

We conclude our discussion in this letter by outlining a usthe new lower bounds in this work: the use of the
new lower bound on the total variation distance for the Rwisspproximation of a sum of independent Bernoulli
random variables is exemplified by Sason (2012). This wotloiluces new entropy bounds for discrete random
variables via maximal coupling, providing bounds on thdedénce between the entropies of two discrete random
variables in terms of the local and total variation distanoetween their probability mass functions. The new lower
bound on the total variation distance for the Poisson appraton from this work was involved in the calculation of
some improved bounds on the difference between the entropysom of independent Bernoulli random variables
and the entropy of a Poisson random variable of the same meanssible application of the latter problem is
related to getting bounds on the sum-rate capacity of a lesis& -user binary adder multiple-access channel (see
Sason (2012)).
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IV. PROOFS OF THENEW BOUNDS

A. Proof of Theorem 2

The proof of Theorem 2 starts similarly to the proof of Theor2 of Barbour and Hall (1984). However, it
significantly deviates from the original analysis in orderderive an improved lower bound on the total variation
distance.

Let {X;}", be independent Bernoulli random variables wWith;) = p;. Let W = >  X;, V; = >z X
for everyi € {1,...,n}, and Z ~ Pa\) with meanX = Y7, p,. From the basic equation of the Chen-Stein
method, equation (1) holds for an arbitrary bounded fumcfio Ny — R. Furthermore, it follows from the proof
of Theorem 2 of Barbour and Hall (1984) that

> {PELFW; +2) - £+ 1]}

j=1
dTV(PW7 PO(A)) > 2 SUDen, ‘)\f(k + 1) — kf(k)| (19)

which holds, in general, for an arbitrary bounded functfonN, — R (see the appendix for a proof, which does
not appear in the published version).

At this point, we deviate from the proof of Theorem 2 of Barband Hall (1984) by generalizing and refining
(in a non-trivial way) the original analysis. The generabldem with the current lower bound in (19) is that it is
not calculable in closed form for a givefy so one needs to choose a proper functfoand derive a closed-form
expression for a lower bound on the right-hand side of (18)this end, let

(k‘ — a2)2

7092 (k- ) exp - 555

>, Vk e Ny (20)

wherea;,as € R andf € RT are fixed constants (note thétin (20) needs to be positive fof to be a bounded
function). In order to derive a lower bound on the total vidoia distance, we calculate a lower bound on the
numerator and an upper bound on the denominator of the highd side of (19) for the functiorf in (20).
Referring to the numerator of the right-hand side of (19hwftin (20), for every;j € {1,...,n},

fVi+2) = f(Vi+1)

= — | (u+ a2 —a1) exp ——>du
/V+1 o <( 2 =) ( 9A>

VVJ:Q:Z <1 u(u+ a2 - a1)> eXp(_%) du

) ey [ 2
o (255) o5

(s — 1) [exp <_W> _ eXp<_ (Vi + ;)\— a2)2>} | o

We rely in the following on the inequality

(1-2z)e*>1-3z, Vax>0.
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Applying it to the integral on the right-hand side of (21) egvthat
fVi+2) = f(Vi+1)

Vit2—az 3u? (Vi+2-— 042)2 (Vi+1-— 012)2
> 1-— = _ _ B et VN g - el
I O R e |

(Vi+2-a)" = (V+1-as)”
O
(Vj‘i‘2—a2)2 (Vj—l—l—a2)2
exp( )\ exp )\ .
In order to proceed, note thatf;, x5 > 0 then (on the basis of the mean-value theorem of calculus)

= |e ¢ (z1 —x2)| for somec € [z, z)]

(22)

oz — an] -

— T

— e_xl |

CB

<e min{z,z2} |£L'1 o ZL’2|

which, by applying it to the second term on the right-hand i (22), gives that for every € {1,...,n}

SRV S QA e

min{(vj +2- 042)2, (VJ +1- a2)2} (V +2— 042)2 — (V +1-— 042)2
< exp ( o ) < J o J > . (23)

SinceV; =3, ., X; > 0 then

min{ (V; +2 = a2)?, (V; +1 - a)?}

0 if 04221
> .
o (1 —042)2 if ag <1

= (1-a2) (24)
where
74 = max{x,0}, w%r = (w+)2, Vo eR.

