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Abstract

This extended abstract applies properties of Shannon entropy to derive a lower bound
on the number of homomorphisms from a complete bipartite graph to any bipartite
graph. Further upper and lower bounds on homomorphism counts between arbitrary
bipartite graphs, proofs and observations, are provided in the full version of this work,
available as the arXiv preprint Counting Graph Homomorphisms in Bipartite Settings
(https: // arxiv. org/ abs/ 2508. 06977 ).

1 Introduction
Combinatorial techniques serve a vital role in addressing problems in information theory
and coding theory. Several examples where tools from combinatorics and graph theory are
used to study fundamental problems in information theory were briefly surveyed in [1]. Many
classical and modern results in information theory can be also derived through a combinatorial
perspective, particularly using the method of types [2, 3]. The reverse direction, applying
information-theoretic tools to obtain combinatorial results, has proven to be equally fruitful.
Notably, Shannon entropy has significantly deepened the understanding of the structural and
quantitative properties of combinatorial objects by enabling concise and often elegant proofs
of classical results in combinatorics (see, e.g., [4, Chapter 37], [5], [6, Chapter 22], and [7–18]).

This extended abstract takes the latter direction, employing the Shannon entropy to derive
a lower bound on the number of graph homomorphisms from a complete bipartite graph to
an arbitrary bipartite graph. A full version of this work, which derives both upper and lower
bounds on homomorphism counts between arbitrary bipartite graphs, together with complete
proofs and additional observations and numerical results, is available as an arXiv preprint [18].

Graph homomorphisms provide a powerful framework for the study of graph mappings,
revealing insights into structural properties, colorings, and symmetries. Their applications
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span multiple disciplines, including statistical physics, where they model spin systems [19],
and computational complexity, where they underpin constraint satisfaction problems [20].
Research work has led to significant progress in understanding the problem of counting graph
homomorphisms, a subject of both theoretical and practical relevance (see [7, 20–35]).

2 Preliminaries
In the sequel, let V(G) and E(G) denote the vertex set and edge set of a graph G, respectively.
For adjacent vertices u, v ∈ V(G), let e = {u, v} ∈ E(G) denote the edge connecting them.

Let F and G be finite, simple, and undirected graphs. A homomorphism from a source
graph F to a target graph G, denoted by F → G, is a mapping ψ : V(F) → V(G) such that
every edge in F is mapped to an edge in G:

{u, v} ∈ E(F) =⇒ {ψ(u), ψ(v)} ∈ E(G). (1)

The following establishes connections between graph homomorphisms and classical graph
invariants. Let ω(G) and χ(G) denote the clique number and chromatic number of a graph G,
respectively. Then, ω(G) is the largest k ∈ N such that there exists a homomorphism Kk → G,
and χ(G) is the smallest k ∈ N such that a homomorphism G → Kk exists. Consequently, such
graph homomorphisms characterize the independence number, clique number, and chromatic
number of a graph, problems known to be NP-hard [36].

Let Hom(F,G) denote the set of all the homomorphisms F → G, and define

hom(F,G) ≜
∣∣Hom(F,G)

∣∣ (2)

as the number of such graph homomorphisms. These are called homomorphism numbers.
In addition to homomorphism numbers, we now introduce homomorphism densities, which

are closely related.

Definition 2.1 (Homomorphism densities). Let F and G be graphs. Let v(F) ≜ | V(F)| and
v(G) ≜ | V(G)|. The F-homomorphism density in G (or simply F-density in G) is the probability
that a uniformly random mapping from V(F) to V(G) induces a graph homomorphism from
F to G, i.e., it is given by

t(F,G) ≜ hom(F,G)
v(G) v(F) . (3)

By Definition 2.1, we have t(K1,G) = 1, and

t(K2,G) = 2 e(G)
v(G)2 , (4)

where e(G) ≜ |E(G)|.
Before going into technical details, we highlight why counting graph homomorphisms is an

important problem. In extremal graph theory and in the study of graph limits, homomorphism
counts and homomorphism densities are basic building blocks; this viewpoint goes back to
work of Lovász and collaborators [25]. In computer science, they appear naturally in the
context of constraint satisfaction problems, where deciding whether a homomorphism exists,
or counting how many there are, is a central computational task. And in statistical physics,
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partition functions of spin models can be expressed as weighted homomorphism counts, so
methods and insights from this area translate directly. For background, there are excellent
references by Lovász [25], by Borgs–Chayes–Lovász–Sós–Vesztergombi [22], and more recently
by Yufei Zhao’s textbook [29], which connect these perspectives very nicely.

