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Abstract

The transmission of coded communication systems is widebgleted to take place over a set of parallel channels.
This model is used for transmission over block-fading cledsyrrate-compatible puncturing of turbo-like codes, irdirier
signaling, multilevel coding etc. New upper bounds on th&imam-likelihood (ML) decoding error probability are deed in
the parallel-channel setting. We focus on the generatinadf the Gallager-type bounds and discuss the connectietgebn
some versions of these bounds. The tightness of these bdangsrallel channels is exemplified for structured ensesbl
of turbo codes, repeat-accumulate codes and some of thmintreariations (e.g., punctured accumulate-repeatraciate
codes). The bounds on the decoding error probability of anddtoder are compared to computer simulations of iterative
decoding. The new bounds show a remarkable improvementtiogarnion bound and some other previously reported bounds
for independent parallel channels. This improvement isnptiied for relatively short block lengths, and it is promzed
when the block length is increased. In the asymptotic caserevive let the block length tend to infinity, inner bounds on
the attainable channel regions of modern coding techniguder ML decoding are obtained, based solely on the asyioptot
growth rates of the average distance spectra of these cagenbies.

Index Terms

Accumulate-repeat-accumulate codes, distance spedimpat;output weight enumerator (IOWE), iterative decodiivgear
codes, maximum-likelihood (ML) decoding, memoryless byriaput output-symmetric (MBIOS) channels, parallel chals.

. INTRODUCTION

The transmission of coded communication systems is widelyateal to take place over a set of parallel channels.
This situation can be modelled as having a set of independmatl@l channels, where the transmitted codeword
is partitioned into disjoint sets, and the symbols withicleaet are transmitted over one of these channels. Some
examples in which this scenario may be used include blodirfpchannels (for performance bounds of coded
communication systems over block-fading channels, seg, E.6], [38]), rate-compatible puncturing of turbo-
like codes (see, e.g., [17], [35]), incremental redundaetsansmission schemes, cooperative coding, multiexarri
signaling (for performance bounds of coded orthogonajtfemcy division multiplexing (OFDM) systems, see e.g.,
[39]), and other applications.

Tight analytical bounds serve as a potent tool for assessmgerformance of modern error-correction schemes,
both for the case of finite block length and in the asymptotisecavhere the block length tends to infinity. In
the setting of a single communication channel and by lettitey block length tend to infinity, these bounds are
applied in order to obtain a noise threshold which indicdtes worst channel conditions necessary for reliable
communication. When generalizing the bounds to the scerdrindependent parallel channels, this threshold is
transformed into a multi-dimensional barrier within thease of the joint parallel-channel transition probabititie
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dividing the space into channel regions where reliable canigation is available and where it is not. One of the
most widespread upper bounds for a single channel is thenumoind, which is easily applied to the analysis
of many communication systems. Its main drawback is that@amles of large enough block lengths, it is useless
for rates exceeding the channel cutoff rate. Modern comoatiion systems are required to operate well beyond
this rate. Therefore, tighter upper bounds are required dieroto assess the performance of such systems. When
considering upper bounds for a single channel or indepansmallel channels, it is desirable to have the bound
expressible in terms of basic features of the code, sucheadigitance spectrum. Sometimes the distance spectrum
cannot be evaluated for a specific code, but rather, an ensemmblage can be obtained. Consequently, another
desirable feature of any upper bound is to be applicable serables of codes as well as to particular codes.

Tight upper bounds on the ML decoding error probability whizan be applied to specific codes as well as
structured ensembles of codes and which depend on the aissmectrum of the code (or ensemble) date back to
Gallager [14]. Other examples of tight upper bounds incltidegeneralized second version of the Duman-Salehi
bound (often termed as the DS2 bound) [12], [36], the tangkspihere bound [30], the Shulman and Feder bound
[37], and others. In this respect, it was shown by Sason and &h&®| that many reported upper bounds are
special cases of the DS2 bound, including the 1961 Gallagend$l4]. For a comprehensive monograph on
performance bounds of linear codes under ML decoding, thderis referred to [33].

In his thesis [13], Ebert considered the problem of commuimigaover parallel discrete-time channels, disturbed
by arbitrary and independent additive Gaussian noisestendn¢otal power constraint is imposed upon the channel
inputs. He found explicit upper and lower bounds on the MLadi#g error probability, which decrease exponen-
tially with the block length. The exponents of the upper anddobounds coincide at zero rate and at all rates
between the critical ratéR.) and capacity. The results were also shown to be applicableltbed Gaussian
noise channels with an average power constraint on the ehadowever, this work refers only to random codes
and does not apply to specific codes or structured ensemblezdet.

The main difficulty which arises in the analysis of specific cottaasmitted over parallel channels stems from
the inherent asymmetry of the parallel-channel settingclwposes a difficulty for the analysis, as different symbols
of the codeword suffer varying degrees of degradation tjinothe different parallel channels. This difficulty
was circumvented in [23] by introducing a random mappet, eedevice which randomly and independently
assigns symbols to the different channels according to tainea-priori probability distribution. As a result of this
randomization, Liu et al. [23] derived upper bounds on the Micatling error probability which depend solely on
the weight enumerator of the overall code, instead of a fipexjplit weight enumerator which follows from the
partitioning of a codeword into several subsets of bits dmedttansmission of each subset over a different channel.
The analysis in [23] modifies the 1961 Gallager bound from [1Hagier 3] and adapts this bounding technique
for communication over parallel channels. However, theltegpresented in [23] rely ospecial casesf the 1961
Gallager bound for parallel channels and not on the optidchizgsion of this bound. These special cases include a
generalization of the union-Bhattacharyya bound, the SaolFeder bound [37], simplified sphere bound [10], and
a combination of the two former bounds. Our motivation is fafal: First, the 1961 Gallager bound for parallel
channels can be improved by choosing optimized parametersiling measures. Secondly, the DS2 bound ([11],
[33], [36]) can be generalized to parallel channels.

Using the approach of the random mapper by Liu et al. [23], wévele parallel-channel generalization of the
DS2 bound [11], [33], [36] via two different approaches. Thenparison between these bounds yields that for
random codes, one of the bounds is tighter than the other emévas the channel capacity, while for a general
ensemble, neither of these bounds is necessarily tighiethE scenario where transmission takes place over paralle
independent channels, we re-examine the inter-connacbetween the DS2 bound and the 1961 Gallager bound
which were previously reported for the single channel-¢a8g [33], [36]. In this respect, it is shown in this paper
that one of the versions of the generalized DS2 bound is tights the corresponding generalization of the 1961
Gallager bound while the other is not necessarily tighter.

In the asymptotic case where we let the block length tend fiaiiyj and the transmission takes place over a
set of independent parallel channels, we obtain inner b®wndthe boundary of the channel regions which ensure
reliable communication under ML decoding; these resultgrawe remarkably on those recently reported in [23].
The tightness of these bounds for independent parallel @aisexemplified for structured ensembles of turbo-like
codes, and the boundary of the improved attainable chaegens is compared with previously reported regions
for Gaussian parallel channels. It shows significant improeet due the optimization of the tilting measures which



are involved in the computation of the generalized DS2 andl X8éllager bounds for parallel channels.

The remainder of the paper is organized as follows. The systemeims presented in Section Il, as well
as preliminary material related to our discussion. In Sectib, we generalize the DS2 bound to the case of
independent parallel channels. Section IV presents the Gaflhger bound from [23], and considers its connection
to the generalized DS2 bound, along with the optimizationtofiiting measures. Section V presents some special
cases of these upper bounds which are obtained as particagas of the generalized bounds in Sections Il
and IV. Attainable channel regions are derived in Section IMher bounds on attainable channel regions for
various ensembles of turbo-like codes and performance dof@or moderate block lengths are exemplified in
Section VII. Finally, Section VIII concludes the paper.

II. PRELIMINARIES

In this section, we state the assumptions on which our aisalgsbased. We also introduce notation and
preliminary material related to the performance analysidinary linear codes whose transmission takes place
over a set of independent parallel channels.

A. System Model

We consider the case where the communication model consistsparallel concatenation of statistically
independent MBIOS channels, as shown in Fig. 1.

A,IH Channel 1
Error— Channel 2
—=  Correction Mapper — Channel 2 Decoder |——=
Code - ‘
J

Fig. 1. System model of parallel channels. A random mapper is asswhere every bit is assigned to one of tliechannels; a bit is
assigned to the™ channel independently of the other bits and with probabiii;y(whereZ;’:1 a; =1).

Using a linear error-correcting codeof size M = 2F, the encoder selects a codewafd (m = 0,1,..., M —1)
to be transmitted, where all codewords are assumed to beteglavith equal probabilit)(ﬁ). Each codeword
consists ofn. symbols and the coding rate is defined Rs> % = %; this setting is referred to as using an
(n, k) code. The channel mapper selects for each coded symbol ohetwinnels through which it is transmitted.
The j-th channel component is characterized by a transitiongiitity p(y|x;j). The considered model assumes
that the channel encoder performs its operation withouirpgthowledge of the specific mapping of the bits to
the parallel channels. While in reality, the choice of theafic mapping is subject to the levels of importance
of different coded bits, the considered model assumes forsttke of analysis that this mapping is random and
independent of the coded bits. This assumption enables t@agaever all possible mappings, though suitable
choices of mappings for the coded bits are expected to perbmtter than the average.

The received vectoy is maximum-likelihood (ML) decoded at the receiver, where specific channel mapper is
assumed to be known. While this broad setting gives rise tp general coding, mapping and decoding schemes,
we will focus on the case where the input alphabet is binagy,a4 € {—1,1} (where zero and one are mapped to
+1 and —1, respectively). The output alphabet is real, and may be refithiée or continuous. By its definition, the
mapping device divides the set of indic€k,...,n} into J disjoint subset¥(j) for j = 1,...,J, and transmits
all the bits whose indices are included in the suli¥g) through thej-th channel. We will see in the next section
that for a fixed channel mapping device (i.e., for given §&t5), the problem of upper-bounding the ML decoding
error probability is exceedingly difficult. In order to cincwent this difficulty, a probabilistic mapping device was
introduced in [23] which uses a random assignment of thetbitee J parallel channels; this random mapper takes
a symbol and assigns it to channelith probability «;. This assignment is independent of that of other symbols,
and by definition, the equalit{j}’:1 a; = 1 follows. This approach enables the derivation of an uppentidn
the setting of parallel channels (see [23]) which is avedamer all possible channel assignments, and the bound
is calculated in terms of the distance spectrum of the coderfeemble). Another benefit of the random mapping
approach is that it naturally accommodates for practictings where one is faced with parallel channels having
different capacities.



B. Capacity Limit and Cutoff Rate of Parallel MBIOS Channels

We consider here the capacity and cutoff rate of indepengdardllel MBIOS channels. These information-
theoretic quantities serve as a benchmark for assessirgpfhander optimal ML decoding between the achievable
channel regions for various ensembles of codes and the itapagion. It is also useful for providing a quantitative
measure for the asymptotic performance of various ensamble

1) Cutoff Rate: The cutoff rate of an MBIOS channel is given by

Ry =1—logy(1+7) 1)

where~ is the Bhattacharyya constant, i.e.,

vEY V/pyl0)p(yll). )

Clearly, for continuous-output channels, the sum in the RIfIf) is replaced by an integral.

For parallel MBIOS channels where every bit is assumed tnbegendently and randomly assigned to one of
J channels with a-priori probability; (wherezjz1 a; = 1), the Bhattacharyya constant of the resulting channel
is equal to the weighted sum of the Bhattacharyya constdritsese individual channels, i.e.,

Z{%Z\/p y]0; /)p(y|1; J)} 3)

J=1

Consider a set off parallel binary-input AWGN channels characterized by tamgition probabilities

] 1 _ (uhy/2))?
p(yl0sj) = 7=l
) 1 _(y*\/@)2
p(ﬂ”%]) = \/72? € 2 (4)
—o<y<oo, j=1,...,J
where £
wer(g) ©)
J

and (%) _is the energy per information bit to the one-sided spectaidendensity of thej-th channel. In this
case, theJBhattacharyya constant is given by

J
v = Z aje” " (6)
j=1

wherev; is introduced in (5). From (1) and (6), the cutoff rate.bparallel binary-input AWGN channels is given
by

J _R(%
Ry =1—log, (1 + Z aje R< NU>7) bits per channel use @)
j=1

Consider the case of = 2 parallel binary-input AWGN channels. Given the vaIue(tﬁ%)l, and the code rat&

(in bits per channel use), it is possible to calculate thelevaf Eb of the second channel which corresponds
to the cutoff rate. To this end, we s&Y} in the LHS of (7) toR. Solvmg this equation gives

<Eb> 1 ol-R _ 1 — Ctle_R<%)1

-~ = —— ] .
NO R . Qa9 (8)



2) Capacity Limit: Let C; designate the capacity (in bits per channel use) ofjtiie MBIOS channel. Clearly,
by symmetry conS|derat|ons the capacity-achieving ingistribution for all these channels is = (2, 2) The
capacity of theJ parallel channels where each bit is randomly and indepelydassigned to thg-th channel with
probability «; is therefore given by

J
C=> a;Cj. (9)
j=1
For the case off parallel binary-input AWGN channels
1 o0 y—Bj 2 .
Ci=1— —— / e In(1+ e 2%Y) dy bits per channel use (10)
V2rn(2) J-so

where3; £ /2v; andv; is introduced in (5).
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Fig. 2. Attainable channel regions for two parallel binary-input AWGMrutels, as determined by the cutoff rate and the capacity limit,
referring to a code rate of one-third bits per channel use. It is agbtima¢ each bit is randomly and independently assigned to one of these
channels with equal probability (i.ecq = a2 = %).

In order to simplify the numerical computation of the capgabne can express each integral in (10) as a sum
of two integrals from0 to oo, and use the power series expansion of the logarithmic ifumcthis gives an infinite
power series with alternating signs. Using the Euler tramsfto expedite the convergence rate of these infinite
sums, gives the following alternative expression:

2

. L 2pem s - ao(j) .
C;=1 @ | v (2687 —1)Q +kz_0 2k+1 L j=1,...,J (11)
where
a1 e (—1)™ k (2k — 2m + 3)5;
k = — 2
Alanli) =5 ¢ ;{){w—mﬂxk—mw) (1) x5}
and

erfex(z) £ 2% Q(vV2a)

(note that erfckr) ~ T L for large values ofz). The infinite sum in (11) converges exponentially fast with
and the summation of its flrst 30 terms gives very accuratdtsestespectively of the value qf;.
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Consider again the case &f= 2 parallel binary-input AWGN channels. Given the value(%)l, and the code

rate R (in bits per channel use), (9) and (10) enable one to cakeulat value of Eb for the second channel,
referring to the capacity limitation. To this end, one netasetC in the LHS of (9§ to the code rat&, and
find the resulting value 0<N0>2 which corresponds to the capacity limit. The boundary of thpacity region is

represented by the continuous curve in Fig. 2 foe % bits per channel use; it is compared to the dashed curve
in this figure which represents the boundary of the attainabémnel region referring to the cutoff-rate limit (see

Eg. (8)).

C. Distance Properties of Ensembles of Turbo-Like Codes

In this paper, we exemplify our numerical results by considgseveral ensembles of binary linear codes. Due
to the outstanding performance of turbo-like codes, ouusas mainly on such ensembles, where we also consider
as a reference the ensemble of fully random block codes wdmbieves capacity under ML decoding. The other
ensembles considered in this paper include turbo codesargEcumulate codes and some recent variations.

Bounds on the ML decoding error probability are often basedhe distance properties of the considered codes
or ensembles (see, e.g., [33] and references therein). Hi@nde spectra and their asymptotic growth rates for
various turbo-like ensembles were studied in the litemterg., for ensembles of uniformly interleaved repeat-
accumulate codes and variations [2], [9], [18], ensembfasndormly interleaved turbo codes [4], [5], [25], [34],
and ensembles of regular and irregular LDPC codes [6], [8]}, [[4l]. In this subsection, we briefly present the
distance properties of some turbo-like ensembles coresidier this paper.

Let us denote byC(n)] an ensemble of codes of length We will also consider asequence of ensembles
[C(n1)], [C(n2)],. .. where all these ensembles possess a commoniak®r a given(n, k) linear codeC, let AS
(or simply A;) denote the distance spectrum, i.e., the number of codeaafrdHamming weighth. For a set of
codes|C(n)], we define theaverage distance spectruas

AL & RS (12)
H( cqc )]
Let ¥, £ {6 : 6 = 2 for h = 1,...,n} = {1, 2 ... 1} denote the set ohormalized distancesthen the
normalized exponent of the distance spectrum w.r.t. thekdlengthis defined as
c [C(n)]
Loy e A ey e A (13)
n n

The motivation for this definition lies in our interest to calesi the asymptotic case whene— oo. In this case
we define theasymptotic exponent of the distance spectasn

rll(5) £ lim rlCMl(5) . (14)

The input-output weight enumerator (IOWE) of a linear blockeds given by a sequendel,, 5, } designating the
number of codewords of Hamming weightwhich are encoded by information bits whose Hamming weiglhi.i
Referring to ensembles, one considers the average IOWE iatahcke spectrum over the ensemble. The distance
spectrum and IOWE of linear block codes are useful for thdyaigaof the block and bit error probabilities,
respectively, under ML decoding.

