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On Achievable Rates and Complexity of LDPC
Codes over Parallel Channels: Bounds and

Applications
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Abstract

A variety of communication scenarios can be modeled by a set of parallel channels. Upper bounds on the achievable
rates under maximum-likelihood decoding, and lower boundson the decoding complexity per iteration of ensembles of low-
density parity-check (LDPC) codes are presented. The communication of these codes is assumed to take place over statistically
independent parallel channels where the component channels are memoryless, binary-input and output-symmetric. The bounds
are applied to ensembles of punctured LDPC codes where the puncturing patterns are either random or possess some structure.
Our discussion is concluded by a diagram showing interconnections between the new theorems and some previously reported
results.
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channels, punctured codes.

I. I NTRODUCTION

Parallel channels serve as a model for analyzing various communication scenarios, e.g., rate-compatible puncturing
of error-correcting codes, non-uniformly error-protected codes, transmission over block-fading channels and multi-
carrier signaling. All these scenarios can be modeled as a transmission of information over a set of parallel channels
where each code symbol is assigned to one of these component channels. Naturally, analytical tools for evaluating
the performance and decoding complexity of error-correcting codes whose transmission takes place over a set of
parallel channels are gaining theoretical and practical interest (see, e.g., [3], [7], [15]).

The channel model considered in this paper assumes that the communication of binary linear block codes takes
place overJ statistically independent component channels where each of the individual channels is a memoryless
binary-input output-symmetric (MBIOS) channel whose probability density function is given byp(·|· ; j) (j =
1, 2, . . . , J). If we let I(j) denote the set of indices of the symbols in ann-length codeword which are transmitted
over thejth channel, then

pn

(
y|x

)
=

J∏

j=1

∏

i∈I(j)

p(yi|xi; j) . (1)

This paper focuses primarily on information-theoretic aspects of low-density parity-check (LDPC) codes whose
transmission takes place over a set of parallel channels. Itprovides upper bounds on the achievable rates under
maximum-likelihood (ML) decoding, and lower bounds on the decoding complexity per iteration of ensembles of
LDPC codes. The paper forms a generalization of the results in [17]. However, the bounds on the achievable rates
and decoding complexity derived in this paper hold asymptotically with probability 1 for ensembles of LDPC codes
where we let their block length tend to infinity; this is in contrast to the results in [17] which refer to communication
over a single MBIOS channel, and are valid code by code. The bounds introduced in this paper are applied to
ensembles of punctured LDPC codes where the puncturing patterns are either random or possess some structure.
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The performance of punctured LDPC codes under ML decoding was studied in [2] via analyzing the asymptotic
growth rate of their average weight distributions and usingupper bounds on the decoding error probability under
ML decoding. Based on this analysis, it was proved that for any MBIOS channel, capacity-achieving codes of
any desired rate can be constructed by puncturing the code bits of ensembles of LDPC codes whose design rate
(before puncturing) is sufficiently low. The performance of punctured LDPC codes over the AWGN channel was
studied in [4] under message-passing iterative (MPI) decoding. Ha and McLaughlin studied in [4] two methods for
puncturing LDPC codes where the first method assumes random puncturing of the code bits at a fixed rate, and
the second method assumes possibly different puncturing rates for each subset of code bits which corresponds to
variable nodes of a fixed degree. For the second approach, called ’intentional puncturing’, the degree distributions
of the puncturing patterns were optimized in [4], [5] where,for a given design rate, it was aimed to minimize the
gap to capacity under iterative decoding (by using the Gaussian approximation); exact values of these optimized
puncturing patterns were also calculated by the density evolution analysis and show good agreement with the
Gaussian approximation. The results in [4], [5] exemplify the usefulness of punctured LDPC codes for a relatively
wide range of rates, and therefore, they are suitable for rate-compatible puncturing.

The transmission of punctured codes over a single channel canbe regarded as a special case of communication
of the original code over a set of parallel channels (where this set of channels is defined by the different puncturing
rates applied to disjoint subsets of the code bits). We therefore apply the bounds derived in this paper to the special
case of the transmission of ensembles of punctured LDPC codes over an arbitrary MBIOS channel. Theorems related
to the achievable rates and decoding complexity of punctured LDPC codes are derived. For ensembles of punctured
LDPC codes, the calculation of bounds on their thresholds under ML decoding and their exact thresholds under
iterative decoding (based on the density evolution analysis) is of interest; it enables one to distinguish between the
asymptotic loss in performance which follows from the sub-optimality of the iterative decoder and the inherent loss
in performance which is attributed to the structure of the codes (so it therefore exists even under ML decoding).

The paper is organized as follows: Section II derives bounds onthe conditional entropy of the transmitted
codeword given the received sequence at the output of the parallel channels where the component channels
are considered to be MBIOS. Section III relies on the previous bounds and derives an upper bound on the
achievable rates of LDPC codes under ML decoding where these codes are transmitted over parallel MBIOS
channels. Section IV uses the latter result for the derivation of upper bounds on the achievable rates of ensembles
of randomly and intentionally punctured LDPC codes whose transmission takes place over an arbitrary MBIOS
channel, and numerical results are exemplified for various ensembles. Section V provides a lower bound on the
decoding complexity (per iteration) of ensembles of LDPC codes under MPI decoding for parallel MBIOS channels.
The latter result is used for the derivation of lower bounds onthe decoding complexity of randomly and intentionally
punctured LDPC codes for MBIOS channels; looser versions of these bounds suggest a simplified re-derivation
of previously reported bounds on the decoding complexity ofrandomly punctured LDPC codes (as shown in the
appendix). Finally, Section VI summarizes our discussion, and presents a diagram which shows interconnections
between the theorems introduced in this paper and some otherpreviously reported results from [1], [9], [10], [12],
[14], [17]. The preliminary material on ensembles of LDPC codesand notation required for this paper are introduced
in [13] and [17, Section 2].

II. B OUNDS ON THECONDITIONAL ENTROPY FORPARALLEL CHANNELS

This section serves as a preparatory step towards the derivation of upper bounds on the achievable rates of ML
decoded binary linear block codes whose transmission takesplace over statistically independent parallel MBIOS
channels. To this end, we present in this section upper and lower bounds on the conditional entropy of the transmitted
codeword given the received sequence at the output of these channels.