3 Lower bound
In the following, we rely on properties of the Shannon entropy to derive a lower bound on the
number of homomorphisms from the complete bipartite graph to any bipartite graph, and
examine its tightness by comparing it to the specialized lower bound that holds by the satis-
fiability of Sidorenko’s conjecture in the examined setting. Familiarity with Shannon entropy
and its basic properties is assumed, following standard notation (see, e.g., [37, Chapter 3]).

Proposition 3.1 (Number of graph homomorphisms). Let G be bipartite with partite sizes
n1, n2 and with an edge density

δ ≜
| E(G)|
n1n2

∈ [0, 1].

Then, for all s, t ∈ N,
hom(Ks,t,G) ≥ δst(ns

1n
t
2 + nt

1n
s
2
)

(5)

= δst hom(Ks,t,Kn1,n2) (6)

Proof. Let U and V denote the partite vertex sets of the simple bipartite graph G, where
|U| = n1 and |V| = n2. Let (U, V ) be a random vector taking values in U × V, and suppose
that {U, V } is distributed uniformly at random on the edges of G. Then, the joint entropy of
(U, V ) is given by

H(U, V ) = log
∣∣E(G)

∣∣ = log(δn1n2). (7)

The random vector (U, V ) can be sampled by first sampling the value U = u from the
marginal probability mass function (PMF) of U , denoted by PU , and then sampling V from
the conditional PMF PV |U (·|u). Construct a random vector (U1, . . . , Us, V1, . . . , Vt) as follows:

• Let V1, . . . , Vt be conditionally independent and identically distributed (i.i.d.) given U ,
having the conditional PMF

PV1,...,Vt|U (v1, . . . , vt|u) =
t∏

j=1
PV |U (vj |u), ∀u ∈ U , (v1, . . . , vt) ∈ V t. (8)

• Let U1, . . . , Us be conditionally i.i.d. given (V1, . . . , Vt), having the conditional PMF

PU1,...,Us|V1,...,Vt
(u1, . . . , us|v1, . . . , vt)

=
s∏

i=1
PUi|V1,...,Vt

(ui|v1, . . . , vt), ∀ (u1, . . . , us) ∈ U s, (v1, . . . , vt) ∈ V t, (9)
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where the conditional PMFs on the right-hand side of (9) are given by

PUi|V1,...,Vt
(u|v1, . . . , vt)

=
PU (u)

t∏
j=1

PV |U (vj |u)

∑
u′∈U

{
PU (u′)

t∏
j=1

PV |U (vj |u′)
} , ∀u ∈ U , (v1, . . . , vt) ∈ V t, i ∈ [s]. (10)

By the construction of the random vector (U1, . . . , Us, V1, . . . , Vt) in (8)–(10), the following
holds (see [18]):

1) U1, . . . , Us are identically distributed random variables, and Ui ∼ U (i.e., PUi = PU ) for
all i ∈ [s].

2) For all i ∈ [s] and j ∈ [t], (Ui, Vj) ∼ (U, V ), and (Ui, V1, . . . , Vt) ∼ (U, V1, . . . , Vt).

Recall that, by assumption, the bipartite graph G has no isolated vertices, thus making the
above construction feasible.

The joint entropy of the random subvector (U1, V1, . . . , Vt) then satisfies

H(U1, V1, . . . , Vt) = H(U1) +
t∑

j=1
H(Vj |U1) (11)

= H(U) + tH(V |U) (12)
= tH(U, V ) − (t− 1) H(U) (13)
= t log(δn1n2) − (t− 1) H(U) (14)
≥ t log(δn1n2) − (t− 1) logn1 (15)
= log(δtn1n

t
2), (16)

where (11) holds by the chain rule of the Shannon entropy, since (by construction) V1, . . . , Vt

are conditionally independent given U (see (8)) and since (U1, V1, . . . , Vt) ∼ (U, V1, . . . , Vt);
(12) relies on the property (Ui, Vj) ∼ (U, V ); (13) holds by a second application of the chain
rule; (14) holds by (7), and finally (15) follows from the uniform bound, which states that
if X is a discrete random variable supported on a finite set S, then H(X) ≤ log |S|. In
this case, H(U) ≤ log |U| = logn1. Consequently, the joint entropy of the random vector
(U1, . . . , Us, V1, . . . , Vt) satisfies

