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Information Measures

Cast of Characters

Probability measures P and Q defined on a measurable space (A,F ).

X ∼ P .

Y ∼ Q.
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Information Measures

Relative Information

iP‖Q(x) = log
dP

dQ
(x), P ≪ Q.
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Information Measures

Total Variation (TV) Distance

|P −Q| = 2 sup
F∈F

|P (F)−Q(F)|.

If P ≪ Q

|P −Q| = E

[
∣

∣

∣

∣

dP

dQ
(Y )− 1

∣

∣

∣

∣

]

= E

[

∣

∣exp
(

ıP‖Q(Y )
)

− 1
∣

∣

]

.

Simplification in the discrete case:

|P −Q| =
∑

x∈A

∣

∣P (x)−Q(x)
∣

∣ = |P −Q|1.
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Information Measures

Relative Entropy

D(P‖Q) = E[ıP‖Q(X)] = E[ıP‖Q(Y ) exp
(

ıP‖Q(Y )
)

].

Simplification in the discrete case:

D(P‖Q) =
∑

x∈A

P (x) log
P (x)

Q(x)
.
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Information Measures

The Rényi Divergence

Let

P ≪ Q.

X ∼ P and Y ∼ Q.

α ∈ (0, 1) ∪ (1,∞).

The Rényi divergence of order α is given by

Dα(P‖Q) =
1

α− 1
logE

[

exp
(

α iP‖Q(Y )
)

]

=
1

α− 1
log
(

E

[

exp
(

(α− 1)iP‖Q(X)
)

])

.

Furthermore, D1(P‖Q) = D(P‖Q), and

lim
α→1−

Dα(P‖Q) = D(P‖Q).
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Information Measures

The Rényi Divergence

In the discrete case, we have for α ∈ (0, 1) ∪ (1,∞)

Dα(P ||Q) =
1

α− 1
log

(

∑

x∈A

Pα(x)Q1−α(x)

)

.
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Information Measures

The Rényi Divergence

In the discrete case, we have for α ∈ (0, 1) ∪ (1,∞)

Dα(P ||Q) =
1

α− 1
log

(

∑

x∈A

Pα(x)Q1−α(x)

)

.

Extreme cases:

If α = 0 then D0(P ||Q) = − logQ(Support(P )),

If α = +∞ then D∞(P ||Q) = log
(

ess sup P
Q

)

.
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Information Measures

The Rényi Divergence

In the discrete case, we have for α ∈ (0, 1) ∪ (1,∞)

Dα(P ||Q) =
1

α− 1
log

(

∑

x∈A

Pα(x)Q1−α(x)

)

.

Extreme cases:

If α = 0 then D0(P ||Q) = − logQ(Support(P )),

If α = +∞ then D∞(P ||Q) = log
(

ess sup P
Q

)

.

L’Hôpital’s rule ⇒ D(P ||Q) = limα→1− Dα(P ||Q).
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Information Measures

Some Basic Properties of the Rényi Divergences

1 Non-negativity: Dα(P ||Q) ≥ 0 with equality if and only if P = Q.

2 Monotonicity: Dα(P ||Q) is monotonically increasing with α.
3 Convexity properties of Dα(P ||Q):

◮ jointly convex in (P,Q) for α ∈ [0, 1],
◮ convex in Q for α ∈ [0,∞], but not in P for α > 1.

4 The Rényi divergence satisfies the data processing inequality (DPI).
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1 Non-negativity: Dα(P ||Q) ≥ 0 with equality if and only if P = Q.

2 Monotonicity: Dα(P ||Q) is monotonically increasing with α.
3 Convexity properties of Dα(P ||Q):

◮ jointly convex in (P,Q) for α ∈ [0, 1],
◮ convex in Q for α ∈ [0,∞], but not in P for α > 1.

