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Abstract

The transmission of coded communication systems is widely modeled to take place over a set of parallel channels.

This model is used for transmission over block-fading channels, rate-compatible puncturing of turbo-like codes, multi-carrier

signaling, multilevel coding etc. New upper bounds on the maximum-likelihood (ML) decoding error probability are derived in

the parallel-channel setting. We focus on the generalization of the Gallager-type bounds and discuss the connections between

some versions of these bounds. The tightness of these boundsfor parallel channels is exemplified for structured ensembles

of turbo codes, repeat-accumulate codes and some of their recent variations (e.g., punctured accumulate-repeat-accumulate

codes). The bounds on the decoding error probability of an MLdecoder are compared to computer simulations of iterative

decoding. The new bounds show a remarkable improvement overthe union bound and some other previously reported bounds

for independent parallel channels. This improvement is exemplified for relatively short block lengths, and it is pronounced

when the block length is increased. In the asymptotic case where we let the block length tend to infinity, inner bounds on

the attainable channel regions of modern coding techniquesunder ML decoding are obtained, based solely on the asymptotic

growth rates of the average distance spectra of these code ensembles.

Index Terms

Accumulate-repeat-accumulate codes, distance spectrum,input-output weight enumerator (IOWE), iterative decoding, linear
codes, maximum-likelihood (ML) decoding, memoryless binary-input output-symmetric (MBIOS) channels, parallel channels.

I. I NTRODUCTION

The transmission of coded communication systems is widely modeled to take place over a set of parallel channels.
This situation can be modelled as having a set of independent parallel channels, where the transmitted codeword
is partitioned into disjoint sets, and the symbols within each set are transmitted over one of these channels. Some
examples in which this scenario may be used include block-fading channels (for performance bounds of coded
communication systems over block-fading channels, see, e.g., [16], [38]), rate-compatible puncturing of turbo-
like codes (see, e.g., [17], [35]), incremental redundancyretransmission schemes, cooperative coding, multi-carrier
signaling (for performance bounds of coded orthogonal-frequency division multiplexing (OFDM) systems, see e.g.,
[39]), and other applications.

Tight analytical bounds serve as a potent tool for assessingthe performance of modern error-correction schemes,
both for the case of finite block length and in the asymptotic case where the block length tends to infinity. In
the setting of a single communication channel and by lettingthe block length tend to infinity, these bounds are
applied in order to obtain a noise threshold which indicatesthe worst channel conditions necessary for reliable
communication. When generalizing the bounds to the scenario of independent parallel channels, this threshold is
transformed into a multi-dimensional barrier within the space of the joint parallel-channel transition probabilities,
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dividing the space into channel regions where reliable communication is available and where it is not. One of the
most widespread upper bounds for a single channel is the union bound, which is easily applied to the analysis
of many communication systems. Its main drawback is that forcodes of large enough block lengths, it is useless
for rates exceeding the channel cutoff rate. Modern communication systems are required to operate well beyond
this rate. Therefore, tighter upper bounds are required in order to assess the performance of such systems. When
considering upper bounds for a single channel or independent parallel channels, it is desirable to have the bound
expressible in terms of basic features of the code, such as the distance spectrum. Sometimes the distance spectrum
cannot be evaluated for a specific code, but rather, an ensemble average can be obtained. Consequently, another
desirable feature of any upper bound is to be applicable to ensembles of codes as well as to particular codes.

Tight upper bounds on the ML decoding error probability which can be applied to specific codes as well as
structured ensembles of codes and which depend on the distance spectrum of the code (or ensemble) date back to
Gallager [14]. Other examples of tight upper bounds includethe generalized second version of the Duman-Salehi
bound (often termed as the DS2 bound) [12], [36], the tangential sphere bound [30], the Shulman and Feder bound
[37], and others. In this respect, it was shown by Sason and Shamai [36] that many reported upper bounds are
special cases of the DS2 bound, including the 1961 Gallager bound [14]. For a comprehensive monograph on
performance bounds of linear codes under ML decoding, the reader is referred to [33].

In his thesis [13], Ebert considered the problem of communicating over parallel discrete-time channels, disturbed
by arbitrary and independent additive Gaussian noises, where a total power constraint is imposed upon the channel
inputs. He found explicit upper and lower bounds on the ML decoding error probability, which decrease exponen-
tially with the block length. The exponents of the upper and lower bounds coincide at zero rate and at all rates
between the critical rate(Rcrit) and capacity. The results were also shown to be applicable to colored Gaussian
noise channels with an average power constraint on the channel. However, this work refers only to random codes
and does not apply to specific codes or structured ensembles ofcodes.

The main difficulty which arises in the analysis of specific codestransmitted over parallel channels stems from
the inherent asymmetry of the parallel-channel setting, which poses a difficulty for the analysis, as different symbols
of the codeword suffer varying degrees of degradation through the different parallel channels. This difficulty
was circumvented in [23] by introducing a random mapper, i.e., a device which randomly and independently
assigns symbols to the different channels according to a certain a-priori probability distribution. As a result of this
randomization, Liu et al. [23] derived upper bounds on the ML decoding error probability which depend solely on
the weight enumerator of the overall code, instead of a specific split weight enumerator which follows from the
partitioning of a codeword into several subsets of bits and the transmission of each subset over a different channel.
The analysis in [23] modifies the 1961 Gallager bound from [14, Chapter 3] and adapts this bounding technique
for communication over parallel channels. However, the results presented in [23] rely onspecial casesof the 1961
Gallager bound for parallel channels and not on the optimized version of this bound. These special cases include a
generalization of the union-Bhattacharyya bound, the Shulman-Feder bound [37], simplified sphere bound [10], and
a combination of the two former bounds. Our motivation is two-fold: First, the 1961 Gallager bound for parallel
channels can be improved by choosing optimized parameters and tilting measures. Secondly, the DS2 bound ([11],
[33], [36]) can be generalized to parallel channels.

Using the approach of the random mapper by Liu et al. [23], we derive a parallel-channel generalization of the
DS2 bound [11], [33], [36] via two different approaches. The comparison between these bounds yields that for
random codes, one of the bounds is tighter than the other and achieves the channel capacity, while for a general
ensemble, neither of these bounds is necessarily tighter. For the scenario where transmission takes place over parallel
independent channels, we re-examine the inter-connections between the DS2 bound and the 1961 Gallager bound
which were previously reported for the single channel-case[10], [33], [36]. In this respect, it is shown in this paper
that one of the versions of the generalized DS2 bound is tighter than the corresponding generalization of the 1961
Gallager bound while the other is not necessarily tighter.

In the asymptotic case where we let the block length tend to infinity and the transmission takes place over a
set of independent parallel channels, we obtain inner bounds on the boundary of the channel regions which ensure
reliable communication under ML decoding; these results improve remarkably on those recently reported in [23].
The tightness of these bounds for independent parallel channels is exemplified for structured ensembles of turbo-like
codes, and the boundary of the improved attainable channel regions is compared with previously reported regions
for Gaussian parallel channels. It shows significant improvement due the optimization of the tilting measures which
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are involved in the computation of the generalized DS2 and 1961 Gallager bounds for parallel channels.
The remainder of the paper is organized as follows. The system model is presented in Section II, as well

as preliminary material related to our discussion. In Section III, we generalize the DS2 bound to the case of
independent parallel channels. Section IV presents the 1961Gallager bound from [23], and considers its connection
to the generalized DS2 bound, along with the optimization of its tilting measures. Section V presents some special
cases of these upper bounds which are obtained as particularcases of the generalized bounds in Sections III
and IV. Attainable channel regions are derived in Section VI.Inner bounds on attainable channel regions for
various ensembles of turbo-like codes and performance bounds for moderate block lengths are exemplified in
Section VII. Finally, Section VIII concludes the paper.

II. PRELIMINARIES

In this section, we state the assumptions on which our analysis is based. We also introduce notation and
preliminary material related to the performance analysis of binary linear codes whose transmission takes place
over a set of independent parallel channels.

A. System Model

We consider the case where the communication model consistsof a parallel concatenation ofJ statistically
independent MBIOS channels, as shown in Fig. 1.

Code

Error−

Correction
Channel

Mapper

Channel 1

Channel 2 Decoder

1

2

J

Fig. 1. System model of parallel channels. A random mapper is assumed where every bit is assigned to one of theJ channels; a bit is
assigned to thej th channel independently of the other bits and with probabilityαj (where

∑J

j=1 αj = 1).

Using a linear error-correcting codeC of sizeM = 2k, the encoder selects a codewordxm (m = 0, 1, . . . , M−1)
to be transmitted, where all codewords are assumed to be selected with equal probability( 1

M
). Each codeword

consists ofn symbols and the coding rate is defined asR ,
log2 M

n
= k

n
; this setting is referred to as using an

(n, k) code. The channel mapper selects for each coded symbol one ofJ channels through which it is transmitted.
The j-th channel component is characterized by a transition probability p(y|x; j). The considered model assumes
that the channel encoder performs its operation without prior knowledge of the specific mapping of the bits to
the parallel channels. While in reality, the choice of the specific mapping is subject to the levels of importance
of different coded bits, the considered model assumes for the sake of analysis that this mapping is random and
independent of the coded bits. This assumption enables to average over all possible mappings, though suitable
choices of mappings for the coded bits are expected to perform better than the average.

The received vectory is maximum-likelihood (ML) decoded at the receiver, where the specific channel mapper is
assumed to be known. While this broad setting gives rise to very general coding, mapping and decoding schemes,
we will focus on the case where the input alphabet is binary, i.e.,x ∈ {−1, 1} (where zero and one are mapped to
+1 and−1, respectively). The output alphabet is real, and may be either finite or continuous. By its definition, the
mapping device divides the set of indices{1, . . . , n} into J disjoint subsetsI(j) for j = 1, . . . , J , and transmits
all the bits whose indices are included in the subsetI(j) through thej-th channel. We will see in the next section
that for a fixed channel mapping device (i.e., for given setsI(j)), the problem of upper-bounding the ML decoding
error probability is exceedingly difficult. In order to circumvent this difficulty, a probabilistic mapping device was
introduced in [23] which uses a random assignment of the bitsto theJ parallel channels; this random mapper takes
a symbol and assigns it to channelj with probability αj . This assignment is independent of that of other symbols,
and by definition, the equality

∑J
j=1 αj = 1 follows. This approach enables the derivation of an upper bound in

the setting of parallel channels (see [23]) which is averaged over all possible channel assignments, and the bound
is calculated in terms of the distance spectrum of the code (or ensemble). Another benefit of the random mapping
approach is that it naturally accommodates for practical settings where one is faced with parallel channels having
different capacities.
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B. Capacity Limit and Cutoff Rate of Parallel MBIOS Channels

We consider here the capacity and cutoff rate of independentparallel MBIOS channels. These information-
theoretic quantities serve as a benchmark for assessing thegap under optimal ML decoding between the achievable
channel regions for various ensembles of codes and the capacity region. It is also useful for providing a quantitative
measure for the asymptotic performance of various ensembles.

1) Cutoff Rate:The cutoff rate of an MBIOS channel is given by

R0 = 1 − log2(1 + γ) (1)

whereγ is the Bhattacharyya constant, i.e.,

γ ,
∑

y

√

p(y|0)p(y|1). (2)

Clearly, for continuous-output channels, the sum in the RHSof (2) is replaced by an integral.
For parallel MBIOS channels where every bit is assumed to be independently and randomly assigned to one of

J channels with a-priori probabilityαj (where
∑J

j=1 αj = 1), the Bhattacharyya constant of the resulting channel
is equal to the weighted sum of the Bhattacharyya constants of these individual channels, i.e.,

γ =
J

∑

J=1

{

αj

∑

y

√

p(y|0; j)p(y|1; j)

}

. (3)

Consider a set ofJ parallel binary-input AWGN channels characterized by the transition probabilities

p(y|0; j) =
1√
2π

e−
(y+

√
2νj)2

2

p(y|1; j) =
1√
2π

e−
(y−

√
2νj)2

2 (4)

−∞ < y < ∞, j = 1, . . . , J

where

νj , R

(

Eb

N0

)

j

(5)

and
(

Eb

N0

)

j
is the energy per information bit to the one-sided spectral noise density of thej-th channel. In this

case, the Bhattacharyya constant is given by

γ =
J

∑

j=1

αje
−νj (6)

whereνj is introduced in (5). From (1) and (6), the cutoff rate ofJ parallel binary-input AWGN channels is given
by

R0 = 1 − log2



1 +
J

∑

j=1

αje
−R

(

Eb
N0

)

j



 bits per channel use. (7)

Consider the case ofJ = 2 parallel binary-input AWGN channels. Given the value of
(

Eb
N0

)

1
, and the code rateR

(in bits per channel use), it is possible to calculate the value of
(

Eb
N0

)

2
of the second channel which corresponds

to the cutoff rate. To this end, we setR0 in the LHS of (7) toR. Solving this equation gives

(

Eb

N0

)

2

= − 1

R
ln





21−R − 1 − α1e
−R

(

Eb
N0

)

1

α2



 . (8)
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2) Capacity Limit: Let Cj designate the capacity (in bits per channel use) of thej-th MBIOS channel. Clearly,
by symmetry considerations, the capacity-achieving inputdistribution for all these channels isq =

(

1
2 , 1

2

)

. The
capacity of theJ parallel channels where each bit is randomly and independently assigned to thej-th channel with
probability αj is therefore given by

C =
J

∑

j=1

αjCj . (9)

For the case ofJ parallel binary-input AWGN channels

Cj = 1 − 1√
2π ln(2)

∫ ∞

−∞
e−

(y−βj)2

2 ln
(

1 + e−2βjy
)

dy bits per channel use (10)

whereβj ,
√

2νj andνj is introduced in (5).

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(E
b
/N

o
)
1
 [dB]

(E
b/N

o) 2 [d
B

]

Cutoff Rate Limit
Capacity Limit

Fig. 2. Attainable channel regions for two parallel binary-input AWGN channels, as determined by the cutoff rate and the capacity limit,
referring to a code rate of one-third bits per channel use. It is assumed that each bit is randomly and independently assigned to one of these
channels with equal probability (i.e.,α1 = α2 = 1

2
).

In order to simplify the numerical computation of the capacity, one can express each integral in (10) as a sum
of two integrals from0 to ∞, and use the power series expansion of the logarithmic function; this gives an infinite
power series with alternating signs. Using the Euler transform to expedite the convergence rate of these infinite
sums, gives the following alternative expression:

Cj = 1 − 1

ln(2)





2βe−
β2

j

2

√
2π

− (2β2
j − 1)Q(βj) +

∞
∑

k=0

(−1)k · ∆ka0(j)

2k+1



 , j = 1, . . . , J (11)

where

∆ka0(j) ,
1

2
e−

β2
j

2

k
∑

m=0

{

(−1)m

(k − m + 1)(k − m + 2)

(

k

m

)

erfcx

(

(2k − 2m + 3)βj√
2

)}

and
erfcx(x) , 2ex2

Q(
√

2x)

(note that erfcx(x) ≈ 1√
π
· 1

x
for large values ofx). The infinite sum in (11) converges exponentially fast withk,

and the summation of its first 30 terms gives very accurate results irrespectively of the value ofβj .
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Consider again the case ofJ = 2 parallel binary-input AWGN channels. Given the value of
(

Eb
N0

)

1
, and the code

rateR (in bits per channel use), (9) and (10) enable one to calculate the value of
(

Eb
N0

)

2
for the second channel,

referring to the capacity limitation. To this end, one needsto setC in the LHS of (9) to the code rateR, and
find the resulting value of

(

Eb
N0

)

2
which corresponds to the capacity limit. The boundary of the capacity region is

represented by the continuous curve in Fig. 2 forR = 1
3 bits per channel use; it is compared to the dashed curve

in this figure which represents the boundary of the attainablechannel region referring to the cutoff-rate limit (see
Eq. (8)).

C. Distance Properties of Ensembles of Turbo-Like Codes

In this paper, we exemplify our numerical results by considering several ensembles of binary linear codes. Due
to the outstanding performance of turbo-like codes, our focus is mainly on such ensembles, where we also consider
as a reference the ensemble of fully random block codes whichachieves capacity under ML decoding. The other
ensembles considered in this paper include turbo codes, repeat-accumulate codes and some recent variations.

Bounds on the ML decoding error probability are often based on the distance properties of the considered codes
or ensembles (see, e.g., [33] and references therein). The distance spectra and their asymptotic growth rates for
various turbo-like ensembles were studied in the literature, e.g., for ensembles of uniformly interleaved repeat-
accumulate codes and variations [2], [9], [18], ensembles of uniformly interleaved turbo codes [4], [5], [25], [34],
and ensembles of regular and irregular LDPC codes [6], [8], [14], [24]. In this subsection, we briefly present the
distance properties of some turbo-like ensembles considered in this paper.

Let us denote by[C(n)] an ensemble of codes of lengthn. We will also consider asequence of ensembles
[C(n1)], [C(n2)], . . . where all these ensembles possess a common rateR. For a given(n, k) linear codeC, let AC

h

(or simply Ah) denote the distance spectrum, i.e., the number of codewords of Hamming weighth. For a set of
codes[C(n)], we define theaverage distance spectrumas

A
[C(n)]
h ,

1

|[C(n)]|
∑

C∈[C(n)]

AC
h . (12)

Let Ψn , {δ : δ = h
n

for h = 1, . . . , n} =
{

1
n
, 2

n
, . . . , 1

}

denote the set ofnormalized distances, then the
normalized exponent of the distance spectrum w.r.t. the block lengthis defined as

rC(δ) ,
lnAC

h

n
, r[C(n)](δ) ,

lnA
[C(n)]
h

n
. (13)

The motivation for this definition lies in our interest to consider the asymptotic case wheren → ∞. In this case
we define theasymptotic exponent of the distance spectrumas

r[C](δ) , lim
n→∞

r[C(n)](δ) . (14)

The input-output weight enumerator (IOWE) of a linear block code is given by a sequence{Aw,h} designating the
number of codewords of Hamming weighth which are encoded by information bits whose Hamming weight is w.
Referring to ensembles, one considers the average IOWE and distance spectrum over the ensemble. The distance
spectrum and IOWE of linear block codes are useful for the analysis of the block and bit error probabilities,
respectively, under ML decoding.