A. Lower Bound on the Conditional Entropy

We begin by deriving an information-theoretic lower bound on the conditional entropy of the transmitted codeword
given the received sequence, when the transmission takes place over a set ofJ independent parallel MBIOS channels.

Proposition 2.1:Let C be a binary linear block code of lengthn, and assume that its transmission takes place
over a set ofJ statistically independent parallel MBIOS channels. LetCj denote the capacity of thejth channel (in
bits per channel use), anda(·; j) designate the conditional pdf of the log-likelihood ratio (LLR) at the output of the
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jth channel given its input is 0. LetX = (X1, . . .Xn) andY = (Y1, . . . , Yn) designate the transmitted codeword
and received sequence, respectively,I(j) be the set of indices of the code bits transmitted over thejth channel,
n[j] , |I(j)| be the size of this set, andpj , n[j]

n
be the fraction of bits transmitted over thejth channel. For an

arbitraryc× n parity-check matrixH of the codeC, let βj,m designate the number of indices inI(j) referring to
bits which are involved in themth parity-check equation ofH (wherem ∈ {1, . . . , c}), and letRd = 1− c

n
be the

design rate ofC. Then, the conditional entropy of the transmitted codeword given the received sequence satisfies

H(X|Y)

n
≥1 −

J∑

j=1

pjCj − (1 − Rd)

·

(
1 −

1

2n(1 − Rd) ln 2

·
∞∑

p=1

{
1

p(2p − 1)

n(1−Rd)∑

m=1

J∏

j=1

(gj,p)
βj,m

})
(2)

where

gj,p,

∫ ∞

0
a(l; j) (1 + e−l) tanh2p

(
l

2

)
dl,

j ∈ {1, . . . , J}

p ∈ N
. (3)

Remark 2.1:Note that the input vectorX is chosen uniformly at random from the codewords of a binary linear
block code. Each input bitXi therefore either gets the values0 or 1 with probability 1

2 or is set to zero (due to
the linearity of the code). In the following proof, we assumethat all the code symbols get the values0 or 1 with
equal probability. By slightly modifying the proof, it is simple to show that the bound also holds for the other case
where some of the code bits are set to zero.

Proof: The proof relies on concepts which are presented in [1], [17],and generalizes them to the case of
parallel channels. If a symbol is transmitted over thejth MBIOS channel andy is the corresponding output, then
the LLR gets the form

LLR(y; j) = ln

(
p(y|0; j)

p(y|1; j)

)
, j ∈ {1, . . . , J}, y ∈ Y

whereY denotes the output alphabet of each component channel,1 and p(·|·; j) is the conditional pdf of thejth

channel. For each one of theseJ component channels, we move from the original mapping ofX → Y (where
according to (1), each symbol is transmitted over only one oftheseJ channels) to an equivalent representation of
the channelX → Ỹ , whereỸ represents the LLR of the channel outputY . These channels are equivalent in the
sense thatH(X|Ỹ ) = H(X|Y ). The basic idea for showing the equivalence between the original set of parallel
channels and the one which will be introduced shortly is based on the principle that the LLR forms a sufficient
statistics of an MBIOS channel.

In the following, we characterize an equivalent channel to each of theJ parallel channels. The output of the
equivalent channel is defined to bẽY , (Φ, Ω). For thej-th channel,Ỹ is calculated fromY as follows:

Ω , |LLR(Y ; j)|

Φ ,





0 if LLR(Y ; j) > 0

1 if LLR(Y ; j) < 0

0 or 1 w.p. 1
2 if LLR(Y ; j) = 0

.

Due to the symmetry of the communication channel, the equivalent channel can be seen as a channel with additive
noise where the transmitted signal affects only theΦ component of the output̃Y . The characterization of the
equivalent channel in this form is used for the continuationof this proof and is presented below. For each index
i ∈ I(j), let us choose independently a valueLi according to the conditional pdfa(·; j), given the input symbol

1In case the output alphabets of the component channels are not equal,thenY can be defined as their union.
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is zero. Fori ∈ {1, . . . , n}, let

Ωi , |Li|, Θi ,





0 if Li > 0

1 if Li < 0

0 or 1 w.p. 1
2 if Li = 0

.

The output of the set of equivalent channels is defined to beỸ = (Ỹ1, . . . , Ỹn) whereỸi = (Φi, Ωi) andΦi = Θi+Xi

where the addition is modulo2. This defines the mapping

X → Ỹ = (Φ, Ω)

where Φ is a binary random variable which is affected byX, and Ω is a non-negative random variable which
is independent ofX. Note that due to the symmetry of the parallel channels, for each indexi ∈ I(j), the joint
distribution of (Φi, Ωi) is independent ofi, and is equal to the distribution of the pair representing the sign and
magnitude ofLLR(Y ; j). Hence,

fΩi
(ω) , fΩ(ω; j) =





a(ω; j) + a(−ω; j)

= (1 + e−ω) a(ω; j)
if ω > 0

a(0; j) if ω = 0

(4)

where we rely on the symmetry property ofa(·; j).
Denoting byR the rate of the codeC, since the codewords are transmitted with equal probability

H(X) = nR. (5)

Also, since theJ parallel channels are memoryless, then

H(Y|X) =
n∑

i=1

H(Yi|Xi). (6)

The mappingYi → Ỹi is memoryless, hence

H(Ỹ|Y) =
n∑

i=1

H(Ỹi|Yi)

and

H(Y) = H(Ỹ) − H(Ỹ|Y) + H(Y|Ỹ)

= H(Ỹ) −
n∑

i=1

H(Ỹi|Yi) + H(Y|Ỹ) (7)

H(Y|Ỹ) ≤
n∑

i=1

H(Yi|Ỹi)

=
n∑

i=1

[
H(Yi) − H(Ỹi) + H(Ỹi|Yi)

]
. (8)
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Applying the above towards the derivation of a lower bound onthe conditional entropyH(X|Y), we get

H(X|Y) = H(X) + H(Y|X) − H(Y)

(a)
= nR +

n∑

i=1

H(Yi|Xi) − H(Ỹ) − H(Y|Ỹ)