As a reference to all ensembles, we will consider the ensemibfully random block codes which is capacity-
achieving under ML decoding (or 'typical pairs’) decoding.

The ensemble of fully random binary block cad@snsider the ensemble of binary random codes], where
the setfRB(n, R)] consists of all binary codes of lengthand rateR. For this ensemble, the following well-known
equalities hold:

AIRBOLR] <n>2n(13>
h

[RB(n,R)] In (Z)

pEII) = —2~ — (1 - R)In2 (15)
n

rREAN(§) = H(5)— (1 - R)In2



where H(x) £ —zIn(z) — (1 — ) In(1 — x) designates the binary entropy function to the natural base.

Non-systematic repeat-accumulate codébe ensemble of uniformly interleaved and non-systemadjmeat-
accumulate (NSRA) codes [9] is defined as follows. The inforomablock of length/N is repeated; times by
the encoder. The bits are then uniformly reordered by anléseer of sizegN, and, finally, encoded by a rate-1
differential encoder (accumulator), i.e., a truncate@-htecursive convolutional encoder with a transfer fuorcti
1/(1+ D). The ensembl&NSRA(N, ¢)] is defined to be the set ?ﬁ% RA different codes when considering the
different possible permutations of the interleav@ihe (average) IOWE of the ensemble of uniformly interleaved
RA codesR.A,(N) was originally derived in [9, Section 5], and it is given by

N\ (qN—hY\ [ h—1
ANSRA(N.) _ (w) (qL%J )(f%Fl)

— 16)
(Guw)
The average distance spectrum of the ensemble is therefore by
min(N,L%’LJ) (N) (qLN_jh) ([ h—11 1)
NSRA(N,q) w/\ [ L2 - q q
A = (™) 7 H Shsal - bJ
w=1 qu
where ANSFAND — o for 1 < b < [4], and AfS*9) — 1 since the all-zero vector is always a codeword of a

linear code. The asymptotic exponent of the distance spaatfuthis ensemble is given by (see [19])

rNSRAD () 2 fim ¢ INSRAN.)(5)
N—oo

T 0<u<min(25,2-26) {_ (1 - 2) H(u)+ (1—6)H <2(1“_5)> +6H (;5)} . (17)
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Fig. 3. Plot of the asymptotic exponent of the distance spectra for theemdahs of fully random block codes, and the ensemble of uniformly
interleaved and non-systematic repeat-accumulate (NSRA) codem(g kits per channel use. The curves are depicted as a function of the
normalized Hamming weightd), and their calculations are based on (15) and (17).

The IOWEs and distance spectra of various ensembles of imegepeat-accumulate (IRA) and accumulate-
repeat-accumulate (ARA) codes are derived in [2], [18]. Téader is referred to Fig. 3, for a comparison between
the asymptotic exponents (i.e., growth rates) of the digtaspectra for the ensemble of fully random block codes
and the ensemble of uniformly interleaved NSRA codes whetie osembles are assumed to be of rate one-third

There arg(¢N)! ways to placeyN bits. However, permuting the repetitions of any of theV information bits does not affect the result
of the interleaving, so there ar%%f% possible ways for the interleaving. Strictly speaking, by permutingXhieformation bits, the vector

space of the code does not change, which then yields that the%ﬁ% distinct RA codes of dimensiokh and number of repetitiong.



bit per channel use. One can observe from Fig. 3 that the tweesuwdeviate considerably at low and high values
of the normalized Hamming weight, while there is a good mdetween these two curves for intermediate values
of the normalized Hamming weight.

D. The DS2 Bound for a Single MBIOS Channel

The bounding technique of Duman and Salehi [11], [12] origiadtom the 1965 Gallager bound [15] which
states that the conditional ML decoding error probability,, given that a codeword™ (of block lengthn) is
transmitted is upper-bounded by

m’ A\ ?
Py <) pn (ylz™) | Y (W) Ap>0 (18)
" mim pn(y@ )
wherep, (y|z) designates the conditionaldf of the communication channel to obtain afength sequencg at
the channel output, given thelength input sequence. a
Unfortunately, this upper bound is not calculable in terrhghe distance spectrum of the code ensemble, except
for the ensembles of fully random block codes and orthogondks transmitted over a memoryless channel, and
the special case where= 1, A = 0.5 in which the bound reduces to the union-Bhattacharyya boWith the
intention of alleviating the difficulty of calculating the bid for specific codes and ensembles, we introduce the
function \li(m)( ) which is an arbitrary probability tilting measure. This ftioa may depend in general on the index

m of the transmitted codeword [36], and is a non-negative tfanavhich satisfies the equalltf/ \I/ (y) dy = 1.
The upper bound in (18) can be rewritten in the following eglgéat form:

m’ A\ P
P < S0 () (\Ifwy)ipn (e 3 (19(‘”’””)) ) Ap >0, (19)
y

m’'#m

Recalling thatklfﬁlm) is a probability measure, we invoke Jensen’s inequalityl®) (vhich gives

A\ P
- Pa(ylz™ 0<p<1
Py < | 3 W) et (2T ) 0SS 2
e (m,#m . (7) ( lz"™) pn(Q@m) 2> 0 (20)
which is the DS2 bound. This expression can be simplified (sgg, [86]) for the case of a single memoryless
channel where

pa(ylz) = [ [ p(uilzs).
i=1
Let us consider probability tilting measuréél y) which can be factorized into the form
M (y) = H ™ ()

recalling that the function)(™ may depend on the transmitted codewaft. In this case, the bound in (20) is
calculable in terms of the distance spectrum of the codes tha requiring the fine details of the code structure.

Let C be a binary linear block code whose lengthnisand let its distance spectrum be given ¥y, }}_,,.
Consider the case where the transmission takes place ovéBa@®S channel. By partitioning the code into
subcodes of constant Hamming weights, dgtbe the set which includes all the codewordsCotvith Hamming
weight i and the all-zero codeword. Note that this forms a partitigrof a linear code into subcodes which are in
general non-linear. We apply the DS2 bound on the conditidialdecoding error probability (given the all-zero
codeword is transmitted), and finally use the union bound.vitre subcodegC} in order to obtain an upper
bound on the ML decoding error probability of the codeReferring to the constant Hamming weight subcode
Cy, the bound (20) gives

n— h P
Feo(h) < (An)” {(Zw ppy|o>i> (Zw p(y/0) pp<y1>>} S

o A

L o



Clearly, for an MBIOS channel with continuous output, thensun (21) are replaced by integrals. In order to obtain
the tightest bound within this form, the probability tiljrmeasure) and the parameters and p are optimized.
The optimization ofy is based on calculus of variations, and is independent ofligtance spectrum (this will be
proved later also for the case of independent parallel MBéB&nnels).

Due to the symmetry of the channel and the linearity of theea®dthe decoding error probability af is
independent of the transmitted codeword. Since the ¢bdethe union of the subcod€g’;, }, the union bound
provides an upper bound on the ML decoding error probalility which is expressed as the sum of the conditional
decoding error probabilities of the subcodgs given that the all-zero codeword is transmitted. dgt,, be the
minimum distance of the code andR be the rate of the codé. Based on the linearity of the code, the geometry
of the Voronoi regions (see [3]) gives the following expusghunion bound:

n(1—R)
Pe < Z Pe|0(h)- (22)
h=dxmin
For the bit error probability, one may partition a binaryelar block code” into subcodes w.r.t. the Hamming

weights of the information bits and the code bits. I(gt; designate the subcode which includes the all-zero
codeword and all the codeowrds 6fwhose Hamming weight i& and whose information bits have Hamming
weight w. An upper bound on the bit error probability of the cades performed by calculating the DS2 upper
bound on the conditional bit error probability for each sadeC,, ;, (given that the all-zero codeword is transmitted),
and applying the union bound over all these subcodes. Natelik number of these subcodes is at most quadratic
in the block length of the code, so taking the union boundtwihese subcodes does not affect the asymptotic
tightness of the overall bound. L¢#4,, ,} designate the IOWE of the codewhose block length and dimension
are equal ton and k, respectively. The conditional DS2 bound on the bit error pbility was demonstrated in
[32], [33] to be identical to the DS2 bound on the block erravlyability, except that the distance spectrum of the
code

k
Ap=> Ayp, h=0,...,n (23)
w=0
appearing in the RHS of (21) is replaced by
k
w
'héZﬁ)vah? h=0,....n (24)
w=0

Since A; < A;, then, as expected, the upper bound on the bit error probalsilsmaller than the upper bound on
the block error probability.

Finally, note that the DS2 bound is also applicable to ensesriifidinear codes. To this end, one simply needs
to replace the distance spectrum or the IOWE of a code by tbege quantities over this ensemble. This follows
easily by invoking Jensen’s inequality to the RHS of (21) ethyields thatE[(Ap,)?] < (E[A))? for 0 < p < 1.
The DS2 bound for a single channel is discussed in furtherlddta{11], [32], [36] and the tutorial paper [33,
Chapter 4].

IIl. GENERALIZED DS2 BOUNDS FORINDEPENDENTPARALLEL CHANNELS

In this section, we generalize the DS2 bound to independerdllpaMBIOS channels, and optimize the
probability tilting measures in the generalized bound tawmbthe tightest bound within this form. We will discuss
two possible ways of generalizing the bound. These two vessad the bound are obtained via different way of
looking on the set of parallel channels and their tightnessompared.

A. Generalizing the DS2 bound to Parallel Channels: First Aggmh

1) Derivation of the new bound in the first approachet us assume that the communication takes place over
J statistically independent parallel channels where eaehddrthe individual channels is memoryless binary-input
output-symmetric (MBIOS) with antipodal signaling, i.e(y|x = 1) = p(—y|x = —1). The essence of the approach
discussed in this section is to start by considering the casespecific channel assignment; the calculation then
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proceeds by averaging the bound over all possible assigsmiéor a specific channel assignment, the assumption
that all J channels are independent and MBIOS means that we factorahsitton probability as

P (ylz™) H I pil=i™:9) (25)

J=14€Z(j)
which we can plug into (20) to get a DS2 bound suitable for thee gz parallel channels. In order to get a bound
which depends on one-dimensional sums (or one-dimensiatedrals), we impose a restriction on the tilting
measure\If%m)() in (20) so that it can be expressed as/dold product of one-dimensional probability tilting

measures, i.e.,
H IT ¢ (i (26)

J=14€Z(j)
Considering a binary linear block cod& the conditional decoding error probability does not depen the
transmitted codeword, sB. £ 1 n]‘fz’ol P, = Pgo Where w.o.l.0.g., one can assume that the all-zero vector is
the transmitted codeword.

The channel mapper for thé independent parallel channels is assumed to transmit tkenbiose indices are
included in the subsef(j) over thej-th channel where the subse€ts(;)} constitute a disjoint partitioning of the
set of indices{1,2,...,n}.

Following the notation in [23], let4;, »,,. », designate theplit weight enumeratoof the binary linear block
code, defined as the number of codewords of Hamming weighitithin the J disjoint subsetg (j) for j =1...J.

By substituting (25) and (26) in (20), we obtain

Pe == PE‘O
(1) il N\ r
< Z Z > Any o, ,h;H IT ¢ i)'~ p(uilo; 5)7 ((’0’)>
hi=0  h,=0 y J=1ie1()) PUilss 7

IZ(1)| Pyl )\ ’
- X N A LTI Z¢ i 3) o plul0s )7 (zo(y!()y))

hi= hy=0 J=14ieZ(5)

iz |Z()| 7 hy
= YD A ] <Z¢ yi 9)' e p(y]0:5) 7 ply |1;j)A>

h1:0 hJZO jil
J ZG) I~y ) P
N1=1 N 0
11 <Z b(y; 4) ﬂp(y\O;J)ﬂ> ,
Jj=1 \y

We note that the bound in (27) is valid for a specific assignmébits to the parallel channels. For structured codes
or ensembles, the split weight enumerator is in general vaitadle when considering specific assignments. As a
result of this, we continue the derivation by using the randssignment approach. Let us designgtes |Z(5)] to

be the cardinality of the séf(j), so E[n;] = a;n is the expected number of bits assigned to channe} fahere
j=1,2,...,J). Averaging (27) with respect to all possible channel assigmts, we get the following bound on

1

>IN

AVARS'
o N

(27)
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the average ML decoding error probability:

ny ny J
Pe<E{Z...ZAhhh2 ,,,,, hJH

h1:0 hJZO ]:1

h;
By ) T p(yl0s4) 7 ply |1;j)A>

) nj—hj 14

h;
<Z¢ v; 3)' " p(ylo; J)lﬂwp(yll;j)A>

D=

S KD I SY T

n; >0 h1=0 h;=0
> ni=n

> ey ) p(yl0:5)
Yy
J
1l

p

J n;—h;
H (Z¢ (y:5)" " p(ylo; J)’1’> Py (n) (28)

where Py (n) designates the probability distribution of the discreted@m vectorN £ (ny,...,n;). Applying
Jensen’s inequality to the RHS of (28) and changing the asflsummation give
{ > 2 > Aphan,Py(n)
?’L7ZO h:0 hlgnl,“.,h.]gn.]
> nj=n hit..+h;=h
h;
H <Z¢ y;j)' y\O‘j)ﬂp(yl;j)A)
J nj—h; yp 0< o<1
1 <p<
]:[(Zzb v ) e p(ylo; J)") } C NS0 (29)

Let the vectorHd = (hy,...,hs) be the vector of partial Hamming weights referring to the iansmitted over
each channelr(; bits are transmitted over channel ng.so0 < h; < n;). Clearly, Z}']=1 hj = h is the overall
Hamming weight of a codeword ii. Due to the random assignment of the code bits to the pacdikhnels, we
get

n n n n
Pn(n) = af'ay’ ..oy
Ny, N2, ..., Mg

o, ) o)

(s, 20)
N1y, g

Py n(RIn) =

Any by, hy Py (1)
= Ay, Pyn(hln) Py(n)

h n—nh
=A al 30
podozt oy (hl,...,hj><n1—hl,...,m—h) (30)
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and the substitution of (30) in (29) gives

{ Z Zn:Ah Z (hl,hg,h...,h)

n; >0 h=0 hi<ni,...,h;<n;
S ny=n Fox ot hy=h

n—nh
ny —hi,ng —ho,...,ny—hy

J hy
II (ag > vy e p(l0s) 7 pyl1s ) )
=1

]J . ’ﬂj*hj 14
H@Zm |03>ﬂ> }
j=1

Let k; £ n; — h; for j =1,2,...,J, then by changing the order of summation we obtain

n J h;
h 1-Xp .
Pe<{y 4 D (hl " ) ( aj § W(y:g) e p(ylos5) p(yll;J)A>
h=0 Y =

Ry s >0 =

p

Z <k:1,l:2,_.,h > H (a] Zw (0 )2 p(u0: j)i>k1’

E1,....k;>0
ki+..+k;=n—h

Sincerz1 hj = h and Z}']=1 k; = n — h, the use of the multinomial formula gives

h
P < ZAh (Z a Zw yi )" p(ylo; Jff”p(yl;jﬁ)

p 0<
A

n—h 1%
1 >

(Zaﬂ Zw Y;J y[O ])”) Ey¢(?;J)
=1

(31)

which forms a possible generalization of the DS2 bound foefrahdent parallel channels when averaging over all
possible channel assignments. This result can be appliegettifis codes as well as to structured ensembles for
which the average distance spectruly is known. In this case, the average ML decoding error prdiyabPe is
obtained by replacingl;, in (31) with the average distance spectrutp (this can be verified by noting that the
function f(t) = t” is concave fol) < p < 1 and by invoking Jensen’s inequality in (31)).

In the continuation of this section, we propose an equitalension of the generalized DS2 bound for parallel
channels where this equivalence follows the lines in [33§][ Rather than relying on a probability (i.e., normaliged
tilting measure, the bound will be expressed in terms of amanmalized tilting measure which is an arbitrary
non-negative function. This version will be helpful later fine discussion on the connection between the DS2
bound and the 1961 Gallager bound for parallel channels,adgalfor the derivation of some particular cases of
the DS2 bound. We begin by expressing the DS2 bound using theumalized tilting measuré};m) which is
related to®™ by

&y >pn<y|xm>

(M (y) =
B Z G m) pn Y |.%' )

(32)
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Substituting (32) in (20) gives

As before, we assume that"™ can be factored in the product form

J
l(y) = H H 9(Yi; J)

J=14eZ(j)
Following the algebraic steps in (27)-(31) and averaginfefere also over all the codebooks of the ensemble, we
obtain the following upper bound on the ML decoding errorlyadaility:

Po=Py < {Z Ay {Zaj (Zg (y; )" p(yl0s 4)'~ p(y\l;j)k>

1—p h

P

J
>y (Zg yi ) p(ylo; J))

J

<Zgyy yIOJ)
1
1i—pqn—h)P
<Zgy, yIOJ) Y

1

> A
o IN

g (33)

Note that the generalized DS2 bound as derived in this subaéstapplied to the whole code (i.e., the optimization
of the tilting measures refers to the whole code and is peadr only once for each of thé channels). In the
next subsection, we consider the partitioning of the codedtmstant Hamming weight subcodes, and then apply
the union bound. For every such subcode, we rely on the dgonditDS2 bound (given the all-zero codeword is
transmitted), and optimize thétilting measures; this optimization is performed for eatthe subcodes separately.
The total number of subcodes does not exceed the block lefhdtie code (or ensemble), and hence the use of the
union bound in this case does not degrade the related enponert of the overall bound; moreover, the optimized
tilting measures are tailored for each of the constant-Hamgmweight subcodes, a process which can only improve
the exponential behavior of the resulting bound.