Hence, the combination of the two inequalities in (23)—(g#es that

eXp(_(vj+2—a2)2> _exp<_(vj +1—a2)2>‘

oA oA
1 —ap)? Vi+2—a)? = (V;+1— ag)?
ée}{p(_( eim),(\(ﬁ )~ (¥ ¢ a2>|>
— exp _(1—0[2)3_ .]2Vj+3—2a2\
oA oA

1—an)? 2V, + |13 — 2«
S exp <_( 0)\2)4—) . 7 |9)\ 2| (25)

and therefore, a combination of the inequalities in (22) &%) gives that
fVi+2) = f(V;+1)
sy Vit2man) = (V1 o)
- O

—|Oz —Oz‘-eX _(1—042)3_ .2Vj+|3_2a2|
2T Q] exp 3} 3} '

(26)
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Let U; £ V; — A; then
fVi+2) = f(V;+1)
Uj+A+2—09)’ = (Uj+ A +1—ap)’

- O\
(1—0[2)3_ 2Uj+2)\+]3—2a2\
oz —on]rexp (== ) )
_3Uj2—|—3(3—2a2—|—2/\)Uj+(2—a2+/\)3—(1—a2+)\)3

O
_|Oz2 - Oél‘ - exXp <—(1 - a2)i> : 20 + 22413 — 209 .
2\ O
In order to derive a lower bound on the numerator of the rigdnid side of (19), for the functiofi in (20), we

need to calculate the expected value of the right-hand did27). To this end, the first and second moments of
U; are calculated as follows:

(27)

E(U) =E(V)) = A=) pi— Y pi=—p (28)
i#j i=1
and
E(U?)
= Var(Uj) + (E(UJ))
= Var(V;) + p?

DN i pi) + 12

2

i
Y
i i
=A=pj— Y pi+p (29)

i#j
where equality (a) holds since the binary random variablés|? ; are independent and \V@X;) = p;(1 —p;). By
taking expectations on both sides of (27), one obtains fr2&) &nd (29) that

E[f(V;+2) = f(V; +1)]

3(A—pj — i D} +p§) +3(3 =22 +2X\) (—pj) + (2— a2+ A)* — (1 —az + A)3
>1-—
= O

(1—ag)? —2pj + 2X\ + |3 — 20z
~laz —onfexp | — === ) N

BA+ (2= s+ AP — (1= az + ) = [3p;(1 = ;) + 3,7 +3(3 — 202 +2))p |

=1
O
|a2—a1| (2)\—2pj+\3—2a2]) (1—&2)3_
< X P X
1 3)\+(2—a2+)\)3—(1—a2+)\)3—(9—6a2+6)\)pj

o

(el )




|. SASON: IMPROVED LOWER BOUNDS ON THE TOTAL VARIATION DISTAICE FOR THE POISSON APPROXIMATION 7

Therefore, from (30), the following lower bound on the rig‘ramd side of (19) holds

j=1
BA+ (202 + )7 — (1—az+2)? +|a1—a2|(2/\+|3—20z2|)exp( et
T\ sz. (31)

O J

Note that ifay < A + % which is a condition that is involved in the maximization @, then the first term on
the right-hand side of (31) can be removed, and the resulbwgr bound on the numerator of the right-hand side
of (19) takes the form

n

S BBV +2) = (v + 1]} = (1 - halara0.0 )ij (32)
j=1
where the functiorh, is introduced in (8).
We turn now to deriving an upper bound on the denominator efritght-hand side of (19). Therefore, we need
to derive a closed-form upper bound mpkeNo\)\ f(k+1)—kf(k:)\ with the functionf in (20). For everyk € Ny,

ANf(k+1) =k f(k) = A[f(k+1) = f(k)] + (A — k) f(k). (33)
In the following, we derive bounds on each of the two termshmright-hand side of (33), and we start with the

first term. Let )

t(u) £ (u+ az — a1) exp <—Z—)\> , VueR
then f (k) = t(k — aq) for everyk € Ny, and by the mean-value theorem of calculus,
fk+1) = f(k)
:t(k’—l-l—OéQ) —t(k?—()ég)
=t'(cy) for somecy, € [k — ag, k + 1 — ag)

23 c 2(a1 — ag)ck c
- (1) ew () + (B ) e (55) .
Referring to the first term on the right-hand side of (34), let
p(u) = (1 —2u)e™, Yu>0

then the global maximum and minimum pfover the non-negative real line are obtainediat 0 andu = %
respectively, and therefore \
—2¢72 <p(u) <1, Vu>D0.