+
n∑

i=1

H(Ỹi|Yi)

(b)

≥ nR +
n∑

i=1

H(Yi|Xi) − H(Ỹ) +
n∑

i=1

H(Ỹi|Yi)

−
n∑

i=1

[
H(Yi) − H(Ỹi) + H(Ỹi|Yi)

]

= nR − H(Ỹ) +
n∑

i=1

H(Ỹi)

−

n∑

i=1

[
H(Yi) − H(Yi|Xi)

]

= nR − H(Ỹ) +
n∑

i=1

H(Ỹi) −
n∑

i=1

I(Xi; Yi)

(c)

≥ nR − H(Ỹ) +
n∑

i=1

H(Ỹi) −
J∑

j=1

n[j] Cj (9)

where (a) relies on (5)–(7), (b) relies on (8), and (c) follows sinceI(Xi; Yi) ≤ Cj for all i ∈ I(j), and|I(j)| = n[j]

for j ∈ {1, . . . , J}. In order to obtain a lower bound onH(X|Y) from (9), we calculate the entropy of the random
variables{Ỹi}, and find an upper bound on the entropy of the random vectorỸ. This finally provides the lower
bound on the conditional entropy given in (2). Considering an index i ∈ I(j) for somej ∈ {1, 2, . . . J}, we get

H(Ỹi) = H(Φi, Ωi)

= H(Ωi) + H(Φi|Ωi)

= H(Ωi) + Eω [H(Φi|Ωi = ω)]

= H(Ωi) + 1 (10)

where the last transition is due to the fact that given the absolute value of the LLR, since the parallel channels are
MBIOS and the coded bits are equally likely to be 0 or 1 (see Remark 2.1), the sign of the LLR is equally likely
to be positive or negative. The entropyH(Ωi) is not expressed explicitly as it cancels out later.

We now turn to derive an upper bound onH(Ỹ):

H(Ỹ) = H
(
(Φ1, . . . ,Φn), (Ω1, . . . ,Ωn)

)

= H(Ω1, . . . ,Ωn) + H
(
(Φ1, . . . ,Φn) | (Ω1, . . . ,Ωn)

)

=
n∑

i=1

H(Ωi) + H
(
(Φ1, . . . ,Φn) | (Ω1, . . . ,Ωn)

)
(11)

where the last equality follows since the random variablesΩi are statistically independent.
Define thec-dimensional syndrome vector as

S , (Φ1, . . . ,Φn)HT

whereH is a c × n parity-check matrix of the binary linear block codeC, and letM be the index of the vector
(Φ1, . . . ,Φn) in the coset which corresponds toS. Since each coset contains2nR elements which are equally likely
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thenH(M) = nR, and we get

H
(
(Φ1, . . . ,Φn) | (Ω1, . . . ,Ωn)

)

= H
(
S, M | (Ω1, . . . ,Ωn)

)

≤ H(M) + H
(
S | (Ω1, . . . ,Ωn)

)

= nR + H
(
S | (Ω1, . . . ,Ωn)

)

≤ nR +
c∑

m=1

H
(
Sm | (Ω1, . . . ,Ωn)

)
. (12)

SinceXHT = 0 for any codewordX ∈ C, andΦi = Θi + Xi for all i ∈ {1, . . . , n}, thenS = (Θ1, . . . ,Θn)HT .
Let us consider themth parity-check equation which involveskm variables, and assume that the set of indices

of these variables is{i1, . . . , ikm
}. Then, the componentSm of the syndrome is equal to 1 if and only if there is

an odd number of ones in the random vector(Θi1 , . . . ,Θikm
). To calculate the probability thatSm is equal to 1,

we rely on the following lemma:
Lemma 2.1 ([17], Lemma 4.1):If the mth linear constraint defined by the parity-check matrixH involves km

variables, and if{i1, . . . , ikm
} denote the indices of these variables, then

Pr
(
Sm = 1 | (Ωi1 , . . . ,Ωikm

) = (α1, . . . , αkm
)
)

=
1

2

[
1 −

km∏

w=1

tanh
(αw

2

)]
. (13)

From this lemma, we obtain

H
(
Sm|(Ωi1 , . . . ,Ωikm

) = (α1, . . . , αkm
)
)

= h2

(
1

2

[
1 −

km∏

w=1

tanh
(αw

2

)])

whereh2 denotes the binary entropy function to base 2. By taking the statistical expectation over thekm random
variablesΩi1 , . . . ,Ωikm

, we get

H
(
Sm|(Ωi1 , . . . ,Ωikm

)
)

=

∫ ∞

0
. . .

∫ ∞

0
h2

(
1

2

[
1 −

km∏

w=1

tanh
(αw

2

) ])

·

km∏

w=1

fΩiw
(αw) dα1dα2 . . . dαkm

.

Let βj,m denote the number of indicesw ∈ {i1, . . . , ikm
} referring to variables which are transmitted over thejth

channel. From the Taylor series expansion of the binary entropy function(h2) aroundx = 1
2 (see [17, Appendix B.1])

h2(x) = 1 −
1

2 ln 2

∞∑

p=1

(1 − 2x)2p

p(2p − 1)
, 0 ≤ x ≤ 1 (14)

it follows that

H
(
Sm|(Ωi1 , . . . ,Ωikm

)
)

= 1 −
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

·

km∏

w=1

(∫ ∞

0
fΩiw

(α) tanh2p
(α

2

)
dα

) }

= 1 −
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
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·
J∏

j=1

(∫ ∞

0
fΩ(α; j) tanh2p

(α

2

)
dα

)βj,m

}
(15)

where the first transition is based on (14) and follows along the same lines as [17, Appendix B.2]), and the second
transition is due to the fact that for alli ∈ I(j), the pdf of the random variableΩi is independent ofi, see (4).
Summing over all the parity-check equations ofH gives

c∑

m=1

H
(
Sm|(Ω1, . . . ,Ωn)

)

= c −
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

·
c∑

m=1

[
J∏

j=1

( ∫ ∞

0
fΩ(α; j) tanh2p

(α

2

)
dα

)βj,m

]

 . (16)

By combining (4), (11), (12) and (16), we get the following upper bound onH(Ỹ):