As a reference to all ensembles, we will consider the ensemble of fully random block codes which is capacity-
achieving under ML decoding (or ’typical pairs’) decoding.

The ensemble of fully random binary block codes: Consider the ensemble of binary random codes[RB], where
the set[RB(n, R)] consists of all binary codes of lengthn and rateR. For this ensemble, the following well-known
equalities hold:

A
[RB(n,R)]
h =

(

n

h

)

2−n(1−R)

r[RB(n,R)](δ) =
ln

(

n
h

)

n
− (1 − R) ln 2 (15)

r[RB(R)](δ) = H(δ) − (1 − R) ln 2
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whereH(x) , −x ln(x) − (1 − x) ln(1 − x) designates the binary entropy function to the natural base.
Non-systematic repeat-accumulate codes: The ensemble of uniformly interleaved and non-systematic repeat-

accumulate (NSRA) codes [9] is defined as follows. The information block of lengthN is repeatedq times by
the encoder. The bits are then uniformly reordered by an interleaver of sizeqN , and, finally, encoded by a rate-1
differential encoder (accumulator), i.e., a truncated rate-1 recursive convolutional encoder with a transfer function
1/(1+D). The ensemble[NSRA(N, q)] is defined to be the set of(qN)!

(q!)NN ! RA different codes when considering the
different possible permutations of the interleaver.1 The (average) IOWE of the ensemble of uniformly interleaved
RA codesRAq(N) was originally derived in [9, Section 5], and it is given by

A
NSRA(N,q)
w,h =

(

N
w

)(

qN−h
b qw

2
c
)(

h−1
d qw

2
e−1

)

(

qN
qw

) . (16)

The average distance spectrum of the ensemble is therefore given by

A
NSRA(N,q)
h =

min(N,b 2h

q
c)

∑

w=1

(

N
w

)(

qN−h
b qw

2
c
)(

h−1
d qw

2
e−1

)

(

qN
qw

) ,
⌈q

2

⌉

≤ h ≤ qN −
⌊q

2

⌋

whereA
NSRA(N,q)
h = 0 for 1 ≤ h <

⌈

q
2

⌉

, andA
NSRA(N,q)
0 = 1 since the all-zero vector is always a codeword of a

linear code. The asymptotic exponent of the distance spectrum of this ensemble is given by (see [19])

r[NSRA(q)](δ) , lim
N→∞

r[NSRA(N,q)](δ)

= max
0≤u≤min(2δ,2−2δ)

{

−
(

1 − 1

q

)

H(u) + (1 − δ)H

(

u

2(1 − δ)

)

+ δH
( u

2δ

)

}

. (17)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

NSRA codes
Random codes

Fig. 3. Plot of the asymptotic exponent of the distance spectra for the ensemble of fully random block codes, and the ensemble of uniformly
interleaved and non-systematic repeat-accumulate (NSRA) codes of rate 1

3
bits per channel use. The curves are depicted as a function of the

normalized Hamming weight(δ), and their calculations are based on (15) and (17).

The IOWEs and distance spectra of various ensembles of irregular repeat-accumulate (IRA) and accumulate-
repeat-accumulate (ARA) codes are derived in [2], [18]. The reader is referred to Fig. 3, for a comparison between
the asymptotic exponents (i.e., growth rates) of the distance spectra for the ensemble of fully random block codes
and the ensemble of uniformly interleaved NSRA codes where both ensembles are assumed to be of rate one-third

1There are(qN)! ways to placeqN bits. However, permuting theq repetitions of any of theN information bits does not affect the result
of the interleaving, so there are(qN)!

(q!)N possible ways for the interleaving. Strictly speaking, by permuting theN information bits, the vector

space of the code does not change, which then yields that there are(qN)!

(q!)N N !
distinct RA codes of dimensionk and number of repetitionsq.
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bit per channel use. One can observe from Fig. 3 that the two curves deviate considerably at low and high values
of the normalized Hamming weight, while there is a good matchbetween these two curves for intermediate values
of the normalized Hamming weight.

D. The DS2 Bound for a Single MBIOS Channel

The bounding technique of Duman and Salehi [11], [12] originates from the 1965 Gallager bound [15] which
states that the conditional ML decoding error probabilityPe|m given that a codewordxm (of block lengthn) is
transmitted is upper-bounded by

Pe|m ≤
∑

y

pn

(

y|xm
)





∑

m′ 6=m

(

pn(y|xm′

)

pn(y|xm)

)λ




ρ

λ, ρ ≥ 0 (18)

wherepn(y|x) designates the conditionalpdf of the communication channel to obtain ann-length sequencey at
the channel output, given then-length input sequencex.

Unfortunately, this upper bound is not calculable in terms of the distance spectrum of the code ensemble, except
for the ensembles of fully random block codes and orthogonalcodes transmitted over a memoryless channel, and
the special case whereρ = 1, λ = 0.5 in which the bound reduces to the union-Bhattacharyya bound. With the
intention of alleviating the difficulty of calculating the bound for specific codes and ensembles, we introduce the
functionΨ

(m)
n (y) which is an arbitrary probability tilting measure. This function may depend in general on the index

m of the transmitted codeword [36], and is a non-negative function which satisfies the equality
∫

y
Ψ

(m)
n (y) dy = 1.

The upper bound in (18) can be rewritten in the following equivalent form:

Pe|m ≤
∑

y

Ψ(m)
n (y)



Ψ(m)
n (y)−

1

ρ pn

(

y|xm
) 1

ρ

∑

m′ 6=m

(

pn(y|xm′

)

pn(y|xm)

)λ




ρ

λ, ρ ≥ 0. (19)

Recalling thatΨ(m)
n is a probability measure, we invoke Jensen’s inequality in (19) which gives

Pe|m ≤





∑

m′ 6=m

∑

y

Ψ(m)
n (y)1−

1

ρ pn(y|xm)
1

ρ

(

pn(y|xm′

)

pn(y|xm)

)λ




ρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
(20)

which is the DS2 bound. This expression can be simplified (see, e.g., [36]) for the case of a single memoryless
channel where

pn(y|x) =

n
∏

i=1

p(yi|xi).

Let us consider probability tilting measuresΨ
(m)
n (y) which can be factorized into the form

Ψ(m)
n (y) =

n
∏

i=1

ψ(m)(yi)

recalling that the functionψ(m) may depend on the transmitted codewordxm. In this case, the bound in (20) is
calculable in terms of the distance spectrum of the code, thus not requiring the fine details of the code structure.

Let C be a binary linear block code whose length isn, and let its distance spectrum be given by{Ah}n
h=0.

Consider the case where the transmission takes place over anMBIOS channel. By partitioning the code into
subcodes of constant Hamming weights, letCh be the set which includes all the codewords ofC with Hamming
weighth and the all-zero codeword. Note that this forms a partitioning of a linear code into subcodes which are in
general non-linear. We apply the DS2 bound on the conditionalML decoding error probability (given the all-zero
codeword is transmitted), and finally use the union bound w.r.t. the subcodes{Ch} in order to obtain an upper
bound on the ML decoding error probability of the codeC. Referring to the constant Hamming weight subcode
Ch, the bound (20) gives

Pe|0(h) ≤ (Ah)ρ







(

∑

y

ψ(y)1−
1

ρ p(y|0)
1

ρ

)n−h (

∑

y

ψ(y)1−
1

ρ p(y|0)
1−λρ

ρ p(y|1)λ

)h






ρ

0 ≤ ρ ≤ 1
λ ≥ 0

. (21)
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Clearly, for an MBIOS channel with continuous output, the sums in (21) are replaced by integrals. In order to obtain
the tightest bound within this form, the probability tilting measureψ and the parametersλ and ρ are optimized.
The optimization ofψ is based on calculus of variations, and is independent of thedistance spectrum (this will be
proved later also for the case of independent parallel MBIOSchannels).

Due to the symmetry of the channel and the linearity of the code C, the decoding error probability ofC is
independent of the transmitted codeword. Since the codeC is the union of the subcodes{Ch}, the union bound
provides an upper bound on the ML decoding error probabilityof C which is expressed as the sum of the conditional
decoding error probabilities of the subcodesCh given that the all-zero codeword is transmitted. Letdmin be the
minimum distance of the codeC, andR be the rate of the codeC. Based on the linearity of the code, the geometry
of the Voronoi regions (see [3]) gives the following expurgated union bound:

Pe ≤
n(1−R)
∑

h=dmin

Pe|0(h). (22)

For the bit error probability, one may partition a binary linear block codeC into subcodes w.r.t. the Hamming
weights of the information bits and the code bits. LetCw,h designate the subcode which includes the all-zero
codeword and all the codeowrds ofC whose Hamming weight ish and whose information bits have Hamming
weight w. An upper bound on the bit error probability of the codeC is performed by calculating the DS2 upper
bound on the conditional bit error probability for each subcodeCw,h (given that the all-zero codeword is transmitted),
and applying the union bound over all these subcodes. Note that the number of these subcodes is at most quadratic
in the block length of the code, so taking the union bound w.r.t. these subcodes does not affect the asymptotic
tightness of the overall bound. Let{Aw,h} designate the IOWE of the codeC whose block length and dimension
are equal ton and k, respectively. The conditional DS2 bound on the bit error probability was demonstrated in
[32], [33] to be identical to the DS2 bound on the block error probability, except that the distance spectrum of the
code

Ah =
k

∑

w=0

Aw,h, h = 0, . . . , n (23)

appearing in the RHS of (21) is replaced by

A′
h ,

k
∑

w=0

(w

k

)

Aw,h, h = 0, . . . , n. (24)

SinceA′
h ≤ Ah then, as expected, the upper bound on the bit error probability is smaller than the upper bound on

the block error probability.
Finally, note that the DS2 bound is also applicable to ensembles of linear codes. To this end, one simply needs

to replace the distance spectrum or the IOWE of a code by the average quantities over this ensemble. This follows
easily by invoking Jensen’s inequality to the RHS of (21) which yields thatE[(Ah)ρ] ≤ (E[Ah])ρ for 0 ≤ ρ ≤ 1.
The DS2 bound for a single channel is discussed in further details in [11], [32], [36] and the tutorial paper [33,
Chapter 4].

III. G ENERALIZED DS2 BOUNDS FORINDEPENDENTPARALLEL CHANNELS

In this section, we generalize the DS2 bound to independent parallel MBIOS channels, and optimize the
probability tilting measures in the generalized bound to obtain the tightest bound within this form. We will discuss
two possible ways of generalizing the bound. These two versions of the bound are obtained via different way of
looking on the set of parallel channels and their tightness is compared.

A. Generalizing the DS2 bound to Parallel Channels: First Approach

1) Derivation of the new bound in the first approach:Let us assume that the communication takes place over
J statistically independent parallel channels where each one of the individual channels is memoryless binary-input
output-symmetric (MBIOS) with antipodal signaling, i.e.,p(y|x = 1) = p(−y|x = −1). The essence of the approach
discussed in this section is to start by considering the caseof a specific channel assignment; the calculation then
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proceeds by averaging the bound over all possible assignments. For a specific channel assignment, the assumption
that all J channels are independent and MBIOS means that we factor the transition probability as

pn

(

y|xm
)

=

J
∏

j=1

∏

i∈I(j)

p(yi|x(m)
i ; j) (25)

which we can plug into (20) to get a DS2 bound suitable for the case of parallel channels. In order to get a bound
which depends on one-dimensional sums (or one-dimensionalintegrals), we impose a restriction on the tilting
measureΨ(m)

n (·) in (20) so that it can be expressed as aJ-fold product of one-dimensional probability tilting
measures, i.e.,

Ψ(m)
n (y) =

J
∏

j=1

∏

i∈I(j)

ψ(m)(yi; j). (26)

Considering a binary linear block codeC, the conditional decoding error probability does not depend on the
transmitted codeword, soPe , 1

M

∑M−1
m=0 Pe|m = Pe|0 where w.o.l.o.g., one can assume that the all-zero vector is

the transmitted codeword.
The channel mapper for theJ independent parallel channels is assumed to transmit the bits whose indices are

included in the subsetI(j) over thej-th channel where the subsets{I(j)} constitute a disjoint partitioning of the
set of indices{1, 2, . . . , n}.

Following the notation in [23], letAh1,h2,...,hJ
designate thesplit weight enumeratorof the binary linear block

code, defined as the number of codewords of Hamming weighthj within theJ disjoint subsetsI(j) for j = 1 . . . J .
By substituting (25) and (26) in (20), we obtain

Pe = Pe|0

≤







|I(1)|
∑

h1=0

. . .

|I(J)|
∑

hJ=0

∑

y

Ah1,h2,...,hJ

J
∏

j=1

∏

i∈I(j)

ψ(yi; j)
1− 1

ρ p(yi|0; j)
1

ρ

(

p(yi|xi; j)

p(yi|0; j)

)λ







ρ

=







|I(1)|
∑

h1=0

. . .

|I(J)|
∑

hJ=0

Ah1,h2,...,hJ

J
∏

j=1

∏

i∈I(j)

∑

yi

ψ(yi; j)
1− 1

ρ p(yi|0; j)
1

ρ

(

p(yi|xi; j)

p(yi|0; j)

)λ







ρ

=







|I(1)|
∑

h1=0

. . .

|I(J)|
∑

hJ=0

Ah1,h2,...,hJ

J
∏

j=1

(

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1−λρ

ρ p(y|1; j)λ

)hj

J
∏

j=1

(

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1

ρ

)|I(j)|−hj







ρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
. (27)

We note that the bound in (27) is valid for a specific assignmentof bits to the parallel channels. For structured codes
or ensembles, the split weight enumerator is in general not available when considering specific assignments. As a
result of this, we continue the derivation by using the random assignment approach. Let us designatenj , |I(j)| to
be the cardinality of the setI(j), soE[nj ] = αjn is the expected number of bits assigned to channel no.j (where
j = 1, 2, . . . , J). Averaging (27) with respect to all possible channel assignments, we get the following bound on



11

the average ML decoding error probability:

Pe ≤ E







n1
∑

h1=0

. . .

nJ
∑

hJ=0

Ah1,h2,...,hJ

J
∏

j=1

(

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1−λρ

ρ p(y|1; j)λ

)hj

J
∏

j=1

(

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1

ρ

)nj−hj







ρ

=
∑

nj≥0
∑

j
nj=n







n1
∑

h1=0

. . .

nJ
∑

hJ=0

Ah1,h2,...,hJ

J
∏

j=1

(

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1−λρ

ρ p(y|1; j)λ

)hj

J
∏

j=1

(

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1

ρ

)nj−hj







ρ

PN (n) (28)

wherePN (n) designates the probability distribution of the discrete random vectorN , (n1, . . . , nJ). Applying
Jensen’s inequality to the RHS of (28) and changing the orderof summation give

Pe ≤
{

∑

nj≥0
∑

nj=n

n
∑

h=0

∑

h1≤n1,...,hJ≤nJ

h1+...+hJ=h

Ah1,h2,...,hJ
PN (n)

J
∏

j=1

(

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1−λρ

ρ p(y|1; j)λ

)hj

J
∏

j=1

(

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1

ρ

)nj−hj
}ρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
. (29)

Let the vectorH = (h1, . . . , hJ) be the vector of partial Hamming weights referring to the bits transmitted over
each channel (nj bits are transmitted over channel no.j, so 0 ≤ hj ≤ nj). Clearly,

∑J
j=1 hj = h is the overall

Hamming weight of a codeword inC. Due to the random assignment of the code bits to the parallelchannels, we
get

PN (n) =

(

n

n1, n2, . . . , nJ

)

αn1

1 αn2

2 . . . αnJ

J

PH|N (h|n) =

(

h
h1,...,hJ

)(

n−h
n1−h1,...,nJ−hJ

)

(

n
n1,...,nJ

)

Ah1,h2,...,hJ
PN (n)

= Ah PH|N (h|n) PN (n)

= Ah αn1

1 αn2

2 . . . αnJ

J

(

h

h1, . . . , hJ

)(

n − h

n1 − h1, . . . , nJ − hJ

)

(30)
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and the substitution of (30) in (29) gives

Pe ≤
{

∑

nj≥0
∑

nj=n

n
∑

h=0

Ah

∑

h1≤n1,...,hJ≤nJ

h1+...+hJ=h

(

h

h1, h2, . . . , hJ

)

(

n − h

n1 − h1, n2 − h2, . . . , nJ − hJ

)

J
∏

j=1

(

αj

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1−λρ

ρ p(y|1; j)λ

)hj

J
∏

j=1

(

αj

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1

ρ

)nj−hj
}ρ

.

Let kj , nj − hj for j = 1, 2, . . . , J , then by changing the order of summation we obtain

Pe ≤















n
∑

h=0

Ah

∑

h1,...,hJ≥0
h1+...+hJ=h

(

h

h1, h2, . . . , hJ

) J
∏

j=1

(

αj

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1−λρ

ρ p(y|1; j)λ

)hj

∑

k1,...,kJ≥0
k1+...+kJ=n−h

(

n − h

k1, k2, . . . , kJ

) J
∏

j=1

(

αj

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1

ρ

)kj















ρ

Since
∑J

j=1 hj = h and
∑J

j=1 kj = n − h, the use of the multinomial formula gives

Pe ≤











n
∑

h=0

Ah





J
∑

j=1

αj

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1−λρ

ρ p(y|1; j)λ





h





J
∑

j=1

αj

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1

ρ





n−h










ρ 0 ≤ ρ ≤ 1
λ ≥ 0

∑

y ψ(y; j) = 1

j = 1 . . . J

(31)

which forms a possible generalization of the DS2 bound for independent parallel channels when averaging over all
possible channel assignments. This result can be applied to specific codes as well as to structured ensembles for
which the average distance spectrumAh is known. In this case, the average ML decoding error probability Pe is
obtained by replacingAh in (31) with the average distance spectrumAh (this can be verified by noting that the
function f(t) = tρ is concave for0 ≤ ρ ≤ 1 and by invoking Jensen’s inequality in (31)).