4 The Rényi divergence satisfies the data processing inequality (DPI).

Paper

T. van Erven and P. Harremoës, “Rényi divergence and Kullback-Leibler
divergence,” IEEE Trans. on Information Theory, vol. 60, no. 7,
pp. 3797–3820, July 2014.
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Information Measures

Information-Theoretic Applications of the Rényi divergence

Channel coding error exponents
(Gallager ’65, Arimoto ’73, Polyanskiy & Verdu ’10).

Generalized cutoff rates for hypothesis testing
(Csiszár ’95, Alajaji et al. ’04).

Multiple source adaptation (Mansour et al., ’09).

Generalized guessing moments (van Erven & Harremoes, ’10).

Two-sensor composite hypothesis testing (Shayevitz, ’11).

Bounds for joint source-channel coding (Tridenski & Zamir, ’11)

Strong data processing theorems for DMCs (Raginsky, ’13).

Strong converse theorems for networks (Fong & Tan, arXiv ’14).

IT applications of the logarithmic probability comparison bound
(Atar & Merhav, arXiv ’15).
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Motivation for the First Part of this Talk

Motivation: Characterization of the Joint Range of Relative Entropies

Question

Let

ε ∈ (0, 2) be fixed.

P1, P2 be arbitrary PDs s.t. |P1 − P2| ≥ ε.

Q is an arbitrary PD s.t. Q ≪ P1, P2.

1 What is the achievable region of
(

D(Q‖P1), D(Q‖P2)
)

where none

of these three distributions is fixed ?

2 Given an arbitrary point in this region, specify PDs P1, P2, Q that

achieve this point.
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Motivation for the First Part of this Talk

Approach for Solving the Problem

Minimizing the Rényi divergence subject to a minimal TV distance:
Finding the exact solution of the optimization problem

inf
P1,P2 : |P1−P2|≥ε

Dα(P1‖P2), ε ∈ (0, 2).
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Approach for Solving the Problem

Minimizing the Rényi divergence subject to a minimal TV distance:
Finding the exact solution of the optimization problem

inf
P1,P2 : |P1−P2|≥ε

Dα(P1‖P2), ε ∈ (0, 2).

Using the solution of this minimization problem for
1 Providing an exact characterization of the joint region of relative

entropies.
2 Proving that each point in this region and its boundary is achievable by

a triple of 2-element PDs P1, P2 and Q.
3 Providing a geometric interpretation of the minimum of the Chernoff

information under a constraint on the minimal TV distance.
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Minimization of the Rényi Divergence

Minimization of the Relative Entropy s.t. Minimal TV Distance

Consider the optimization problem

L(ε) , inf
P1,P2 : |P1−P2|≥ε

D(P1‖P2), ε ∈ [0, 2).

It was studied by Fedotov et al. (2003), Gilardoni (2006) and Reid and
Williamson (2011), providing equivalent parameterizations of the solution.

Data Processing Inequality ⇒ The minimization of the relative entropy
subject to a minimal TV distance is attained by a pair of 2-element PDs.
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Minimization of the Rényi Divergence

Minimization of the Relative Entropy (Cont.)

ε(t) = t

[

1−

(

coth(t)−
1

t

)

2
]

, t > 0

L
(

ε(t)
)

= log

(

t

sinh(t)

)

+ t coth(t)−

(

t

sinh(t)

)

2

.
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Minimization of the Rényi Divergence

Minimization of the Rényi Divergence s.t. Minimal TV Distance

For α > 0, let

gα(ε) , inf
P1,P2 : |P1−P2|=ε

Dα(P1||P2), ∀ ε ∈ [0, 2).

Since gα(ε) is monotonic non-decreasing in ε then

gα(ε) = inf
P1,P2 : |P1−P2|≥ε

Dα(P1‖P2), ∀ ε ∈ [0, 2).
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Minimization of the Rényi Divergence s.t. Minimal TV Distance

For α > 0, let

gα(ε) , inf
P1,P2 : |P1−P2|=ε

Dα(P1||P2), ∀ ε ∈ [0, 2).