H(Ỹ) ≤
n∑

i=1

H(Ωi) + nR

+ c

[
1 −

1

2c ln 2

∞∑

p=1

1

p(2p − 1)

c∑

m=1

{
J∏

j=1

( ∫ ∞

0
a(α; j)

· (1 + e−α) tanh2p
(α

2

)
dα

)βj,m

}]

(a)
=

n∑

i=1

H(Ωi) + nR + n(1 − Rd)

[
1 −

1

2n(1 − Rd) ln 2

·
∞∑

p=1

{
1

p(2p − 1)

c∑

m=1

J∏

j=1

gj,p
βj,m

}]
(17)

where(a) follows from the definition ofgj,p in (3), and sinceRd , 1 − c
n

denotes the design rate ofC. Finally,
the substitution of (10) and (17) in the RHS of (9) provides the lower bound on the conditional entropyH(X|Y)
given in (2). This completes the proof of the proposition.

B. Upper Bound on the Conditional Entropy

In this section, we provide an upper bound on the conditionalentropy of the transmitted codeword given the
received sequence. The bound holds for an arbitrary binary linear block code whose transmission takes place over
a set of parallel channels, and is expressed in terms of the code rate and the bit-error probability of the code (under
ML decoding or a sub-optimal decoding algorithm).

Lemma 2.2:Let C be a binary linear block code of lengthn and rateR, and assume that its transmission takes
place over a set of parallel channels. LetX = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) designate the transmitted
codeword and the received sequence, respectively. Then

H(X|Y)

n
≤ R h2(Pb) (18)

wherePb designates the bit error probability of the codeC under an arbitrary decoding algorithm.
Proof: See the proof in [17, Appendix I-A], which holds regardless ofthe model of the communication

channel.
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III. A N UPPER BOUND ON THEACHIEVABLE RATES OFLDPC CODES OVERPARALLEL CHANNELS

In this section, we derive an upper bound on the design rate ofa sequence of ensembles of LDPC codes
whose transmission takes place over a set of statistically independent parallel MBIOS channels, and which achieves
vanishing bit error probability under ML decoding. This bound is used in the next section for the derivation of an
upper bound on the design rate of an arbitrary sequence of ensembles of punctured LDPC codes.

Let us assume that a binary LDPC codeC of length n is transmitted over a set ofJ statistically independent
parallel MBIOS channels. Denote the number of code bits ofC which are transmitted over thejth channel byn[j],
and the fraction of bits transmitted over thejth channel by

pj ,
n[j]

n
, j ∈ {1, . . . , J}. (19)

Let G be a bipartite graph which represents the codeC, andE be the set of edges inG. Let E[j] designate the set
of edges connected to variable nodes which correspond to code bits transmitted over thejth channel, and

qj ,
|E[j]|

|E|
, j ∈ {1, . . . , J} (20)

denote the fraction of edges connected to these variable nodes. Referring to the edges from the subsetE[j], let λ
[j]
i

designate the fraction of these edges which are connected tovariable nodes of degreei, and define the following
J degree distributions from the edge perspective:

λ[j](x) ,

∞∑

i=2

λ
[j]
i xi−1 , j ∈ {1, . . . , J}

which correspond to each of theJ parallel channels. According to this notation, the number of edges connected to
variable nodes corresponding to code bits transmitted overthe jth channel is given by

|E[j]| =
n[j]

∞∑

i=2

λ
[j]
i

i

, j ∈ {1, . . . , J}. (21)

For the simplicity of the notation, let us define a vector of degree distributions for the variable nodes from the
edge perspective to beλ(x) =

(
λ[1](x), . . . , λ[J ](x)

)
. Following the notation in [10], the ensemble(n, λ, ρ) is

defined to be the set of LDPC codes of lengthn, which according to their representation by bipartite graphs and
the assignment of their code bits to the parallel channels, imply left and right degree distributions ofλ and ρ,
respectively.

Lemma 3.1:
1

∫ 1
0 λ(x) dx

=
J∑

j=1

{
pj∫ 1

0 λ[j](x) dx

}
(22)

whereλ is the overall left degree distribution which serves to construct the vector of left degree distributionsλ by
considering the assignments of variables nodes to theJ parallel channels.

Proof: SinceE[1], . . . , E[J ] form a sequence of disjoint sets whose union is the setE, we get|E| =
∑J

j=1 |E
[j]|.

From (21), we therefore get

n
∑∞

i=2
λi

i

=
J∑

j=1





n[j]

∑∞
i=2

λ
[j]
i

i



 . (23)

By dividing both sides of this equality byn, and using (19) and the equality
∑

i
λi

i
=

∫ 1
0 λ(x) dx, the lemma

follows immediately.
Lemma 3.2:

qj =
pj∫ 1

0 λ[j](x)dx
·

1
J∑

k=1

{
pk∫ 1

0 λ[k](x)dx

} , ∀j ∈ {1, . . . , J}. (24)
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Proof: The lemma follows directly from (20), (21) and Lemma 3.1.
In the following, we introduce a sequence of ensembles of binary LDPC codes,{(nr, λr, ρ)}∞r=1, where all the

codes in each ensemble have the same number of bits assigned to each of theJ parallel channels. The right degree
distributionρ is assumed to be fixed for all the ensembles of this sequence (i.e., it is independent ofr), and it is also
assumed to have a bounded maximal degree (which correspondsto a bounded maximal degree of the parity-check
nodes). We assume thatλ, which corresponds to the overall left degree distributionof the edges, is also independent
of r; due of the independence ofλ andρ in r, one can consider here the common design rate of the sequenceof
ensembles{(nr, λr, ρ)}∞r=1 which does not depend onr.