In the continuation of this section, we propose an equivalent version of the generalized DS2 bound for parallel
channels where this equivalence follows the lines in [33], [36]. Rather than relying on a probability (i.e., normalized)
tilting measure, the bound will be expressed in terms of an un-normalized tilting measure which is an arbitrary
non-negative function. This version will be helpful later for the discussion on the connection between the DS2
bound and the 1961 Gallager bound for parallel channels, andalso for the derivation of some particular cases of
the DS2 bound. We begin by expressing the DS2 bound using the un-normalized tilting measureG(m)

n which is
related toΨ

(m)
n by

Ψ(m)
n (y) =

G
(m)
n (y)pn(y|xm)

∑

y′

G(m)
n (y′)pn(y′|xm)

. (32)
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Substituting (32) in (20) gives

Pe|m ≤







∑

m′ 6=m

∑

y

G(m)
n (y)1−

1

ρ pn(y|xm)

(

pn(y|xm′

)

pn(y|xm)

)λ






ρ





∑

y

G(m)
n (y)pn(y|xm)





1−ρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
.

As before, we assume thatG
(m)
n can be factored in the product form

G(m)
n (y) =

J
∏

j=1

∏

i∈I(j)

g(yi; j).

Following the algebraic steps in (27)-(31) and averaging asbefore also over all the codebooks of the ensemble, we
obtain the following upper bound on the ML decoding error probability:

Pe = Pe|0 ≤







n
∑

h=0

Ah





J
∑

j=1

αj

(

∑

y

g(y; j)1−
1

ρ p(y|0; j)1−λp(y|1; j)λ

)

(

∑

y

g(y; j)p(y|0; j)

)
1−ρ

ρ





h 



J
∑

j=1

αj

(

∑

y

g(y; j)1−
1

ρ p(y|0; j)

)

(

∑

y

g(y; j)p(y|0; j)

)
1−ρ

ρ





n−h










ρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
. (33)

Note that the generalized DS2 bound as derived in this subsection is applied to the whole code (i.e., the optimization
of the tilting measures refers to the whole code and is performed only once for each of theJ channels). In the
next subsection, we consider the partitioning of the code toconstant Hamming weight subcodes, and then apply
the union bound. For every such subcode, we rely on the conditional DS2 bound (given the all-zero codeword is
transmitted), and optimize theJ tilting measures; this optimization is performed for each of the subcodes separately.
The total number of subcodes does not exceed the block length of the code (or ensemble), and hence the use of the
union bound in this case does not degrade the related error exponent of the overall bound; moreover, the optimized
tilting measures are tailored for each of the constant-Hamming weight subcodes, a process which can only improve
the exponential behavior of the resulting bound.

2) Optimization of the Tilting Measures:In the following, we find optimized tilting measures{ψ(·; j)}J
j=1 which

minimize the DS2 bound (31). The following calculation is a possible generalization of the analysis in [36] for a
single channel to the considered case of an arbitrary number(J) of independent parallel MBIOS channels.

Let C be a binary linear block code of lengthn. Following the derivation in [23], [36], we partition the codeC to
constant Hamming weight subcodes{Ch}n

h=0, whereCh includes all the codewords of weighth (h = 0, . . . , n) as
well as the all-zero codeword. LetPe|0(h) denote the conditional block error probability of the subcode Ch under
ML decoding, given that the all-zero codeword is transmitted. Based on the union bound, we get

Pe ≤
n

∑

h=0

Pe|0(h). (34)

As the codeC is linear,Pe|0(h) = 0 for h = 0, 1, . . . , dmin − 1 wheredmin denotes the minimum distance of the
codeC. The generalization of the DS2 bound in (31) gives the following upper bound on the conditional error
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probability of the subcodeCh:

Pe|0(h) ≤ (Ah)ρ















J
∑

j=1

αj

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1−λρ

ρ p(y|1; j)λ





δ





J
∑

j=1

αj

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1

ρ





1−δ










nρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
δ ,

h

n
. (35)

Note that in this case, the set of probability tilting measures{ψ(·; j)}J
j=1 may also depend on the Hamming weight

(h) of the subcode (or equivalently onδ). This is the result of performing the optimization on every individual
constant-Hamming subcode instead of the whole code.

This generalization of the DS2 bound can be written equivalently in the exponential form

Pe|0(h) ≤ e−nE
DS21
δ (λ,ρ,J,{αj}), 0 ≤ ρ ≤ 1, λ ≥ 0, δ ,

h

n
. (36)

where

EDS21
δ (λ, ρ, J, {αj}) , −ρr[C](δ) − ρδ ln





J
∑

j=1

αj

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1−λρ

ρ p(y|1; j)λ





−ρ(1 − δ) ln





J
∑

j=1

αj

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1

ρ



 (37)

andr[C](δ) designates the normalized exponent of the distance spectrum as in (14).
Let

g1(y; j) , p(y|0; j)
1

ρ , g2(y; j) , p(y|0; j)
1

ρ

(

p(y|1; j)

p(y|0; j)

)λ

(38)

then, for a given pair ofλ andρ (whereλ ≥ 0 and0 ≤ ρ ≤ 1), we need to minimize

δ ln





J
∑

j=1

αj

∑

y

ψ(y; j)1−
1

ρ g2(y; j)



 + (1 − δ) ln





J
∑

j=1

αj

∑

y

ψ(y; j)1−
1

ρ g1(y; j)





over the set of non-negative functionsψ(· ; j) satisfying the constraints
∑

y

ψ(y; j) = 1, j = 1 . . . J. (39)

To this end, calculus of variations provides the following set of equations:

ψ(y; j)−
1

ρ

(

αj(1 − δ)(1 − 1
ρ
)g1(y; j)

∑

y

∑J
j=1 αjψ(y; j)1−

1

ρ g1(y; j)

+
αjδ(1 − 1

ρ
)g2(y; j)

∑

y

∑J
j=1 αjψ(y; j)1−

1

ρ g2(y; j)

)

+ ξj = 0, j = 1, . . . , J (40)

whereξj is a Lagrange multiplier. The solution of (40) is given in the following implicit form:

ψ(y; j) =
(

k1,jg1(y; j) + k2,jg2(y; j)
)ρ

, k1,j , k2,j ≥ 0, j = 1, . . . , J

where

k2,j

k1,j
=

δ

1 − δ

J
∑

j=1

∑

y∈Y
αjψ(y; j)1−

1

ρ g1(y; j)

J
∑

j=1

∑

y∈Y
αjψ(y; j)1−

1

ρ g2(y; j)

. (41)
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We note thatk ,
k2,j

k1,j
in the RHS of (41) isindependentof j. Thus, the substitutionβj , k ρ

1,j gives that the
optimal tilting measures can be expressed as

ψ(y; j) = βj

(

g1(y; j) + kg2(y; j)
)ρ

= βj p(y|0; j)

[

1 + k

(

p(y|1; j)

p(y|0; j)

)λ
]ρ

y ∈ Y j = 1, . . . , J. (42)

By plugging (38) into (41) we obtain

k =
δ

1 − δ

J
∑

j=1

∑

y∈Y







αjβ
1− 1

ρ

j p(y|0; j)

[

1 + k

(

p(y|1; j)

p(y|0; j)

)λ
]ρ−1







J
∑

j=1

∑

y∈Y







αjβ
1− 1

ρ

j p(y|0; j)

(

p(y|1; j)

p(y|0; j)

)λ
[

1 + k

(

p(y|1; j)

p(y|0; j)

)λ
]ρ−1







(43)

and from (38) and (39),βj which is the appropriate factor normalizing the probability tilting measureψ(·; j) in
(42) is given by

βj =

[

∑

y

p(y|0; j)

(

1 + k

(

p(y|1; j)

p(y|0; j)

)λ
)ρ]−1

, j = 1, . . . , J. (44)

Note that the implicit equation fork in (43) and the normalization coefficients in (44) provide a possible gener-
alization of the results derived in [32, Appendix A] (wherek is replaced there byα). The point here is that the
value of k2,j

k1,j
in (41) is independent ofj (wherej ∈ {1, 2, . . . , J}), a property which significantly simplifies the

optimization process of theJ tilting measures, and leads to the result in (42).
For the numerical calculation of the bound in (35) as a function of the normalized Hamming weightδ , h

n
, and

for a fixed pair ofλ andρ (whereλ ≥ 0 and0 ≤ ρ ≤ 1), we find the optimized tilting measures in (42) by first
assuming an initial vectorβ(0) = (β1, . . . , βJ) and then iterating between (43) and (44) until we get a fixed point
for these equations. For a fixedδ, we need to optimize numerically the bound in (36) w.r.t. thetwo parametersλ
andρ.

B. Generalizing the DS2 bound to Parallel Channels: Second Approach

1) Derivation of the new bound in a second approach:In this section we show a second way of generalizing the
DS2 bound for independent parallel MBIOS channels. We begin by suggesting a system model equivalent to the
one presented in Sec. II-A which we term thechannel side information at the receiver(CSIR) model. Rather than
viewing the set of component channels as parallel channels,we considerj (where1 ≤ j ≤ J) to be the internal
state of a state-dependent channelp(y|x; j) to which x is the input andy is the output. As in the parallel-channel
model shown in Fig. 1,j is chosen at random for each transmitted symbol according tothe a-priori probability
distribution{αj} from the finite alphabet{1, 2, . . . , J}. Therefore, these two channel models are identical, except
that we have to include the receiver’s perfect knowledge of the channel state in the CSIR model. This is easily
accomplished by viewing the internal statej as part of the output of the channel, i.e., the output is the pair b , (y, j);
the transition probability of this channel is thus denoted by pB(b|x). Since the channel and channel mapper both
operate in a memoryless manner, the CSIR channel model is alsomemoryless. Finally, the transition probability
pB(b|x) satisfies the relation

pB(b|x) = αjp(y|x; j) (45)

because the channel state is independent of the input. If we define−b , (−y, j), then we obtain from (45) and
the symmetry of the transition probabilitiesp(y|x; j) that pB(b|x) = pB(−b| − x); thus, the CSIR model is also
symmetric. In summary, the parallel-channel model presented in Sec. II-A is equivalent to an MBIOS channel with
transition probability given in (45). We may thus use the DS2 bounding technique directly on the CSIR model;
using this approach, the need to average over all channel mappings is circumvented.
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Following this approach, we set the channel output to beb = (y, j) and substitute (45) into (21) to get the upper
bound

Pe ≤ (Ah)ρ





J
∑

j=1

α
1

ρ

j

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1−λρ

ρ p(y|1; j)λ





h





J
∑

j=1

α
1

ρ

j

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1

ρ





n−h 0 ≤ ρ ≤ 1
λ ≥ 0

∑

y,j ψ(y; j) = 1
(46)

As in the first approach (see (33)), this bound may also be expressed in terms of an un-normalized tilting measure,
rather than a normalized (probability) measure. We will usethis version later when we discuss special cases of
this bound. The DS2 bound for parallel channels obtained usingthe second approach which is expressed using the
un-normalized tilting measure is as follows:

Pe ≤ (Ah)ρ





J
∑

j=1

αj

∑

y

g(y; j)p(y|0; j)





n(1−ρ)





J
∑

j=1

αj

(

∑

y

g(y; j)1−
1

ρ p(y|0; j)1−λp(y|1; j)λ

)





hρ





J
∑

j=1

αj

(

∑

y

g(y; j)1−
1

ρ p(y|0; j)

)





(n−h)ρ

,
0 ≤ ρ ≤ 1

λ ≥ 0
. (47)

We turn our attention to the derivation of optimized tiltingmeasures for the generalized DS2 bound obtained using
the second approach.

2) Optimization of the Tilting Measures:The optimization of tilting measures for the generalized DS2 bound
in (46) obtained using the perfect CSIR model relies on this optimization for MBIOS channels. As in the first
approach, the bound for a specific constant Hamming-weight subcode is expressed in exponential form

Pe|0(h) ≤ e−nE
DS22
δ (λ,ρ,J,{αj}), 0 ≤ ρ ≤ 1, λ ≥ 0, δ ,

h

n
(48)

where

EDS22
δ (λ, ρ, J, {αj}) , −ρr[C](δ) − ρδ ln





J
∑

j=1

α
1

ρ

j

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1−λρ

ρ p(y|1; j)λ





−ρ(1 − δ) ln





J
∑

j=1

α
1

ρ

j

∑

y

ψ(y; j)1−
1

ρ p(y|0; j)
1

ρ



 . (49)

The optimized tilting measure should be chosen so as to maximize the exponent in (49). Since the perfect CSIR
model is equivalent to an MBIOS channel, we can use the results of Sec. III-A.2 withJ = 1; by substituting the
transition probability from (45) into (42), we obtain that the optimal form of the tilting measure is given by

ψ(y; j) = βαjp(y|0; j)

(

1 + k

(

p(y|1; j)

p(y|0; j)

)λ
)ρ

(50)

wherek is a parameter to be optimized andβ is a normalizing constant given by

β =





∑

y,j

αjp(y|0; j)

(

1 + k

(

p(y|1; j)

p(y|0; j)

)λ
)ρ





−1

(51)
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C. Comparison Between the Two Generalized DS2 Bounds for Parallel Channels

Let us examine the two generalizations of the DS2 bound proposed in Sections III-A and III-B for the purpose
of comparison. To this end, for constant weight subcodes of Hamming weighth (including the all-zero codeword),
we write out the explicit expressions for the two bounds, including the optimal form of the tilting measures. By
substituting (42) with the optimal value ofk in (43), the bound in (31) obtained by the first approach reads

Pe|0(h) ≤ (Ah)ρ















J
∑

j=1

αj

∑

y

β
1− 1

ρ

j p(y|0; j)

(

p(y|1; j)

p(y|0; j)

)λ
(

1 + k
(1)
opt

(

p(y|1; j)

p(y|0; j)

)λ
)ρ−1





h





J
∑

j=1

αj

∑

y

β
1− 1

ρ

j p(y|0; j)

(

1 + k
(1)
opt

(

p(y|1; j)

p(y|0; j)

)λ
)ρ−1





n−h










ρ

. (52)

In the same way, substituting (50) in (46) gives the bound obtained by using the second approach

Pe|0(h) ≤ (Ah)ρ















J
∑

j=1

αj

∑

y

β1− 1

ρ p(y|0; j)

(

p(y|1; j)

p(y|0; j)

)λ
(

1 + k
(2)
opt

(

p(y|1; j)

p(y|0; j)

)λ
)ρ−1





h





J
∑

j=1

αj

∑

y

β1− 1

ρ p(y|0; j)

(

1 + k
(2)
opt

(

p(y|1; j)

p(y|0; j)

)λ
)ρ−1





n−h










ρ

. (53)

From these expressions one cannot conclusively deduce the superiority of one of the bounds over the other in
general. However, in therandom coding setting, it can be shown that the DS2 bound in Section III-B is tighter
than the one in Section III-A. To this end, we show that the former bound attains the random coding exponent [15]
while the latter does not.

The random coding exponent which corresponds to the MBIOS channel given by the perfect CSIR model, from
which the second version in Section III-B is derived, gives the relation

Pe ≤ 2−n(E0(ρ)−ρR) 0 ≤ ρ ≤ 1 (54)

where

E0(ρ) = − log2

(

∑

b

(

1

2
pB(b|0)

1

1+ρ +
1

2
pB(b|1)

1

1+ρ

)1+ρ
)

= − log2





J
∑

j=1

αj

∑

y

(

1

2
p(y|0; j)

1

1+ρ +
1

2
p(y|1; j)

1

1+ρ

)1+ρ



 (55)

We now turn to find the random coding exponent which stems from the use of the bound in Section III-B. We start
with the bound in (47) which is expressed in terms of the un-normalized tilting measure. Consider the following
choice for the un-normalized tilting measure

g(y; j) =

[

1

2
p(y|0; j)

1

1+ρ +
1

2
p(y|1; j)

1

1+ρ

]ρ

p(y|0; j)−
ρ

1+ρ , j = 1, 2, . . . , J (56)

and the distance spectrum of the ensemble of random binary block codes of lengthn and rateR, given by

Ah = 2−n(1−R)

(

n

h

)

, h = 0, 1, . . . , n. (57)

Substituting (56) and (57) into (33) and settingλ = 1
1+ρ

gives the bound

Pe ≤ 2nRρ







J
∑

j=1

αj

∑

y

[

1

2
p(y|0; j)

1

1+ρ +
1

2
p(y|1; j)

1

1+ρ

]1+ρ







n

(58)
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which coincides with the random coding bound in (54)-(55).
By substituting the tilting measure (56) in the bound in Section III-A (see (31)) we get the following error

exponent, which appears instead ofE0(ρ) in (55)

Ẽ0(ρ) = − log2







J
∑

j=1

αj





(

∑

y

1

2
p(y|0; j)

1

1+ρ +
1

2
p(y|1; j)

1

1+ρ

)1+ρ




1

ρ







ρ

.

Using Jensen’s inequality and the fact that0 ≤ ρ ≤ 1, it is easy to show that̃E0(ρ) ≤ E0(ρ), and we therefore
conclude that the bound from Section III-B is tighter than theone in Section III-A in the random coding setting.

Discussion.When comparing the two versions of the bound, it should be noted that the two optimized forms
of tilting measures as given in (42) and (50) are not identical. While these two forms of tilting measures exhibit
the same functional behavior, the normalization conditions are slightly different, withJ normalizing constants in
the first version of the bound (see (44)) and one constant (see (51)) in the second version. This hints that either
of these bounds in (52) and (53) is not uniformly tighter thanthe other for general codes or ensembles; this was
also verified numerically by comparing the two bounds for somecode ensembles. For random codes, we note that
the tightness of the first version is hindered by the use of Jensen’s inequality which is applied in the process of
averaging over all possible channel assignments (see the move from (28) to (29)). This application of Jensen’s
inequality does not appear in the derivation of the second version of the DS2 bound, and may be the seed of the
pitfall of the first version, when applied for random codes.