H(U1, . . . , Us, V1, . . . , Vt) = H(V1, . . . , Vt) +
s∑

i=1
H(Ui|V1, . . . , Vt) (17)

= H(V1, . . . , Vt) + sH(U1|V1, . . . , Vt) (18)
= s

[
H(V1, . . . , Vt) + H(U1|V1, . . . , Vt)

]
− (s− 1) H(V1, . . . , Vt) (19)

= sH(U1, V1, . . . , Vt) − (s− 1) H(V1, . . . , Vt) (20)
≥ s log(δtn1n

t
2) − (s− 1) H(V1, . . . , Vt) (21)

≥ s log(δtn1n
t
2) − (s− 1) log(nt

2) (22)
= log(δstns

1n
t
2), (23)
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where (17) holds by the chain rule and since (by construction) the random variables U1, . . . , Us

are conditionally independent given V1, . . . , Vt (see (9)); (18) holds since, by construction, all
the Ui’s (i ∈ [s]) are identically conditionally distributed given (V1, . . . , Vt) (see (10)); (19) is
simple algebra; (20) holds by another use of the chain rule; (21) holds by (16), and finally
(22) holds by the uniform bound which implies that H(V1, . . . , Vt) ≤ log(|V| t) = log(nt

2).
Each vector (U1, . . . , Us, V1, . . . , Vt) can be mapped to a homomorphism from Ks,t to G

via an injective mapping, where each vertex in the partite set of size s in Ks,t is mapped to a
vertex from the partite set of size n1 in G, and each vertex in the partite set of size t in Ks,t

is mapped to a vertex in the second partite set of size n2 in G. Denote the subset of such
homomorphisms by H1 ⊆ Hom(Ks,t,G). To define this mapping explicitly, label the vertices
of the complete bipartite graph Ks,t by the elements of [s+ t], assigning the labels 1, . . . , s to
the vertices in the partite set of size s, and the labels s + 1, . . . , s + t to those in the second
partite set of size t. For every i ∈ [s], map vertex i ∈ V(Ks,t) to vertex Ui ∈ V(G), and for
every j ∈ [t], map vertex s+ j ∈ V(Ks,t) to vertex Vj ∈ V(G). Under this mapping, each edge
{i, s+ j} ∈ E(Ks,t) is mapped to the edge {Ui, Vj} ∈ E(G), thereby defining a homomorphism
Ks,t → G in H1, since {Ui, Vj} ∈ E(G) holds by construction (see (10)). Recall that in (10),
{U, V } is uniformly distributed over the edges of the graph G, where U ∈ U and V ∈ V (by
construction), PU denotes the marginal PMF of U , and PV |U denotes the conditional PMF of
V given U . The suggested mapping is injective since it maps distinct such vectors to distinct
homomorphisms in H1 ⊆ Hom(Ks,t,G). By (2) and the uniform bound, it then follows that

H(U1, . . . , Us, V1, . . . , Vt) ≤ log |H1|. (24)

Combining (23) and (24) yields

|H1| ≥ δstns
1n

t
2. (25)

Likewise, denote by H2 the subset of homomorphisms Ks,t → G, where each vertex in the
partite set of size s in Ks,t is mapped to a vertex in the partite set of size n2 in G, and each
vertex in the partite set of size t in Ks,t is mapped to a vertex in the other partite set of size
n1 in G. Similarly to (25), we get

|H2| ≥ δstnt
1n

s
2. (26)

Since the subsets H1 and H2 form a partition of the set Hom(Ks,t,G) (as G is a nonempty
bipartite graph), it follows from (25) and (26) that

hom(Ks,t,G) = |H1| + |H2| ≥ δst(ns
1n

t
2 + nt

1n
s
2), (27)

which proves the leftmost inequality in (5).

An equivalent form of the leftmost inequality in (5) is next obtained, using the identity

hom(Ks,t,Kn1,n2) = ns
1n

t
2 + nt

1n
s
2. (28)

Corollary 3.1. Let G be a simple bipartite graph with partite sets of sizes n1 and n2, no
isolated vertices, and δn1n2 edges for some δ ∈ (0, 1]. Then, for all s, t ∈ N,

hom(Ks,t,G) ≥ δst hom(Ks,t,Kn1,n2). (29)

In particular, if G = Kn1,n2 , then inequality (29) holds with equality (as δ = 1).
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Definition 3.1 (Sidorenko graph). A graph H is said to be Sidorenko if it has the property
that for every graph G

t(H,G) ≥ t(K2,G) e(H), (30)

where e(H) ≜ |E(H)|, or, by (3) and (4),

hom(H,G)
v(G) v(H) ≥

(2 e(G)
v(G)2

) e(H)
. (31)

Therefore, a graph H is said to be Sidorenko if the probability that a random uniform mapping
from its vertex set V(H) to the vertex set of any graph G forms a homomorphism is at least
the product over all edges in H of the probability that the edge is mapped to an edge in G.