This setting is general enough for applying the following theorem to various applications which form particular
cases of communication over parallel channels, e.g., punctured LDPC codes [2], [4], non-uniformly error protected
LDPC codes [10], and LDPC-coded modulation (see e.g., [6], [16]). In this setting, the fraction of code bits assigned
to the jth channel,pj,r, depends onj ∈ {1, . . . , J} and r ∈ N, but not on the particular code chosen from each
ensemble. It follows from Lemma 3.2 that the same property also holds forqj,r which designates the fraction of
edges connected to variable nodes whose code bits are assigned to thejth channel. In the following, we assume
that the limits

pj , lim
r→∞

pj,r, qj , lim
r→∞

qj,r (25)

exist and also that they are positive for allj ∈ {1, . . . , J} (though in general, they are non-negative).
Theorem 3.1:Let a sequence of ensembles of binary LDPC codes,{(nr, λr, ρ)}∞r=1, be transmitted over a set

of J statistically independent parallel MBIOS channels, and assume that the block length(nr) goes to infinity as
we let r tend to infinity. LetCj denote the capacity of thejth channel, anda(·; j) designate the pdf of the LLR at
the output of thejth channel, given its input symbol is zero. If in the limit wherer tends to infinity, the bit error
probability of this sequence vanishes under ML decoding, then the common design rateRd of these ensembles
satisfies

Rd ≤ 1 −

1 −

J∑

j=1

pjCj

1 −
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ

( J∑

j=1

qj gj,p

)} (26)

whereΓ denotes the right degree distribution from the node perspective, andgj,p is introduced in (3).
Proof: Let {Cr}

∞
r=1 be a sequence of binary LDPC codes chosen uniformly at random from the sequence of

ensembles{(nr, λr, ρ)}∞r=1. Denote the rate of the codeCr by Rr, and letPb,r be its bit error probability under
ML decoding. LetGr be a bipartite graph of the codeCr whose left and right degree distributions from the edge
perspective areλr andρ, respectively. From Proposition 2.1 and Lemma 2.2, it follows that the following inequality
holds for the binary linear block codeCr:

Rrh2(Pb,r)

≥ 1 −
J∑

j=1

pj,rCj

− (1 − Rd)

(
1 −

1

2nr(1 − Rd) ln 2

·
∞∑

p=1

{
1

p(2p − 1)

nr(1−Rd)∑

m=1

J∏

j=1

(gj,p)
βr,j,m

})
(27)

wherenr is the block length of the codeCr, Rd is the common design rate for all the codes from the sequence of
ensembles{(nr, λr, ρ)}∞r=1, andβr,j,m denotes the number of edges which are connected to themth parity-check
node of the graphGr and are related to code bits transmitted over thejth channel (wherej ∈ {1, . . . , J} and
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m ∈ {1, . . . nr(1 − Rd)}). By taking the expectation on both sides of (27) and lettingr tend to infinity, we get

0 ≥1 −
J∑

j=1

pjCj − (1 − Rd)

· lim
r→∞

(
1 −

1

2nr(1 − Rd) ln 2

·
∞∑

p=1

{
1

p(2p − 1)

nr(1−Rd)∑

m=1

E

( J∏

j=1

(gj,p)
βr,j,m

)})
. (28)

The LHS of (28) follows from the LHS of (27), due to the concavity of the binary entropy function and Jensen’s
inequality, and since by our assumption, the bit error probability of the ensembles vanishes in the limit wherer
tends to infinity.

The derivation of an upper bound on the design rate is proceeded by calculating the expectation of the product
inside the RHS of (28). Letkr,m denote the degree of themth parity-check node of the bipartite graphGr, then the
smoothing theorem gives

E




J∏

j=1

(gj,p)
βr,j,m




= E


E




J∏

j=1

(gj,p)
βr,j,m

∣∣∣
J∑

j=1

βr,j,m = kr,m





 (29)

where the outer expectation in the RHS of (29) is carried overthe random variablekr,m. We begin by calculating the
inner expectation in the RHS of (29). It follows from (21) that the number of edges,|E[j]

r | , |E[j](Gr)|, connected
to variable nodes corresponding to code bits transmitted over thejth channel, is independent of the codeCr chosen
from the ensemble(nr, λr, ρ). The same property also holds for the total number of edges in the graph (since
|Er| =

∑J
j=1 |E

[j]
r |). Since the codeCr is chosen uniformly at random from the ensemble, it follows that if kr,m

is a given positive integer, then

E




J∏

j=1

(gj,p)
βr,j,m

∣∣∣
J∑

j=1

βr,j,m = kr,m




=
∑

b1, . . . , bJ ≥ 0

∑J
j=1 bj = kr,m

{
Pr

(
βr,j,m = bj , ∀j ∈ {1, . . . , J}

)

·
J∏

j=1

(gj,p)
bj

}

=
∑

b1, . . . , bJ ≥ 0

∑J
j=1 bj = kr,m

{(|E[1]
r |

b1

)
· · ·

(|E[J]
r |

bJ

)
( |Er|
kr,m

)
J∏

j=1

(gj,p)
bj

}
. (30)

Lemma 3.3:

lim
r→∞

(|E[1]
r |

b1

)
· · ·

(|E[J]
r |

bJ

)
( |Er|
kr,m

) =
J∏

j=1

(qj)
bj lim

r→∞

(
kr,m

b1, b2, . . . , bJ

)
. (31)

Proof: By assumption, in the limit where we letr tend to infinity, the block lengthnr also tends to infinity.
Hence, from (21) and the assumption thatqj > 0 for everyj ∈ {1, . . . , J}, we get that for allj ∈ {1, . . . , J}, E

[j]
r
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approaches infinity in the limit wherer tends to infinity.

lim
r→∞

(|E[1]
r |

b1

)
· · ·

(|E[J]
r |

bJ

)
( |Er|
kr,m

)

= lim
r→∞

{
|E

[1]
r |! · · · |E

[J ]
r |!

|Er|!

(|Er| − kr,m)!

(|E
[1]
r | − b1)! · · · (|E

[J ]
r | − bJ)!

·

(
kr,m

b1, b2, . . . , bJ

)}

= lim
r→∞

{
|E

[1]
r |! · · · |E

[J ]
r |!

|Er|!

(|Er| − kr,m)!

(|E
[1]
r | − b1)! . . . (|E

[J ]
r | − bJ)!

}

· lim
r→∞

(
kr,m

b1, b2, . . . , bJ

)

(a)
= lim

r→∞

|E
[1]
r |b1 · · · |E

[J ]
r |bJ

|Er|kr,m
lim

r→∞

(
kr,m

b1, b2, . . . , bJ

)

(b)
= lim

r→∞

(
|E

[1]
r |

|Er|

)b1

. . .