D. Statement of the Main Result Derived in Section III

The analysis in this section leads to the following theorem:
Theorem 1 (Generalized DS2 bounds for independent parallel MBIOS channels):Consider the transmission of

binary linear block codes (or ensembles) over a set ofJ independent parallel MBIOS channels. Let thepdf of thejth

MBIOS channel be given byp(·|0; j) where due to the symmetry of the binary-input channelsp(y|0; j) = p(−y|1; j).
Assume that the coded bits are randomly and independently assigned to these channels, where each bit is transmitted
over one of theJ MBIOS channels. Letαj be the a-priori probability of transmitting a bit over thejth channel
(j = 1, 2, . . . , J), so thatαj ≥ 0 and

∑J
j=1 αj = 1. By partitioning the code into constant Hamming-weight

subcodes, Eqs. (35) and (46) provide two possible upper bounds on the conditional ML decoding error probability
for each of these subcodes, given that the all-zero codewordis transmitted, and (34) forms an upper bound on the
block error probability of the whole code (or ensemble). Forthe bound in (35), the optimized set of probability
tilting measures{ψ(·; j)}J

j=1 which attains the minimal value of the conditional upper bound is given by the set
of equations in (42); for the bound in (46), the optimal tilting measure is given in (50).

IV. GENERALIZATION OF THE 1961 GALLAGER BOUND FORPARALLEL CHANNELS AND ITS CONNECTION TO

THE GENERALIZED DS2 BOUND

The 1961 Gallager bound for a single MBIOS channel was derivedin [14], and a generalization of the bound
for parallel MBIOS channels was proposed by Liu et al. [23]. Inthe following, we outline the derivation in [23]
which serves as a preliminary step towards the discussion ofits relation to the two versions of the generalized DS2
bound from Section III. In this section, we optimize the probability tilting measures which are related to the 1961
Gallager bound forJ independent parallel channels in order to get the tightest bound within this form (hence, the
optimization is carried w.r.t.J probability tilting measures). This optimization differs from the discussion in [23]
where the authors choose some simple and sub-optimal tilting measures. By doing so, the authors in [23] derive
bounds which are easier for numerical calculation, but the tightness of these bounds is loosened as compared to
the improved bound which relies on the calculation of theJ optimized tilting measures (this will be exemplified
in Section VII for turbo-like ensembles).

A. Presentation of the Bound [23]

Consider a binary linear block codeC. Let xm be the transmitted codeword and define the tilted ML metric

Dm(xm′

, y) , ln

(

f
(m)
n (y)

pn(y|xm′)

)

(59)
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wheref
(m)
n (y) is an arbitrary function which is positive if there existsm′ 6= m such thatpn(y|xm′

) is positive. If
the code is ML decoded, an error occurs if for somem′ 6= m

Dm(xm′

, y) ≤ Dm(xm, y) .

As noted in [36],Dm(·, ·) is in general not computable at the receiver. It is used here as a conceptual tool to
evaluate the upper bound on the ML decoding error probability. The received setYn is expressed as a union of
two disjoint subsets

Yn = Yn
g ∪ Yn

b

Yn
g ,

{

y ∈ Yn : Dm(xm, y) ≤ nd
}

Yn
b ,

{

y ∈ Yn : Dm(xm, y) > nd
}

whered is an arbitrary real number. The conditional ML decoding error probability can be expressed as the sum
of two terms

Pe|m = Prob(error, y ∈ Yn
b ) + Prob(error, y ∈ Yn

g )

which is upper bounded by
Pe|m ≤ Prob(y ∈ Yn

b ) + Prob(error, y ∈ Yn
g ) . (60)

We use separate bounding techniques for the two terms in (60). Applying the Chernoff bound on the first term
gives

P1 , Prob(y ∈ Yn
b ) ≤ E

(

esW
)

, s ≥ 0 (61)

where

W , ln

(

f
(m)
n (y)

pn(y|xm)

)

− nd . (62)

Using a combination of the union and Chernoff bounds for the second term in the RHS of (60) gives

P2 , Prob(error, y ∈ Yn
g )

= Prob
(

Dm(xm′

, y) ≤ Dm(xm, y) for somem′ 6= m, y ∈ Yn
g

)

≤
∑

m′ 6=m

Prob
(

Dm(xm′

, y) ≤ Dm(xm, y), Dm(xm, y) ≤ nd
)

≤
∑

m′ 6=m

E (exp(tUm′ + rW )) , t, r ≤ 0 (63)

where, based on (59),

Um′ = Dm(xm′

, y) − Dm(xm, y) = ln

(

pn(y|xm)

pn(y|xm′)

)

. (64)

Consider a codeword of a binary linear block codeC which is transmitted overJ parallel MBIOS channels. Since
the conditional error probability under ML decoding does not depend on the transmitted codeword, one can assume
without loss of generality that the all-zero codeword is transmitted. As in Section III-A, we impose on the function
f

(m)
n (y) the restriction that it can be expressed in the product form

f (m)
n (y) =

J
∏

j=1

∏

i∈I(J)

f(yi; j) . (65)
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For the continuation of the derivation, it is assumed that the functionsf(·; j) are even, i.e.,f(y; j) = f(−y; j) for
all y ∈ Y. Plugging (25), (62), (64) and (65) into (61) and (63) we get

P1 ≤
∑

y







J
∏

j=1

∏

i∈I(j)

(

f(yi; j)

p(yi|0; j)

)s

p(yi|0; j)







e−nsd

=
J

∏

j=1











∑

y∈Y
p(y|0; j)1−sf(y; j)s





nj






e−nsd s ≥ 0 (66)

P2 ≤
∑

y

∑

m′ 6=m

J
∏

j=1

∏

i∈I(j)

{

(

f(yi; j)

p(yi|0; j)

)r

p(yi|0; j)

(

p(yi|0; j)

p(yi|x(m′)
i ; j)

)t}

e−nrd

=

n1
∑

h1=0

. . .

nJ
∑

hJ=0











Ah1,...,hJ

J
∏

j=1





∑

y∈Y
p(y|0; j)1−rf(y; j)r

(

p(y|0; j)

p(y|1; j)

)t




hj

J
∏

j=1





∑

y∈Y
p(y|0; j)1−rf(y; j)r





nj−hj











e−nrd, t, r ≤ 0 (67)

where as before, we use the notationnj , |I(j)|. Optimizing the parametert gives the value in [14, Eq. (3.27)]

t =
r − 1

2
. (68)

Let us define

G(r; j) ,
∑

y

p(y|0; j)1−rf(y; j)r (69)

Z(r; j) ,
∑

y

[p(y|0; j)p(y|1; j)]
1−r

2 f(y; j)r. (70)

Substituting (68) into (67), combining the bounds onP1 and P2 in (66) and (67), and finally averaging over all
possible channel assignments, we obtain

Pe ≤ E









n
∑

h=1

∑

0≤hj≤nj
∑

hj=h

Ah1,...,hJ

J
∏

j=1

[Z(r; j)]hj [G(r; j)]nj−hje−nrd

+
J

∏

j=1

[G(s; j)]nje−nsd





=
∑

nj≥0
∑

nj=n















n
∑

h=1

∑

0≤hj≤nj
∑

hj=h

Ah1,...,hJ

J
∏

j=1

[Z(r; j)]hj [G(r; j)]nj−hje−nrd

+
J

∏

j=1

[G(s; j)]nje−nsd







PN (n) ,
r ≤ 0
s ≥ 0

−∞ < d < ∞
. (71)
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Following the same procedure of averaging the bound over allpossible assignments as in (30) and (31), we obtain

Pe ≤
n

∑

h=1











Ah





J
∑

j=1

αjZ(r; j)





h 



J
∑

j=1

αjG(r; j)





n−h










e−nrd

+





J
∑

j=1

αjG(s; j)





n

e−nsd . (72)

Finally, we optimize the bound in (72) over the parameterd which gives

Pe ≤ 2H(ρ)











n
∑

h=1

Ah





J
∑

j=1

αjZ(r; j)





h 



J
∑

j=1

αjG(r; j)





n−h










ρ 





J
∑

j=1

αjG(s; j)







n(1−ρ)

(73)

wherer ≤ 0, s ≥ 0, and
ρ ,

s

s − r
, 0 ≤ ρ ≤ 1 . (74)

The bound in (73), originally derived in [23], is a natural generalization of the 1961 Gallager bound for parallel
channels.

B. Connection to the Generalizations of the DS2 Bound

In this section we revisit the relations that exist between the DS2 bound and the 1961 Gallager bound, this time
for the case of independent parallel channels. We will compare the 1961 Gallager bound with both versions of the
DS2 bound presented in Sec. III. For the case of a single MBIOS channel, it was shown [10], [33], [36] that the
DS2 bound is tighter than the 1961 Gallager bound.

This result easily extends to parallel channels, for the caseof the second version of the DS2 bound which was
derived in Sec. III-B using the perfect CSIR channel model. Under this model, the parallel-channel is expressed as
a single MBIOS with output defined as the pairb = (y, j). The results in [10], [33], [36] therefore apply directly
to the CSIR model and can be used to show that the DS2 bound in (46)is tighter than the 1961 Gallager bound
(73).

In this respect, the DS2 bound from Section III-A exhibits a slightly different behavior. In the remainder of this
section, we provide analysis linking this bound with the 1961 Gallager bound. In what follows, we will see how
a variation in the derivation of the Gallager bound leads to aform of the DS2 bound from Section III-A, up to a
factor which varies between 1 and 2. To this end, we start fromthe point in the last section where the combination
of the bounds in (66) and (67) is obtained. Rather than continuing as in the last section, we first optimize over the
parameterd in the sum of the bounds onP1 andP2 in (66) and (67), yielding that

Pe ≤ 2H(ρ)

{

n
∑

h=1

∑

h1,...,hj
∑

j
hj=h

Ah1,...,hj

J
∏

j=1

V (r, t; j)hjG(r; j)nj−hj

}ρ J
∏

j=1

G(s; j)nj(1−ρ)

= 2H(ρ)

{

n
∑

h=1

∑

h1,...,hj
∑

j
hj=h

Ah1,...,hj

J
∏

j=1

[

V (r, t; j)G(s; j)
1−ρ

ρ

]hj

J
∏

j=1

[

G(r; j)G(s; j)
1−ρ

ρ

]nj−hj

}ρ

, t, r ≤ 0, s ≥ 0

where

V (r, t; j) ,
∑

y

p(y|0; j)1−rf(y; j)r

(

p(y|0; j)

p(y|1; j)

)t

(75)
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G(·; j) is introduced in (69) forj = 1, . . . , J , and ρ is given in (74). Averaging the bound with respect to all
possible channel assignments, we get for0 ≤ ρ ≤ 1

Pe ≤ 2H(ρ)
∑

nj≥0
∑

j
nj=n

{[

n
∑

h=1

∑

h1,...,hj
∑

j
hj=h

Ah1,...,hj

J
∏

j=1

[

V (r, t; j)G(s; j)
1−ρ

ρ

]hj

J
∏

j=1

[

G(r; j)G(s; j)
1−ρ

ρ

]nj−hj

]ρ

PN (n)

}

≤ 2H(ρ)











∑

nj≥0
∑

j
nj=n

n
∑

h=1

∑

h1,...,hj
∑

j
hj=h

Ah1,...,hj
PN (n)

J
∏

j=1

[

V (r, t; j)G(s; j)
1−ρ

ρ

]hj

J
∏

j=1

[

G(r; j)G(s; j)
1−ρ

ρ

]nj−hj





ρ

(76)

where we invoked Jensen’s inequality in the last step. Following the same steps as in (28)–(31), we get

Pe ≤ 2H(ρ)







n
∑

h=1

Ah





J
∑

j=1

αjV (r, t; j)G(s; j)
1−ρ

ρ





h





J
∑

j=1

αjG(r; j)G(s; j)
1−ρ

ρ





n−h






ρ

, (77)

where from (68), (69), (74) and (75)

G(s; j) =
∑

y

p(y|0; j)

(

f(y; j)

p(y|0; j)

)s

G(r; j) =
∑

y

p(y|0; j)

(

f(y; j)

p(y|0; j)

)s(1− 1

ρ
)

V (r, t; j) =
∑

y

p(y|0; j)

(

f(y; j)

p(y|0; j)

)s(1− 1

ρ
) (

p(y|0; j)

p(y|1; j)

)t

. (78)

Setting λ = −t, and substituting in (78) the following relation between the Gallager tilting measures and the
un-normalized tilting measures in the DS2 bound

g(y; j) ,

(

f(y; j)

p(y|0; j)

)s

, j = 1, 2, . . . , J (79)

we obtain

Pe ≤ 2H(ρ)







n
∑

h=0

Ah





J
∑

j=1

αj

(

∑

y

g(y; j)1−
1

ρ p(y|0; j)1−λp(y|1; j)λ

)

(

∑

y

g(y; j)p(y|0; j)

)
1−ρ

ρ





h 



J
∑

j=1

αj

(

∑

y

g(y; j)1−
1

ρ p(y|0; j)

)

(

∑

y

g(y; j)p(y|0; j)

)
1−ρ

ρ





n−h










ρ

, 0 ≤ ρ ≤ 1 (80)
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which coincides with the form of the DS2 bound given in (33) (upto the factor2H(ρ) which lies between 1 and
2), for those un-normalized tilting measuresg(·; j) such that the resulting functionsf(·; j) in (79) areeven.

Discussion. The derivation of the 1961 Gallager bound involves first the averaging of the bound in (71) over all
possible channel assignments and then the optimization over the parameterd in (72). To show a connection to the
DS2 bound in (33), we had first optimized overd and then obtained the bound averaged over all possible channel
assignments. The difference between the two approaches is that in the latter, Jensen’s inequality had to be used in
(76) to continue the derivation (because the expectation over all possible channel assignments was performed on
an expression raised to theρ-th power) which resulted in the DS2 bound, whereas in the derivation of [23], the
need for Jensen’s inequality was circumvented due to the linearity of the expression in (71). We note that Jensen’s
inequality was also used for the direct derivation of the DS2 bound in (31); this use of Jensen’s inequality hinders
the tightness of this bound to the point where we cannot determine if it is tighter than the 1961 Gallager bound or
not. For the special case ofJ = 1, both versions of the DS2 bound degenerate to the standard DS2 bound from
Sec. II-D. In this case, as in the case of the DS2 bound from Section III-B, the DS2 bound is tighter than the 1961
Gallager bound (as noted in [36]) due to the following reasons:

• For the 1961 Gallager bound, it is required thatf(·; j) be even. This requirement inhibits the optimization of
ψ(·; j) in Section III because the optimal choice ofψ(·; j) given in (42) leads to functionsf(·; j) which are not
even. The exact form off(·; j) which stems from the optimal choice ofψ(·; j) is detailed in Appendix A.1.

• The absence of the factor2H(ρ) (which is greater than 1) in both versions of the DS2 bound implies their
superiority. Naturally, this factor is of minor importancesince we are primarily interested in the exponential
tightness of these bounds.

It should be noted that, as in the case ofJ = 1, the optimization over the DS2 tilting measure is still over a
larger set of functions as compared to the 1961 Gallager tilting measure; hence, the derivation appearing in this
section of the DS2 bound in (33) from the 1961 Gallager boundonly gives an expression of the same form and
not the same upper bound(disregarding the2H(ρ) constant).

C. Optimized Tilting Measures for the Generalized 1961 Gallager Bound

We derive in this section optimized tilting measures for the1961 Gallager bound. These optimized tilting measures
are derived for random coding, and for the case of constant Hamming weight codes. The 1961 Gallager bound
will be used later in conjunction with these optimized tilting measures in order to get an upper bound on the
decoding error probability of an arbitrary binary linear block code. To this end, such a code is partitioned to
constant Hamming weight subcodes (where each subcode also includes the all-zero codeword), and a union bound
is used in conjunction with the calculation of the conditional error probability of each subcode, given that the
all-zero codeword is transmitted. Using these optimized tilting measures improves the tightness of the resulting
bound, as exemplified in the continuation of this paper.

1) Tilting Measures for Random Codes:Consider the ensemble of fully random binary block codes of length
n. Substituting the appropriate weight enumerator (given in (15)) into (72), we get

Pe ≤ 2−n(1−R)







1

2

J
∑

j=1

αj

∑

y

[

p(y|0; j)
1−r

2 + p(y|1; j)
1−r

2

]2
f(y; j)r







n

e−nrd

+







1

2

J
∑

j=1

αj

∑

y

(

p(y|0; j)1−s + p(y|1; j)1−s
)

f(y; j)s







n

e−nsd ,
r ≤ 0
s ≥ 0
d ∈ R

(81)

where we rely on (69) and (70), use the symmetry of the channels and the fact that we require the functionsf(·; j)
(j = 1, . . . , J) to be even. To optimize (81) over all possible tilting measures, we apply calculus of variations. This
procedure gives the following equation:

J
∑

j=1

αj

(

p(y|0; j)
1−r

2 + p(y|1; j)
1−r

2

)2
f(y; j)r−1

−L
J

∑

j=1

αj

(

p(y|0; j)1−s + p(y|1; j)1−s
)2

f(y; j)s−1 = 0 ∀y.
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whereL ∈ R is a Lagrange multiplier. This equation is satisfied for tiltingmeasures which are given in the form

f(y; j) = K











(

p(y|0; j)
1−r

2 + p(y|1; j)
1−r

2

)2

p(y|0; j)1−s + p(y|1; j)1−s











1

s−r

K ∈ R. (82)

This forms a natural generalization of the tilting measure given in [14, Eq. (3.41)] for a single MBIOS channel.
We note that the scaling factorK may be omitted as it cancels out when we substitute (82) in (73).