2) Optimization of the Tilting Measuresn the following, we find optimized tilting measuréﬁ:(-;j)}}]:l which
minimize the DS2 bound (31). The following calculation is a gibke generalization of the analysis in [36] for a
single channel to the considered case of an arbitrary numbeof independent parallel MBIOS channels.

Let C be a binary linear block code of length Following the derivation in [23], [36], we partition the deC to
constant Hamming weight subcodés, })_,, whereCy, includes all the codewords of weight(h = 0,...,n) as
well as the all-zero codeword. Léty,(h) denote the conditional block error probability of the sutied;, under
ML decoding, given that the all-zero codeword is transrditt8ased on the union bound, we get

P <> Pagl(h). (34)

As the codeC is linear, Pe‘o(h) =0 for h =0,1,...,dmin — 1 Wherednmi, denotes the minimum distance of the
codeC. The generalization of the DS2 bound in (31) gives the follgvipper bound on the conditional error
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probability of the subcodé€,:

d
Peo(h) < (Z% > (y; ) plylo; 7) 7 plylL:g) )

1-6
(Z%ZWH op 03)‘1’) .

Note that in this case, the set of probability tilting meaazsu;[np(-;j)};’:1 may also depend on the Hamming weight
(h) of the subcode (or equivalently af). This is the result of performing the optimization on evengividual
constant-Hamming subcode instead of the whole code.

This generalization of the DS2 bound can be written equivBiéntthe exponential form

] h
Pyo(h) < e —nEPSH () el o< p<1, A>0, 624 . (36)

5 (35)

>IN

(AVARS!
o IA

where

E52 (X, p, T {y})

—pr9(8) — pdn (Zaj Sl ) rpl0:d) 7 ply 1;j)A)
p(1—14)In (Zajzw Y j p(y|0; j)/l)> (37)

andrl°(§) designates the normalized exponent of the distance speetsuin (14).

Let
LA\ A
D) 2 p050)*  anlid) 2 plolosi)? () (38)

then, for a given pair oh andp (whereX > 0 and0 < p < 1), we need to minimize

51n(2a]2¢y9 ﬂgzyj)) 15111(20@21#?” ”91y3)>

over the set of non-negative functiogig- ; j) satisfying the constraints

D ow(yi) =1, j=1...J (39)
)

o =

To this end, calculus of variations provides the followired ef equations:
o =8 = Daily: )
V(y;g) - ( - 7 ST :
Doy i1 (Wi d) e a1(yi )
a;6(1 — 2)g2(y; j)
Z Sy ) g2y )

where¢; is a Lagrange multiplier. The solution of (40) is given in thddaing implicit form:

>+§j:0, i=1...,J (40)

V(s 4) = (k191(y; ) + kojg2(59))” ki1j,kej >0, j=1,...,J
where
J 1
SN iy i) P oy d)
kgj ) j=1yey
2 = 41
ki, 16 (41)

SN gy ) ge(y: )

j=1yey
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We note thatk £ ZZ—J in the RHS of (41) isindependenbf j. Thus, the substitutiom; = k:fj gives that the

optimal tilting measUres can be expressed as
V(yig) = Bilo(y;d) +kgaly 4)"
s AP
1+k<p(y|1"])>] yey j=1,....J (42)

p(yl0; )
By plugging (38) into (41) we obtain
EJJZ a8 pls]0:) 1+1<:<p(y!1;¢7'>>A -
: 7 PYIS p(y[0; )

-t plyl )\ Pyl i)\ !
Z_:Z a;B; "p(yl0;7) (p(y|0;j)> [1+k(p(y!0;j)>]

and from (38) and (39)4; which is the appropriate factor normalizing the probaypititting measurey(-; j) in

(42) is given by .
. W\
g:[}:p(ym;])(Hk DAL )] =1, (44)
! - <p(y0,J)>

Note that the implicit equation fok in (43) and the normalization coefficients in (44) provide a&gble gener-
alization of the results derived in [32, Appendix A] (whekeis replaced there by). The point here is that the
value of ij in (41) is independent of (wherej € {1,2,...,J}), a property which significantly simplifies the
optimizatidh process of the tilting measures, and leads to the result in (42).

For the numerical calculation of the bound in (35) as a fumctf the normalized Hamming weight= % and
for a fixed pair ofA andp (whereX > 0 and0 < p < 1), we find the optimized tilting measures in (42) by first
assuming an initial vecto8(®) = (3, ..., 3,) and then iterating between (43) and (44) until we get a fixedtpoi
for these equations. For a fixeéd we need to optimize numerically the bound in (36) w.r.t. the parameters\

and p.

B; p(yl0; 5)

(43)

B. Generalizing the DS2 bound to Parallel Channels: Secondasub

1) Derivation of the new bound in a second approatmthis section we show a second way of generalizing the
DS2 bound for independent parallel MBIOS channels. We begisuggesting a system model equivalent to the
one presented in Sec. II-A which we term ttlgannel side information at the receivéLSIR) model. Rather than
viewing the set of component channels as parallel chanmgs;onsider; (wherel < j < J) to be the internal
state of a state-dependent chanpil|z; j) to which z is the input andy is the output. As in the parallel-channel
model shown in Fig. 1; is chosen at random for each transmitted symbol accordirtheca-priori probability
distribution {«;} from the finite alphabefl1,2,...,J}. Therefore, these two channel models are identical, except
that we have to include the receiver’s perfect knowledgehef ¢thannel state in the CSIR model. This is easily
accomplished by viewing the internal statas part of the output of the channel, i.e., the output is thebpa (y, j);
the transition probability of this channel is thus denotgdpla (b|). Since the channel and channel mapper both
operate in a memoryless manner, the CSIR channel model isra@saoryless. Finally, the transition probability
pp(blzr) satisfies the relation

pe(blz) = a;p(ylz; j) (45)

because the channel state is independent of the input. Ifefised-b £ (—y, j), then we obtain from (45) and

the symmetry of the transition probabilitiegy|z; j) that pp(b|z) = pp(—b| — x); thus, the CSIR model is also

symmetric. In summary, the parallel-channel model preskint Sec. II-A is equivalent to an MBIOS channel with
transition probability given in (45). We may thus use the D®2irding technique directly on the CSIR model,
using this approach, the need to average over all channgbinggpis circumvented.
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Following this approach, we set the channel output té be(y, j) and substitute (45) into (21) to get the upper
bound

h
Pe < (Z Zwyy ‘p ojfp“p(yl;j)A)

0<p<1

n—h
(Z Zw v ) p(ylo; y>i> A>0 (46)
Zy,j Y(y;5) =1
As in the first approach (see (33)), this bound may also be egpdein terms of an un-normalized tilting measure,
rather than a normalized (probability) measure. We will tide version later when we discuss special cases of
this bound. The DS2 bound for parallel channels obtained ubi@gecond approach which is expressed using the
un-normalized tilting measure is as follows:

g n(l-p)
> Zg(y;j)p(yosj)]

Pe S (Ah)p
Jj=1 y

J he
> oa (ZQ y; 4)' " p(yl0; 5)' p(yl;j)k>]

7 (n—h)p
0<p<1
> (Zg v; 3)' " p(ylo; J))} s (47)

(=N}

We turn our attention to the derivation of optimized tiltingeasures for the generalized DS2 bound obtained using
the second approach.

2) Optimization of the Tilting Measuresfhe optimization of tilting measures for the generalized D$2rul
in (46) obtained using the perfect CSIR model relies on thisnopation for MBIOS channels. As in the first
approach, the bound for a specific constant Hamming-weiditaie is expressed in exponential form

DS2; h
Pao(h) < e B 00D 0 <p<1, Az0, sL (48)

where

ES2 (N p, J{as}) 2 —prl9(5) — psIn (Z 21/1 (y:5)" *p(y]0; ) ﬂpp(yl;j)A)

p(1—6)In (Za > W(y;d) T pylo; J)) (49)

The optimized tilting measure should be chosen so as to magithie exponent in (49). Since the perfect CSIR
model is equivalent to an MBIOS channel, we can use the esi@ilBec. 11I-A.2 withJ = 1; by substituting the
transition probability from (45) into (42), we obtain thétet optimal form of the tilting measure is given by

N A\ P
Y(:3) = Bosp(s10; ) <1+k<§§z;é§§) ) (50)

wherek is a parameter to be optimized afds a normalizing constant given by

-1
= D(y]0: i P\
_ {%a;p(yo,ﬁ <1+k(p(y’0;j)> ) ] 1)
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C. Comparison Between the Two Generalized DS2 Bounds forl@a@tannels

Let us examine the two generalizations of the DS2 bound prapms8ections 1lI-A and 1lI-B for the purpose
of comparison. To this end, for constant weight subcodesarhiding weighth (including the all-zero codeword),
we write out the explicit expressions for the two bounds|uding the optimal form of the tilting measures. By
substituting (42) with the optimal value @fin (43), the bound in (31) obtained by the first approach reads

p-17"
vt < oSt o (28 (1 (2532 ) |

_1 n—h) P

. o) (Pl
Z JZﬂ p(y]0;4) <1+kopt< (y‘o’])> ) ] . (52)

In the same way, substituting (50) in (46) gives the boundioled by using the second approach

J N p—17"
0 o 1-1 o (PllL; ) 2) (y\l J)

p—1 n—hY) P
1
Za]Zﬂ (y]0; 5) <1+k§pt< 8:0?;) ) ] . (53)

From these expressions one cannot conclusively deduce perictity of one of the bounds over the other in
general. However, in theandom coding settingit can be shown that the DS2 bound in Section III-B is tighter
than the one in Section IlI-A. To this end, we show that the farfmound attains the random coding exponent [15]
while the latter does not.

The random coding exponent which corresponds to the MBIO&rakagiven by the perfect CSIR model, from
which the second version in Section IlI-B is derived, gives thlation

P < 27B0l)=pR) g < p <] (54)

where

N ) 1+
Eo(p) = —log, <Z <;ps(blo)w+;p3(b\1)l+p> p)

b

1+4p
= —log, (Z%Z( (y10; 5) ™ + p(yll J)””) ) (55)

We now turn to find the random coding exponent which stems fitoeruse of the bound in Section I1I-B. We start
with the bound in (47) which is expressed in terms of the ummadized tilting measure. Consider the following
choice for the un-normalized tilting measure

. 1 REEER | N ]? -l .
9(y;j) = [2 p(yl0s5) " + 5 P(?ﬂh])”"} pyl0;g) e j=12,....J (56)
and the distance spectrum of the ensemble of random binack ldodes of lengtn and rateR, given by
Aj, =27 (1-R) (Z) h=0,1,...,n. (57)

Substituting (56) and (57) into (33) and setting= ﬁlp gives the bound

J 1 L 1+p "
Pe < 27 Z Z [ p(yl0;j) ™ + = 5 PylL; J)””] (58)
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which coincides with the random coding bound in (54)-(55).
By substituting the tilting measure (56) in the bound in Secttill-A (see (31)) we get the following error
exponent, which appears insteadKf(p) in (55)

J 1+p %
- 1 1 L
Eo(p) = —logy [ >« [(Z SP(l0: )T + 2p(y\1;y)1+P> ]
j=1

Y

Using Jensen’s inequality and the fact tila p < 1, it is easy to show than(p) < Ey(p), and we therefore
conclude that the bound from Section IlI-B is tighter than ¢me in Section IlI-A in the random coding setting.

Discussion.When comparing the two versions of the bound, it should beddhat the two optimized forms
of tilting measures as given in (42) and (50) are not idehtdhile these two forms of tilting measures exhibit
the same functional behavior, the normalization condgiare slightly different, with/ normalizing constants in
the first version of the bound (see (44)) and one constant B¢ i the second version. This hints that either
of these bounds in (52) and (53) is not uniformly tighter thla@ other for general codes or ensembles; this was
also verified numerically by comparing the two bounds for sam@e ensembles. For random codes, we note that
the tightness of the first version is hindered by the use ofefémsnequality which is applied in the process of
averaging over all possible channel assignments (see tive fnom (28) to (29)). This application of Jensen’s
inequality does not appear in the derivation of the secomdime of the DS2 bound, and may be the seed of the
pitfall of the first version, when applied for random codes.

D. Statement of the Main Result Derived in Section Il

The analysis in this section leads to the following theorem:

Theorem 1 (Generalized DS2 bounds for independent paralBlid8 channels):.Consider the transmission of
binary linear block codes (or ensembles) over a set imdependent parallel MBIOS channels. Let i of the ;™
MBIOS channel be given by(-|0; ) where due to the symmetry of the binary-input chanpéi$0; j) = p(—y|1; 7).
Assume that the coded bits are randomly and independersilyreessl to these channels, where each bit is transmitted
over one of theJ MBIOS channels. Lety; be the a-priori probability of transmitting a bit over th# channel
(j =1,2,...,J), so thate; > 0 and ) 7, a; = 1. By partitioning the code into constant Hamming-weight
subcodes, Egs. (35) and (46) provide two possible upper soondhe conditional ML decoding error probability
for each of these subcodes, given that the all-zero codeisdrdnsmitted, and (34) forms an upper bound on the
block error probability of the whole code (or ensemble). Bar bound in (35), the optimized set of probability
tilting measures(vy(+; 5) 3’:1 which attains the minimal value of the conditional upper fbus given by the set
of equations in (42); for the bound in (46), the optimal ti¢timeasure is given in (50).

IV. GENERALIZATION OF THE 1961 (ALLAGER BOUND FORPARALLEL CHANNELS AND ITS CONNECTION TO
THE GENERALIZED DS2 BOUND

The 1961 Gallager bound for a single MBIOS channel was deringd4], and a generalization of the bound
for parallel MBIOS channels was proposed by Liu et al. [23]tHe following, we outline the derivation in [23]
which serves as a preliminary step towards the discussias oflation to the two versions of the generalized DS2
bound from Section lll. In this section, we optimize the proiity tilting measures which are related to the 1961
Gallager bound fot/ independent parallel channels in order to get the tighteshd within this form (hence, the
optimization is carried w.r.tJ probability tilting measures). This optimization diffen®f the discussion in [23]
where the authors choose some simple and sub-optimabtittieasures. By doing so, the authors in [23] derive
bounds which are easier for numerical calculation, but itjettess of these bounds is loosened as compared to
the improved bound which relies on the calculation of theptimized tilting measures (this will be exemplified
in Section VII for turbo-like ensembles).

A. Presentation of the Bound [23]
Consider a binary linear block codk Let ™ be the transmitted codeword and define the tilted ML metric

(m)
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wherefﬁbm) (y) is an arbitrary function which is positive if there exists # m such thatp, (y|z™') is positive. If
the code is ML decoded, an error occurs if for some# m

Dy (2™, y) < Dp(z™,y) -

As noted in [36],D,,(-,) is in general not computable at the receiver. It is used hsra aonceptual tool to
evaluate the upper bound on the ML decoding error probgbilihe received se)™ is expressed as a union of
two disjoint subsets

yro= Yyudly
Vg & {ye¥":Dnl(z™y) < nd}
Yo & {yeY":Dn(™y) >nd}

whered is an arbitrary real number. The conditional ML decoding epmbability can be expressed as the sum
of two terms
Py, = Prolerrory € Jy) + Prolerrory € V)

which is upper bounded by
Py, < Prol(y € )i) + Prob(errory € Vy) . (60)

We use separate bounding techniques for the two terms in £iplying the Chernoff bound on the first term
gives

p 2 Prob(y € )j) < E (eSW) , §>0 (61)
where
()
Wah| —=-| —nd. (62)
pu(ylz™)

Using a combination of the union and Chernoff bounds for #eored term in the RHS of (60) gives
P, £ Proberrory € V)
= Prob(Dm(gm/,g) < Dy (2™, y) for somem’ # m, Y€ yg)

< Z Pr0b<Dm(£m/,y) < Dip(2™,y), Dm(z™,y) < nd)
m'#m
< Z E (exp(tUyy +rW)), t,r<0 (63)
m’/#m
where, based on (59),

pu(ylz™) > ' (64)

m’ m
U = D)= Dol = (0
Consider a codeword of a binary linear block catlerhich is transmitted ovey parallel MBIOS channels. Since
the conditional error probability under ML decoding does$ depend on the transmitted codeword, one can assume
without loss of generality that the all-zero codeword im$mitted. As in Section IlI-A, we impose on the function
ﬁm) (y) the restriction that it can be expressed in the product form

J
@ =11 T fwsi)- (65)

J=14eZ(J)
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!