Since gα(ε) is monotonic non-decreasing in ε then

gα(ε) = inf
P1,P2 : |P1−P2|≥ε

Dα(P1‖P2), ∀ ε ∈ [0, 2).

For α ∈ [0, 1], since Dα(P‖Q) is jointly convex in (P,Q), it follows that
gα is convex, and the infimum above is a minimum.
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Minimization of the Rényi Divergence

Min. of the Rényi Divergence s.t. Minimal TV Distance (Cont.)

Claim: There is no loss of generality by restricting the minimization of
gα(ε), for ε ∈ (0, 2), to pairs of 2-element PDs.
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Min. of the Rényi Divergence s.t. Minimal TV Distance (Cont.)

Claim: There is no loss of generality by restricting the minimization of
gα(ε), for ε ∈ (0, 2), to pairs of 2-element PDs.

Proof

Let P1, P2 be PDs defined on an arbitrary set A of k ≥ 2 elements.

Let φ : A → {1, 2} be defined such that

φ(x) =

{

1, if P1(x) ≥ P2(x),
2, if P1(x) < P2(x)

and define φ(Pi) = Qi for i ∈ {1, 2} where

Qi(j) ,
∑

x∈A : φ(x)=j

Pi(x), ∀ i, j ∈ {1, 2}.

It can be verified that |P1 − P2| = |Q1 −Q2|.

Due to the DPI, Dα(P1‖P2) ≥ Dα(Q1‖Q2).
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Minimization of the Rényi Divergence

Min. of the Rényi Divergence s.t. Minimal TV Distance (Cont.)

Corollary

Let α ∈ (0, 1) ∪ (1,∞), and ε ∈ [0, 2). The function gα satisfies

gα(ε) = min
p,q∈[0,1] : |p−q|≥ ε

2

dα(p‖q)

where

dα(p‖q) ,
log
(

pαq1−α + (1− p)α(1− q)1−α
)

α− 1

is the binary Rényi divergence of order α.

The minimizing probability distributions: P1 = (p, 1− p), P2 = (q, 1− q).
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Minimization of the Rényi Divergence

Min. of the Rényi Divergence s.t. Minimal TV Distance (Cont.)

Corollary

For α ∈ (0, 1) and ε ∈ [0, 2)

gα(ε) =

(

α

1− α

)

g1−α(ε),

and

gα(ε) ≥ c1(α) log

(

1

1− ε
2

)

+ c2(α),

where c1(α) , min
{

1, α
1−α

}

, and c2(α) , − log(2)
1−α

.
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Minimization of the Rényi Divergence

Min. of the Rényi Divergence s.t. Minimal TV Distance (Cont.)

Corollary

For α ∈ (0, 1) and ε ∈ [0, 2)

gα(ε) =

(

α

1− α

)

g1−α(ε),

and

gα(ε) ≥ c1(α) log

(

1

1− ε
2

)

+ c2(α),

where c1(α) , min
{

1, α
1−α

}

, and c2(α) , − log(2)
1−α

.

Remark

Note that the above corollary yields that limε→2− gα(ε) = +∞, as
opposed to Pinsker-type inequalities.
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Minimization of the Rényi Divergence
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Figure: A plot of the minimum of the Rényi divergence Dα(P1||P2) of order
α = 0.25, 0.50, 0.75, 1.00 (α = 1 gives the relative entropy) as a function of the
total variation distance |P1 − P2| = ε ∈ [0, 2).
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Minimization of the Rényi Divergence
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Tight bound (α = 0.9)

Pinsker−type bound 1
Pinsker−type bound 2

Figure: A plot of the minimum of the Rényi divergence Dα(P1‖P2) of order
α = 0.90 subject to a fixed total variation distance |P1 − P2| = ε ∈ [0, 2). This
tight lower bound is compared with the Pinsker-type lower bounds by Gilardoni.
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Joint Range of the Relative Entropies

Exact Characterization of the Joint Range of the Relative Entropies

Question

Let

ε ∈ (0, 2) be fixed.