2) Tilting Measures for Constant Hamming Weight Codes:The distance spectrum of a constant Hamming weight
code is given by

Ah′ =







1, if h′ = 0
Ah, if h′ = h
0, otherwise

(83)

Substituting this into (73) and using the symmetry of the component channels and the fact that the tilting measures
f(·; j) are required to be even, we get

Pe|0(h) ≤ 2H(ρ)Aρ
h







J
∑

j=1

αj

∑

y

[p(y|0; j)p(y|1; j)]
1−r

2 f(y; j)r







hρ

·







J
∑

j=1

αj

2

∑

y

[

p(y|0; j)1−r + p(y|1; j)1−r
]

f(y; j)r







(n−h)ρ

·







J
∑

j=1

αj

2

∑

y

[

p(y|0; j)1−s + p(y|1; j)1−s
]

f(y; j)s







n(1−ρ)

,

r ≤ 0, s ≥ 0, ρ =
s

s − r
. (84)

Applying calculus of variations to (84) yields (see Appendix A.2 for some additional details) that the following
condition should be satisfied for all values ofy ∈ Y:

J
∑

j=1

αj

{

[

p(y|0; j)1−s + p(y|1; j)1−s
]

f(y; j)s−r + K1 [p(y|0; j)p(y|1; j)]
1−r

2 (85)

+K2

[

p(y|0; j)1−r + p(y|1; j)1−r
]

}

= 0

whereK1, K2 ∈ R. This condition is satisfied if we require
[

p(y|0; j)1−s + p(y|1; j)1−s
]

f(y; j)s−r + K1 [p(y|0; j)p(y|1; j)]
1−r

2

+K2

[

p(y|0; j)1−r + p(y|1; j)1−r
]

≡ 0 , ∀y ∈ Y, j = 1, . . . , J.

The optimized tilting measures can therefore be expressed inthe form

f(y; j) =

{

c1

(

p(y|0; j)
1−s(1−ρ−1)

2 + p(y|1; j)
1−s(1−ρ−1)

2

)2

p(y|0; j)1−s + p(y|1; j)1−s
+

d1

(

p(y|0; j)1−s(1−ρ−1) + p(y|1; j)1−s(1−ρ−1)
)

p(y|0; j)1−s + p(y|1; j)1−s

}
ρ

s

,
c1, d1 ∈ R

s ≥ 0
0 ≤ ρ ≤ 1

(86)

where we have used (74). This form is identical to the optimal tilting measure for random codes if we setd1 = 0.
It is possible to scale the parametersc1 andd1 without affecting the 1961 Gallager bound (i.e., the ratioc1

d1
cancels

out when we substitute (86) in (73)). Furthermore, we note that regardless of the values ofc1 andd1, the resulting
tilting measures are even functions, as required in the derivation of the 1961 Gallager bound.
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For the simplicity of the optimization, we wish to reduce theinfinite intervals in (86) to finite ones. It is shown
in [31, Appendix A] that the optimization of the parameters can be reduced to the interval[0, 1] without loosening
the tightness of the bound. Furthermore, the substitutionc , c1+2d1

2c1+3d1
, as suggested in [31, Appendix B], enables

one to express the optimized tilting measure in (86) using anequivalent form where the new parameterc lies in
the interval[0, 1]. The numerical optimization of the bound in (86) is thereforetaken over the range of parameters
0 ≤ ρ ≤ 1, 0 ≤ s ≤ 1, 0 ≤ c ≤ 1. Based on the calculations in [31, Appendices A, B], the functions f(·; j) get
the equivalent form

f(y; j) =

{

(1 − c)
(

p(y|0; j)
1−s(1−ρ−1)

2 − p(y|1; j)
1−s(1−ρ−1)

2

)2

p(y|0; j)1−s + p(y|1; j)1−s

+
2c

(

p(y|0; j)p(y|1; j)
)

1−s(1−ρ−1)

2

p(y|0; j)1−s + p(y|1; j)1−s

}
ρ

s

, (ρ, s, c) ∈ [0, 1]3. (87)

By reducing the optimization of the three parameters over the unit cube, the complexity of the numerical process
is reduced to an acceptable level.

D. Statement of the Main Result Derived in Section IV

The analysis in this section leads to the following theorem:
Theorem 2 (Generalized 1961 Gallager bound for parallel channels): Consider the transmission of binary linear

block codes (or ensembles) over a set ofJ independent parallel MBIOS channels. Following the notation in
Theorem 1, the generalization of the 1961 Gallager bound in (73) provides an upper bound on the ML decoding
error probability when the bound is taken over the whole code(as originally derived in [23]). By partitioning
the code into constant Hamming-weight subcodes, the generalized 1961 Gallager bound on the conditional ML
decoding error probability of an arbitrary subcode (given that the all-zero codeword is transmitted) is provided
by (84), and (34) forms an upper bound on the block error probability of the whole code (or ensemble). For an
arbitrary constant Hamming weight subcode, the optimized set of non-negative and even functions{f(·; j)}J

j=1

which attains the minimal value of the conditional bound in (84), is given by (87); this set of functions is subject
to a three-parameter optimization over a cube of unit length(see (87)).

V. SPECIAL CASES OF THEGENERALIZED DS2 BOUND FOR INDEPENDENTPARALLEL CHANNELS

In this section, we rely on the two versions of the generalized DS2 bound for independent parallel MBIOS
channels, as presented in Sections III-A and III-B, and applythem in order to re-derive some of the bounds
which were originally derived by Liu et al. [23]. The derivation in [23] is based on the 1961 Gallager bound from
Section IV-A, and the authors choose particular and sub-optimal tilting measures in order to get closed form bounds
(in contrast to the optimized tilting measures in Section IV-C which lead to more complicated bounds in terms
of their numerical computation). In this section, we followthe same approach in order to re-derive some of their
bounds as particular cases of the two generalized DS2 bounds (i.e., we choose some particular tilting measures
rather than the optimized ones). In some cases, we re-derivethe bounds from [23] as special cases of the generalized
DS2 bound, or alternatively, obtain some modified bounds as compared to [23].

A. Union-Bhattacharyya Bound in Exponential Form

As in the case of a single channel, it is a special case of both versions of the DS2 and the 1961 Gallager bound.
By substitutingr = 0 in the Gallager bound orρ = 1, λ = 0.5 in both versions of the DS2 bound, we get

Pe ≤
n(1−R)
∑

h=1

Ahγh (88)

whereγ is given by (3) and denotes the average Bhattacharyya parameter of J independent parallel channels. Note
that this bound is given in exponential form, i.e., as in the single channel case, it doesn’t use the exact expression
for the pairwise error probability between two codewords ofHamming distanceh. For the case of the binary-input
AWGN, a tighter version which uses theQ-function to express the exact pairwise error probability is presented in
Appendix C.
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B. The Sphere Bound for Parallel AWGN Channels

The simplified sphere bound is an upper bound on the ML decoding error probability for the binary-input
AWGN channel. In [23], the authors have obtained a parallel-channel version of the sphere bound by making the
substitutionf(y; j) = 1√

2π
in the 1961 Gallager bound. We will show that this version is also a special case of

both versions of the parallel-channel DS2 bound. By using therelation (79), between Gallager’s tilting measure
and the un-normalized DS2 tilting measure, we get

g(y; j) =

(

f(y; j)

p(y|0; j)

)s

= exp

(

s(y +
√

2νj)
2

2

)

so that
∫ +∞

−∞
g(y; j)p(y|0; j) dy =

1√
1 − s

∫ +∞

−∞
g(y; j)1−

1

ρ p(y|0; j) dy =
1

√

1 − s
(

1 − 1
ρ

)

∫ +∞

−∞
g(y; j)1−

1

ρ p(y|0; j)1−λp(y|1; j)λ dy =
e
νj

(

1−s
(

1− 1

ρ

)

)

√

1 − s
(

1 − 1
ρ

)

.

By introducing the two new parametersβ = 1 − s
(

1 − 1
ρ

)

andλ = β
2 we get

∫ +∞

−∞
g(y; j)p(y|0; j)dy =

√

1 − ρ

1 − βρ
∫ +∞

−∞
g(y; j)1−

1

ρ p(y|0; j)dy = β− 1

2 (89)

∫ +∞

−∞
g(y; j)1−

1

ρ p(y|0; j)1−λp(y|1; j)λdy =
γβ

j√
β

, γj , e−νj .

Next, by plugging (89) into the DS2 bound in (33), we get

Pe ≤











n
∑

h=0

Ah





J
∑

j=1

αjγ
β
j





h

β−n

2











ρ
(

1 − ρ

1 − βρ

)
n(1−ρ)

2

,
0 ≤ ρ ≤ 1
1 ≤ β ≤ 1

ρ

. (90)

The same expression may be obtained by plugging (89) into the DS2 bound in (47). This bound is identical to the
parallel-channel simplified sphere bound in [23, Eq. (24)], except that it provides a slight improvement due to the
absence of the factor2H(ρ) which appears in [23, Eq. (24)] (a factor bounded between 1 and2).

C. Generalizations of the Shulman-Feder Bound for Parallel Channels

In this sub-section, we present two generalizations of the Shulman and Feder (SF) bound, where both bounds
apply to independent parallel channels. The first bound was previously obtained by Liu et al. [23] as a special
case of the generalization of the 1961 Gallager bound and will be shown to be a special case of the DS2 bound
from Section III-B, and the second bound follows as a particular case of the DS2 bound from Section III-A for
independent parallel channels.

By substituting in (73) the tilting measure and the parameters (see [23, Eq. (28)])

f(y; j) =

(

1

2
p(y|0; j)

1

1+ρ +
1

2
p(y|1; j)

1

1+ρ

)1+ρ

r = −1 − ρ

1 + ρ
, s =

ρ

1 + ρ
, 0 ≤ ρ ≤ 1 (91)
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straightforward calculations for MBIOS channels give the following bound which was originally introduced in [23,
Lemma 2]:

Pe ≤ 2H(ρ)2nRρ

(

max
1≤h≤n

Ah

2−n(1−R)
(

n
h

)

)ρ






J
∑

j=1

αj

(

∑

y

1

2
p(y|0; j)

1

1+ρ +
1

2
p(y|1; j)

1

1+ρ

)1+ρ






n

. (92)

Due to the natural connection between the DS2 bound in Section III-B and the 1961 Gallager bound for parallel
channels (see the discussion in Sec. IV-B), the generalized SFbound is also a special case of the former bound.
The tilting measure which should be used in this case to show the connection has already appeared in (56) (as a
part of the discussion Sec. III-C on the random coding versionof this bound) and it reads

g(y; j) =

[

1

2
p(y|0; j)

1

1+ρ +
1

2
p(y|1; j)

1

1+ρ

]ρ

p(y|0; j)−
ρ

1+ρ .

The result is the same as the bound in (92) except for the absence of the factor2H(ρ).
Considering the generalization of the DS2 bound in Section III-A, it is possible to start from Eq. (33) and take

the maximum distance spectrum term out of the sum. This gives the bound

Pe ≤ 2−n(1−R)ρ

(

max
1≤h≤n

Ah

2−n(1−R)
(

n
h

)

)ρ






J
∑

j=1

αj

[

∑

y

g(y; j)p(y|0; j)

]
1−ρ

ρ

·
[

∑

y

p(y|0; j)g(y; j)1−
1

ρ

(

1 +

(

p(y|1; j)

p(y|0; j)

)λ
)]}nρ

, 0 ≤ ρ ≤ 1. (93)

Using theJ un-normalized tilting measures from (56) and settingλ = 1
1+ρ

in (93), gives the following bound due
to the symmetry at the channel outputs:

Pe ≤ 2nRρ

(

max
1≤h≤n

Ah

2−n(1−R)
(

n
h

)

)ρ











J
∑

j=1

αj





(

∑

y

1

2
p(y|0; j)

1

1+ρ +
1

2
p(y|1; j)

1

1+ρ

)1+ρ




1

ρ











nρ

, 0 ≤ ρ ≤ 1 (94)

which forms another possible generalization of the SF bound for independent parallel channels. Clearly, unless
J = 1 (referring to the case of a single MBIOS channel), this boundis exponentially looser than the one in (92).
The fact that the bound in (94) is exponentially looser than the bound in (92) follows from the use of Jensen’s
inequality for the derivation of the first version of the DS2 bound (see the move from (28) to (29)).

D. Modified Shulman-Feder Bound for Independent Parallel Channels

It is apparent from the form of the SF bound that its exponential tightness depends on the quantity

max
1≤h≤n

Ah

2−n(1−R)
(

n
h

) (95)

which measures the maximal ratio of the distance spectrum ofthe considered binary linear block code (or ensemble)
and the average distance spectrum of fully random block codes with the same rate and block length. One can observe
from Fig. 3 that this ratio may be quite large for a non-negligible portion of the normalized Hamming weights, thus
undermining the tightness of the SF bound. The idea of theModified Shulman-Feder(MSF) bound is to split the
set of non-zero normalized Hamming weightsΨn ,

{

1
n
, 2

n
, . . . , 1

}

into two disjoint subsetsΨ+
n andΨ−

n where the
union bound is used for the codewords with normalized Hamming weights within the setΨ+

n , and the SF bound is
used for the remaining codewords. This concept was originally applied to the ML analysis of ensembles of LDPC
codes by Miller and Burshtein [26]. Typically, the setΨ+

n consists of low and high Hamming weights, where the
ratio in (95) between the distance spectra and the binomial distribution appears to be quite large for typical code
ensembles of linear codes; the setΨ−

n is the complementary set which includes medium values of thenormalized
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Hamming weight. The MSF bound for a given partitioningΨ−
n , Ψ+

n is introduced in [23, Lemma 3], and gets the
form

Pe ≤
∑

h: h

n
∈Ψ+

n

Ahγh + 2H(ρ)2nRρ

(

max
h: h

n
∈Ψ−

n

Ah

2−n(1−R)
(

n
h

)

)ρ

·







J
∑

j=1

αj

(

∑

y

1

2
p(y|0; j)

1

1+ρ +
1

2
p(y|1; j)

1

1+ρ

)1+ρ






n

(96)

whereγ is introduced in (3), and0 ≤ ρ ≤ 1. Liu et al. prove that in the limit where the block length tendsto
infinity, the optimal partitioning of the set of non-zero normalized Hamming weights to two disjoint subsetsΨ−

n

andΨ+
n is given by (see [23, Eq. (42)])

δ ∈
{

Ψ+
n if − δ ln γ ≥ H(δ) + (I − 1) ln 2

Ψ−
n otherwise

(97)

where

I ,

J
∑

j=1

αj

2

∑

x∈{−1,1}

∑

y

p(y|x; j) log2

p(y|x; j)

1/2
∑

x′∈{−1,1} p(y|x′; j)

designates the average mutual information under the assumption of equiprobable binary inputs. Note that for finite
block lengths, even with the same partitioning as above, thefirst term in the RHS of (96) can be tightened by
replacing the Bhattacharyya bound with the exact expression for the average pairwise error probability between two
codewords of Hamming distanceh. Referring to parallel binary-input AWGN channels, the exact pairwise error
probability is given in (C.5), thus providing the followingtightened upper bound:

Pe ≤ 1

π

∫ π
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


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



h

dθ











+2H(ρ)2nRρ

(
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h: h

n
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n

Ah
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(

n
h

)

)ρ

·






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(

∑

y

1

2
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1

1+ρ +
1

2
p(y|1; j)

1

1+ρ

)1+ρ






n

. (98)

On the selection of a suitable partitioning of the setΨn in (98): The asymptotic partitioning suggested in (97)
typically yields that the union bound is used for low and highvalues of normalized Hamming weights; for these
values, the distance spectrum of ensembles of turbo-like codes deviates considerably from the binomial distribution
(referring to the ensemble of fully random block codes of thesame block length and rate). Letδl and δr be the
smallest and largest normalized Hamming weights, respectively, referring to the range of values ofδ in (97) so
that Ψ−

n ,
{

δl, δl +
1
n
, . . . , δr

}

, andΨ+
n ,

{

1
n
, 2

n
, . . . , δl − 1

n
} ∪ {δr + 1

n
, δr + 2

n
, . . . , 1

}

are the sets of normalized
Hamming weights. The subsetsΨ+

n andΨ−
n refer to the discrete values of normalized Hamming weights for which

the union bound in its exponential form is superior to the SF bound and vice versa, respectively (see (96)). Our
numerical experiments show that for finite-length codes (especially, for codes of small and moderate block lengths),
this choice ofδl and δr often happens to be sub-optimal in the sense of minimizing the overall upper bounds in
(96) and (98). This happens because forδ = δl (which is the left endpoint of the interval for which the SF bound is
calculated), the ratio of the average distance spectrum of the considered ensemble and the one which corresponds to
fully random block codes is rather large, so the second term in the right-hand-sides of (96) and (98) corresponding
to the contribution of the SF bound to the overall bound is considerably larger than the first term which refers to
the union bound. Therefore, for finite-length codes, the following algorithm is proposed to optimize the partition
Ψn = Ψ+

n ∪ Ψ−
n :

1) Select initial valuesδl0 and δr0
(for δl and δr) via (97). If there are less than two solutions to the equation

−δ ln γ = H(δ) + (I − 1) ln 2, selectΨ+
n = Ψn, Ψ−

n = φ as the empty set.
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2) Optimize the value ofδl by performing a linear search in the range[δl0 , δr0
] and finding the value ofδl which

minimizes the overall bound in the RHS of (98).

The optimal partition for the MSF bound yields the tightest bound within this family. This bound yields the
largest MSF attainable channel region, and is therefore termed the LMSFbound. The algorithm above is applied
to the calculation of the LMSF bound for finite-length codes (see, e.g., 4(b) in p. 32).

Clearly, an alternative and slightly tighter version of theMSF bound can be obtained from the DS2 bound from
Section III-B for parallel channels where the difference will be in the absence of the2H(ρ) constant. We address
the LMSF bound in Section VII, where for various ensembles of turbo-like codes, its tightness is compared with
that of both versions of generalized DS2 and Gallager bounds.