For the continuation of the derivation, it is assumed thatftinctionsf(-; j) are even, i.e.f(y;j) = f(—y; ) for
all y € . Plugging (25), (62), (64) and (65) into (61) and (63) we get
nos ST (S )) plyil0; ) e
Yy J=14i€Z(j) yz J
J "
= TI5 | D2 pwlosi)' = f(y;5)° e 5>0 (66)
Jj=1 yey
t
iy " . [ Oa ] —nr
mo< S5 I {(Z2) oo (202 ) o
Yy m'#mj=1ieI(j) p(yil0;J p(yilz;™ 57)
b ’ NE
SID NS SR P § {l) SUTH U Uy
J ’I’Lj—hj
TT 1D pwlos ) £(y; 4) e tr <0 (67)
ji=1 |yey
where as before, we use the notatien= |Z(j)|. Optimizing the parameter gives the value in [14, Eq. (3.27)]
r—1
t= 5 (68)
Let us define
G(rj) = Z (y10; )" F (w3 5)" (69)
Z(r;j) & ZLp (Wl0: 5)p(yl 1)) = fly: )" (70)
Substituting (68) into (67), combining the bounds Bpand P, in (66) and (67), and finally averaging over all
possible channel assignments, we obtain
n J
Po < E > Y Anan [[1205))(G(r; ) e
h=1 0<h;<n, j=1
Z hJ:h
J
+[IIG (s )roe
j=1
= > S A 1@ (G ) e
n;>0 | h=10<h;<n, j=1
> n;=n > hj=h
r<0
nsd & Py(n) >0 : (71)
—00 < d< o0
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Following the same procedure of averaging the bound ovegraasible assignments as in (30) and (31), we obtain
n—h

n J h J
Pe < > QA (Zajzmj)) (Z%G(T;j)) e
h=1 7j=1 7j=1

7 n
- (Z%’G(S;j)> et (72)
j=1

Finally, we optimize the bound in (72) over the parametavhich gives

J h
> ajZ(r;j)]
j=1

n—h n(l—p)

P J
{Z%’G(S;j)} (73)

n J
P < 2M0 {574, > a;G(rsj)
h=1 j=1

wherer <0, s >0, and s
p= 0<p<1. (74)

)
S—7T

The bound in (73), originally derived in [23], is a natural gealization of the 1961 Gallager bound for parallel
channels.

B. Connection to the Generalizations of the DS2 Bound

In this section we revisit the relations that exist betwdenDS2 bound and the 1961 Gallager bound, this time
for the case of independent parallel channels. We will complae 1961 Gallager bound with both versions of the
DS2 bound presented in Sec. lll. For the case of a single MBIG®iradl, it was shown [10], [33], [36] that the
DS2 bound is tighter than the 1961 Gallager bound.

This result easily extends to parallel channels, for the cdshe second version of the DS2 bound which was
derived in Sec. llI-B using the perfect CSIR channel model. é&ritis model, the parallel-channel is expressed as
a single MBIOS with output defined as the paie (y, 7). The results in [10], [33], [36] therefore apply directly
to the CSIR model and can be used to show that the DS2 bound iris(dighter than the 1961 Gallager bound
(73).

In this respect, the DS2 bound from Section IlI-A exhibits aldlly different behavior. In the remainder of this
section, we provide analysis linking this bound with the 19Ballager bound. In what follows, we will see how
a variation in the derivation of the Gallager bound leads foren of the DS2 bound from Section IlI-A, up to a
factor which varies between 1 and 2. To this end, we start filegrpoint in the last section where the combination
of the bounds in (66) and (67) is obtained. Rather than coimgnas in the last section, we first optimize over the
parameter in the sum of the bounds oR; and P, in (66) and (67), yielding that

n J pJ
Pe < 2H<P>{Z > Ahl,...,h_,.HV(r,t;j)th(rm”f"“} [[GGsa-t
j=1

h=1 hi,...,h; j=1
5 h=h
. J p1hy
R (T
h=1 hi,...h; =1
Z]hj:h ]

P
1—p T'Lj*hj
{G(T;j)G(S;j)T} } , t,r<0,s>0
j=1

where

Vi) 2 Y ploloss) ) () (75)
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G(+;7) is introduced in (69) forj = 1,...,J, and p is given in (74). Averaging the bound with respect to all
possible channel assignments, we get(fet p < 1

Pe

.....
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\j
\.@F
<
«Q
\.Cn
<
N
=

[T |[Gersics) = |" ] (76)

J n—h7P
(Z %G(r;j)G(s;j)pp) , (77)
where from (68), (69), (74) and (75)

f:d) \°
Zp y[0:7) <p( 0; J)>
‘ s(1-1)
i) = 3 p0i0s) G,

) VO (pwlos) '
V(r,t;7) p(y|0; 7) < - . 78
= 2.76l00) { ;5 POIT ) 7
Setting A = —t¢, and substituting in (78) the following relation betweer tBallager tilting measures and the
un-normalized tilting measures in the DS2 bound
g(y;j)é<f(y’?).> C =12, (79)
p(y0; )

we obtain

P, < 2H0) {ZAh [Z% <Zgy3 »p(y[0; ) (yll;j)A>

ﬁ'h

P

(Zgyy y\03> >y Zgyg p(y0; J))

]:1

1—p N— P

(Zgy, m)p 0<p<1 (80)
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which coincides with the form of the DS2 bound given in (33) fopthe factor2”(?) which lies between 1 and
2), for those un-normalized tilting measurgs; j) such that the resulting function¥-; j) in (79) areeven

Discussion The derivation of the 1961 Gallager bound involves first theraging of the bound in (71) over all
possible channel assignments and then the optimizationtbgeparameted in (72). To show a connection to the
DS2 bound in (33), we had first optimized owéland then obtained the bound averaged over all possible ehann
assignments. The difference between the two approacheatimtthe latter, Jensen’s inequality had to be used in
(76) to continue the derivation (because the expectati@r ail possible channel assignments was performed on
an expression raised to theth power) which resulted in the DS2 bound, whereas in thevdion of [23], the
need for Jensen’s inequality was circumvented due to tleality of the expression in (71). We note that Jensen’s
inequality was also used for the direct derivation of the D8rd in (31); this use of Jensen’s inequality hinders
the tightness of this bound to the point where we cannot ohéter if it is tighter than the 1961 Gallager bound or
not. For the special case of = 1, both versions of the DS2 bound degenerate to the standard B8#ilirom
Sec. lI-D. In this case, as in the case of the DS2 bound from $ekii®, the DS2 bound is tighter than the 1961
Gallager bound (as noted in [36]) due to the following reason

« For the 1961 Gallager bound, it is required tifat; j) be even. This requirement inhibits the optimization of
¥(+; 7) in Section 11l because the optimal choicewf:; j) given in (42) leads to function§(-; j) which are not
even. The exact form of (-; j) which stems from the optimal choice &f(-; j) is detailed in Appendix A.1.

o The absence of the fact@lH (») (which is greater than 1) in both versions of the DS2 bound isptheir
superiority. Naturally, this factor is of minor importansgice we are primarily interested in the exponential
tightness of these bounds.

It should be noted that, as in the case.Jof 1, the optimization over the DS2 tilting measure is still over a
larger set of functions as compared to the 1961 Gallagémdilneasure; hence, the derivation appearing in this
section of the DS2 bound in (33) from the 1961 Gallager boonly gives an expression of the same form and
not the same upper bourdisregarding th&(») constant).

C. Optimized Tilting Measures for the Generalized 1961 &gl Bound

We derive in this section optimized tilting measures for1Bé1 Gallager bound. These optimized tilting measures
are derived for random coding, and for the case of constamirhlag weight codes. The 1961 Gallager bound
will be used later in conjunction with these optimized tiffi measures in order to get an upper bound on the
decoding error probability of an arbitrary binary lineaodkt code. To this end, such a code is partitioned to
constant Hamming weight subcodes (where each subcodenalsalés the all-zero codeword), and a union bound
is used in conjunction with the calculation of the conditibrerror probability of each subcode, given that the
all-zero codeword is transmitted. Using these optimizétthdi measures improves the tightness of the resulting
bound, as exemplified in the continuation of this paper.

1) Tilting Measures for Random Codeg&onsider the ensemble of fully random binary block codeseafyth
n. Substituting the appropriate weight enumerator (givenli)) into (72), we get

P < 27n(1R) {;Z%Z[ (y10:5) =" +p(yl1:5) 2T}2f(y;j)’"} e

1 J " r<0
52 i Y (P07 + pyl ) ) Fyh)* p e, s> 0 (81)
j=1 Yy deR
where we rely on (69) and (70), use the symmetry of the charared the fact that we require the functiofis; j)
(j=1,...,J) to be even. To optimize (81) over all possible tilting measume apply calculus of variations. This

procedure gives the following equation:

Z%( 0:3)5 Pl )'T) Flug)

—LZ% (10: )"~ + p(yl 1)) Fly: )™ = 0 Wy
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where L € R is a Lagrange multiplier. This equation is satisfied for tiltimgasures which are given in the form

1-r N1=r\2 ) s
(p(wl0:) =" + ply139) ')
p(yl0; )= + p(yl1;4)'—*

flyj) =K K eR. (82)

This forms a natural generalization of the tilting measureegiin [14, Eq. (3.41)] for a single MBIOS channel.
We note that the scaling factdf may be omitted as it cancels out when we substitute (82) i (73

2) Tilting Measures for Constant Hamming Weight Cod€ke distance spectrum of a constant Hamming weight
code is given by

1, ifrn=0
Ay =< A, it =h (83)
0, otherwise

Substituting this into (73) and using the symmetry of the congmt channels and the fact that the tilting measures
f(-;4) are required to be even, we get

hp
Pyo(h) < 270 A"{Z%Z (y]0; 7)p(y|1; J)]l‘ff(y;j)’”}
7j=1

, (n—h)
{ % S [o(yl05) " + w1 ) T]ﬂyw}
J

=1 Yy

<

n(1—p)
Q; 1 s L l-s Y
{' 2 [P0 )+ p(ylLi) ' f(y: ) } ,
Jj=1 Y

S

r<0,s>0,p= (84)

s—1r
Applying calculus of variations to (84) yields (see Appendi.2 for some additional details) that the following
condition should be satisfied for all values & ):

Zaj{ (10:0)1° + (/1)) £ ) + K [p(wl0s f)p(yl 1 )] = (85)

s [p(l0s) 7 + (i1 ) ] = 0

where K1, K5 € R. This condition is satisfied if we require

[p(10;.3) = + p(y/1:3) '] F(y:9)° " + Ko [p(y]0: j)p(yl 1 )] *
FE [py]0; ) + oy )] =0, Wyed, j=1,...,J.

The optimized tilting measures can therefore be expresséukifiorm

1— -t 1_s(1—p~ 1)\ 2
| &1 (p(l0: ) T (it ) )
flyig) =

. : +
p(y|0; )15 + p(y|1;5)t ¢

d (p(y‘oéj)l_s(l‘pfl) +p(y!1;j)1_8(1_p71)) } c1,di €R

— — , s>0 (86)
p(Wl0;5)' 5 + p(y[1;5) 0<p<i

where we have used (74). This form is identical to the optintithg measure for random codes if we sgt= 0

It is possible to scale the parametersandd; without affecting the 1961 Gallager bound (i.e., the r%locancels
out when we substitute (86) in (73)). Furthermore, we noté ribgardless of the values of andd;, the resulting
tilting measures are even functions, as required in thevation of the 1961 Gallager bound.
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For the simplicity of the optimization, we wish to reduce thénite intervals in (86) to finite ones. It is shown
in [31, Appendix A] that the optimization of the parametetan be reduced to the intenjal 1] without loosening
the tightness of the bound. Furthermore, the substitutién 2‘1’01;23631, as suggested in [31, Appendix B], enables
one to express the optimized tilting measure in (86) usinga@uivalent form where the new parametelies in
the interval[0, 1]. The numerical optimization of the bound in (86) is thereftaieen over the range of parameters
0<p<1,0<s<1,0<c<1. Based on the calculations in [31, Appendices A, B], the fioms f(-;j) get

the equivalent form

-1y

0 (ol i) )
f(yvj) - p(y|0;j)175 +p(y|1;j)1*s

2 (p(yl0: pioltsi) ~ T f :
+ p(y|0; )15 4+ p(y|1;5)t—* } , (pys,e) €10,1]°. )

By reducing the optimization of the three parameters overuhit cube, the complexity of the numerical process
is reduced to an acceptable level.

D. Statement of the Main Result Derived in Section IV

The analysis in this section leads to the following theorem:

Theorem 2 (Generalized 1961 Gallager bound for parallel c¢teds): Consider the transmission of binary linear
block codes (or ensembles) over a set.Jofindependent parallel MBIOS channels. Following the notatin
Theorem 1, the generalization of the 1961 Gallager bound 3) frovides an upper bound on the ML decoding
error probability when the bound is taken over the whole c(ate originally derived in [23]). By partitioning
the code into constant Hamming-weight subcodes, the girestal961 Gallager bound on the conditional ML
decoding error probability of an arbitrary subcode (giveattthe all-zero codeword is transmitted) is provided
by (84), and (34) forms an upper bound on the block error gitibaof the whole code (or ensemble). For an
arbitrary constant Hamming weight subcode, the optimizetdo$ non-negative and even functiogg(-; j) j=1
which attains the minimal value of the conditional bound &4)( is given by (87); this set of functions is subject
to a three-parameter optimization over a cube of unit lerigée (87)).

V. SPECIAL CASES OF THEGENERALIZED DS2 BOUND FORINDEPENDENTPARALLEL CHANNELS

In this section, we rely on the two versions of the generdlips2 bound for independent parallel MBIOS
channels, as presented in Sections IlI-A and 1lI-B, and appgm in order to re-derive some of the bounds
which were originally derived by Liu et al. [23]. The derivatian [23] is based on the 1961 Gallager bound from
Section IV-A, and the authors choose particular and subwgttiilting measures in order to get closed form bounds
(in contrast to the optimized tilting measures in SectionCWhich lead to more complicated bounds in terms
of their numerical computation). In this section, we follthe same approach in order to re-derive some of their
bounds as particular cases of the two generalized DS2 boluedswe choose some particular tilting measures
rather than the optimized ones). In some cases, we re-dbeveounds from [23] as special cases of the generalized
DS2 bound, or alternatively, obtain some modified bounds asacsd to [23].

A. Union-Bhattacharyya Bound in Exponential Form

As in the case of a single channel, it is a special case of basions of the DS2 and the 1961 Gallager bound.

By substitutingr = 0 in the Gallager bound g = 1, A = 0.5 in both versions of the DS2 bound, we get
n(l1—R)
P < Z Ah'}’h (88)
h=1

where~ is given by (3) and denotes the average Bhattacharyya pteaofe/ independent parallel channels. Note
that this bound is given in exponential form, i.e., as in thngle channel case, it doesn’t use the exact expression
for the pairwise error probability between two codeword$daimming distancé.. For the case of the binary-input
AWGN, a tighter version which uses tlig-function to express the exact pairwise error probabibtyiesented in
Appendix C.
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B. The Sphere Bound for Parallel AWGN Channels

The simplified sphere bound is an upper bound on the ML decodiray erobability for the binary-input
AWGN channel. In [23], the authors have obtained a parahannel version of the sphere bound by making the
substitution f(y; j) = = in the 1961 Gallager bound. We will show that this versionlsba special case of
both versions of the parallel-channel DS2 bound. By usingréhation (79), between Gallager’s tilting measure
and the un-normalized DS2 tilting measure, we get

L\ s )2
9(y; j) = ( k2] ) = exp <(y+;/ﬂ) )

p(yl0; 5)

so that

+o0 1
/ 9(y; 3)p(y[0; 4) dy =

oo 1—s

—+o0 11 . 1
/ g(y;7)" »p(yl0; ) dy =

oo 1
1—3(1—;)

Hoo 1-1 e’ (1_8<1_%>>
/ a(y: )" Ep(y]0: ) P p(ylL; ) dy = |
e 1-s (1 . %)

By introducing the two new parametefis=1 — s (1 — %) and\ = g we get

[ s imtwiosiay = /12
yJ)P 3 =
9wl dy =\ [
+o0 1 .
/ 9(y;3) p(yl0; j)dy = 5> (89)
l A= A ESY Y ’Yf A
9(y:3)" rp(yl0;5) " p(yl1; 7) dy=F, =

Next, by plugging (89) into the DS2 bound in (33), we get
p

h
n J n(l1—p)
_n 1-— 1% 2 0 < P
Pef § Ah E O‘]’YJIB ﬂ 2 (1_5> ) 1<B
h=0 = P =

The same expression may be obtained by plugging (89) into 8@ »und in (47). This bound is identical to the
parallel-channel simplified sphere bound in [23, Eq. (24)tept that it provides a slight improvement due to the
absence of the factar” (?) which appears in [23, Eq. (24)] (a factor bounded between 123nd

ININA
R [

(90)

C. Generalizations of the Shulman-Feder Bound for Parallebhels

In this sub-section, we present two generalizations of thér&min and Feder (SF) bound, where both bounds
apply to independent parallel channels. The first bound wadqusgy obtained by Liu et al. [23] as a special
case of the generalization of the 1961 Gallager bound andb@ikhown to be a special case of the DS2 bound
from Section 111-B, and the second bound follows as a paricaehse of the DS2 bound from Section IlI-A for
independent parallel channels.