(
|E

[J ]
r |

|Er|

)bJ

lim
r→∞

(
kr,m

b1, b2, . . . , bJ

)

(c)
= lim

r→∞

J∏

j=1

(qj,r)
bj lim

r→∞

(
kr,m

b1, b2, . . . , bJ

)

=
J∏

j=1

(qj)
bj lim

r→∞

(
kr,m

b1, b2, . . . , bJ

)

where equality (a) follows since for allj ∈ {1, . . . , J}, |E[j]
r | → ∞ as we letr tend to infinity, while on the other

hand, the maximal right degree (and hence, alsob1, . . . , bJ andkr,m) stay bounded; equality (b) is valid due to the
constraint

∑J
j=1 bj = kr,m, and equality (c) follows from (20).

By letting r tend to infinity in both sides of (29), and substituting (30) and (31) in the RHS of (29), we get that
for all p ∈ N

lim
r→∞

E




J∏

j=1

(gj,p)
βr,j,m




(a)
= E


 lim

r→∞
E




J∏

j=1

(gj,p)
βr,j,m

∣∣∣
J∑

j=1

βr,j,m = kr,m







(b)
= E

[
lim

r→∞

∑

b1, . . . , bJ ≥ 0

∑J
j=1 bj = kr,m

(
kr,m

b1, b2, . . . , bJ

) J∏

j=1

(qj gj,p)
bj

]

= E

[
lim

r→∞

(
J∑

j=1

qjgj,p

)kr,m
]

(c)
=

dc,max∑

k=1

{
Γk

( J∑

j=1

qjgj,p

)k
}
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= Γ

( J∑

j=1

qjgj,p

)
(32)

where equality (a) follows from (29) and since the right degree distribution is independent ofr (note that the outer
expectation in equality (a) is performed w.r.t. the degree of the mth parity-check node); equality (b) follows from
(30) and (31), and since the number of terms in the sum is bounded (this number is upper bounded by(kr,m)J−1,
so it is bounded for allr ∈ N due to the fact that the maximal right degree is fixed), and equality (c) holds since
the right degree distribution is independent ofr. Since the limit in (32) does not depend on the indexm which
appears in the inner summation at the LHS of (28) and alsolimr→∞ nr(1 − Rd) = ∞, then we get from (32)

lim
r→∞

1

nr(1 − Rd)

nr(1−Rd)∑

m=1

E




J∏

j=1

(gj,p)
βr,j,m




(a)
= lim

r→∞
E




J∏

j=1

(gj,p)
βr,j,m




(b)
= Γ

( J∑

j=1

qjgj,p

)
(33)

where equality (a) follows from the fact that if{ar} is a convergent sequence thenlimr→∞
1
r

∑r
i=1 ai = limr→∞ ar,

and also since any sub-sequence of a convergent sequence converges to the same limit as of the original sequence;
equality (b) follows from (32). Combining (28) and (33) gives

0 ≥1 −
J∑

j=1

pjCj − (1 − Rd)

·

(
1 −

1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ

( J∑

j=1

qjgj,p

)})
.

Finally, solving the last inequality forRd gives the upper bound on the design rate in (26).
Example 3.1:For the particular case where theJ parallel MBIOS channels are binary erasure channels where

the erasure probability of thejth channel isεj , we get from (3)

gj,p = 1 − εj , ∀ j ∈ {1, . . . , J}, p ∈ N. (34)

Since gj,p is independent ofp for a BEC, and based on the equality
∑∞

p=1
1

2p(2p−1) = ln 2, we obtain from
Theorem 3.1 that the common design rate of the sequence of LDPC ensembles is upper bounded by

Rd ≤ 1 −

J∑

j=1

pjεj

1 − Γ

(
1 −

J∑

j=1

qj εj

) . (35)

This result coincides with [10, Theorem 2].
The proof of Theorem 3.1 relies on the assumption that the rightdegree distributionρ is fixed, and does not

depend on the ordinal numberr of the ensemble. For a capacity-achieving sequence of LDPC ensembles, both
the maximal and the average right degrees tend to infinity (see[14, Theorem 1]). Hence, for a capacity-achieving
sequence of LDPC codes,ρ cannot be fixed.

Remark 3.1:One can think of Lemma 3.3 in terms of drawing colored balls from an urn (where the colors are
determined in one to one correspondence with the assignments of the various edges to the component channels).
Since an edge can only be assigned once to a channel, the balls are not returned to the urn after they are chosen.
As the block length tends to infinity, so does the number of edges originating in each of the parallel channels (this
is the reason for requiring thatqj is positive for allj). Since the degree of the parity-check nodes remains finite,
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we are drawing a finite number of balls from an urn which contains an infinite number of balls of each color.
Lemma 3.3 simply says that drawing without replacement is equivalent to drawing with replacement if the number
of draws is finite and the number of balls of each color becomes infinite. Note that this result looks rather intuitive
from a statistical point of view.

Remark 3.2:We wish to discuss a possible refinement of the statement in Theorem 3.1. Let us assume that the
(overall) degree distributionsλ andρ are fixed, but due to the transmission over parallel channels,the corresponding
vector of degree distributionsλr = (λ

[1]
r , . . . , λ

[J ]
r ) and alsopj,r and qj,r depend on the code from the ensemble

(nr, λ, ρ). Since the derivation of this theorem relies on the bounds on the conditional entropy from Section II
(which are valid code by code), one can refine the statement in Theorem 3.1 so that the modified theorem permits
the dependency of the vector(λ[1]

r , . . . , λ
[J ]
r ) on the specific code chosen from the ensemble. In this case, the

equalities in (25) are transformed to

pj = lim
r→∞

E [pj,r(C)] , qj = lim
r→∞

E [qj,r(C)]

where the expectation is carried over the codeC from the ensemble(nr, λ, ρ). In this case, the proof of Theorem 3.1
involves an expectation overC on both sides of (27) (which is valid code by code) and then we let r tend to infinity,
as in (28). By invoking Jensen’s inequality, Lemma 3.3 is changed under the above assumption to the inequality

lim
r→∞

EC




(|E[1]
r |

b1

)
· · ·

(|E[J]
r |

bJ

)
( |Er|
kr,m

)




≥
J∏

j=1

(qj)
bj lim

r→∞

(
kr,m

b1, b2, . . . , bJ

)

which holds for any set of non-negative integers{b1, . . . , bJ} where
∑J

j=1 bj = kr,m. Correspondingly, (32) changes
to

lim
r→∞

EC




J∏

j=1

(gj,p)
βr,j,m


 ≥ Γ

( J∑

j=1

qjgj,p

)
.