P1, P2 be arbitrary PDs s.t. |P1 − P2| ≥ ε.

Q is an arbitrary PD s.t. Q ≪ P1, P2.

1 What is the achievable region of
(

D(Q‖P1), D(Q‖P2)
)

where none

of these three distributions is fixed ?

2 Given an arbitrary point in this region, specify PDs P1, P2, Q that

achieve this point.
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Exact Characterization of the Joint Range of the Relative Entropies

Question

Let

ε ∈ (0, 2) be fixed.

P1, P2 be arbitrary PDs s.t. |P1 − P2| ≥ ε.

Q is an arbitrary PD s.t. Q ≪ P1, P2.

1 What is the achievable region of
(

D(Q‖P1), D(Q‖P2)
)

where none

of these three distributions is fixed ?

2 Given an arbitrary point in this region, specify PDs P1, P2, Q that

achieve this point.

We find this region, and show that each point in this region is attained by
a certain triple of 2-element PDs P1, P2 and Q.
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Joint Range of the Relative Entropies

An identity for the Rényi divergence

For α ∈ (0, 1) ∪ (1,∞) \ {1}

Dα(P1‖P2) = D(Q‖P2) +
α

1− α
·D(Q‖P1) +

1

α− 1
·D(Q‖Qα)

where Qα is given by

Qα(x) ,
Pα
1 (x)P

1−α
2 (x)

∑

u P
α
1 (u)P

1−α
2 (u)

, ∀x ∈ Supp(P1).
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Joint Range of the Relative Entropies

An identity for the Rényi divergence

For α ∈ (0, 1) ∪ (1,∞) \ {1}

Dα(P1‖P2) = D(Q‖P2) +
α

1− α
·D(Q‖P1) +

1

α− 1
·D(Q‖Qα)

where Qα is given by

Qα(x) ,
Pα
1 (x)P

1−α
2 (x)

∑

u P
α
1 (u)P

1−α
2 (u)

, ∀x ∈ Supp(P1).

This comes as a direct calculation, following a result by Shayevitz
(ISIT ’11) where for α > 1

Dα(P1‖P2) = max
Q≪P1

{

D(Q‖P2) +
α

α− 1
·D(Q‖P1)

}

and the max is replaced by min for α ∈ (0, 1).
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Joint Range of the Relative Entropies

Proof of the identity

D(Q‖P2) +
α

1− α
·D(Q‖P1) +

1

α− 1
D(Q‖Qα)

=
∑

x

Q(x) log
Q(x)

P2(x)
+

α

1− α

∑

x

Q(x) log
Q(x)

P1(x)
+

1

α− 1

∑

x

Q(x) log
Q(x)

Qα(x)

=
1

α− 1

∑

x

Q(x) log

(

Pα
1 (x)P

1−α
2 (x)

Qα(x)

)

=
1

α− 1

∑

x

Q(x) log

(

∑

u

Pα
1 (u)P

1−α
2 (u)

)

=
1

α− 1
log

(

∑

u

Pα
1 (u)P

1−α
2 (u)

)

= Dα(P1‖P2)
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Joint Range of the Relative Entropies

An Exact Characterization of the Region

The boundary is determined by letting α increase continuously in (0,1),
and drawing the straight lines in the plane of

(

D(Q‖P1),D(Q‖P2)
)

:

D(Q‖P2) +
α

1− α
·D(Q‖P1) = gα(ε), ∀α ∈ (0, 1).

Every point on the boundary is a tangent point to one of the straight lines.
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Joint Range of the Relative Entropies

An Exact Characterization of the Region (Cont.)
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Figure: The achievable region of (D(Q‖P1), D(Q‖P2)) where |P1 − P2| ≥ 1 is
the upper envelope of the straight lines.
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Joint Range of the Relative Entropies

An Exact Characterization of the Region (Cont.)