VI. I NNER BOUNDS ONATTAINABLE CHANNEL REGIONS FORENSEMBLES OFGOOD BINARY L INEAR CODES

TRANSMITTED OVER PARALLEL CHANNELS

In this section, we consider inner bounds on the attainable channel regions for ensembles of good binary linear
codes (e.g., turbo-like codes) whose transmission takes place over independent parallel channels. The computation of
these regions follows from the upper bounds on the ML decoding error probability we have obtained in Sections III
and IV (see Theorems 1 and 2), referring here to the asymptoticcase where we let the block length tend to infinity.

Let us consider an ensemble of binary linear codes, and assumethat the codewords of each code are transmitted
with equal probability. AJ-tuple of transition probabilities characterizing a parallel channel is said to be an
attainable channel pointwith respect to a code ensembleC if the average ML decoding error probability vanishes
as we let the block length tend to infinity. Theattainable channel regionof an ensemble whose transmission takes
place over parallel channels is defined as the closure of the set of attainable channel points. We will focus here on
the case where each of theJ independent parallel channels can be described by a single real parameter, i.e., the
attainable channel region is a subset ofR

J ; the boundary of the attainable region is called thenoise boundaryof
the channel. Since the exact decoding error probability under ML decoding is in general unknown, then similarly
to [23], we evaluate inner bounds on the attainable channel regions whose calculation is based on upper bounds
on the ML decoding error probability.

In [23, Section 4], Liu et al. have used special cases of the 1961Gallager bound to derive a simplified algorithm
for calculating inner bounds on attainable channel regions. As compared to the bounds introduced in [23], the
improvement in the tightness of the bounds presented in Theorems 1 and 2 is expected to enlarge the corresponding
inner bounds on the attainable channel regions. Our numerical results referring to inner bounds on attainable channel
regions are based on the following theorem:

Theorem 3 (Inner bounds on the attainable channel regions forparallel channels):Let us assume that the trans-
mission of a sequence of binary linear block codes (or ensembles) {[C(n)]} takes place over a set ofJ parallel
MBIOS channels. Assume that the bits are randomly assigned to these channels, so that every bit is transmitted over
a single channel and the a-priori probability for transmitting a bit over thej-th channel isαj (where

∑J
j=1 αj = 1

andαj ≥ 0 for j ∈ {1, . . . , J}). Let {A[C(n)]
h } designate the (average) distance spectrum of the sequence of codes

(or ensembles),r[C](δ) designate the asymptotic exponent of the (average) distance spectrum, and

γj ,
∑

y∈Y

√

p(y|0; j)p(y|1; j) , j ∈ {1, . . . , J}

designate the Bhattachryya constants of the channels. Assume that the following conditions hold:

1)
inf

δ0<δ≤1
EDS21(δ) > 0, ∀ δ0 ∈ (0, 1) (99)

where, for0 < δ ≤ 1, EDS21(δ) is calculated from (37) by maximizing w.r.t.λ, ρ (λ ≥ 0 and 0 ≤ ρ ≤ 1)
and the probability tilting measures{ψ(·; j)}J

j=1.
2) The inequality

lim sup
δ→0

r[C](δ)

δ
< − ln

(

J
∑

j=1

αjγj

)

(100)
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is satisfied, where the sum inside the logarithm designates the average Bhattacharrya constant over theJ
parallel channels, andr[C](δ) designates the asymptotic growth rate of the distance spectrum as defined in
(14).

3) There exists a sequence{Dn} of natural numbers tending to infinity with increasingn so that

lim sup
n→∞

Dn
∑

h=1

A
[C(n)]
h = 0 (101)

4) The exponent of the distance spectrumr[C(n)](δ) converges uniformly inδ ∈ [0, 1] to its asymptotic limit.
Then, theJ-tuple vector of parameters characterizing these channelslies within the attainable channel region under
ML decoding.

Proof: The reader is referred to Appendix B.
Discussion:We note that conditions 3 and 4 in Theorem 3 are similar to the last two conditions in [22,

Theorem 2.3]. Condition 2 above happens to be a natural generalization of the second condition in [22, Theorem 2.3],
thus generalizing the single channel case to a set of parallel channels. The distinction between [22, Theorem 2.3]
which relates to typical-pairs decoding over a single channel and the statement in Theorem 3 for ML decoding
over a set of independent parallel channels lies mainly in the first condition of both theorems.

A similar result which involves the generalized 1961 Gallager bound for parallel channels can be proven in the
same way by replacing the first condition with an equivalent relation involving the exponent of the 1961 Gallager
bound maximized over its parameters, instead of the error exponent of the DS2 bound.

The difference of our results from those presented in [23] stems from the fact that we rely here on the generalized
DS2 bound and the 1961 Gallager bound with their relatedoptimized tilting measures, and not on particular cases
of the latter bound. These optimizations which are carried over the tilting measures of both bounds provide tighter
bounds as compared to the bounds introduced in [23, Sections 4and 5] which follow from the particular choices
of the tilting measures for the generalized 1961 Gallager bound.

We later exemplify our inner bounds on the attainable channel regions for ensembles of accumulate-based codes
whose transmission takes place over parallel AWGN channels. The simplest ensemble we consider is the ensemble
of uniformly interleaved and non-systematic repeat-accumulate (NSRA) codes withq ≥ 3 repetitions. It is shown
in [9, Section 5] that the third condition in Theorem 3 is satisfied for this ensemble, and more explicitly

Dn
∑

h=1

A
[C(n)]
h = O

(

1

n

)

whereDn = O (ln(n)) (so the sequence{Dn} tends to infinity logarithmically withn). Based on the calculations
of the distance spectrum of this ensemble (see [9, Section 4]), the fourth condition in Theorem 3 is also satisfied.
We note that for this ensemble, the asymptotic growth rate ofthe distance spectrum satisfies

r[C](0) = 0, lim sup
δ→0

r[C](δ)

δ
=

d

dδ
r[C](δ)

∣

∣

∣

∣

δ=0

= 0.

Hence, inequality (100) in Theorem 3 (i.e., the second condition in this theorem) is also satisfied for this ensemble
(since the RHS of (100) is always positive). Hence, the fulfillment of all the conditions in Theorem 3 for this
ensemble requires to check under which conditions the errorexponent is strictly positive (see the condition in
(99)).

As a second example, for the Gallager ensembles of regular(n, j, k) LDPC codes, the second, third and fourth
conditions are also satisfied for the case wherej ≥ 3. Under this assumption, the minimum distance even grows
linearly with the block length (see [14, Section 2.2]), so theLHS of (100) becomes negative.

We make use of the fulfillment of the condition in (100) for regular NSRA codes and some other variants of
accumulate-based codes later in Section VII-B.

It is important to note that the low Hamming weight codewordswhich are addressed by the requirement in
(101) may yield that the error probability under ML decodingdoes not necessarily vanish exponentially with the
block length (see, e.g., [26, Theorems 3 and 4] and [9, Section 5], where the ML decoding error probability of
the considered ensembles of turbo-like codes vanish asymptotically like the inverse of a polynomial of the block
length).
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VII. PERFORMANCEBOUNDS FORTURBO-L IKE ENSEMBLES OVERPARALLEL CHANNELS: MODERATE

BLOCK LENGTHS AND THEASYMPTOTIC CASE

In this section, we exemplify the performance bounds derived in this paper for various ensembles of turbo-like
codes whose transmission is assumed to take place over parallel BIAWGN channels. We also compare the bounds
to those introduced in [23], showing the superiority of the new bounds introduced in Sections III and IV. As
mentioned before, the superiority of the generalized 1961 Gallager bound in Section IV over the LMSF bound
from [23] is attributed to the optimizations of the related tilting measures over each of the individual channels.

We especially focus on ensembles of uniformly interleaved repeat-accumulate (RA) codes and accumulate-
repeat-accumulate (ARA) codes. These codes, originally introduced by Divsalar et al. [2], [9], are attractive since
they possess low encoding and decoding complexity under iterative decoding and remarkable improvement in
performance over classical algebraic codes. For independent parallel channels, we study their theoretical performance
under ML decoding. The section considers both finite-length analysis and asymptotic analysis. In the former case,
we present upper bounds on the ML decoding error probability, and in the latter case, we consider inner bounds on
the attainable channel regions of these ensembles and studythe gap to the capacity region. In order to assess the
tightness of the bounds for ensembles of relatively short block lengths, we compare the upper bounds under optimal
ML decoding with computer simulations under (sub-optimal)iterative decoding. In some cases, the upper bounds
under ML decoding are more pessimistic than the experimental results of the iterative decoder, thus indicating that
there is still room for improving the tightness of the new bounds.

The structure of this section is as follows. Section VII-A exemplifies performance bounds for ensembles of
short to moderate block length by focusing on a uniformly interleaved ensemble of turbo codes, comparing various
bounds on the bit error probability under ML decoding and compare the results with computer simulation of the Log-
MAP iterative decoding. Section VII-B focuses on performance bounds for repeat-accumulate codes and their recent
variations which are attractive due to their remarkable performance and low encoding and decoding complexity under
iterative decoding algorithms. This sub-section analyzes the performance under optimal ML decoding, assuming
the communications takes place over parallel channels. The inner bounds on the attainable channel regions whose
calculations are based on Theorem 3 considerably extend the channel region which corresponds to the cutoff rate,
and outperform previously reported bounds. We conclude thediscussion in this section with practical considerations
related to efficient implementations of the generalized DS2 and 1961 Gallager bounds for parallel channels, thus
aiming to reduce the computational complexity related to the evaluation of these bounds (see Section VII-C).

A. Performance Bounds for Uniformly Interleaved Turbo Codes

In this sub-section, we exemplify the tightness of the new bounds by referring to an ensemble of uniformly
interleaved turbo codes, and comparing the upper bounds on the bit error probability under ML decoding with
computer simulations of an iterative decoder. The bounds areexemplified for the transmission over two parallel
BIAWGN channels. The reader is referred to [21] which introduces coding theorems for turbo code ensembles
under ML decoding, assuming that the transmission takes place over a single MBIOS channel (i.e.,J = 1 in our
setting).

Fig. 4 compares upper bounds on the bit error probability of the ensemble of uniformly interleaved turbo codes
of rate R = 1

3 bits per channel use (see Fig. 4(a)). The calculation of the average distance spectrum and IOWE
of this ensemble is performed by calculating the IOWE of the constituent codes which are recursive systematic
convolutional codes (to this end, we rely on the general approach provided in [25] for the calculation of the IOWE
of convolutional codes), and finally, the uniform interleaver which is placed between the two constituent codes in
Fig. 4(a) enables one to calculate the distance spectrum and the IOWE of this ensemble, based on the IOWE of
the constituent codes (see [4]). The transmission of the codes from this ensemble is assumed to take place over
two (independent) parallel binary-input AWGN channels where each bit is equally likely to be assigned to one of
these channels (α1 = α2 = 1

2 ), and the value of the energy per bit to spectral noise density of the first channel is

fixed to
(

Eb
N0

)

1
= 0 dB. Since for long enough block codes, the union bound is not informative at rates beyond the

cutoff rate, one would expect that for the considered ensemble of codes (whose block length is roughly 3000 bits),
the union bound becomes useless for values of

(

Eb
N0

)

2
below the value in the RHS of (8) (whose value in this

setting is 3.69 dB). This limitation of the union bound is indeed reflected from Fig. 4(b), thus showing how loose
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(b) Performance Bounds under ML decoding versus simulation resultsof iterative Log-MAP decoding.

Fig. 4. (a) The encoder of an ensemble of uniformly interleaved turbo codes whose interleaver is of length 1000 without puncturing of
parity bits. (b) Performance bounds for the bit error probability underML decoding versus computer simulation results of iterative Log-MAP
decoding (with 10 iterations). The transmission of this ensemble takes placeover two (independent) parallel binary-input AWGN channels.
Each bit is equally likely to be assigned to one of these channels, and the energy per bit to spectral noise density of the first channel is set
to

(

Eb
N0

)

1
= 0 dB. The compared upper bounds on the bit error probability are the generalizations of the DS2 and 1961 Gallager bounds,

the LMSF bound from [23], and the union bound (based on (C.5)).

is the union bound as compared to computer simulations of the(sub-optimal) iterative decoder. The LMSF bound
depicted in Fig. 4(b) uses a partitioning for codes of finite length which was obtained via the algorithm described
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in Section V-D; for a bit error probability of10−4 it is about 1 dB tighter than the union bound. Both versions
of the DS2 and the 1961 Gallager bounds with theiroptimized tilting measuresshow a remarkable improvement
in their tightness over the union and LMSF bounds where for a biterror probability of10−4, these three bounds
exhibit a gain of 0.8 dB over the LMSF bound. The two versions of the DS2 bound are almost equally tight with a
gap between them of less than 0.01dB in favor of the second version. The second version of the DS2 bound gains
about 0.05 dB at a bit error probability of10−3 over the 1961 Gallager bound. In spite of a remarkable advantage
of the improved bounds over the union and LMSF bounds, computersimulations under (the sub-optimal) iterative
Log-MAP decoding with 10 iterations show a gain of about 0.4 dB, so there is still room for further improvement
in the tightness of the bounds under ML decoding.

B. Distance Properties and Performance Bounds for Various Ensembles of Accumulate-Based Codes

The IOWEs and the distance spectra of ensembles of irregular repeat-accumulate (IRA) codes and accumulate-
repeat-accumulate (ARA) codes were derived in [2], [18]. Inthe continuation of this section, we compare inner
bounds on the attainable channel regions of accumulate-based codes under ML decoding. The comparison refers
to three ensembles of rate one-third, as depicted in Fig. 5: the first one is the ensemble of uniformly interleaved
and non-systematic RA codes where the number of repetitionsis q = 3, the second and the third ensembles are
uniformly interleaved and systematic ensembles of RA codesand ARA codes, respectively, where the number of
repetitions is equal toq = 6 and, as a result of puncturing, every third bit of the non-systematic part is transmitted
(so the puncturing period isp = 3). For simplicity of notation, we make use of the abbreviations NSRA(N, q),
SPRA(N, p, q) and SPARA(N, M, p, q) codes for the encoders shown in Figs. 5 (a)–(c) (i.e., the abbreviations ’NS’
and ’SP’ stand for ’non-systematic’ and ’systematic and punctured’, respectively). In this notation,N is the input
block length.

We rely on the concepts of the analysis introduced in [2] for the calculation of the IOWEs of the uniformly
interleaved ensembles in Figs. 5 (a)–(c), as well as the calculation of the asymptotic growth rates of their distance
spectra. The generalizations of the DS2 and the 1961 Gallager bounds for parallel channels are then applied to
these ensembles for the asymptotic case where we let the block length tend to infinity.

Accumulate Puncturing
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Interleaver
N

code

N

qN qN

Repetition Accumulate

code
Interleaver qN

qN qN
N
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Accumulate PuncturingAccumulate
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qN qN qN
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N−M

M

N

qN

p

(b) Systematic RA codes with puncturing - SPRA(N, p, q)

(a) Non-systematic RA codes - NSRA(N, q)

code(q)

code(q)

qN

p

(c) Systematic ARA codes with puncturing - SPARA(N, M, p, q)

code(q) period (: p)

period (: p)

Fig. 5. Systematic and Non-systematic RA and ARA codes. The interleavers of these ensembles are assumed to be chosen uniformly at
random, and are of lengthqN whereN designates the length of the input block (information bits) andq is the number of repetitions. The
rates of all the ensembles is set to1

3
bits per channel use, so we setq = 3 for figure (a), andq = 6 andp = 3 for figures (b) and (c). The

diagram in part (a) corresponds to a non-systematic ensemble without puncturing, whereas the diagrams in parts (b) and (c) correspond to
systematic ensembles with puncturing.
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The average IOWE and the asymptotic growth rate of the distance spectrum for the ensemble of uniformly
interleaved NSRA codes (see Fig. 5 (a)) are given in (16) and (17), respectively.

Following the approach of the analysis in [2], we derive the average IOWEs of the uniformly interleaved ensembles
of SPRA(N ,3,6) and SPARA(N ,M ,3,6) codes (see Figs. 5 (b) and (c)). The details of this analysis are provided
in Appendix D. In the following, we present the final results related to the finite-length and asymptotic distance
properties (where we letN tend to infinity); these results serve later for the calculation of attainable channel regions
under ML decoding.

We consider here the case where the repetition code repeats each bit six times, and the parity bits are punctured
so that every third bit is transmitted. The IOWE of the ensemble of uniformly interleaved SPRA(N, 3, 6) codes in
Fig. 5 (b) is given by (see Appendix D.1)

Aw,d =

(

N
w

)

(

6N
6w

)

2N
∑

h=0

2N
∑

j=0

min(j,h)
∑

i=max(0,j−2N+h)

{(

h

i

)(

2N − h

j − i

)(

2N − d + w

bh
2 c

)

(

d − w − 1

dh
2 e − 1

)

3h+j−2i δ6w,2j+h

}

(102)

whereδn,m designates the discrete delta function (i.e., it is equal to1 if n = m, and is equal to zero otherwise).
The IOWE of the ensemble of uniformly interleaved SPARA(N, M, 3, 6) codes in Fig. 5 (c) is given by (see
Appendix D.1)

Aw,d =
M
∑

m=0

N
∑

l=0

2N
∑

h=0

2N
∑

j=0

min(j,h)
∑
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{

(

M
m

)(
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2
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2 c

)

(
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2 e − 1

)
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. (103)

The asymptotic growth rates of the distance spectra of these two ensembles are obtained by the calculation of
the limit

r[C](δ) = lim
N→∞

1

3N

N
∑

w=0

Aw,d, δ =
d

3N
(0 ≤ δ ≤ 1)

where it is taken into account that the common rate of these ensembles is equal to one-third bits per channel use.
Let H(x) = −x ln(x) − (1 − x) ln(1 − x) be the binary entropy function to the natural base, then it iswell

known that

lim
n→∞

1

n
ln

(

n

βn

)

= H(β) , 0 ≤ β ≤ 1. (104)

For the derivation of the asymptotic growth rate of the average distance spectrum for the ensemble of uniformly
interleaved SPRA(N, 3, 6) codes whereN → ∞, we rely on the IOWE given in (102), and introduce the parameters

η ,
h

3N
, ρ1 ,

i

3N
, ρ2 ,

j

3N
.