Letu = 6>\; then it follows that the first term on the right-hand side ®#) satisfies the inequality
2 2

3 2cy .
22 < (1- =k <
e s (1 9>\> Xp( HA) L (35)
Furthermore, referring to the second term on the right-teidd of (34), let

q(u) 2 ue ™, YueR

then the global maximum and minimum @bver the real line are obtainedat= +§ andu = —@, respectively,

and therefore
1 /2 1 /2
Y i < 424 /= .
ez s g2 vacr

Let this timeu = /g%, then it follows that the second term on the right-hand sitig8d) satisfies

2(a1 — ag)eg ci 2
A AR <) —- — asl.
‘( ) > Xp( i )| S Ve ln el (36)
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Hence, on combining the equality in (34) with the two inedged in (35) and (36), it follows that the first term
on the right-hand side of (33) satisfies

- (2)\6_%4-\/%”&1—042‘) §)\[f(k+1)—f(k)] §)\+\/%-\a1—a2\, VkENo. (37)

We continue the analysis by a derivation of bounds on thersk¢erm of the right-hand side of (33). For the
function f in (20), it is equal to

(A= k) f(k)

= (= (e an)exp (- B2 )
= [(A—a2) + (a2 = k)] [(k — 02) + (02 — a1)] eXp<_%>

[(A —az)(k — az) + (a2 — a1)(A — a2) — (k — a2)” + (a1 — az)(k — 042)] exp <_ £ ()‘2)2)

o
= [\/ﬁ()\ — Oég)’l)k — 9)\?)]% - \/ﬁ(ag — al)vk + (a2 — 041)()\ - ag)] 6_1}% s Vi = k- a2 Vk e No
VO
= (Co +cive + szi) e~k (38)

where the coefficients,, c; andcy are introduced in Egs. (13)—(15), respectively. In ordedeave bounds on the
left-hand side of (38), let us find the global maximum and mimin of the functionz in (11):

w(u) 2 (o + cu+ cu?)e™  YueR.

Note thatlim, .1+~ z(u) = 0 andz is differentiable over the real line, so the global maximuna aninimum of

x are attained at finite points and their corresponding vatuedfinite. By setting the derivative af to zero, we
have that the candidates for the global maximum and miniméim over the real line are the real zerfs;} of
the cubic polynomial equation in (12). Note that by their digifin in (12), the values ofu;} areindependenof
the value ofk € Ny, and also the size of the sét;} is equal to 3 (see Remark 2). Hence, it follows from (38)
that

ie?}j%}{x(ui)} S(A=k)f(k) < ie?}?;fg}{“(“i)}’ Vk e No (39)

where these bounds on the second term on the right-hand &{@3)oare independent of the value bfe Nj.
In order to get bounds on the left-hand side of (33), note fitwat the bounds on the first and second terms on
the right-hand side of (33) (see (37) and (39), respectjublgn for everyk € Ny

3 2A
i M= [ 2xe 2 +4/22 jay —
Zeﬁlgg}{x(u)} ( ez + D6 lan a2|>
<SAf(k+1) =k f(k)
< max {z(u)}+ A+ —2)‘-| - (40)
=g Ve 1T

which yields that the following inequality is satisfied:

ksul\%) ANf(E+1)—Ekf(k)] < gr(ar,as,6) (42)

€No

where the functiory, is introduced in (10). Finally, by combining the inequa&iin Egs. (19), (32) and (41), the
lower bound on the total variation distance in (6) followéeTexisting upper bound on the total variation distance
in (6) was derived in Theorem 1 of Barbour and Hall (1984) (3beorem 1 here). This completes the proof of
Theorem 2.
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B. Proof of Corollary 1

Corollary 1 follows as a special case of Theorem 2 when thpgsed functiony in (20) is chosen such that two
of its three free parameters (i.ey; andas) are determined sub-optimally, and its third parametgiq determined
optimally in terms of the sub-optimal selection of the twhert parameters. More explicitly, let; andas in (20)
be set to be equal & (i.e., a1 = a2 = A). From (13)—(15), this setting implies that = ¢; = 0 andcs = —0X < 0
(sinced, A > 0). The cubic polynomial equation in (12), which correspotashis (possibly sub-optimal) setting
of a1 and oy, is

262u3 —2c0u =0
whose zeros are = 0,+1. The functionz in (11) therefore takes the form
z(u) = cpue™ VueR

soz(0) =0 andz(+1) = 2 < 0. This implies that

. C2
min xz(u;) = — max x(u;) =0
i€{1,2,3} () e’ ie{1,2,3} (us) =0,

and thereforeh, andg, in (8) and (10), respectively, are simplified to

3N+ 7
h 0) = 42
>\(>\7/\7 ) o\ ; ( )
gA(A A, 0) = A max{1,2¢7% + fe 1} (43)