Sidorenko’s conjecture states that every bipartite graph is Sidorenko. Although this con-
jecture remains an open problem in its full generality, it is known that every bipartite graph
containing a vertex adjacent to all vertices in its other part is Sidorenko (see, e.g., [29, The-
orem 5.5.14], originally proved in [30], and simplified in [31]). Additional classes of bipartite
graphs that are Sidorenko have been established in [32].
Discussion 3.1 (Comparison to Sidorenko’s lower bound). Every complete bipartite graph
is known to be Sidorenko (see [29, Theorem 5.5.12]). Specializing (31) to a complete bipartite
graph H = Ks,t, where s, t ∈ N, yields inequality (31) with v(H) = s + t and e(H) = st. Let
us now further specialize it to the case where G is a simple bipartite graph with partite sets
of sizes n1 and n2, has no isolated vertices, and contains δn1n2 edges for some δ ∈ (0, 1]. In
this specialized setting, (31) gives

hom(Ks,t,G) ≥ (2δ)st(n1 + n2)s+t−2st(n1n2)st ≜ LB1. (32)

This lower bound on hom(Ks,t,G) is compared to the bound LB2 ≜ δst
(
ns

1n
t
2 + nt

1n
s
2), which

appears as the leftmost inequality in (5). To compare these two lower bounds, which are
symmetric in n1 and n2 and also in s and t, we examine the ratio LB2

LB1
. Without loss of

generality, assume that p ≥ q, and let r ≜ max{n1,n2}
min{n1,n2} ≥ 1. By straightforward algebra, we get

LB2
LB1

= 2−s

(
(1 + r)2

2r

)s(t−1)

(1 + r)s−t (1 + r−(s−t)) (33)

≥ 2st−(s+t) (1 + r−|s−t|). (34)
By the symmetry of the right-hand side of (34) in s and t, the earlier assumption that s ≥ t
can be dropped. Consequently, the following cases hold:
(1) If s = t, then it follows from (34) that LB2 ≥ 2(s−1)2 LB1, and in particular, LB2 ≥ LB1.

(2) Else, if s > 1 and t = 1 (i.e., Ks,t is a star graph), then by Jensen’s inequality

LB2
LB1

=
1
2
(
n1−s

1 + n1−s
2
)(

n1+n2
2

)1−s ≥ 1, (35)

so LB2 ≥ LB1. Due to symmetry in s and t, it also holds if s = 1 and t > 1.

(3) Otherwise (i.e., if s, t ≥ 2 and s ̸= t), we get from (34) that LB2 > 2st−(s+t) LB1 ≥ 2 LB1.
To conclude, the lower bound on hom(Ks,t,G) in (5) compares favorably to Sidorenko’s lower
bound given in (32).
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4 Concluding Remarks
We highlight several results from the full paper version on arXiv [18], which investigates
homomorphism counts from arbitrary bipartite source graphs to bipartite target graphs. In
this extended abstract, we focus only on the second and fourth items, choosing to present two
results with proofs rather than listing all findings without any proof. The full version [18] also
contains observations and numerical results that are omitted here due to space limitations.

• Combinatorial and two entropy-based lower bounds are derived for complete bipartite
source graphs.

• The first entropy-based bound was also introduced here, which depends only on the
sizes of the partite sets in the source and target graphs, along with the edge density of
the target graph.

• The second entropy-based lower bound further incorporates the degree profiles within
the target’s partite sets, yielding a strengthening of the first.

• Both entropy-based bounds improve upon the inequality that is implied by Sidorenko’s
conjecture for complete bipartite graph sources.

• These lower bounds, combined with new auxiliary results, yield general bounds on
homomorphism counts between arbitrary bipartite graphs.

• A known reverse Sidorenko inequality by Sah, Sawhney, Stoner, and Zhao [35] is used
to derive corresponding upper bounds.

• Numerical comparisons with exact counts in tractable cases support the effectiveness of
the proposed computable bounds.
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