By substituting in (73) the tilting measure and the paramseteee [23, Eq. (28)])

) 1 N 1 L\
i) = (p0010:0)7 + Jo(ol1i )7 )

L—p P
r=—-"—= s=-—— 0<p<1 91
1+p 1+p p ®D



27

straightforward calculations for MBIOS channels give tb#diwing bound which was originally introduced in [23,
Lemma 2J:

1+p n
Py < 2M(P)gnfe <1<h<n 2an> {Z% (Z (y10; )77 + p( 1; J)HP) } . (92)

Due to the natural connection between the DS2 bound in Sediiddnd the 1961 Gallager bound for parallel
channels (see the discussion in Sec. IV-B), the generalizedoBRd is also a special case of the former bound.
The tilting measure which should be used in this case to shewcdimnection has already appeared in (56) (as a
part of the discussion Sec. III-C on the random coding versiotiis bound) and it reads

. 1 R 1 N P NP
g(y;j) = [2 p(y|0;5) ™ + 2p(y1;1)1+P] p(y|0;5)" .

The result is the same as the bound in (92) except for the abssribe factor2”(»),
Considering the generalization of the DS2 bound in Sectiow|]lit is possible to start from Eq. (33) and take
the maximum distance spectrum term out of the sum. This ghedbund

1-p

Pe < 270 <1I<nh<n 2an)> {Zaﬂ [Zg y:.7)p(y|0; j ] p
LA np
'[Zp(ym;j)g(y;j)l‘ﬂ (1 + (25 )] } 0<p<t (93)

Using theJ un-normalized tilting measures from (56) and setting 1}7} in (93), gives the following bound due
to the symmetry at the channel outputs:

A P
< nRp h
fe = 2 (@% 2n<1R)(;)>

1 1+p % "
ZO‘J {(Z p(yl0;5) 7 + SPWIL; J)“") ] ,0<p<i1 (94)
Yy

which forms another possible generalization of the SF boumdrfdependent parallel channels. Clearly, unless
J =1 (referring to the case of a single MBIOS channel), this boisnexponentially looser than the one in (92).

The fact that the bound in (94) is exponentially looser thaan ibund in (92) follows from the use of Jensen’s
inequality for the derivation of the first version of the DS2 hdusee the move from (28) to (29)).

D. Modified Shulman-Feder Bound for Independent Parallel i@teds
It is apparent from the form of the SF bound that its exponktiihtness depends on the quantity

Ap
1Zhen 2-n(-F) (7) (93)

which measures the maximal ratio of the distance spectrutmeofonsidered binary linear block code (or ensemble)
and the average distance spectrum of fully random blockadll the same rate and block length. One can observe
from Fig. 3 that this ratio may be quite large for a non-negligiiportion of the normalized Hamming weights, thus
undermining the tightness of the SF bound. The idea ofMiedified Shulman-FedgiMSF) bound is to split the
set of non-zero normalized Hamming weighits £ %, %, R 1} into two disjoint subset¥;" and ¥, where the
union bound is used for the codewords with normalized Hargmirights within the se® ", and the SF bound is
used for the remaining codewords. This concept was origirsgdplied to the ML analysis of ensembles of LDPC
codes by Miller and Burshtein [26]. Typically, the séf consists of low and high Hamming weights, where the
ratio in (95) between the distance spectra and the binonséaiilwlition appears to be quite large for typical code

ensembles of linear codes; the def is the complementary set which includes medium values ohtrenalized



28

Hamming weight. The MSF bound for a given partitionidg, ¥;7 is introduced in [23, Lemma 3], and gets the
form

p
P < Z Ah7h+2H(p)2”P‘p< max (Ah)()>
h

h: Lewf

1+p) "
{EE:C% (j{: (4]0 )T + p( “—J)1+”> } (96)

where~ is introduced in (3), and < p < 1. Liu et al. prove that in the limit where the block length terids
infinity, the optimal partitioning of the set of non-zero n@imed Hamming weights to two disjoint subsels
and ¥ is given by (see [23, Eq. (42)])

56{\I/7f if —dlny>H(G)+ (I —1)In2

v otherwise 97)

where

a0y p(ylz; §)
Iéjz:lQ Z Zpy‘le()ng/Qz

ze{-1,1} ¥ @’ e{—l,l}p(yW;j)

designates the average mutual information under the assmmyf equiprobable binary inputs. Note that for finite
block lengths, even with the same patrtitioning as above fitseterm in the RHS of (96) can be tightened by
replacing the Bhattacharyya bound with the exact expradsiothe average pairwise error probability between two
codewords of Hamming distande Referring to parallel binary-input AWGN channels, the @xpairwise error
probability is given in (C.5), thus providing the followirtgghtened upper bound:

h
1 (2 j
P < 77/0 g Ap [2 aje si1126]

h: Rewf

A P
4oHP)gnRp [ gy TR
h: ﬁE\IJ; 2-n(1-R) (Z)

14+p\ ™
{ZO‘J (Z (y]0; §) 7 + lp( |1; J)“”) } : (98)

Yy

On the selection of a suitable partitioning of the det in (98): The asymptotic partitioning suggested in (97)
typically yields that the union bound is used for low and higtues of normalized Hamming weights; for these
values, the distance spectrum of ensembles of turbo-lidesdeviates considerably from the binomial distribution
(referring to the ensemble of fully random block codes of shaene block length and rate). L&t and §, be the
smallest and largest normalized Hamming Weights res;ﬂy,tireferring to the range of values éfin (97) so
that W, = {&,6+2%,....6.},and¥;f & {1 25— 1yy{s +1 6.+ 2 ... 1} are the sets of normalized
Hamming weights. The subsets’ and ¥, refer to the dlscrete values of normalized Hamming weigbitsahich
the union bound in its exponential form is superior to the SEngoand vice versa, respectively (see (96)). Our
numerical experiments show that for finite-length codesdeisily, for codes of small and moderate block lengths),
this choice ofd; and ¢, often happens to be sub-optimal in the sense of minimiziega¥erall upper bounds in
(96) and (98). This happens becausedoet §; (which is the left endpoint of the interval for which the SF hdus
calculated), the ratio of the average distance spectrumeotdnsidered ensemble and the one which corresponds to
fully random block codes is rather large, so the second terthe right-hand-sides of (96) and (98) corresponding
to the contribution of the SF bound to the overall bound is werably larger than the first term which refers to
the union bound. Therefore, for finite-length codes, the falthg algorithm is proposed to optimize the partition
U, =T uv,:

1) Select initial values;, andd,, (for §; andd,) via (97). If there are less than two solutions to the equatio

—dlny=H(6)+ (I —1)In2, select¥,f =¥, U = ¢ as the empty set.
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2) Optimize the value of; by performing a linear search in the rangg, J,,] and finding the value of; which
minimizes the overall bound in the RHS of (98).

The optimal partition for the MSF bound yields the tightest fbwvithin this family. This bound yields the
largest MSF attainable channel region, and is therefore termed the Lbt&kd. The algorithm above is applied
to the calculation of the LMSF bound for finite-length codes (geg., 4(b) in p. 32).

Clearly, an alternative and slightly tighter version of M#&F bound can be obtained from the DS2 bound from
Section 11I-B for parallel channels where the differencel Wi in the absence of th2”(?) constant. We address
the LMSF bound in Section VII, where for various ensembles dfdtlike codes, its tightness is compared with
that of both versions of generalized DS2 and Gallager bounds.

VI. INNER BOUNDS ONATTAINABLE CHANNEL REGIONS FORENSEMBLES OFGOOD BINARY LINEAR CODES
TRANSMITTED OVER PARALLEL CHANNELS

In this section, we consider inner bounds on the attaindiéamel regions for ensembles of good binary linear
codes (e.g., turbo-like codes) whose transmission talke® mver independent parallel channels. The computation of
these regions follows from the upper bounds on the ML degpdmor probability we have obtained in Sections Il
and IV (see Theorems 1 and 2), referring here to the asympuiasie where we let the block length tend to infinity.

Let us consider an ensemble of binary linear codes, and asthanthe codewords of each code are transmitted
with equal probability. AJ-tuple of transition probabilities characterizing a phalachannel is said to be an
attainable channel pointvith respect to a code ensemldléf the average ML decoding error probability vanishes
as we let the block length tend to infinity. Tlatainable channel regioof an ensemble whose transmission takes
place over parallel channels is defined as the closure of thef sdtainable channel points. We will focus here on
the case where each of theindependent parallel channels can be described by a siegleparameter, i.e., the
attainable channel region is a subsefRof; the boundary of the attainable region is called tioése boundanof
the channel. Since the exact decoding error probability uile decoding is in general unknown, then similarly
to [23], we evaluate inner bounds on the attainable charegtbms whose calculation is based on upper bounds
on the ML decoding error probability.

In [23, Section 4], Liu et al. have used special cases of the L2dlhger bound to derive a simplified algorithm
for calculating inner bounds on attainable channel regidtss compared to the bounds introduced in [23], the
improvement in the tightness of the bounds presented in Enepd and 2 is expected to enlarge the corresponding
inner bounds on the attainable channel regions. Our nualegsults referring to inner bounds on attainable channel
regions are based on the following theorem:

Theorem 3 (Inner bounds on the attainable channel regionp#oallel channels):Let us assume that the trans-
mission of a sequence of binary linear block codes (or en=nb[C(n)]|} takes place over a set of parallel
MBIOS channels. Assume that the bits are randomly assigndtese channels, so that every bit is transmitted over
a single channel and the a-priori probability for transimgita bit over thej-th channel is; (wherez“j]:1 aj =1

ando; >0 for j € {1,...,J}). Let {Af(””} designate the (average) distance spectrum of the sequécoeas
(or ensembles);[](#) designate the asymptotic exponent of the (average) distapectrum, and

% 2 VpWlopyllig) . je{l....J}
yey

designate the Bhattachryya constants of the channelsnfess#at the following conditions hold:
1)

. DS2
501<r%f§1E (0) >0, Ve (0,1) (99)
where, for0 < 6 < 1, EPS2(5) is calculated from (37) by maximizing w.rA, p (A > 0 and0 < p < 1)
and the probability tilting measure{s/z(-;j)}‘]le.

2) The inequality

6—0 o

c] J
lim sup =) <—In (Z ajyj) (100)
j=1
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is satisfied, where the sum inside the logarithm designatesatierage Bhattacharrya constant over fhe
parallel channels, andC!(§) designates the asymptotic growth rate of the distance spects defined in
(14).

3) There exists a sequené®,,} of natural numbers tending to infinity with increasingso that

D,
limsup Y A" =0 (101)

4) The exponent of the distance spectrufi™!(§) converges uniformly irs € [0,1] to its asymptotic limit.
Then, theJ-tuple vector of parameters characterizing these chatieslsvithin the attainable channel region under
ML decoding.

Proof: The reader is referred to Appendix B. [ |
Discussion:We note that conditions 3 and 4 in Theorem 3 are similar to tls¢ t@o conditions in [22,
Theorem 2.3]. Condition 2 above happens to be a natural derati@n of the second condition in [22, Theorem 2.3],
thus generalizing the single channel case to a set of phcaildanels. The distinction between [22, Theorem 2.3]
which relates to typical-pairs decoding over a single cleammd the statement in Theorem 3 for ML decoding

over a set of independent parallel channels lies mainly énfittst condition of both theorems.

A similar result which involves the generalized 1961 Gadlagound for parallel channels can be proven in the
same way by replacing the first condition with an equivaletdti@n involving the exponent of the 1961 Gallager
bound maximized over its parameters, instead of the ermporeent of the DS2 bound.

The difference of our results from those presented in [23hstifom the fact that we rely here on the generalized
DS2 bound and the 1961 Gallager bound with their relaigiiimized tilting measuresind not on particular cases
of the latter bound. These optimizations which are carriest dhe tilting measures of both bounds provide tighter
bounds as compared to the bounds introduced in [23, Secti@amsl 4] which follow from the particular choices
of the tilting measures for the generalized 1961 Gallagemdo

We later exemplify our inner bounds on the attainable chlarawgons for ensembles of accumulate-based codes
whose transmission takes place over parallel AWGN chanfiéls simplest ensemble we consider is the ensemble
of uniformly interleaved and non-systematic repeat-aadate (NSRA) codes witly > 3 repetitions. It is shown
in [9, Section 5] that the third condition in Theorem 3 is satisfier this ensemble, and more explicitly

D, 1
i1 —o (1)

n
h=1

whereD,, = O (In(n)) (so the sequencgD,,} tends to infinity logarithmically withz). Based on the calculations
of the distance spectrum of this ensemble (see [9, Sectigrihg)fourth condition in Theorem 3 is also satisfied.
We note that for this ensemble, the asymptotic growth ratdefdistance spectrum satisfies
0y — 0. Timsun @) _ d _

r1(0) =0, hr;ljgp 5 — @ (0) o 0.
Hence, inequality (100) in Theorem 3 (i.e., the second camdin this theorem) is also satisfied for this ensemble
(since the RHS of (100) is always positive). Hence, the foitféht of all the conditions in Theorem 3 for this
ensemble requires to check under which conditions the exponent is strictly positive (see the condition in
(99)).

As a second example, for the Gallager ensembles of regulagt &) LDPC codes, the second, third and fourth
conditions are also satisfied for the case whgre 3. Under this assumption, the minimum distance even grows
linearly with the block length (see [14, Section 2.2]), so LS of (100) becomes negative.

We make use of the fulfillment of the condition in (100) for reeguNSRA codes and some other variants of
accumulate-based codes later in Section VII-B.

It is important to note that the low Hamming weight codewovdsich are addressed by the requirement in
(101) may vyield that the error probability under ML decodithges not necessarily vanish exponentially with the
block length (see, e.g., [26, Theorems 3 and 4] and [9, Secfiowtere the ML decoding error probability of
the considered ensembles of turbo-like codes vanish asyitedty like the inverse of a polynomial of the block
length).
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VIl. PERFORMANCEBOUNDS FORTURBO-LIKE ENSEMBLES OVERPARALLEL CHANNELS: MODERATE
BLOCK LENGTHS AND THEASYMPTOTIC CASE

In this section, we exemplify the performance bounds ddrivethis paper for various ensembles of turbo-like
codes whose transmission is assumed to take place ovelep&#WGN channels. We also compare the bounds
to those introduced in [23], showing the superiority of thewnbounds introduced in Sections Il and IV. As
mentioned before, the superiority of the generalized 19@llaGer bound in Section IV over the LMSF bound
from [23] is attributed to the optimizations of the relatdtitg measures over each of the individual channels.

We especially focus on ensembles of uniformly interleavepeat-accumulate (RA) codes and accumulate-
repeat-accumulate (ARA) codes. These codes, originaltpdoced by Divsalar et al. [2], [9], are attractive since
they possess low encoding and decoding complexity undeatite decoding and remarkable improvement in
performance over classical algebraic codes. For indepeipaeallel channels, we study their theoretical perforoean
under ML decoding. The section considers both finite-lengtidyais and asymptotic analysis. In the former case,
we present upper bounds on the ML decoding error probaldlitg in the latter case, we consider inner bounds on
the attainable channel regions of these ensembles and gtadyap to the capacity region. In order to assess the
tightness of the bounds for ensembles of relatively shalblengths, we compare the upper bounds under optimal
ML decoding with computer simulations under (sub-optimtdjative decoding. In some cases, the upper bounds
under ML decoding are more pessimistic than the experinheasalts of the iterative decoder, thus indicating that
there is still room for improving the tightness of the new bads.

The structure of this section is as follows. Section VII-A exdifies performance bounds for ensembles of
short to moderate block length by focusing on a uniformlgilgaved ensemble of turbo codes, comparing various
bounds on the bit error probability under ML decoding and para the results with computer simulation of the Log-
MAP iterative decoding. Section VII-B focuses on performabounds for repeat-accumulate codes and their recent
variations which are attractive due to their remarkablégoerance and low encoding and decoding complexity under
iterative decoding algorithms. This sub-section analybesgerformance under optimal ML decoding, assuming
the communications takes place over parallel channels. Aier ibounds on the attainable channel regions whose
calculations are based on Theorem 3 considerably extenchdmenel region which corresponds to the cutoff rate,
and outperform previously reported bounds. We concludelig®ission in this section with practical considerations
related to efficient implementations of the generalized DS® H961 Gallager bounds for parallel channels, thus
aiming to reduce the computational complexity related ® elialuation of these bounds (see Section VII-C).

A. Performance Bounds for Uniformly Interleaved Turbo Codes

In this sub-section, we exemplify the tightness of the newnds by referring to an ensemble of uniformly
interleaved turbo codes, and comparing the upper bound$@rbit error probability under ML decoding with
computer simulations of an iterative decoder. The boundseaeeplified for the transmission over two parallel
BIAWGN channels. The reader is referred to [21] which introelsi coding theorems for turbo code ensembles
under ML decoding, assuming that the transmission takespdaer a single MBIOS channel (i.el,= 1 in our
setting).