The boundary is determined by letting α increase continuously in (0,1),
and drawing the straight lines in the plane of

(

D(Q‖P1),D(Q‖P2)
)

:

D(Q‖P2) +
α

1− α
·D(Q‖P1) = gα(ε), ∀α ∈ (0, 1).

Every point on the boundary is a tangent point to one of the straight lines.

The triple of 2-element PDs P1, P2 and Q that achieves an arbitrary point
on the boundary of this region is determined as follows:

Find the slope s of the tangent line (s < 0), and determine α ∈ (0, 1)
such that − α

1−α
= s ⇒ α = − s

1−s
.
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Find the slope s of the tangent line (s < 0), and determine α ∈ (0, 1)
such that − α

1−α
= s ⇒ α = − s

1−s
.

Determine the 2-element PDs P1 = (p, 1− p), P2 = (q, 1− q) such
that dα(p‖q) = gα(ε).
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Joint Range of the Relative Entropies

An Exact Characterization of the Region (Cont.)

The boundary is determined by letting α increase continuously in (0,1),
and drawing the straight lines in the plane of

(

D(Q‖P1),D(Q‖P2)
)

:

D(Q‖P2) +
α

1− α
·D(Q‖P1) = gα(ε), ∀α ∈ (0, 1).

Every point on the boundary is a tangent point to one of the straight lines.

The triple of 2-element PDs P1, P2 and Q that achieves an arbitrary point
on the boundary of this region is determined as follows:

Find the slope s of the tangent line (s < 0), and determine α ∈ (0, 1)
such that − α

1−α
= s ⇒ α = − s

1−s
.

Determine the 2-element PDs P1 = (p, 1− p), P2 = (q, 1− q) such
that dα(p‖q) = gα(ε).

Calculate the 2-element PD Q = Qα (as above) for the calculated α,
p and q.
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Joint Range of the Relative Entropies

An Exact Characterization of the Region (Cont.)
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Figure: The boundary of the achievable region of (D(Q‖P1), D(Q‖P2)) where
the TV distance |P1 − P2| is at least ε = 1.00, 1.40, 1.80, 1.98.
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Joint Range of the Relative Entropies
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The straight line intersects the boundaries 
at points whose coordinates are equal to
the minimum Chernoff information for a fixed
total variation distance (ε):  −1/2 log(1−ε2/4)
= 0.144, 0.337, 0.830, 1.959 nats.

Figure: The boundary of the achievable region of (D(Q‖P1), D(Q‖P2)) where
the TV distance |P1 − P2| is at least ε = 1.00, 1.40, 1.80, 1.98.
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New Bound on the ML Decoding Error Probability

Motivation for Part II of the Talk

Performance analysis of linear codes under ML decoding is of interest
for the study of the potential performance of these codes under
optimal decoding.

It is also of interest for the evaluation of the degradation in
performance that is incurred by the use of sub-optimal and practical
decoding algorithms.

Similarly to the Shulman-Feder bound and related studies, the upper
bound in the following theorem quantifies the degradation in the
performance of block codes under ML decoding in terms of the
deviation of their distance spectra from the binomial distribution.

The latter distribution characterizes the average distance spectrum of
the ensemble of fully random binary block codes, achieving the
capacity of any memoryless binary-input output-symmetric channel.
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New Bound on the ML Decoding Error Probability

Theorem: A New Upper Bound on the ML Decoding Error Probability

Consider a binary linear block code of length N and rate R = log(M)
N

where M designates the number of codewords.
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Theorem: A New Upper Bound on the ML Decoding Error Probability

Consider a binary linear block code of length N and rate R = log(M)
N

where M designates the number of codewords.

Let S0 = 0 and, for l ∈ {1, . . . , N}, let Sl be the number of non-zero
codewords of Hamming weight l.