Therefore, from (28) and the last inequality, the upper boundon the design rate in (26) holds in the more general
setting as above.

IV. A CHIEVABLE RATES OFPUNCTURED LDPC CODES

In this section we derive upper bounds on the achievable rates of punctured LDPC codes whose transmission
takes place over an MBIOS channel, and the codes are ML decoded. The analysis in this section relies on the
bound presented in Section III.

Let C be a binary linear block code. Assume that its code bits are partitioned intoJ disjoint sets, and the bits
of the jth set are randomly punctured with a puncturing rateπj (wherej ∈ {1, . . . , J}). The transmission of this
code over an MBIOS channel is equivalent to transmitting thecode over a set ofJ parallel MBIOS channels where
each of these channels forms a serial concatenation of a BEC whose erasure probability is equal to the puncturing
rateπj , followed by the original MBIOS channel (see e.g., [4], [9],[10], [11]).

A. Some Preparatory Lemmas

This sub-section presents two lemmas which are later used to prove results for ensembles of randomly and
intentionally punctured LDPC codes (denoted by RP-LDPC and IP-LDPC codes, respectively).

In the following lemma, we consider a punctured linear blockcode and provide an upper bound on the conditional
entropy of a codeword before puncturing, given the receivedsequence at the output of the channel. This upper
bound is expressed in terms of the bit error probability of the punctured code.

Lemma 4.1:Let C′ be a binary linear block code of lengthn and rateR′, and letC be a code which is obtained
from C′ by puncturing some of its code bits. Assume that the transmission of the codeC takes place over an arbitrary
communication channel, and the code is decoded by an arbitrary decoding algorithm. LetX′ = (X ′

1, . . . , X
′
n) and

Y = (Y1, . . . , Yn) (where the punctured bits are replaced by question marks which have an LLR of zero) designate
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the transmitted codeword ofC′ and the received sequence, respectively. Then, the conditional entropy of the original
codeword ofC′ given the received sequence satisfies

H(X′|Y)

n
≤ R′ h2(Pb) (36)

wherePb designates the bit error probability of the punctured codeC.
Proof: The proof follows directly from Lemma 2.2, and the equivalencebetween the transmission of punctured

codes over an MBIOS channel and the special case of transmitting these codes over a set of parallel channels (see
the introductory paragraph of Section IV).
Puncturing serves to increase the rate of the original code byreducing the length of the codeword. It may however
cause several codewords to be mapped onto a single codeword,thereby reducing the dimension of the code. Consider
a binary linear code,C′, of lengthn and rateR′ and assume a fractionγ of its code bits are punctured. In the case
that the dimension is not reduced by puncturing, the rate of the punctured code is given byR = R′

1−γ
. In the general

case, we cannot guarantee that the dimension of the code is not reduced. However, for a sequence of punctured
codes whose bit error probability vanishes as the block length of the codes tends to infinity, the following lemma
shows that the rate of the punctured codes converges to the desired rateR.

Lemma 4.2:Let {C′
r} be a sequence of binary linear block codes of lengthnr and rateR′

r, and let{Cr} be a
sequence of codes which is obtained from{C′

r} by puncturing a fractionγ of the code bits. Assume the sequence
of punctured codes{Cr} achieves vanishing bit error probability in the limit wherewe let r tend to infinity. Then,
the asymptotic rateR of the sequence of punctured codes is given by

R =
R′

1 − γ
(37)

whereR′ = limr→∞ R′
r is the asymptotic rate of the original sequence of codes{C′

r}.
Proof: Let X

′
r = (X ′

1, . . . , X
′
nr

) andYr = (Yr . . . , Ynr
) designate the original codeword (before puncturing)

and the received sequence (after puncturing), respectively. Since we assume the there exists a decoding algorithm
such that the punctured codes achieve vanishing bit error probability, we have from lemma 4.1 that

lim
r→∞

H(X′
r|Yr)

nr
= 0.

Let Xr = (X1, . . . , Xnr
) designate the codeword after puncturing (where the punctured bits are replaced by

question marks). SinceX′
r ⇒ Xr ⇒ Yr forms a Markov chain, then by the information processing inequality, we

get H(X′
r|Xr) ≤ H(X′

r|Yr). The non-negativity of the conditional entropy therefore yields that

lim
r→∞

H(X′
r|Xr)

nr
= 0. (38)

Denote the dimensions of the codesC′
r and Cr by d′r and dr, respectively. SinceC′

r is binary and linear, every
codeword ofCr originates from exactly2d′

r−dr different codewords ofC′
r. The codewords are assumed to be

transmitted with equal probability, and thereforeH(X′
r|Xr) = d′r − dr. Let Rr designate the rate of the punctured

codeCr. By definition, d′r = R′
rnr, and sincenr(1 − γ) forms the block length of the punctured codeCr, then

dr = Rrnr(1 − γ). Substituting the last three equalities into (38) gives

lim
r→∞

(
R′

r − Rr(1 − γ)
)

= 0.

This completes the proof of the lemma.
For a sequence of codes{C′

r}, it is natural to refer to their code ratesR′
r. However, for sequences of ensembles,

where parity-check matrices are randomly picked, such matrices are unlikely to be full rank. Hence, a more natural
approach is to refer to their design rates. To this end, we define the design rate of codes which are obtained by
puncturing some code bits of binary linear block codes.