The asymptotic growth rate of the distance spectrum of this ensemble is given by (see Appendix D.2)

r(δ) = max
η,ρ1,ρ2

{
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(105)
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where the three-parameter maximization is performed over the finite domain which is characterized by the following
inequalities:

0 ≤ η ≤ 2

3
, 0 ≤ ρ2 ≤ 2

3
, 2ρ2 + η ≤ 6δ, ρ2 + 2η ≤ 3δ

max
(

0, ρ2 + η − 2

3

)

≤ ρ1 ≤ min(ρ2, η), η − ρ2 + 3δ ≤ 2. (106)

The derivation of the asymptotic growth rate of the average distance spectrum for the ensemble of uniformly
interleaved SPARA(N, M, 3, 6) codes, whereN → ∞ and the ratioM

N
is fixed, relies on the IOWE given in (103).

To this end, we introduce the three additional parameters

α ,
M

3N
, ε1 ,

m

3N
, ε2 ,

w − m

3N
. (107)

As mentioned above, the value ofα is fixed, and also0 ≤ α ≤ 1
3 (sinceM ≤ N ). After straightforward and tedious

algebra which is conceptually similar to the calculations in Appendix D.2, one obtains the following expression for
the asymptotic growth rate of the average distance spectrumof the considered ensemble of uniformly interleaved
SPARA codes:

r(δ) = max
η,ρ1,ρ2,ε1,ε2

{

α H
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(108)

where the five-parameter maximization is performed over thefinite domain which is characterized by the following
inequalities:

0 ≤ η ≤ 2

3
, 0 ≤ ρ2 ≤ 2

3
, 0 ≤ ε1 ≤ α,

0 ≤ ε1 + ε2 ≤ min
(

δ,
1

3

)

,

max
(

0, ρ2 + η − 2

3

)

≤ ρ1 ≤ min(ρ2, η),

0 ≤ η ≤ min
(4

3
− 2δ + 2(ε1 + ε2), 2δ − 2(ε1 + ε2)

)

,

ε2 ≤ min

(

2

3
− 2α − 2ρ2 + η

3
+ 2ε1,

2ρ2 + η

3
− 2ε1

)

. (109)

In the asymptotic case where we let the block length tend to infinity, inner bounds on the attainable channel
regions for the considered ensembles of accumulate-based codes are calculated in this section by Theorem 3.

In Fig. 6, we compare inner bounds on the attainable channel boundaries as calculated by the union, LMSF, and
DS2 bounds from Sections III-A and III-B. This plot refers to theensemble of NSRA(N, 3) codes of rate13 bits per
channel use (see Fig. 5 (a)) where we letN tend to infinity. The asymptotic growth rate of the distance spectrum
of this ensemble is calculated by (17) withq = 3. The remarkable superiority of the both versions of the DS2
bound over the union and LMSF bounds is exemplified for this ensemble of turbo-like codes; actually, the DS2
bound from Sec. III-B appears to be slightly tighter than the DS2 bound from Sec. III-A at the extremities of the
boundary of the attainable channel region. We conjecture that this is the region where the application of Jensen’s
inequality in the latter bound (see the move from (28) to (29)) hinders its tightness the most, possibly due to the
large variance of the summands in (28). This phenomenon was also observed for various turbo-like ensembles,
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Fig. 6. Attainable channel regions for the rate one-third uniformly interleaved ensemble of NSRA(N, 3) codes (see Fig. 5 (a)) in the
asymptotic case where we letN tend to infinity. The communication takes place overJ = 2 parallel binary-input AWGN channels, and
the bits are equally likely to be assigned over one of these channels (α1 = α2 = 1

2
). The achievable channel region refers to optimal ML

decoding. The boundaries of the union and LMSF bounds refer to the discussion in [23], while the boundaries referring to the two versions
of the DS2 bound refer to the derivations in Sections III-A and III-B, followed by an optimization of the tilting measures derived in these
sections.

as well as for ensembles of fully random block codes. However, in the middle region where the channels are not
very different, the DS2 bound from Sec. III-A is in some cases tighter than the DS2 bound from Sec. III-B. In
the continuation of this section, we therefore compare inner bounds on the attainable channel regions for various
ensembles of turbo-like codes where the boundaries of theseregions by choosing the tightest version of the DS2
bound, i.e., that which yields the largest attainable channel region. This comparison appears in Fig. 8).

Fig. 7 compares the asymptotic growth rate of the distance spectra of several ensembles of uniformly interleaved
and accumulate-based codes where the ensembles are depicted in Fig. 5. The improved performance of the ensembles
of SPARA codes under ML decoding is demonstrated in Fig. 8. This improvement is attributed to the distance
spectral thinning effect [27] which is exemplified in Fig. 7 forthe ensembles of NSRA, SPRA and SPARA codes
of the same code rate (1

3 bits per channel use). The same phenomenon of distance spectral thinning also exists
by reducing the value ofα for the ensembles of SPARA codes (see Fig. 7, comparing the two plots for α = 1

4
andα = 2

15 ); this in turn yields an improved inner bound on the attainable channel regions, as observed in Fig. 8.
It is shown in this figure that for the SPARA ensemble with the parametersp = 3, q = 6 and α = 2

15 , the gap
between the inner bound on the attainable channel region under ML decoding and the capacity limit is less than
0.05 dB. Note that for the examined ensembles of NSRA and SPRA codes of the same code rate, the corresponding
gaps between the inner bounds on the attainable channel regions and the channel capacity are 2.2 dB and 0.5 dB,
respectively (see Fig. 8).

C. Considerations on the Computational Complexity of the Generalized DS2 and 1961 Gallager Bounds

The brute-force calculation of the generalized DS2 bound for linear codes (or ensembles) of finite length is in
general computationally heavy. For every constant weight subcode, it requires a numerical optimization over the
two parametersλ ≥ 0 and 0 ≤ ρ ≤ 1; for each subcode of constant Hamming weight and for each choice of
values forλ and ρ, one needs to solve numerically the implicit equations fork and βj (see Eqs. (43) and (44))
which are related to theJ optimized tilting measures. Moreover, for each subcode anda pair of values forλ andρ,
the evaluation of the generalized DS2 bound requires numerical integrations (or summations, in case the channel
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Fig. 7. Comparison of asymptotic growth rates of the average distance spectra of ensembles of RA and ARA codes.

outputs are discrete). Performing these tedious and time-consuming optimizations for every constant weight subcode
would make the improved bounds less attractive in terms of their practical use for performance evaluation of linear
codes and ensembles.

In the following, we suggest an approach which significantly reduces the complexity related to the computation
of the generalized DS2 bound, and enhances the applicabilityof the bound using standard computational facilities.
First, the code is partitioned into constant Hamming weight subcodes, and the exact union bound (see Eq. (C.5))
is calculated for every subcode (note that the number of subcodes does not exceed the block length of the code).
This task is rather easy, given the (average) distance spectrum {Ah} or the weighted IOWE{A′

h} of the code (or
ensemble) which are calculated in advance (see (23) and (24)). In order to reduce the computational complexity, we
do not calculate the generalized DS2 bounds for those constant-Hamming weight subcodes for which the values of
the union bounds fall below a certain threshold (e.g., we maychoose a threshold of10−10 for bit error probability
or 10−6 for block error probability; these thresholds should be tailored for the application under consideration).
Next, for those constant Hamming weight subcodes for which the union bound exceeds the above threshold, the
generalized DS2 bound is evaluated. For these subcodes, we wish to reduce the infinite intervalλ ≥ 0 to a finite
interval; this is performed by using the transformationλ′ , λ

λ+1 so that the two-parameter optimization is reduced
to a numerical optimization over the unit square(λ′, ρ) ∈ [0, 1]2. In this respect, it was observed that the optimal
values ofλ′ and ρ vary rather slowly for consecutive values of the constant Hamming weighth, so the search
interval associated with the optimization process may be reduced once again with no penalty in the tightness of
the bound. In other words, we search for optimal values ofλ′ andρ only within a neighborhood of the optimalλ′

andρ found for the previous subcode. We proceed in this manner until all the relevant subcodes are considered. As
an example, we note that for the ensemble of turbo codes depicted in Fig. 4(b), about 80% of the computational
time was saved without affecting the numerical results; in this respect, the threshold for the bit error probability
analysis was chosen to be10

−6

n
wheren designates the block length of the code. The reduction in the computational

complexity becomes however more pronounced for higher SNR values, as the number of subcodes for which the
union bound replaces the computation of the generalized DS2 bound increases.

An analogous consideration applies to the generalized version of the 1961 Gallager bound for parallel channels
with its related optimized tilting measures.

Referring to the calculation of attainable channel regions, a search over the region of channel parameters
is required. As an example, consider a set of parallel AWGN channels characterized by theJ-tuple of SNRs
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Fig. 5. These regions refer to the asymptotic case where we letN tend to infinity. The communication takes place overJ = 2 parallel binary-
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2
). The achievable channel

region refers to optimal ML decoding. The boundaries of these regionsare calculated by selecting the tighter of the two generalizations of
the DS2 bound appearing in Sections III-A and III-B, followed by the optimization of their respective tilting measures. The capacity limit
and the attainable channel regions which corresponds to the cutoff rate are given as a reference.

(ν1, . . . , νJ). In order to find the attainable channel boundary, we fix the values of ν1, . . . , νJ−1 and perform a
linear search overνJ using any appropriate method (e.g., the bisection method) in order to find the smallest value
of ν∗

J for which the lower bound on the error exponent (as obtained by an upper bound on the ML decoding
error probability) vanishes. If(ν1, . . . , νJ−1, 0) is not an attainable point while(ν1, . . . , νJ−1,∞) is attainable, then
the resulting valueν∗

J is such that the point(ν1, . . . , ν
∗
J) is on the boundary of the attainable region. The overall

complexity of this approach is, of course, polynomial inJ . We apply this approach in this section for the calculation
of inner bounds on the attainable channel regions under ML decoding, referring to the generalizations of the DS2
and 1961 Gallager bounds in Sections III and IV, respectively.

VIII. S UMMARY

This paper is focused on the performance analysis of binary linear block codes (or ensembles) whose transmission
takes place over independent, memoryless and symmetric parallel channels. New bounds on the maximum-likelihood
(ML) decoding error probability are derived. These bounds areapplied to various ensembles of turbo-like codes,
focusing especially on punctured repeat-accumulate and accumulate-repeat-accumulate (ARA) codes which possess
low encoding and decoding complexity and exhibit remarkable performance under iterative decoding (see, e.g., [1],
[9], [20], [28], [29]). The framework of the second version ofthe Duman and Salehi (DS2) bounds is generalized
to the case of parallel channels by means of two different approaches, along with the derivation of their optimized
tilting measures. For the case of random codes, one of the bounds (namely, the one derived in Sec. III-B) attains
the random coding exponent while the other (derived in Sec. III-A) does not. This difference is attributed to the
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additional Jensen’s inequality in the transition from (28)to (29) (see p. 11) which is circumvented in the derivation
of Sec. III-B. Nevertheless, for general code ensembles, neither of these two bounds is tighter than the other. The
generalization of the 1961 Gallager bound for parallel channels, introduced by Liu at al. [23], is reviewed and the
optimized tilting measures which are related to this bound are derived via calculus of variations (as opposed to the
use of simple and sub-optimal tilting measures in [23]). The connection between the generalized DS2 bound and
the 1961 Gallager bound, which was originally addressed by Divsalar [10] and by Sason and Shamai [33], [36]
for a single channel, is revisited in this paper for an arbitrary number of independent parallel channels which are
memoryless and symmetric. In this respect, it is shown that the 1961 Gallager bound [23] is a special case of the
generalized DS2 bound derived in Sec. III-B and is not a specialcase of the DS2 bound derived in Sec. III-A. In the
asymptotic case where we let the block length tend to infinity,the new bounds are used to obtain improved inner
bounds on the attainable channel regions under ML decoding.The tightness of the new bounds for independent
parallel channels is exemplified for structured ensembles ofturbo-like codes. In this respect, the inner bounds on
the attainable channel regions which are computed by the DS2 bound from Sec. III-A are slightly looser than those
computed by the DS2 bound from Sec. III-B at the extremities of the boundary of the attainable channel region.
On the other hand, in the region where the channels are not very different, the DS2 bound from Sec. III-A is
slightly tighter. It is therefore suggested to use in each case the tighter of the two bounds in order to maximize the
attainable channel region. For turbo-like ensembles of moderate block lengths, the two versions of the generalized
DS2 bound are almost equally tight (see, e.g., Fig. 4(b) in p. 32).

Following the approach in [2], we analyze the distance spectra and their asymptotic growth rates for various
ensembles of systematic and punctured accumulate-based codes (see Fig. 5). This distance spectral analysis serves
to assess the performance of these codes under ML decoding where we rely on the bounding techniques developed
in [23] and this paper for parallel channels. The improved performance of the ensembles of systematic and
punctured accumulate-repeat-accumulate (SPARA) codes under ML decoding is demonstrated by combining the
two generalized DS2 bounds from Sections III-A and III-B (see Fig. 8). This improvement is attributed to the
distance spectral thinning effect [27] which is exemplified in Fig. 7 by comparing the asymptotic growth rates of
the distance spectra for the ensembles in Fig. 5 (a)–(c).

The generalization of the DS2 bound for parallel channels enables to re-derive specific bounds which were
originally derived by Liu et al. [23] as special cases of the 1961 Gallager bound. However, the improved bounds
together with their optimized tilting measures show, regardless of the block length of the codes, an improvement
over the bounds derived as special cases of the 1961 Gallagerbound; this improvement is especially pronounced
for moderate to large block lengths. We note that in some cases, the new bounds under ML decoding happen to
be a bit pessimistic as compared to computer simulations of sub-optimal iterative decoding (see, e.g., Fig. 4(b)),
thus indicating that there is still room for further improvement of the bounds under ML decoding.
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APPENDIX A

A. On the Sub-optimality of Even Tilting Measures in the Gallager Bound

In the following, we derive the functionsf(·; j) resulting from the optimal DS2 tilting measures in (42) and
demonstrate that they are not even functions. From (32), we get the expression

ψ(y; j) =
g(y; j)p(y|0; j)

∑

y′

g(y′; j)p(y′|0; j)
, c−1 · g(y; j)p(y|0; j)

for the single-letter connection between the normalized and un-normalized DS2 tilting measures; changing the
subject gives

g(y; j) = c ·
(

ψ(y; j)

p(y|0; j)

)

. (A.1)
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Substituting (42) in (A.1) we obtain the optimal form of the un-normalized tilting measure as

g(y; j) = c ·
(

1 + k

(

p(y|1; j)

p(y|0; j)

)λ
)ρ

(A.2)

Next, we substitute (79) in the LHS of (A.2) and manipulate theexpression to get

f(y; j) = const· p(y|0; j)

(

1 + k

(

p(y|1; j)

p(y|0; j)

)λ
)

ρ

s

. (A.3)

Clearly, this expression does not constitute an even function.

B. Technical Details for Calculus of Variations on(84)

The bound on the decoding error probability for constant Hamming weight codes is given by substituting (83)
into (72). Disregarding the multiplicative term2h(ρ), we minimize the expression

U , Ah







J
∑

j=1

αj

∑

y

[p(y|0; j)p(y|1; j)]
1−r

2 f(y; j)r







h

·







J
∑

j=1

αj

2

∑

y

[

p(y|0; j)1−r + p(y|1; j)1−r
]

f(y; j)r







n−h

e−nrd

+







J
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j=1

αj

2

∑

y

[

p(y|0; j)1−s + p(y|1; j)1−s
]

f(y; j)s







n

e−nsd,

r ≤ 0, s ≥ 0 −∞ < d < ∞. (A.4)

Employing calculus of variations, we substitute in (A.4) thefollowing tilting measure

f(y; j) = f0(y; j) + εη(y; j)
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whereη(·; j) is an arbitrary function. Next, we impose the condition that∂U
∂ε

∣

∣

ε=0
= 0 for all η(·; j). The derivative

is given by
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Defining the constants
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and requiring that the integrand in (A.5) be equal to zero, weget the equivalent condition

J
∑

j=1

αj

{

(

c1c2 [p(y|0; j)p(y|1; j)]
1−r

2 + c3c4

[

p(y|0; j)1−r + p(y|1; j)1−r
]

)

f0(y; j)r−1

+c5

[

p(y|0; j)1−s + p(y|1; j)1−s
]

f0(y; j)s−1

}

= 0, ∀y ∈ Y.

Defining K1 , c1c2

c5
, K2 , c3c4

c5
, and dividing both sides byf0(y; j)r−1 implies the condition in (85).

APPENDIX B: PROOF OFTHEOREM 3

The concept of the proof of this theorem is similar to the proofintroduced in [22, pp. 40–42] for the single
channel case, and the proofs of [23, Theorems 2–4] for the scenario of independent parallel channels. The difference
in this proof from those mentioned above is the starting point which relies on the generalization of the DS2 bound
(see Theorem 1 in Section III-A).

We begin by rewriting the DS2 bound for a specific constant Hamming-weight subcode (35) as

Pe|0(h) ≤ Aρ
hBh

where

Bh ,






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





J
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
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ψ(y; j)1−
1

ρ p(y|0; j)
1

ρ





1−δ










nρ

. (B.1)

By selecting the optimized tilting measures and optimal values ofλ ≥ 0 and0 ≤ ρ ≤ 1, we obtain the optimized
boundBopt

h , which is related to the optimal exponentEDS21(δ) by

Bopt
h = e−n(EDS21 (δ)+ρr[C](δ)), δ ,

h

n
. (B.2)

The upper bound on the ML decoding error probability of the ensemble can be written as

P [C(n)]
e ≤

n
∑

h=1

Aρ
hBopt

h ≤
Dn
∑

h=1

Ah +

αn
∑

h=Dn+1

Ahγh +

n
∑

h=αn+1

Aρ
hBopt

h (B.3)

for any α > 0. This follows since for weights up toDn, we upper boundBopt
h by 1, and for Hamming weights

from Dn + 1 up to αn, the DS2 bound is relaxed by selectingρ = 1 and using the union bound (see (88)). Let us
examine the behavior of each of the three terms in the RHS of (B.3). As we letn tend to infinity, the first term in
the RHS of (B.3) goes to 0 due to the third condition of the theorem.