Assume that the transmission of the code takes place over a
memoryless, binary-input and output-symmetric channel.

Assume that the code is maximum-likelihood (ML) decoded.

I. Sason (Technion) ETH, Zurich August 25, 2015. 29 / 43



New Bound on the ML Decoding Error Probability

Theorem: A New Upper Bound (Cont.)

The block error probability satisfies

Pe = Pe|0 ≤ exp

(

−N sup
r≥1

max
0≤ρ′≤ 1

r

[

E0

(

ρ′, q =
(1

2
,
1

2

)

)

−ρ′
(

rR+
Ds(PN‖QN )

N

)])

where

s , s(r) = r
r−1 for r ≥ 1 (with the convention that s = ∞ for r = 1),

QN is the binomial distribution with parameter 1
2 and N i.i.d. trials,

PN is the PMF defined by PN (l) = Sl

M−1 for l ∈ {0, . . . , N},

Ds(·‖·) is the Rényi divergence of order s,

E0(ρ, q) is the Gallager random coding error exponent.
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New Bound on the ML Decoding Error Probability

Special Case: The Shulman-Feder Bound

Loosening the bound by taking r = 1 ⇒ s = ∞ gives

Pe = Pe|0

≤ exp

(

−N Er

(

R+
D∞(PN‖QN )

N

))

= exp

(

−N Er

(

R+
1

N
log max

0≤l≤N

PN (l)

QN (l)

))

= exp

(

−N Er

(

R+
1

N
log max

0≤l≤N

Sl

e−N(log 2−R)
(

N
l

)

))

which coincides with the Shulman-Feder bound.
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New Bound on the ML Decoding Error Probability

Related Papers on Variations of the Gallager Bounds

1 S. Shamai and I. Sason, “Variations on the Gallager bounds,
connections, and applications,” IEEE Trans. on Information Theory,
vol. 48, no. 12, pp. 3029–3051, December 2002.

2 I. Sason and S. Shamai, Performance Analysis of Linear Codes under

Maximum-Likelihood Decoding: A Tutorial, Foundations and Trends

in Communications and Information Theory, vol. 3, no. 1–2,
pp. 1–222, NOW Publishers, Delft, the Netherlands, July 2006.
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New Bound on the ML Decoding Error Probability

Novelty of the Bound & Proof

The proof of this theorem has an overlap with Appendix A in the
paper by Shamai and Sason (2002).

The novelty here is in working with the Rényi divergence of order
s ≥ 1, instead of the Kullback-Leibler divergence as a lower bound,
reveals a need for an optimization of the error exponent:

1 If r ≥ 1 is increased, s = r
r−1 ≥ 1 is decreased, and Ds(PN‖QN ) is

decreased (unless it is 0; note that PN , QN do not depend on r, s).
2 The maximization of the error exponent in the theorem aims to find a

proper balance between the two summands rR and Ds(PN‖QN )
N

in the
exponent of the new bound, while also optimizing ρ′ ∈

[

0, 1
r

]

.
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New Bound on the ML Decoding Error Probability

Applicability of the New Bound to Code Ensembles

The bound can be shown to be applicable to code ensembles of binary
linear block codes:

In the probability distribution PN , the distance spectrum is replaced
by the average distance spectrum of the ensemble.
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New Bound on the ML Decoding Error Probability

Combination of the New Bound with an Existing Approach

We borrow a concept of bounding by Miller and Burshtein, and
propose to combine it with the new bound.

In order to utilize the Shulman-Feder bound for binary linear block
codes in a clever way, they partitioned the binary linear block code C
into two subcodes C1 and C2 where

C1 ∪ C2 = C, C1 ∩ C2 = {0}.

The subcode C1 contains the all-zero codeword and all the codewords
of C whose Hamming weights l belong to a subset L ⊆ {1, 2, ..., N}.