Fig. 4 compares upper bounds on the bit error probability efehsemble of uniformly interleaved turbo codes
of rate R = % bits per channel use (see Fig. 4(a)). The calculation of theageedistance spectrum and IOWE
of this ensemble is performed by calculating the IOWE of tbhastituent codes which are recursive systematic
convolutional codes (to this end, we rely on the general @gogr provided in [25] for the calculation of the IOWE
of convolutional codes), and finally, the uniform interleawhich is placed between the two constituent codes in
Fig. 4(a) enables one to calculate the distance spectrumhentDWE of this ensemble, based on the IOWE of
the constituent codes (see [4]). The transmission of thesc@en this ensemble is assumed to take place over
two (independent) parallel binary-input AWGN channels wheach bit is equally likely to be assigned to one of
these channelsaq =9 = %), and the value of the energy per bit to spectral noise dewnsithe first channel is

fixed to = 0 dB. Since for long enough block codes, the union bound is rfotrimative at rates beyond the

cutoff rate one would expect that for the considered engewibcodes (whose block length is roughly 3000 bits),
the union bound becomes useless for value ﬁ# below the value in the RHS of (8) (whose value in this
setting is 3.69 dB). This limitation of the union bound is iedereflected from Fig. 4(b), thus showing how loose



32

binary input
/ + + yj
\ \ \ \ ’ \ \ \
o
E R e O B
\+:
Y,
uniform
interleaver
/ + +
I ’ [ L]
n
I e N S B
\+:
Yy
(a) Ensemble of uniformly interleaved turbo codes.
100 T T T T
10 §
©)
@)
102 E
O
- O
3 10°} 5
©
e}
o
a
g
W™k E
=
5 -
10 ¢ (E/Ny), =0dB = g E
—~A— DS2 bound (2nd version, Sec. 3.3) 7 ¥ e _ 1
—— DS2 bound (1st version, Sec. 3.1) 1
. —>— 1961 Gallager bound 1
10 "¢ | —+— LMSF bound E
Union Bound ]
O  Iterative Log—MAP decoder (10 iterations)
10‘7 ! ! ! ! ! ! ! !

|
0 05 1 15 2 25 3 35 4 45 5
(E,/N,), [dB]

(b) Performance Bounds under ML decoding versus simulation resuitsrative Log-MAP decoding.

Fig. 4. (a) The encoder of an ensemble of uniformly interleaved tudae< whose interleaver is of length 1000 without puncturing of
parity bits. (b) Performance bounds for the bit error probability umdierdecoding versus computer simulation results of iterative Log-MAP
decoding (with 10 iterations). The transmission of this ensemble takes @lacdwo (independent) parallel binary-input AWGN channels.
Each bit is equally likely to be assigned to one of these channels, and ttgy gre bit to spectral noise density of the first channel is set

to % = 0 dB. The compared upper bounds on the bit error probability are thergieations of the DS2 and 1961 Gallager bounds,
the LMSF bound from [23], and the union bound (based on (C.5)).

is the union bound as compared to computer simulations ofghle-optimal) iterative decoder. The LMSF bound
depicted in Fig. 4(b) uses a patrtitioning for codes of finitegtbrwhich was obtained via the algorithm described
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in Section V-D; for a bit error probability o0~ it is about 1 dB tighter than the union bound. Both versions
of the DS2 and the 1961 Gallager bounds with thmitimized tilting measureshow a remarkable improvement
in their tightness over the union and LMSF bounds where for atir probability of10~4, these three bounds
exhibit a gain of 0.8 dB over the LMSF bound. The two versions ef@1$2 bound are almost equally tight with a
gap between them of less than 0.01dB in favor of the secorglorerThe second version of the DS2 bound gains
about 0.05 dB at a bit error probability @02 over the 1961 Gallager bound. In spite of a remarkable adgant
of the improved bounds over the union and LMSF bounds, compinaulations under (the sub-optimal) iterative
Log-MAP decoding with 10 iterations show a gain of about 0.4 8@ there is still room for further improvement
in the tightness of the bounds under ML decoding.

B. Distance Properties and Performance Bounds for Various Ehkenof Accumulate-Based Codes

The IOWEs and the distance spectra of ensembles of irreguaare@ccumulate (IRA) codes and accumulate-
repeat-accumulate (ARA) codes were derived in [2], [18]tHa continuation of this section, we compare inner
bounds on the attainable channel regions of accumulatdbesdes under ML decoding. The comparison refers
to three ensembles of rate one-third, as depicted in Fig.&fitht one is the ensemble of uniformly interleaved
and non-systematic RA codes where the number of repetit®nps= 3, the second and the third ensembles are
uniformly interleaved and systematic ensembles of RA cades ARA codes, respectively, where the number of
repetitions is equal tg = 6 and, as a result of puncturing, every third bit of the nont@ystic part is transmitted
(so the puncturing period is = 3). For simplicity of notation, we make use of the abbreviasidNSRA N, q),
SPRAN, p, q) and SPARAN, M, p, q) codes for the encoders shown in Figs. 5 (a)—(c) (i.e., theezidiions ‘NS’
and 'SP’ stand for 'non-systematic’ and 'systematic and punect, respectively). In this notatiody is the input
block length.

We rely on the concepts of the analysis introduced in [2] feg talculation of the IOWEs of the uniformly
interleaved ensembles in Figs. 5 (a)—(c), as well as the lagilcn of the asymptotic growth rates of their distance
spectra. The generalizations of the DS2 and the 1961 Gallagerds for parallel channels are then applied to
these ensembles for the asymptotic case where we let thk lgogth tend to infinity.

N .. gN gN
&~ _| Repetition Interleaver Accumulate | _ gN
code(q) code
(a) Non-systematic RA codes - NSRAV, q)
N
N N N
N Repetition ¢ Interleaver ¢ Accumulate i Puncturing | - 4N
code(q) code period (: p) p
(b) Systematic RA codes with puncturing - SPRA, p, q)
N
M
.. N N N .
Accumulate ‘H Repetition ! Interleaver 1 Accumulate 1 Puncturing |~ 4N
N-M code code (Q) code perlod (Z p) P

(c) Systematic ARA codes with puncturing - SPARA, M, p, q)

Fig. 5. Systematic and Non-systematic RA and ARA codes. The intereajghese ensembles are assumed to be chosen uniformly at
random, and are of lengifV where N designates the length of the input block (information bits) arigl the number of repetitions. The
rates of all the ensembles is set-abits per channel use, so we sget= 3 for figure (a), and; = 6 andp = 3 for figures (b) and (c). The
diagram in part (a) corresponds to a non-systematic ensemble withoatuping, whereas the diagrams in parts (b) and (c) correspond to
systematic ensembles with puncturing.
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The average IOWE and the asymptotic growth rate of the distapectrum for the ensemble of uniformly
interleaved NSRA codes (see Fig. 5 (a)) are given in (16) anjl (@Zpectively.

Following the approach of the analysis in [2], we derive therage IOWES of the uniformly interleaved ensembles
of SPRA(V,3,6) and SPARAW,M ,3,6) codes (see Figs. 5 (b) and (c)). The details of this aisalyre provided
in Appendix D. In the following, we present the final resultéated to the finite-length and asymptotic distance
properties (where we eV tend to infinity); these results serve later for the calcatabf attainable channel regions
under ML decoding.

We consider here the case where the repetition code repaaishé six times, and the parity bits are punctured
so that every third bit is transmitted. The IOWE of the ensendfluniformly interleaved SPRAV, 3,6) codes in
Fig. 5 (b) is given by (see Appendix D.1)

2N 2N min(j,h
h\ (2N — h\ /2N —d +w
ey SO
hOJ 0 i=max(0,j—2N-+h) 2
—w-—1 o
¢ )3T G g (102)
[31-1 ’
whered,, ,, designates the discrete delta function (i.e., it is equdl tbn = m, and is equal to zero otherwise).
The IOWE of the ensemble of uniformly interleaved SPARAM, 3,6) codes in Fig. 5 (c) is given by (see
Appendix D.1)

v ) (2 ()
R N I S
m=0 [=0 h=0 j=0 i=max(0,j—2N+h) 61
<h> <2N — h) <2N —d+ w>
i)\ j—i 2]
(d - 1>3h+j 2 Se12j4h - (103)
(5] —1

The asymptotic growth rates of the distance spectra of theseehsembles are obtained by the calculation of

the limit

d
r(6) lim N E Aw.d, ) N (0<6<1)

Nﬂoo

where it is taken into account that the common rate of theserehles is equal to one-third bits per channel use.
Let H(z) = —zIn(z) — (1 — z)In(1 — =) be the binary entropy function to the natural base, then wed
known that

Jim 1ln<n>:H(ﬂ), 0<B<1. (104)

n—oo 1 on

For the derivation of the asymptotic growth rate of the agerdistance spectrum for the ensemble of uniformly
interleaved SPRAN, 3, 6) codes wheréV — oo, we rely on the IOWE given in (102), and introduce the paramset

h a b J
N M Tan P Eay
The asymptotic growth rate of the distance spectrum of thézemble is given by (see Appendix D.2)
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where the three-parameter maximization is performed dwefihite domain which is characterized by the following
inequalities:

2 2
0§77§§, Oszég, 2p2+n <60, p2+2n<3)

2
IMMQm+n—§)Sm§Hmmmm,n—erMSZ (106)

The derivation of the asymptotic growth rate of the averagtadice spectrum for the ensemble of uniformly
interleaved SPARAN, M, 3,6) codes, wheréV — oo and the ratio% is fixed, relies on the IOWE given in (103).
To this end, we introduce the three additional parameters

a M A M A W—Mm

[0 — g1 = € =
3N’

— 107
3N’ 3N (107)
As mentioned above, the value @fis fixed, and als® < a < % (sinceM < N). After straightforward and tedious
algebra which is conceptually similar to the calculatiom$\ppendix D.2, one obtains the following expression for
the asymptotic growth rate of the average distance speabfutimne considered ensemble of uniformly interleaved
SPARA codes:

1 2
r(d) = max aH(E—l)—F - —a— p2+77+51 H £
7,P1,P2,€1,€2 (6% 3 6 2 (1 2/72% + 51)

3-a-

2 2
+<P2+77_51> gl e +nH(P1>_2H<W>
6 2<2P26+77_€1) n 2
2 p2 — p1 (2 ) U]
+ls—n|H +|5s-0+e1t+e) H
<3 ") (g—n> 3 b 2(2-6+e1+e)

+(5 — &1 — 62)H <2(5_;71_€2)> + (77 + p2 — 2p1) ln3} (108)

where the five-parameter maximization is performed ovefittiee domain which is characterized by the following
inequalities:
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2p2+1

€2§nﬁn<§—2a—- +2a,%”;77—2a>. (109)

In the asymptotic case where we let the block length tend fiaifyy inner bounds on the attainable channel
regions for the considered ensembles of accumulate-baskzs @re calculated in this section by Theorem 3.

In Fig. 6, we compare inner bounds on the attainable channeidaries as calculated by the union, LMSF, and
DS2 bounds from Sections IlI-A and 11I-B. This plot refers to #resemble of NSRAV, 3) codes of rat% bits per
channel use (see Fig. 5 (a)) where we Mettend to infinity. The asymptotic growth rate of the distancectpen
of this ensemble is calculated by (17) with= 3. The remarkable superiority of the both versions of the DS2
bound over the union and LMSF bounds is exemplified for this eb&=mwf turbo-like codes; actually, the DS2
bound from Sec. IlI-B appears to be slightly tighter than ti&20bound from Sec. IlI-A at the extremities of the
boundary of the attainable channel region. We conjectuae ttiis is the region where the application of Jensen’s
inequality in the latter bound (see the move from (28) to Y28hders its tightness the most, possibly due to the
large variance of the summands in (28). This phenomenon veasdaddserved for various turbo-like ensembles,
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Fig. 6. Attainable channel regions for the rate one-third uniformly inteddaensemble of NSRAV, 3) codes (see Fig. 5 (a)) in the
asymptotic case where we I&f tend to infinity. The communication takes place over= 2 parallel binary-input AWGN channels, and
the bits are equally likely to be assigned over one of these chanmgls (2 = %). The achievable channel region refers to optimal ML
decoding. The boundaries of the union and LMSF bounds refer to thasdi®on in [23], while the boundaries referring to the two versions
of the DS2 bound refer to the derivations in Sections IlI-A and lll-&8|dwed by an optimization of the tilting measures derived in these
sections.

as well as for ensembles of fully random block codes. Howeawethe middle region where the channels are not
very different, the DS2 bound from Sec. llI-A is in some casgitér than the DS2 bound from Sec. IlI-B. In
the continuation of this section, we therefore comparerifm@inds on the attainable channel regions for various
ensembles of turbo-like codes where the boundaries of tleggens by choosing the tightest version of the DS2
bound, i.e., that which yields the largest attainable ckanegion. This comparison appears in Fig. 8).

Fig. 7 compares the asymptotic growth rate of the distancetrspef several ensembles of uniformly interleaved
and accumulate-based codes where the ensembles are dépi€ig. 5. The improved performance of the ensembles
of SPARA codes under ML decoding is demonstrated in Fig. 8. Tiigrovement is attributed to the distance
spectral thinning effect [27] which is exemplified in Fig. 7 filne ensembles of NSRA, SPRA and SPARA codes
of the same code rat% (bits per channel use). The same phenomenon of distance apthitning also exists
by reducing the value ofv for the ensembles of SPARA codes (see Fig. 7, comparing the ks for a = i
anda = 1%); this in turn yields an improved inner bound on the attaleathannel regions, as observed in Fig. 8.
It is shown in this figure that for the SPARA ensemble with theapsetersp = 3,¢ = 6 anda = 12—5 the gap
between the inner bound on the attainable channel regioerudd decoding and the capacity limit is less than
0.05 dB. Note that for the examined ensembles of NSRA and SPRésaoidthe same code rate, the corresponding
gaps between the inner bounds on the attainable channehsegind the channel capacity are 2.2 dB and 0.5 dB,

respectively (see Fig. 8).

C. Considerations on the Computational Complexity of thad€eaized DS2 and 1961 Gallager Bounds

The brute-force calculation of the generalized DS2 boundifa@ar codes (or ensembles) of finite length is in
general computationally heavy. For every constant weigbtsde, it requires a numerical optimization over the
two parameters\ > 0 and0 < p < 1; for each subcode of constant Hamming weight and for eaclcehaf
values for and p, one needs to solve numerically the implicit equations/faand 3, (see Eqgs. (43) and (44))
which are related to thé optimized tilting measures. Moreover, for each subcodeaapdir of values for\ andp,
the evaluation of the generalized DS2 bound requires nualdritegrations (or summations, in case the channel
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Fig. 7. Comparison of asymptotic growth rates of the average distarmtramf ensembles of RA and ARA codes.

outputs are discrete). Performing these tedious and timserning optimizations for every constant weight subcode
would make the improved bounds less attractive in termsaif fhractical use for performance evaluation of linear
codes and ensembles.

In the following, we suggest an approach which significantigluces the complexity related to the computation
of the generalized DS2 bound, and enhances the applicatilitye bound using standard computational facilities.
First, the code is partitioned into constant Hamming weighicedes, and the exact union bound (see Eq. (C.5))
is calculated for every subcode (note that the number ofmild® does not exceed the block length of the code).
This task is rather easy, given the (average) distance spedtd;,} or the weighted IOWE A} } of the code (or
ensemble) which are calculated in advance (see (23) anyl (84)rder to reduce the computational complexity, we
do not calculate the generalized DS2 bounds for those cdrdtmming weight subcodes for which the values of
the union bounds fall below a certain threshold (e.g., we ofaose a threshold do—!° for bit error probability
or 1076 for block error probability; these thresholds should béotad for the application under consideration).
Next, for those constant Hamming weight subcodes for whirghunion bound exceeds the above threshold, the
generalized DS2 bound is evaluated. For these subcodes, sietavreduce the infinite interval > 0 to a finite
interval; this is performed by using the transformatign ﬁ so that the two-parameter optimization is reduced
to a numerical optimization over the unit squdpé, p) € [0,1]2. In this respect, it was observed that the optimal
values of \' and p vary rather slowly for consecutive values of the constantnhiing weighth, so the search
interval associated with the optimization process may loeiged once again with no penalty in the tightness of
the bound. In other words, we search for optimal values’and p only within a neighborhood of the optimal
andp found for the previous subcode. We proceed in this mannéralhthe relevant subcodes are considered. As
an example, we note that for the ensemble of turbo codes téepic Fig. 4(b), about 80% of the computational
time was saved without affecting the numerical results;his tespect, the threshold for the bit error probability
analysis was chosen to B%}G wheren designates the block length of the code. The reduction indhepatational
complexity becomes however more pronounced for higher SN&esaas the number of subcodes for which the
union bound replaces the computation of the generalized @8BRdincreases.

An analogous consideration applies to the generalizedorers the 1961 Gallager bound for parallel channels
with its related optimized tilting measures.

Referring to the calculation of attainable channel regioassearch over the region of channel parameters
is required. As an example, consider a set of parallel AWGHnokls characterized by thé&tuple of SNRs
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Fig. 8. Attainable channel regions for the rate one-third uniformly inteddaaccumulate-based ensembles with puncturing depicted in
Fig. 5. These regions refer to the asymptotic case where wg tend to infinity. The communication takes place ovet 2 parallel binary-
input AWGN channels, and the bits are equally likely to be assigned ovepbtiese channelsag = a2 = 1). The achievable channel
region refers to optimal ML decoding. The boundaries of these regiomgalculated by selecting the tighter of the two generalizations of
the DS2 bound appearing in Sections IlI-A and lI-B, followed by thérojzation of their respective tilting measures. The capacity limit
and the attainable channel regions which corresponds to the cutoffreatfvan as a reference.