This sub-optimal setting ofr; and as in (20) implies that the coefficienk’; in (7) is replaced with a loosened

version
1 —hx(A A 9)>
K/ )\ éSll <%
1( ) 9>IO) 2g>\(>\7/\79)

Letd > e — %; then (43) is simplified tay\ (A, A\, 0) = A (2e‘% + 6e~1). It therefore follows from (6), (7) and
(42)—(44) that

(44)

drv (Pw,PaX)) > Ki(A) Y p} (45)
=1
where
Ki(\) = sup . (46)
oze—2 \2\(2¢72 +0e71)

and, in generalK’(\) > R’l()\) due to the above restricted constraintsee (44) versus (46)). Differentiating
the function inside the supremum w.fitand setting its derivative to zero, one gets the followingdpatic equation
in 6:

A% —2BA+T7)0 —2(3N+T)e =0

whose positive solution is the optimized valuefoin (18). Furthermore, it is clear that this value &in (18) is
larger than, e.g., 3, so it satisfies the constraint in (46)s Tompletes the proof of Corollary 1.

V. A COMPARISON OF THENEW BOUNDS WITH KNOWN RESULTS

The new lower bounds on the total variation distance in Téio2 and Corollary 1 scale liKg ", p?, similarly
to the known upper and lower bounds in Theorem 1 that orilyirsgdpear in Theorems 1 and 2 of Barbour and Hall
(1984). However, the new lower bounds offer a significantriorpment over the known lower bound in Theorem 1.
More explicitly, from Theorems 1 and 2 of Barbour and Hall§49 the ratio between the upper and lower bounds
on the total variation distance (see (5)) is equal to 32 intéi® extreme cases where— 0 or A — oo. In the
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following, we calculate the ratio of the same upper bound twednew lower bound in Corollary 1 at these two
extreme cases. In the limit whepe— oo, this ratio tends to

(=) ot

Ahm (0 =6(N)is given in Eq. (18)
(2,\(26 Vetget ) sz

2 . 0(2e71/% + 9)

e xe 0— (3+ 1)
2
= g (1 +14/1+ g : e—1/2> ~ 10.539 (47)

where the last equality follows from (18), sintieny ... 0 = 3 + 1/3(3 + 2e~1/2). Furthermore, the limit of this

ratio when\ — 0 is equal to
) 1—e M\ . )\(26_3/2 +6 e_l)
2 (15 b (M

Y
(a) 28 . 2e~1/2 4 9)
= — lim | —————<
e x=0\f— (3 + X)
56
® = ~ 20601 (48)

where equalities (a) and (b) hold since, from (18), it fokothhatlimy_o(A0) = 14. This implies that Corollary 1
improves the original lower bound on the total variationtali€e in Theorem 2 of Barbour and Hall (1984) by
a factor of 1035239 ~ 3.037 in the limit where\ — oo, and it also improves it by a factor ogm ~ 1.553 if

A — 0 while still having a closed-form expression for the lowemhd in Corollary 1. The only reason for this
improvement is related to the optimal choice of the free eterd in (18), versus its sub-optimal choice in the
proof of Theorem 2 of Barbour and Hall (1984). This obsenmthas motivated to further improve the lower
bound by introducing the two additional parametersas € R in Theorem 2; these parameters give two additional
degrees of freedom in the functighin (20) (according to the proof in Section IV-B, these twogmaeters are set
to be equal to\ for the derivation of the loosened and simplified bound indllary 1). The improvement in the
lower bound of Theorem 2 (in comparison to Corollary 1) isezsally dominant for low values ok, as is shown
in Figure 1. Note, however, that no improvement is obtairerchigh values of\ (e.g., forA > 20, as is shown by
Figure 1 on noticing that the curves in this plot merge atdarglues of}).

The lower bound on the total variation distance in Theoremnglies the bound in Corollary 1 (see the proof in
Section IV-B). Corollary 1 further implies the lower bound the total variation distance in Theorem 2 of Barbour
and Hall (1984) (see Theorem 1 here). The latter claim fdlésem the fact that the lower bound in (45) with the
coefﬁcientf(l(/\) in (46) was loosened in the proof of Theorem 2 of Barbour antl (1884) by a sub-optimal
selection of the parametér which leads to a lower bound aofi; () (the sub-optimal selection @f in the proof
of Theorem 2 of Barbour and Hall (1984) fs= 21 max{l, %}) On the other hand, the optimized valuetothat
is used in (18) provides an exact closed-form expressiorﬁfﬁr)\) in (46), and it leads to the derivation of the
improved lower bound in Corollary 1.