The second term in the RHS of (B.3) satisfies the equality
αn
∑

h=Dn+1

Ahγh =
αn
∑

h=Dn+1

e
h
(

r[C(n)](δ)

δ
+ln(γ)

)

.

We now rely on the second condition of Theorem 1 (see (100)) andthe fourth condition of this theorem, where
the latter condition is related to the uniform convergence of rC(n)(δ) to the asymptotic growth rater[C](δ) over the
interval [0,1]. These two condition imply that for large enough values ofn, there exists a positiveα which is close
enough to zero for which

r[C(n)](δ)

δ
+ ln(γ) < −θ0 < 0, ∀δ ≤ α
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for some positiveθ0. This implies the inequality
αn
∑

h=Dn+1

e
h
(

r[C(n)](δ)

δ
+ln(γ)

)

≤
αn
∑

h=Dn+1

e−hθ0 ≤ e−Dnθ0

1 − e−θ0

which tends to zero asn → ∞ becauseDn → ∞.
Finally, by using (B.2) and relying on the fourth condition inTheorem 1, the third term in the RHS of (B.3) can

be expressed as
n

∑

h=αn

Aρ
hBopt

h =
n

∑

h=αn

e−n(EDS21 (δ)+ρ(r[C](δ)−r[C(n)](δ))) =
n

∑

h=αn

e−n(EDS21 (δ)+o(1)) (B.4)

which vanishes asn → ∞ due to (99), thus completing the proof of Theorem 1 (since it was demonstrated that each
of the three terms in the RHS of (B.3) vanishes as we letn tend to infinity, so also the decoding error probability
in the LHS of (B.3) vanishes asymptotically).¤

APPENDIX C: EXACT UNION BOUND FORPARALLEL GAUSSIAN CHANNELS

In this appendix, we derive the union bound on the ML decodingerror probability of binary linear block codes
transmitted over parallel Gaussian channels. This form of the union bound can also be used in conjunction with
other bounds (e.g., 1961 Gallager or both versions of the DS2 bounds) for constant Hamming weight subcodes in
order to tighten the resulting bound. Unfortunately, we cannot compare here ”two versions” of the union derived
by the two different approaches which were used for the DS2 bound in Sec. III. This is because when applying
the CSIR model, we have no exact expression for the pairwise error probability for a general distributionαj of
the channel states. Therefore, we must use the first approach ofaveraging the bound over all possible channel
mappings. We start the derivation by expressing the pairwise error probability given that the all-zero codeword is
transmitted

Pe(0 → xh1,h2,...,hJ
) = Q





√

√

√

√2
J

∑

j=1

νjhj



 (C.1)

where xh1,h2,...,hJ
is a codeword possessing split Hamming weightsh1, . . . , hJ in the J parallel channels, and

νj ,

(

Es
N0

)

j
designates the energy per symbol to spectral noise density for thejth AWGN channel (j = 1, 2, . . . , J).

The union bound on the block error probability gives

Pe ≤
n

∑

h=1

∑

h1≥0,...,hJ≥0
h1+...+hJ=h

Ah1,...,hJ
Q





√

√

√

√2

J
∑

j=1

νjhj



 (C.2)

where this bound is expressed in terms of the split weight enumerator of the code. Averaging (C.2) over all possible
channel assignments and codes from the ensemble gives (see (30))

Pe ≤
∑

nj≥0
n1+...+nJ=n

{

n
∑

h=1

∑

0≤hj≤nj
∑

j
hj=h

Ah PH|N (h|n) PN (n) Q





√

√

√

√2
J

∑

j=1

νjhj





}

=
∑

nj≥0
n1+...+nJ=n



















n
∑

h=1

∑

0≤hj≤nj
∑

j
hj=h

Ah

(

h

h1, h2, . . . , hJ

)

(

n − h

n1 − h1, n2 − h2, . . . , nJ − hJ

)

αn1

1 . . . αnJ

J Q





√

√

√

√2

J
∑

j=1

νjhj











(C.3)
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whereαj designates the a-priori probability for the transmission of symbols over thejth channel, assuming the
assignments of these symbols to theJ parallel channels are independent and random.

In order to simplify the final result, we rely on Craig’s identity for the Q-function [7], i.e.,

Q(x) =
1

π

∫ π

2

0
e−

x2

2 sin2 θ dθ , x ≥ 0. (C.4)

Plugging (C.4) into (C.3) and interchanging the order of integration and summation gives

Pe ≤ 1

π

∫ π

2

0

∑

nj≥0
n1+...+nJ=n



















n
∑

h=1

∑

0≤hj≤nj
∑

hj=h

Ah

(

h

h1, h2, . . . , hJ

)

(

n − h
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J

J
∏

j=1

e−
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sin2 θ
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
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=

1

π

∫ π

2

0

n
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Ah
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hj≥0
∑

hj=h
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(

h
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) J
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[

αje
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sin2 θ

]hj

}
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kj≥0
∑

j
kj=n−h

{

(
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) J
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(αj)
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}

dθ

(b)
=

1

π

∫ π

2

0

n
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h=1

Ah





J
∑

j=1

αje
− νj

sin2 θ
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h

dθ (C.5)

where (a) follows by substitutingkj = nj − hj for j = 1, 2, . . . , J , and (b) follows since the sequence{αj}J
j=1 is

a probability distribution, which gives the equality

∑

kj≥0
∑

j
kj=n−h

{

(

n − h

k1, k2, . . . , kJ

) J
∏

j=1

(αj)
kj

}

=





J
∑

j=1

αj





n−h

= 1.

Eq. (C.5) provides the exact (Q-form) version of the union bound on the block error probability for independent
parallel AWGN channels.

APPENDIX D: DISTANCE SPECTRAANALYSIS OF SYSTEMATIC ACCUMULATE-BASED CODES WITH

PUNCTURING

The following analysis is focused on the distance spectra of uniformly interleaved and systematic ensembles
of repeat-accumulate (RA) codes and accumulate-repeat-accumulate (ARA) codes with puncturing (see Figs. 5 (b)
and (c) in p. 33). As mentioned in Section VII-B, these two ensembles are abbreviated by SPRA and SPARA codes,
respectively (where ’SP’ stands for ’systematic and punctured’). We derive here the input-output weight enumerator
(IOWEs) of these ensembles and also calculate the asymptoticgrowth rates of their distance spectra. The analysis
follows the approach introduced in [2], and it is written in aself-contained manner.

The component codes constructing SPRA and SPARA codes are an accumulate code (i.e., a rate-1 differential
encoder), a repetition code and a single parity-check (SPC) code. Since we consider ensembles of uniformly
interleaved codes, their IOWEs depend on the IOWE of the abovecomponent codes [4], [5]. As a preparatory step,
we introduce the IOWEs of these components.

1) The IOWE of a repetition (REP) code is given by

A
REP(q)
w,d =

(

k

w

)

δd,qw (D.1)
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wherek designates the input block length, andδn,m is the discrete delta function.
2) The IOWE of an accumulate (ACC) code is given by

AACC
w,d =

(

n − d

bw
2 c

)(

d − 1

dw
2 e − 1

)

(D.2)

wheren is the block length (since this code is of rate 1, the input andoutput block lengths are the same). The
IOWE in (D.2) can be easily obtained combinatorially; to this end, we rely on the fact that for the accumulate
code, every single ’1’ at the input sequence flips the value at the output from this point (until the occurrence
of the next ’1’ at the input sequence).

3) The IOWE function of a non-systematic single parity-checkcode which provides the parity bit of each set
of p consecutive bits, call it SPC(p), is given by (see [2, Eq. (8)])

A(W, D) =

np
∑

w=0

n
∑

d=0

A
SPC(p)
w,d WwDd

=
[

Even
(

(1 + W )p
)

+ Odd
(

(1 + W )p
)

D
]n

(D.3)

where

Even
(

(1 + W )p
)

=
(1 + W )p + (1 − W )p

2

Odd
(

(1 + W )p
)

=
(1 + W )p − (1 − W )p

2
(D.4)

are two polynomials which include the terms with the even andodd powers ofW , respectively.
To verify (D.3), note that a parity-bit of this code is equal to 1 if and only if the number of ones in the
corresponding set ofp bits is odd; also, the number of check nodes in the consideredcode is equal to the
block length of the code(n).

0

0

x

0

0

x
⇐⇒

Fig. 9. Accumulate code with puncturing periodp = 3 and an equivalent version of an SPC(p) code followed by an accumulate code.

The case where the output bits of an accumulate code are punctured with a puncturing periodp is equivalent to
an SPC(p) code followed by an accumulate code (see Fig. 9 which was originally shown in [2, Fig. 2]). Hence, for
the uniformly interleaved ensembles of SPRA and SPARA codes with a puncturing period ofp = 3 (see Figs. 5 (b)
and (c)), we are interested in the IOWE of the SPC(3) code. For the case wherep = 3, (D.4) gives

Even
(

(1 + W )3
)

= 1 + 3W 2, Odd
(

(1 + W )3
)

= 3W + W 3

and (D.3) gives straightforwardly the following IOWE of theSPC(3) code [2, Eq. (15)]:

A
SPC(3)
w,d =

(

n

d

) n
∑

j=0

min(j,d)
∑

i=max(0,j−n+d)

(

d

i

)(

n − d

j − i

)

3d+j−2i δw,2j+d. (D.5)

In the following, we consider two uniformly interleaved ensembles of SPRA and SPARA codes withq = 6
repetitions and puncturing of periodp = 3, as shown in Fig. 5 (b) and (c). We rely here on the equivalence shown
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in Fig. 9, related to the inner accumulate code with puncturing. In this respect, since the input bits to the SPC
(appearing in the right plot in Fig. 9) are permuted by the uniform interleaver which is placed after the repetition
code (see Figs. 5 (b) and (c)), then the average IOWEs of these two ensembles remain unaffected by placing an
additional uniform interleaver between the SPC and the inner accumulate codes. Similarly, placing another uniform
interleaver between the precoder in Fig. 5 (c) (i.e., the codewhich accumulates the firstN − M bits) and the
repetition code, does not affect the average IOWE of the overall ensemble in Fig. 5 (c).

As mentioned above, the equivalence in Fig. 9 yields that without loss of generality, an additional uniform
interleaver of lengthN ′ = qN

p
= 2N bits can be placed between the SPC(3) code and the accumulate code without

affecting the calculation. By doing so, the average IOWE of the serially concatenated and uniformly interleaved
ensemble whose constituent codes are the SPC(3) and the accumulate codes, call it ACC(3), is given by (see [5])

A
ACC(3)
w,d =

2N
∑

h=0

A
SPC(3)
w,h AACC

h,d
(

2N
h

) . (D.6)

The substitution of (D.2) and (D.5) into (D.6) gives

A
ACC(3)
w,d =

2N
∑

h=0

2N
∑

j=0

min(j,h)
∑

i=max(0,j−2N+h)

{

(

h

i

)(

2N − h

j − i

)(

2N − d

bh
2 c

)(

d − 1

dh
2 e − 1

)

3h+j−2i δw,2j+h

}

. (D.7)

Note that (D.7) is similar to [2, Eq. (19)], except thatN in the latter equation is replaced by2N in (D.7). This
follows since q

p
(i.e., the ratio between the number of repetitions and the puncturing period) is equal here to 2,

instead of 1 as was the case in [2]. Equation (D.7) will be used for the finite-length analysis of the distance spectra
for the ensembles considered in the continuation to this appendix.

A. Finite-Length Analysis of the Distance Spectra for Systematic Ensembles of RA and ARA Codes with Puncturing

Uniformly Interleaved SPRA(N, 3, 6) codes: Let us consider the ensemble depicted in Fig. 5 (b) whereq = 6
andp = 3. Since there is a uniform interleaver of lengthN ′′ = qN between the repetition code and the equivalent
ACC(3) code, the average IOWE of this serially concatenated and uniformly interleaved systematic ensemble is
given by

A
SPRA(N,3,6)
w,d =

6N
∑

l=0

A
REP(6)
w,l A

ACC(3)
l,d−w

(

6N
l

)

=

(

N
w

)

A
ACC(3)
6w,d−w

(

6N
6w

) (D.8)

where the last equality is due to the equality in (D.1). Substituting (D.7) in the RHS of (D.8) gives the average
IOWE of the considered ensemble, and this result coincides with (102).

Uniformly Interleaved SPARA(N, M, 3, 6) codes: By comparing Figs. 5 (b) and (c), we see that a precoder is placed
in the second figure. Referring to the ensemble of SPARA codes which is shown in Fig. 5 (c), the precoder is a
binary linear block code whose firstN − M input bits are accumulated and the otherM input bits not changed;
theseN bits are encoded by the repetition code. The IOWE of the systematic precoder, call itPre(N, M), is given
by

A
Pre(N,M)
w,d =

M
∑

m=0

(

M

m

)

AACC
w−m,d−m

=
M
∑

m=0

{(

M

m

)(

N − M − d + m

bw−m
2 c

)(

d − m − 1

dw−m
2 e − 1

)}

(D.9)
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where the last equality relies on (D.2). As mentioned before, for the uniformly interleaved SPARA ensemble depicted
in Fig. 5 (c), an additional uniform interleaver between the precoder and the following stages of its encoder does
not affect the average IOWE; this ensemble can be therefore viewed as a serial concatenation with a uniform
interleaver of lengthN which is placed between the precoder and the repetition codein Fig. 5 (c) (in addition to
the uniform interleaver which is placed after the repetition code). Moreover, referring to the systematic ensemble
whose components are REP(6) and ACC(3), the input bits (which are the bits provided by the precoder to the
second stage in Fig. 5 (c)) are not transmitted to the channel.In light of these two observations, the average IOWE
of the uniformly interleaved ensemble of SPARA codes shown inFig. 5 (c) is given by

A
SPARA(N,M,3,6)
w,d =

N
∑

l=0

A
Pre(N,M)
w,l A

SPRA(N,3,6)
l,d−w+l

(

N
l

) . (D.10)

By substituting (D.8) (i.e., the equality in (102)) and (D.9) into (D.10), one obtains the expression in (103) for the
average IOWE of the SPARA(N, M, 3, 6) codes.

B. Asymptotic Analysis of the Distance Spectra

This subsection considers the calculation of the asymptoticgrowth rates of the distance spectra for the two
ensembles in Figs. 5 (b) and (c). The calculation of the asymptotic growth rate of the distance spectrum of a
sequence of codes (or ensembles) is performed via (14). In the following, we exemplify the derivation of (105)
from the average IOWE in (102). The derivation of (108) from (103) is conceptually similar, but is more tedious
algebraically. Since we focus here on ensembles of rate one-third and the block length of the input bits isN
(see Fig. 5), the asymptotic growth rate of their distance spectra is obtained by normalizing the logarithm of the
average distance spectra of the considered ensemble byn = 3N and lettingN tend to infinity. Referring to the
average IOWE of the uniformly interleaved ensemble of SPRA(N, 3, 6) codes, as given in (102), we introduce the
normalized parameters

δ ,
d

3N
, η ,

h

3N
, ρ1 ,

i

3N
, ρ2 ,

j

3N
. (D.11)

The normalization by3N yields that the new parameters satisfy

0 ≤ δ ≤ 1, 0 ≤ η ≤ 2

3
, 0 ≤ ρ2 ≤ 2

3
. (D.12)

From the partial sum w.r.t. the indexi in the RHS of (102), dividing the terms in the inequality

max(0, j − 2N + h) ≤ i ≤ min(j, h)

by 3N gives

max
(

0, ρ2 + η − 2

3

)

≤ ρ1 ≤ min(ρ2, η). (D.13)

Since the codes are systematic and the block length of the input bits is N , we get that the terms which contribute
to the IOWE in the RHS of (102) satisfy

w ≤ min(d, N), 6w = 2j + h (D.14)

and, from (D.11), multiplying (D.14) by1
3N

gives

2ρ2 + η

6
≤ min

(

δ,
1

3

)

. (D.15)

From the binomial coefficients which appear in the RHS of (102),it is required that

2N − d + w ≥
⌊

h

2

⌋

, d − w ≥
⌈

h

2

⌉

so dividing both sides of these inequalities by3N , and lettingN tend to infinity gives

η − ρ2 + 3δ ≤ 2, ρ2 + 2η ≤ 3δ. (D.16)

Combining (D.12)–(D.16) gives the domain for the three parametersη, ρ1 andρ2 in (106).
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A marginalization of the IOWE enables one to obtain the distance spectrum

Ad =
N

∑

w=0

Aw,d (D.17)

where the IOWE{Aw,d} is given by (102). Note that unless

w

N
=

2j + h

6N
=

2ρ2 + η

2
(D.18)

the IOWEAw,d in (102) vanishes, and therefore it does not affect the sum inthe RHS of (D.17). In the limit where
N → ∞, the asymptotic growth rate of the average distance spectrum for the uniformly interleaved ensemble of
SPRA(N, 3, 6) codes (see Fig. 5 (b) in p. 33) is obtained from (102), (104), and (D.17). Hence, we get

r(δ) = lim
N→∞

1

3N
ln

N
∑

w=0

Aw,d

= lim
N→∞

max
h,i,j

{

1

3N

[

NH
( w

N

)

− 6NH

(

6w

6N

)

+ hH

(

i

h

)

+ (2N − h)H

(

j − i

2N − h

)

+(2N − d + w)H

(

h

2(2N − d + w)

)

+ (d − w − 1)H

(

h
2 − 1

d − w − 1

)

+(h + j − 2i) ln 3

]

}

.

By multiplying the three parameters which are involved in the maximization by 1
3N

, using (D.11) and (D.18) and
taking the limit whereN tends to infinity, one readily obtains the result in (105).
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