(v1,...,vy). In order to find the attainable channel boundary, we fix theeslof v, ...,v;_; and perform a
linear search over; using any appropriate method (e.g., the bisection methodyder to find the smallest value
of v} for which the lower bound on the error exponent (as obtaingdhib upper bound on the ML decoding
error probability) vanishes. vy, ..., v;_1,0) is not an attainable point while., . ..,v;_1,00) is attainable, then
the resulting value is such that the pointvy,...,v%) is on the boundary of the attainable region. The overall
complexity of this approach is, of course, polynomial/inWWe apply this approach in this section for the calculation
of inner bounds on the attainable channel regions under Miodiag, referring to the generalizations of the DS2
and 1961 Gallager bounds in Sections Il and IV, respectively

VIll. SUMMARY

This paper is focused on the performance analysis of binagafiblock codes (or ensembles) whose transmission
takes place over independent, memoryless and symmetatigdahannels. New bounds on the maximum-likelihood
(ML) decoding error probability are derived. These boundsagglied to various ensembles of turbo-like codes,
focusing especially on punctured repeat-accumulate acuhadate-repeat-accumulate (ARA) codes which possess
low encoding and decoding complexity and exhibit remar&ad@drformance under iterative decoding (see, e.g., [1],
[9], [20], [28], [29]). The framework of the second versiontbhe Duman and Salehi (DS2) bounds is generalized
to the case of parallel channels by means of two differentagmies, along with the derivation of their optimized
tilting measures. For the case of random codes, one of thedso{namely, the one derived in Sec. IlI-B) attains
the random coding exponent while the other (derived in Sé&)lidoes not. This difference is attributed to the
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additional Jensen’s inequality in the transition from (B8)29) (see p. 11) which is circumvented in the derivation
of Sec. llI-B. Nevertheless, for general code ensembleshereof these two bounds is tighter than the other. The
generalization of the 1961 Gallager bound for parallel cleds) introduced by Liu at al. [23], is reviewed and the
optimized tilting measures which are related to this boureddeerived via calculus of variations (as opposed to the
use of simple and sub-optimal tilting measures in [23]). Thanection between the generalized DS2 bound and
the 1961 Gallager bound, which was originally addressed lwgdhar [10] and by Sason and Shamai [33], [36]
for a single channel, is revisited in this paper for an aalpjtmumber of independent parallel channels which are
memoryless and symmetric. In this respect, it is shown tatl961 Gallager bound [23] is a special case of the
generalized DS2 bound derived in Sec. 11I-B and is not a speaist of the DS2 bound derived in Sec. IlI-A. In the
asymptotic case where we let the block length tend to infitlitg, new bounds are used to obtain improved inner
bounds on the attainable channel regions under ML decodihg.tightness of the new bounds for independent
parallel channels is exemplified for structured ensemblesirto-like codes. In this respect, the inner bounds on
the attainable channel regions which are computed by the @8@dfrom Sec. IlI-A are slightly looser than those
computed by the DS2 bound from Sec. IlI-B at the extremitieshef boundary of the attainable channel region.
On the other hand, in the region where the channels are ngtdierent, the DS2 bound from Sec. IlI-A is
slightly tighter. It is therefore suggested to use in eaddedhe tighter of the two bounds in order to maximize the
attainable channel region. For turbo-like ensembles oferate block lengths, the two versions of the generalized
DS2 bound are almost equally tight (see, e.g., Fig. 4(b) in p. 32

Following the approach in [2], we analyze the distance speahd their asymptotic growth rates for various
ensembles of systematic and punctured accumulate-badged ¢gee Fig. 5). This distance spectral analysis serves
to assess the performance of these codes under ML decodieig wike rely on the bounding techniques developed
in [23] and this paper for parallel channels. The improvedfgrarance of the ensembles of systematic and
punctured accumulate-repeat-accumulate (SPARA) codesruvitl decoding is demonstrated by combining the
two generalized DS2 bounds from Sections IlI-A and IlI-B (seg. M). This improvement is attributed to the
distance spectral thinning effect [27] which is exemplifiedFig. 7 by comparing the asymptotic growth rates of
the distance spectra for the ensembles in Fig. 5 (a)—(c).

The generalization of the DS2 bound for parallel channels lesato re-derive specific bounds which were
originally derived by Liu et al. [23] as special cases of th&ll%allager bound. However, the improved bounds
together with their optimized tilting measures show, rdggss of the block length of the codes, an improvement
over the bounds derived as special cases of the 1961 Gabaged; this improvement is especially pronounced
for moderate to large block lengths. We note that in somesgahe new bounds under ML decoding happen to
be a bit pessimistic as compared to computer simulationsilofoptimal iterative decoding (see, e.g., Fig. 4(b)),
thus indicating that there is still room for further improvent of the bounds under ML decoding.
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APPENDIXA
A. On the Sub-optimality of Even Tilting Measures in the GaltaBound
In the following, we derive the functiong(-; j) resulting from the optimal DS2 tilting measures in (42) and
demonstrate that they are not even functions. From (32), wéhgeexpression

- 9w pl0g) A i
U(y:J) S o4 el 10:) 9(; 3)p(yl0; )
”

for the single-letter connection between the normalized an-normalized DS2 tilting measures; changing the

subject gives i)
N Y J
95) =¢ (p(y\();j)> ‘ (A1)
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Substituting (42) in (A.1) we obtain the optimal form of the-mormalized tilting measure as

P\
) =c | 1+k - A.2
9(8:9) ( (p(yIO;J)) ) (A2)
Next, we substitute (79) in the LHS of (A.2) and manipulate é¢xpression to get
f(y; ) = const p(y[0; 5) 1+k< (yl;j))A ’ : (A.3)
(¥10;7)

Clearly, this expression does not constitute an even foncti
B. Technical Details for Calculus of Variations ¢84)

The bound on the decoding error probability for constant Hamgmveight codes is given by substituting (83)
into (72). Disregarding the multiplicative ter@®(), we minimize the expression

h
J
U £ Ah{zajZ[p(yO;j)p(y1;j)]lzrf(y;j)7"}
Jj=1 Y

<

=1 Yy

n—h
{ZO;Z (Wl0:5)' ™" + p(yl1:5) '] f(y;j)"} el
J o n
+{ZQJZ Y05 5)1 7 + p(y[1;5) ] f(y;j)s} e,
j=1 Y

r<0,s>0 —o0c0<d< . (A.4)
Employing calculus of variations, we substitute in (A.4) fodowing tilting measure

f(y;9) = foly; 3) +en(y; §)
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wheren(-;j) is an arbitrary function. Next, we impose the condition t%%ét[ _o = 0 forall n(-; 7). The derivative
is given by

ou

Oe |._

h—1
= Ape e {h [Z%Z Wl0: Dyl L; ) = fo(y;j)’”]

AE?&'

i Y (w10 )p(yl1; 5)) zrrfo(y;j)”n(y;j)]

| J=1 y
J N n—~h
Zng (y10;)" "+ p(y[1:5)' ") foly; 4)"
=1
: ! J N n—h—1
(n—nh ij (y]0; )" + p(y|1;5)'77) fo(y;j)r]
Jj=1 y

J
{Z‘;Z (y10: )"~ + Pyl ) ") 7 fows 4) nly: y>]
Y

J B h
{E a; E (p(y[0; 5)p (yl;j))zfo(y;j)T] }
=1

n—1
J .
+e " {ZO;Z( (yl0;5)' = + p(yl1;5)"~°) fo(y;j)s]
Jj=1 y
J
{Z?Z(p(y&])l *+p(yl1;5) %) Sfo(y;j)SIU(y;j)} : (A.5)
j=1 Y

Defining the constants

7 i h—1
a & Ape " hr {Z i > (p(l0; 5)p(y|1; N fo(y;j)’"]

Y

n—h
o £ iO;jZ(p(yO;j)l’”+p(y1;j)”)f0(y%j)rl
7j=1 Yy n—h—1
e & Aperral 1R {Z%Z (y]0; )" p(yl;j)”)fo(y?J)T]
§ h
o 2 jzlajzy:(p(yo;j)p(y1;j>)1"’rf0(?/3¢7')r]

Cy =

n—1
(p(y]0;5)'~* p(yl;j)”)fo(y;j)sl

|I>

3

&

| 3
l+|

(]

v |2

@M

(A.6)



42

and requiring that the integrand in (A.5) be equal to zero gekthe equivalent condition

Z%{(szlpylo NPT + esea [p(ul0: ) p(yll;j)”})fo(y;j)”

+es [p(y|0; ) ° p(yll;j)”}fo(y;j)“} =0, Vyel.
Defining K = 4%, K, £ “%, and dividing both sides by (y;j)"~' implies the condition in (85).

APPENDIX B: PROOF OFTHEOREM 3

The concept of the proof of this theorem is similar to the primdfoduced in [22, pp. 40-42] for the single
channel case, and the proofs of [23, Theorems 2—4] for theasiceof independent parallel channels. The difference
in this proof from those mentioned above is the starting painich relies on the generalization of the DS2 bound
(see Theorem 1 in Section IlI-A).

We begin by rewriting the DS2 bound for a specific constant Hargmaeight subcode (35) as

Peo(h) < Aj By,

where

[I>

By,

0
J
(Z $ 3w el ) b m)*)

J 1-0
Do) wlyd) rp(yl0s ) ) : (B.1)
Jj=1 y

By selecting the optimized tilting measures and optimaugalofA > 0 and0 < p < 1, we obtain the optimized
bound B{™, which is related to the optimal exponeaPS2 (§) by

b\’—‘

B}Olpt _ efn(EDszl (6)+pr[c](5)>7 6 é % (Bz)
The upper bound on the ML decoding error probability of theeemde can be written as
Pleml < ZAPBOPt < ZAh + Z At + Z AP B (B.3)
h=D,+1 h=an+1

for any a > 0. This follows since for weights up t®,,, we upper boundB,‘;pt by 1, and for Hamming weights
from D, + 1 up to an, the DS2 bound is relaxed by selecting= 1 and using the union bound (see (88)). Let us
examine the behavior of each of the three terms in the RHS &) (Bs we letn tend to infinity, the first term in
the RHS of (B.3) goes to 0 due to the third condition of the theo

The second term in the RHS of (B.3) satisfies the equality

an It

h=D, +1 h=D,+1

We now rely on the second condition of Theorem 1 (see (100))thedourth condition of this theorem, where
the latter condition is related to the uniform convergente®® (§) to the asymptotic growth rateCl(5) over the
interval [0,1]. These two condition imply that for large egbuwalues ofn, there exists a positivea which is close
enough to zero for which

rleml ()

5 +1In(y) < =0y <0, Vo<«
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for some positivedy. This implies the inequality

an Sem) s amn —D, 0o
3 ST ) 3 e < €
- ~1—e%
h=D, +1 h=D,+1

which tends to zero as — oo becauseD,, — cc.
Finally, by using (B.2) and relying on the fourth conditionTheorem 1, the third term in the RHS of (B.3) can
be expressed as
Z AZngt _ Z efn(EDszl (8)+p(rlel(8)—rlcI(8))) _ Z efn(EDszl (8)+o(1)) (B.4)
h=an h=an h=an
which vanishes as — oo due to (99), thus completing the proof of Theorem 1 (since & d@monstrated that each
of the three terms in the RHS of (B.3) vanishes as wexlétnd to infinity, so also the decoding error probability
in the LHS of (B.3) vanishes asymptotically)l

APPENDIX C: EXACT UNION BOUND FORPARALLEL GAUSSIAN CHANNELS

In this appendix, we derive the union bound on the ML decodingr probability of binary linear block codes
transmitted over parallel Gaussian channels. This form efuhion bound can also be used in conjunction with
other bounds (e.g., 1961 Gallager or both versions of the Dfsidis) for constant Hamming weight subcodes in
order to tighten the resulting bound. Unfortunately, wenmdarcompare here "two versions” of the union derived
by the two different approaches which were used for the DSZdéon Sec. lll. This is because when applying
the CSIR model, we have no exact expression for the pairwise probability for a general distribution; of
the channel states. Therefore, we must use the first approaakiecdging the bound over all possible channel
mappings. We start the derivation by expressing the paénersor probability given that the all-zero codeword is

transmitted
J
j=1

wherez; , . is a codeword possessing split Hamming weights. .., h; in the J parallel channels, and

v; & (%) designates the energy per symbol to spectral noise dewsitiid ;" AWGN channel { = 1,2,...,.J).

The union’bound on the block error probability gives

P, < Z Z Ahl,...,hJQ(

h=1 h1>0,....,h;>0
h1++h]:h

.....

(C.2)

where this bound is expressed in terms of the split weightresmator of the code. Averaging (C.2) over all possible
channel assignments and codes from the ensemble gives3@ge (

P < > {Z > A, Pyn(hin) Py(n) Q

n; >0 h=1 0<h;<n,;
ni+...+ny;=n Zj hj=h

— Z Zn: Z Ah(hl,hg,h...,h)

n; >0 h=1 0<h;<n,
n1+...+7LJ:’VL E] hJ:h

n—nh
nl_hlyn2_h2a"'7nj_hj

J
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where a; designates the a-priori probability for the transmissidrsymbols over thej" channel, assuming the
assignments of these symbols to thearallel channels are independent and random.
In order to simplify the final result, we rely on Craig’s iddgtfor the Q-function [7], i.e.,

Q(:L‘) = / 6_2six)29d9 s T 2 0. (C-4)
0

™

Plugging (C.4) into (C.3) and interchanging the order ofgnéion and summation gives

n

_ 1 [ A, "
P < 77/0 2. 2 2 Ah<h17h27-~-7hJ>

n; =0 h=1 0<h;<n;
ni+...+nyj=n Z h.=h
i=

n—nh J vihy
at..al) H e smZo » 0O
ny —hi,ne —hg,...,ng—hy

h=1 h; >0 j=1
S hy=h
(aj) J} do
>0 {<k17k27 k)
ijj:n h
b 1 zn J 5 h
(b) 7r/ S A | age e | do (C.5)
0 p=1 j=1

where (a) follows by substituting; = n; — h; for j =1,2,...,J, and (b) follows since the sequen{:ej}j:1 is

a probability distribution, which gives the equality
—h

S J | J "
= (e (5)

j=1
Z]‘ k’J:n—h

Eq. (C.5) provides the exacf¢form) version of the union bound on the block error prokgbilor independent
parallel AWGN channels.

APPENDIXD: DISTANCE SPECTRAANALYSIS OF SYSTEMATIC ACCUMULATE-BASED CODES WITH
PUNCTURING

The following analysis is focused on the distance spectraniformly interleaved and systematic ensembles
of repeat-accumulate (RA) codes and accumulate-repeatradate (ARA) codes with puncturing (see Figs. 5 (b)
and (c) in p. 33). As mentioned in Section VII-B, these two enlsies are abbreviated by SPRA and SPARA codes,
respectively (where 'SP’ stands for 'systematic and pundtjr&/e derive here the input-output weight enumerator
(IOWEs) of these ensembles and also calculate the asympgpaticth rates of their distance spectra. The analysis
follows the approach introduced in [2], and it is written irs@lf-contained manner.

The component codes constructing SPRA and SPARA codes are amwlatel code (i.e., a rate-1 differential
encoder), a repetition code and a single parity-check (SP@&.c8ince we consider ensembles of uniformly
interleaved codes, their IOWEs depend on the IOWE of the aborgonent codes [4], [5]. As a preparatory step,
we introduce the IOWEs of these components.

1) The IOWE of a repetition (REP) code is given by

AT = (1) G ©.
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wherek designates the input block length, afyg,, is the discrete delta function.
2) The IOWE of an accumulate (ACC) code is given by

ARCC <nL§Jd> ((Z{_l 1) (D.2)

wheren is the block length (since this code is of rate 1, the input amipput block lengths are the same). The
IOWE in (D.2) can be easily obtained combinatorially; tcstbind, we rely on the fact that for the accumulate
code, every single "1’ at the input sequence flips the valubebutput from this point (until the occurrence
of the next '1’ at the input sequence).

3) The IOWE function of a non-systematic single parity-cheokle which provides the parity bit of each set
of p consecutive bits, call it SR@), is given by (see [2, Eq. (8)])

A(W,D) = ZZASPQ” W DA

w=0 d=0
- [Ever((l + W)P) + Odd((1 + W)p)Dr 0.3)
where
Even((1 + W)?) = (1L+W)P —; (1— W)
Odd((l + W)p) _ (1+W)P ; (1—-w)p 0.

are two polynomials which include the terms with the even add powers ofit’, respectively.

To verify (D.3), note that a parity-bit of this code is equal 1 if and only if the number of ones in the
corresponding set gb bits is odd; also, the number of check nodes in the consideodé is equal to the
block length of the codén).

O

] 0
O E/Oo
O E/ X
T -
=] 0
O E‘/i =X

Fig. 9. Accumulate code with puncturing peripd= 3 and an equivalent version of an S@¢ code followed by an accumulate code.