Theorem 1.2 of Deheuvels and Pfeifer (1986) provides an pgytin result for the total variation distance
between the distribution of the sub of »n independent Bernoulli random variables wiil{.X;) = p; and the
Poisson distribution with meah = >"" | p;. It shows that wher) ", p; — oo andmax;<;<, p; — 0 asn — oo
then

drv (P, Po(N)) (49)

%AZM-

This implies that the ratio of the upper bound on the totalatemm distance in Theorem 1 of Barbour and Hall
(1984) (see Theorems 1 here) and this asymptotic expreisstmual toy/27e ~ 4.133. Therefore, the ratio between
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Ratios of upper & lower bounds on total variation distance

10° 10~ 10° 10 10 10 10

Fig. 1. The figure presents curves that correspond to rafiopmer and lower bounds on the total variation distance éetwthe sum of
independent Bernoulli random variables and the Poissdritison with the same meah. The upper bound on the total variation distance
for all these three curves is the bound given by Barbour anti(tse Theorem 1 of Barbour and Hall (1984) or Theorem 1 hére¢ lower
bounds that the three curves refer to are the following. Turgecat the bottom (i.e., the one which provides the lowets far a fixed \)

is the improved lower bound on the total variation distari@ ts introduced in Theorem 2. The curve slightly above iitsimall values of

) corresponds to the looser lower bound obtained wherand a- in (7) are set to be equal (i.exs = a2 £ « is their common value),
and so the optimization ok for this curve is reduced to a two-parameter maximizatiorkgfover the two free parameters € R and

6 € R™. Finally, the curve at the top of this figure corresponds ®ftirther loosening of this lower bound wheteis set to be equal ta;
this leads to a single-parameter maximization/of (over the parametef € R™) whose optimization leads to the closed-form expression
for the lower bound in Corollary 1. For comparison, in orderassess the enhanced tightness of the new lower boundsthabtihe ratio

of the upper and lower bounds on the total variation distdrm® Theorems 1 and 2 of Barbour and Hall (1984) (or Theorenerkhis
roughly equal to 32 for all values of.

the exact asymptotic value in (49) and the new lower bound)ng equal to% ~ 2.55. It therefore follows
that, in the limit where\ — 0, the new lower bound on the total variation in i6) is smalleart the exact value by
no more than 1.69, and for > 1, it is smaller than the exact asymptotic result by a facto?.65b.
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APPENDIX
Let {X;}! , be independent Bernoulli random variables wWithX;) = p;. Let W = S X, Vi = Z#i X; for
everyi € {1,...,n}, andZ ~ Po(\) with mean\ = >, p;. From the basic equation of the Chen-Stein method,

equation (1) holds for an arbitrary bounded functipn Ny — R. Furthermore, from the proof of Theorem 2 of
Barbour and Hall (1984),

EAf(W +1) = Wf(W)]

:ijE[f(WH)]—ZE[Xjf(W
:ijE[f(WJrl ij W) | X; =1]
:zn:ij[f(WJrl ij fV;+1)|X; =1]

@ijE[f(WH)—f(VjH)]

j 1

—Zp] fW+1) = f(V;+1) ] X; =1]

—ij fVi+2) = f(V;+ 1| X; =1]

b n
LS RE[f(V; +2) — £V +1)] (50)
j=1
where equalities (a) and (b) hold sindg andV; are independent random variables for evgry {1,...,n}. By

subtracting (1) from (50), it follows that for an arbitrarpinded functionf :Ng— R
EN(W +1) = WFW)] —E[M(Z +1) — Zp] f(V;+2) — f(V; + 1)]. (51)

In the following, an upper bound on the left-hand side of (Bl()lerlved, based on total variation distance between
the two distributions ot/ and Z.

EN(W+1) = WfW)] —EN(Z+1) - Zf(2)]
=> (M(k+1) = kf(k) (P(W = k) —P(Z = k))
k=0

<M (E+1) = kf(R)| [PW = k) —P(Z = k)] (52)
k=0

<ksup‘)\f (k+1 !Z‘]P’ sz:)!

= 2d1v(Pv, PA()) 5;5\” 1)~ EF ) (53)

where the last equality follows from (4). Hence, the combaraof (51) and (53) gives the following lower bound
on the total variation distance:

S {BE[F(V; +2) - £V + 1] }
j=1

2 supgen, |Af(k+ 1) — kf (k)|
which holds, in general, for an arbitrary bounded functjonNy — R. This proves inequality (19).

drv (P, PON)) >