The subcode C2 contains the other codewords of C (with Hamming
weights of l ∈ Lc , {1, 2, ..., N} \ L), and the all-zero codeword.

I. Sason (Technion) ETH, Zurich August 25, 2015. 35 / 43



New Bound on the ML Decoding Error Probability

Idea in Selecting C1
Select C1 such that it includes the codewords whose hamming weights
correspond to the portion of the distance spectrum which is close to the
binomial distribution:

PN (l) ≈ QN (l), ∀ l ∈ L.

This selection implies that the normalized Rényi divergence Ds(PN‖QN )
N

in
the exponent of the new bound has a marginal effect on the conditional
ML decoding error probability of the subcode C1.
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New Bound on the ML Decoding Error Probability

Combination of the New Bound with an Existing Approach (Cont.)

From the symmetry of the channel,

Pe = Pe|0 ≤ Pe|0(C1) + Pe|0(C2)

where Pe|0(C1) and Pe|0(C2) are the conditional ML decoding error
probabilities of C1 and C2 given that the zero codeword is transmitted.

One can rely on different upper bounds on the conditional error
probabilities Pe|0(C1) and Pe|0(C2):

1 Bound Pe|0(C1) by invoking the new bound, due to the closeness of its
distance spectrum to the binomial distribution.

2 Rely on an alternative approach for bounding Pe|0(C2) (e.g., using the
union bound w.r.t. the fixed composition codes of the subcode C2).

I. Sason (Technion) ETH, Zurich August 25, 2015. 37 / 43



Performance bounds for a Turbo-Block Ensemble

Example: Performance Bounds for an Ensemble of Turbo-Block Bodes

Consider

An ensemble of uniformly interleaved turbo codes whose two
component codes are chosen uniformly at random from the ensemble
of (1072, 1000) binary systematic linear block codes.

The overall code rate is 0.8741 bits per channel use.

The transmission of these codes takes place over an additive white
Gaussian noise (AWGN) channel.

The codes are BPSK modulated and coherently detected.

I. Sason (Technion) ETH, Zurich August 25, 2015. 38 / 43



Performance bounds for a Turbo-Block Ensemble

Example: Turbo-block codes (Cont.)

The following upper bounds under ML decoding are compared:

The tangential-sphere bound (TSB) of Herzberg and Poltyrev.

The suggested combination of the union bound (UB) and the new
bound (NB). An optimal partitioning is performed to obtain the
tightest bound within this form.
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Performance bounds for a Turbo-Block Ensemble

Example: Turbo-block codes (Cont.)
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Figure: Comparison between upper bounds on the block error probability.
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Summary

Summary (Part I)

The problem of the minimization of the Rényi divergence subject to a
fixed (or minimal) total variation distance is solved.

We determine the joint range of (D(Q‖P1),D(Q‖P2)) where
|P1 − P2| ≥ ε for a fixed ε, and Q is arbitrary.

All the points (D(Q‖P1),D(Q‖P2)) of this convex region are
characterized, and all these points are achieved by PDs (P1, P2, Q)
that are defined on 2-element sets.

A geometric interpretation of the minimum of the Chernoff
information subject to a fixed total variation distance is provided.
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Summary

Summary (Part II)

A new bound on the ML decoding error probability has been derived,
involving the Rényi divergence.

The derivation of this bound relies on variations of the Gallager
bounds (the Duman and Salehi bound).

It reproduces the 1965 random coding Gallager bound, and the
Shulman-Feder bound for binary linear block codes (or ensembles).
Furthermore, it has in general an additional parameter that is subject
to optimization.

The bound has been applied to an ensemble of uniformly interleaved
turbo-block codes with systematic random component codes, and its
superiority has been exemplified.
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Summary

Full Paper Version

http://arxiv.org/abs/1501.03616.
Submitted to the IEEE Trans. on Information Theory, February 2015.
Presented in part at ISIT 2015.
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