O {+] O -

The case where the output bits of an accumulate code are pedakith a puncturing period is equivalent to
an SPCp) code followed by an accumulate code (see Fig. 9 which wasnadligishown in [2, Fig. 2]). Hence, for
the uniformly interleaved ensembles of SPRA and SPARA coddsaviguncturing period o = 3 (see Figs. 5 (b)
and (c)), we are interested in the IOWE of the $®Ccode. For the case whepe= 3, (D.4) gives

Even((1+ W)?) =1+ 3W?, Odd((1+W)?) =3W + W?

and (D.3) gives straightforwardly the following IOWE of tt8PG3) code [2, Eqg. (15)]:

qu:s e d\(n—d d+j—2i
53 OCes e

]—Z
Jj=0 i=max(0,j—n+d)

In the following, we consider two uniformly interleaved ensbles of SPRA and SPARA codes with= 6
repetitions and puncturing of perigd= 3, as shown in Fig. 5 (b) and (c). We rely here on the equivalehoe/s
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in Fig. 9, related to the inner accumulate code with puncturin this respect, since the input bits to the SPC
(appearing in the right plot in Fig. 9) are permuted by the amif interleaver which is placed after the repetition
code (see Figs. 5 (b) and (c)), then the average IOWEs of theseraembles remain unaffected by placing an
additional uniform interleaver between the SPC and the inoeuraulate codes. Similarly, placing another uniform
interleaver between the precoder in Fig. 5 (c) (i.e., the omtlizh accumulates the firsV — M bits) and the
repetition code, does not affect the average IOWE of theativensemble in Fig. 5 (c).

As mentioned above, the equivalence in Fig. 9 yields that amitHoss of generality, an additional uniform
interleaver of lengthV’ = % = 2N bits can be placed between the §BCcode and the accumulate code without
affecting the calculation. By doing so, the average IOWEh# serially concatenated and uniformly interleaved
ensemble whose constituent codes are the($3P&nhd the accumulate codes, call it ACK, is given by (see [5])

ACC3) 2N ASP}EIS) AACC
AT =3 (0-6)

h=0 (h)

The substitution of (D.2) and (D.5) into (D.6) gives

ax-Ss 8 OO

h=07=0 i=max(0,j—2N+h)
ghti—2i 5w72j+h}- (D.7)

Note that (D.7) is similar to [2, Eq. (19)], except that in the latter equation is replaced W in (D.7). This
follows since? (i.e., the ratio between the number of repetitions and thecfowing period) is equal here to 2,
instead of 1 as was the case in [2]. Equation (D.7) will be usedhe finite-length analysis of the distance spectra
for the ensembles considered in the continuation to this aghi.

A. Finite-Length Analysis of the Distance Spectra for Systengaisembles of RA and ARA Codes with Puncturing

Uniformly Interleaved SPRAN, 3,6) codes Let us consider the ensemble depicted in Fig. 5 (b) where6
andp = 3. Since there is a uniform interleaver of lengti’ = ¢V between the repetition code and the equivalent
ACC(3) code, the average IOWE of this serially concatenated anfbramiy interleaved systematic ensemble is
given by

jorase 45 AAE
w,d 6N
1=0 )
() Abaat
= “’T‘“’w (D.8)
(Gw)

where the last equality is due to the equality in (D.1). Sattig (D.7) in the RHS of (D.8) gives the average
IOWE of the considered ensemble, and this result coincidés (@02).

Uniformly Interleaved SPARAN, M, 3,6) codes By comparing Figs. 5 (b) and (c), we see that a precoder isgdlac
in the second figure. Referring to the ensemble of SPARA codéshwit shown in Fig. 5 (c), the precoder is a
binary linear block code whose fir&f — M input bits are accumulated and the othidrinput bits not changed;
theseN bits are encoded by the repetition code. The IOWE of the syaiemprecoder, call iPr e(N, M), is given

by
M
Pre(N,M M
AT =3 () A

m
m=0

- )G ©9

m=0
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where the last equality relies on (D.2). As mentioned beflarethe uniformly interleaved SPARA ensemble depicted
in Fig. 5 (c), an additional uniform interleaver between thecpder and the following stages of its encoder does
not affect the average IOWE; this ensemble can be theref@wed as a serial concatenation with a uniform
interleaver of lengthV which is placed between the precoder and the repetition soéég. 5 (¢) (in addition to
the uniform interleaver which is placed after the repatitemde). Moreover, referring to the systematic ensemble
whose components are REP and ACQ3), the input bits (which are the bits provided by the precodethie
second stage in Fig. 5 (c)) are not transmitted to the chaiméght of these two observations, the average IOWE
of the uniformly interleaved ensemble of SPARA codes showRign 5 (c) is given by
N APre(N,M) ASPRA(N,3,6)
Ail?’gRA(N,M,3,6) _ Z w,l (Ng,d—wﬂ ' (D.10)

1=0 l

By substituting (D.8) (i.e., the equality in (102)) and (Pifto (D.10), one obtains the expression in (103) for the
average IOWE of the SPARAV, M, 3,6) codes.

B. Asymptotic Analysis of the Distance Spectra

This subsection considers the calculation of the asympftytevth rates of the distance spectra for the two
ensembles in Figs. 5 (b) and (c). The calculation of the asytepgpowth rate of the distance spectrum of a
sequence of codes (or ensembles) is performed via (14).elrfdlowing, we exemplify the derivation of (105)
from the average IOWE in (102). The derivation of (108) frod3Lis conceptually similar, but is more tedious
algebraically. Since we focus here on ensembles of rate hirte-and the block length of the input bits ¥
(see Fig. 5), the asymptotic growth rate of their distancectspas obtained by normalizing the logarithm of the
average distance spectra of the considered ensembie-by8 N and letting N tend to infinity. Referring to the
average IOWE of the uniformly interleaved ensemble of SPR/A, 6) codes, as given in (102), we introduce the
normalized parameters

d A h A ,L A ]
a s h a b s D.11
aN' "7 3N PLT 3N 2T 3N (b.11)

The normalization by N yields that the new parameters satisfy

62

0<6<1, OSHS; Oépzﬁg (D.12)
From the partial sum w.r.t. the indexin the RHS of (102), dividing the terms in the inequality
max(0,7 — 2N + h) < i < min(j, h)
by 3N gives
maX(O, p2+mn— %) < p1 < min(pz,n). (D.13)

Since the codes are systematic and the block length of the bifsuis NV, we get that the terms which contribute
to the IOWE in the RHS of (102) satisfy

w < min(d,N), 6w=2j+h (D.14)
and, from (D.11), multiplying (D.14) by gives
2p2 + 1 . 1
2 < min (5, g)- (D.15)
From the binomial coefficients which appear in the RHS of (1@4¥ required that
h h
_ > | = —w> | =
o aws |2 acs [
so dividing both sides of these inequalities ¥, and letting/NV tend to infinity gives

n—p2+35<2, pa+2n <30 (D.16)
Combining (D.12)—(D.16) gives the domain for the three paatersy, p; andpy in (106).
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A marginalization of the IOWE enables one to obtain the distaspectrum

N
Ag=> Aua (D.17)
w=0

where the IOWE{A,, 4} is given by (102). Note that unless

w  27+h  2p2+7

_— = pu— D-l

N 6N 2 (D.18)
the IOWE A, 4 in (102) vanishes, and therefore it does not affect the suthedrRHS of (D.17). In the limit where
N — oo, the asymptotic growth rate of the average distance spactou the uniformly interleaved ensemble of

SPRA(N, 3,6) codes (see Fig. 5 (b) in p. 33) is obtained from (102), (1049, @17). Hence, we get

N
. 1
r0) = gy D Ava

. 1 w 6w ) j—1
= 1 — INH(Z) —6NH (=) +hH [~ )+ QN —n)H
Niﬁorﬁﬁ?{w[ (N) 0 <6N> * <h> *+ ) <2N - h)

h
+(2N —d+w)H <2(2N_hd+w)> +(d-—w—-1)H <d_2‘w_1>

+(h+j—27j)ln3] }

By multiplying the three parameters which are involved ie thaximization by?%N, using (D.11) and (D.18) and
taking the limit whereN tends to infinity, one readily obtains the result in (105).

REFERENCES

[1] A. Abbasfar, D. Divsalar, and K. Yao, "Accumulate-rep@acumulate codes|EEE Trans. on Communicationgol. 55,
no. 4, pp. 692—702, April 2007.

[2] A. Abbasfar, K. Yao and D. Divsalar, “Maximum-likelihdodecoding analysis of accumulate-repeat-accumulates¢ode
Proceedings IEEE 2004 Global Telecommunications ConéerefiGLOBECOM 2004)pp. 514-519, 29 November—
3 December, 2004, Dallas, Texas, USA.

[3] E. Agrell, “Voronoi regions for binary linear block codg IEEE Trans. on Information Theoryol. 42, no. 1, pp. 310-316,
January 1996.

[4] S. Benedetto and G. Montorsi, “Unveiling turbo codesmsoresults on parallel concatenated coding schenEg&E
Trans. on Information Theorwol. 42, no. 2, pp. 409-429, March 1996.

[5] S. Benedetto, D. Divsalar, G. Montorsi and F. Pollaragri8l concatenation of interleaved codes: Performancl/sisa
design and iterative decodingEEE Trans. on Information Theoryol. 44, no. 3, pp. 909-926, May 1998.

[6] D. Burshtein and G. Miller, “Asymptotic enumeration rhetls for analyzing LDPC codes[EEE Transactions on
Information Theoryvol. 50, no. 6, pp. 1115-1131, June 2004.

[7] J. W. Craig, “A new, simple and exact result for calcutgtithe probability of error for two-dimensional signal
constellations,Proceedings 1991 IEEE Global Communicatippp. 25.5.1-25.5.5, Boston, MA, USA, 1991.

[8] C.Di, T. Richardson and R. Urbanke, “Weight distributtiof low-density parity-check codedEEE Trans. on Information
Theory vol. 52, no. 11, pp. 4839-4855, November 2006.

[9] D. Divsalar, H. Jin and R.J. McEliece, “Coding theorenws fturbo-like’ codes,” Proceedings of the 36th Allerton
Conference on Communication, Control, and Computpm 201-210, Monticello, lllinois, September 23-25, 1998

[10] D. Divsalar, “A simple tight bound on error probabilibf block codes with application to turbo code3glecommunica-
tions and Mission Operations (TMO) Progress Rept2+139, JPL, pp. 1-35, November 15, 1999.
[Online]. Available:htt p://tno. jpl.nasa. gov/tno/ progress_report/42-139/ 139L. pdf.

[11] T.M. Duman,Turbo Codes and Turbo Coded Modulation Systems: AnalysiParformance Bound#®h.D. dissertation,
Elect. Comput. Eng. Dep., Northeastern University, BostdA, USA, May 1998.

[12] T. M. Duman and M. Salehi, “New performance bounds fatbtucodes,”IEEE Trans. on Communicationsol. 46,
no. 6, pp. 717-723, June 1998.

[13] P. M. Ebert, Error Bounds for Parallel Communication ChannelslIT, Ph.D. dissertation, August 1966. [Online].
Available: htt ps://dspace. m t. edu/ bitstreanm 1721. 1/ 4295/ RLE- TR- 448- 04743384. pdf.



49

[14] R. G. GallagerLow-Density Parity-Check Code€ambridge, MA, USA, MIT Press, 1963.

[15] R. G. Gallager]nformation Theory and Reliable Communicatipdshn Wiley, 1968.

[16] A. Guillen i Fabregas and G. Caire, “Coded modulationtle block-fading channel: coding theorems and code
construction,”IEEE Trans. on Information Theoryol. 52, no. 1, pp. 91-114, January 2006.

[17] J. Ha, J. Kim and S. W. McLaughlin, “Rate-compatible ptuming of low-density parity-check codedEEE Trans. on
Information Theoryvol. 50, no. 11, pp. 2824-2836, November 2004.

[18] C. H. Hsu and A. Anastasopoulos, “Asymptotic weighttidimitions of irregular repeat-accumulate coddpceedings
2005 IEEE Global Telecommunications Conferenad. 3, no. 11, pp. 1147-1151, St. Louis, MO, USA, Nov. 2005.

[19] H. Jin and R. J. McEliece, “RA codes achieve AWGN chanmglaxity,” Lecture Notes in Computer Sciene®l. 1719,
Proceedings in Applied Algebra, Algebraic Algorithms andoECorrecting Codes: 13th International Symposium
(AAECC-13) pp. 10-18, Honolulu, Hawaii, USA, November 1999. M. FosgpH. Imai, S. Lin, and A. Poli (Eds.),
published by Springer-Verlag Heidelberg.

[20] H. Jin and R. J. McEliece, “Irregular repeat-accumlapeles,” Proceedings Second International Conference on Turbo
Codes and Related Topicsp. 1-8, Brest, France, September 2000.

[21] H. Jin and R. J. McEliece, “Coding theorems for turbo e@hsembles,JEEE Trans. on Information Theoryol. 48,
no. 6, pp. 1451-1461, June 2002.

[22] A. Khandekar, Graph-based Codes and lIterative Decodirgh.D. dissertation, California Institute of Technology,
Pasadena, CA, USA, June 2002. [Online]. Available:
http://etd. caltech. edu/ etd/ avail abl e/ et d-06202002- 170522/ unrestri cted/t hesi s. pdf.

[23] R. Liu, P. Spasojevic and E. Soljanin, “Reliable chdmegions for good binary codes transmitted over parall@nctels,”
IEEE Trans. on Information Theoryol. 52, no. 4, pp. 1405-1424, April 2006.

[24] S. Litsyn and V. Shevelev, “Distance distributions imsembles of irregular low-density parity-check codé8FE Trans.
on Information Theoryvol. 49, no. 12, pp. 3140-3159, December 2003.

[25] R. J. McEliece, “How to compute weight enumerators fonwlutional codes,” iCommunications and Codingauton
Research Studies, pp. 121-141, M. Darnel and B. Honary, Bdkey, 1998.

[26] G. Miller and D. Burshtein, “Bounds on the maximum-likeod decoding error probability of low-density paritiack
codes,”IEEE Trans. on Information Theoryol. 47, no. 7, pp. 2696—2710, November 2001.

[27] L. C. Perez, J. Seghers and D. J. Costello, “A distaneetspm interpretation of turbo code$ZEE Trans. on Information
Theory vol. 42, pp. 1698-1709, November 1996.

[28] H. D. Pfister, I. Sason and R. Urbanke, “Capacity-adhig\ensembles for the binary erasure channel with bounded
complexity,” IEEE Trans. on Information Theoryol. 51, no. 7, pp. 2352-2379, July 2005.

[29] H. D. Pfister and I. Sason, “Capacity-achieving ensesblf accumulate-repeat-accumulate codes for the eralsanael
with bounded complexity,IEEE Trans. on Information Theoryol. 53, no. 6, pp. 2088—2115, June 2007.

[30] G. Poltyrev, “Bounds on the decoding error probabitifjpinary linear codes via their spectr#8EE Trans. on Information
Theory vol. 40, no. 4, pp. 1284-1292, July 1994.

[31] I. Sason and S. Shamai, “Gallager's 1963 bound: exbessand observations,” Technical Report, CC No. 258, Techni
Israel, October 1998. [Online]. Available:
http://ww. ee. technion. ac.il/peopl e/ sason/ CC258_{text, figures}. pdf.

[32] I. Sason and S. Shamai, “On improved bounds on the degagliror probability of block codes over interleaved fading
channels, with applications to turbo-like codeffEE Trans. on Information Theorwol. 47, no. 6, pp. 2275-2299,
September 2001.

[33] I. Sason and S. Shamai, “Performance analysis of lireeates under maximum-likelihood decoding: a tutorial,”
Foundations and Trends in Communications and Informatibadrfy, vol. 3, no. 1-2, pp. 1-222, NOW Publishers, Delft,
the Netherlands, July 2006.

[34] I. Sason, E. Telatar, and R. Urbanke, “On the asymptopat-output weight distributions and thresholds of cdational
and turbo-like encoders/EEE Trans. on Information Theoyryol. 48, no. 12, pp. 3052-3061, December 2002.

[35] I. Sason and G. Wiechman, “On achievable rates and aoxitplof LDPC codes over parallel channels: Bounds and
applications,”IEEE Trans. on Information Theoryol. 53, no. 2, pp. 580-598, February 2007.

[36] S. Shamai and I. Sason, “Variations on the Gallager Oepnonnections and application#2EE Trans. on Information
Theory vol. 48, pp. 3029-3051, December 2002.

[37] N. Shulman and M. Feder, “Random coding techniques famrandom codes,JEEE Trans. on Information Theory
vol. 45, pp. 2101-2104, September 1999.

[38] X. Wu, H. Xiang, and C. Ling, “New Gallager bounds in bkefading channels,IEEE Trans. on Information Theory
vol. 53, no. 2, pp. 684—-694, February 2007.

[39] J. Zheng and S. L. Miller, “Performance analysis of abd@~DM systems over frequency-selective fading channels,”
Proceedings 2003 IEEE Global Telecommunications Conferd@LOBECOM '03)pp. 1623-1627, San Francisco, CA,
USA, December 1-5, 2003.