Definition 4.1: Let C′ be a binary linear block code of lengthn, H ′ be ac × n parity-check matrix ofC′ and
R′

d , 1 − c
n

designate the design rate of the codeC′. Let C be a code which is obtained fromC′ by puncturing a
fraction γ of the code bits. Thedesign rateof C is defined as

Rd ,
R′

d

1 − γ
. (39)
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From Lemma 4.2, it follows that for an arbitrary sequence of punctured codes which achieves vanishing bit error
probability, their asymptotic design rate is equal in probability 1 to their asymptotic rate if and only if this condition
also holds for the original sequence of codes before their puncturing. For un-punctured ensembles of LDPC codes,
a sufficient condition for the asymptotic convergence of the rate to the design rate is introduced in [8, Lemma 7]
(which is also presented in the preliminaries of our companion paper as [17, Lemma 2.1]). In Section IV-D, we
apply this lemma to show that the bounds on the achievable rates of ensembles of punctured LDPC codes apply
to their actual code rates and not only to their asymptotic design rates.

B. Randomly Punctured LDPC Codes

In this section, we consider the achievable rates of randomly punctured LDPC (RP-LDPC) codes. We assume that
the transmission of these codes takes place over an MBIOS channel, and refer to their achievable rates under optimal
ML decoding. The upper bound on the achievable rates of ensembles of RP-LDPC codes relies on the analysis in
Section III where we derived an upper bound on the achievable rates of LDPC codes for parallel channels.

In the following, we assume that the communication takes place over an MBIOS channel with capacityC, and
define

gp ,

∫ ∞

0
a(l) (1 + e−l) tanh2p

(
l

2

)
dl , p ∈ N (40)

wherea designates the pdf of the LLR of the channel given that its inputis zero.
Theorem 4.1:Let {(nr, λ, ρ)}∞r=1 be a sequence of ensembles of binary LDPC codes whose block length (nr)

tends to infinity asr → ∞. Assume that a sequence of ensembles of RP-LDPC codes is constructed in the following
way: for each code from an ensemble of the original sequence,a subset ofαnr code bits is a-priori selected, and
these bits are randomly punctured at a fixed rate(Ppct). Assume that the punctured codes are transmitted over an
MBIOS channel with capacityC, and that in the limit wherer approaches infinity, the sequence of ensembles of
RP-LDPC codes achieves vanishing bit error probability under some decoding algorithm. Then in probability 1
w.r.t. the random puncturing patterns, the asymptotic design rate (Rd) of the new sequence satisfies

Rd ≤
1

1 − αPpct
(41)

·




1 −
1 − (1 − αPpct)C

1 −
1

2 ln 2

∞∑

p=1

Γ
(
(1 − Ppct + ξ)gp

)

p(2p − 1)




whereΓ denotes the right degree distribution (from the node perspective) of the original sequence,gp is introduced
in (40), andξ is the following positive number:

ξ , 2(1 − α)Ppct

∫ 1

0
λ(x) dx. (42)

Proof: By assumption, we select a set of code bits whose size is a fraction α of the nr code bits, and these
bits are randomly punctured at ratePpct. The transmission of the resulting codeword over an MBIOS channel is
equivalent to the transmission of the original codeword over a set ofJ = 2 parallel channels. The first channel,
referring to the set of code bits which are randomly punctured, is a serial concatenation of a BEC with erasure
probabilityPpct and the original MBIOS channel; the second channel which refers to the rest of the bits (which are
transmitted without being randomly punctured) is the original MBIOS channel. For simplicity, let us first assume
that the degree distribution associated with the selected subset ofαnr code bits which are randomly punctured is
independent of the specific code from the ensemble(nr, λ, ρ). Based on the discussion above and the notation in
Section III, the transmission of thenr code bits over these two parallel channels induces a sequence of ensembles
of LDPC codes,{(nr, λr, ρ)}∞r=1, whereλr = (λ

[1]
r , λ

[2]
r ) depends on the selection of the subset ofαnr code bits
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which are randomly punctured. Following this equivalence,we get from the notation in Theorem 3.1 that

p1 = α, p2 = 1 − α, C1 = C(1 − Ppct), C2 = C

⇒
J∑

j=1

pjCj = C(1 − αPpct). (43)

In order to apply Theorem 3.1 to our case, we find a global lower bound on the sum
∑J

j=1 qjgj,p which does not
depend on the a-priori selection of the subset of randomly punctured code bits. From (3) and (40), it follows that
for all p ∈ N:

g1,p =

∫ ∞

0

[
Ppctδ(l) + (1 − Ppct)a(l)

]
(1 + e−l) tanh2p

(
l

2

)
dl

= (1 − Ppct)

∫ ∞

0
a(l)(1 + e−l) tanh2p

(
l

2

)
dl

= (1 − Ppct) gp

andg2,p = gp. Based on Lemmas 3.1 and 3.2, we get that for allp ∈ N

q1g1,p + q2g2,p

=

αgp(1 − Ppct)

∫ 1

0
λ(x)dx

∫ 1

0
λ[1]

r (x)dx

+

(1 − α)gp

∫ 1

0
λ(x)dx

∫ 1

0
λ[2]

r (x)dx

(44)

where the following constraint is satisfied (see (22) and (43)):

α
∫ 1

0
λ[1]

r (x)dx

+
1 − α

∫ 1

0
λ[2]

r (x)dx

=
1

∫ 1

0
λ(x)dx

(45)

and ∫ 1

0
λ[1]

r (x) dx ≤
1

2
,

∫ 1

0
λ[2]

r (x) dx ≤
1

2
(46)

due to the fact thatλ[1]
r (x) ≤ x andλ

[2]
r (x) ≤ x for x ∈ [0, 1] (even without explicitly knowingλ[1]

r andλ
[2]
r which

depend on the a-priori choice of the subset of bits which are randomly punctured). Based on (44)–(46), we get

q1g1,p + q2g2,p

= (1 − Ppct)gp

∫ 1

0
λ(x)dx ·




α
∫ 1

0
λ[1]

r (x)dx

+
1 − α

∫ 1

0
λ[2]

r (x)dx




+

(1 − α)Ppctgp

∫ 1

0
λ(x)dx

∫ 1

0
λ[2]

r (x)dx

= (1 − Ppct)gp +

(1 − α)Ppctgp

∫ 1

0
λ(x) dx

∫ 1

0
λ[2]

r (x)dx

≥

(
1 − Ppct + 2(1 − α)Ppct

∫ 1

0
λ(x) dx

)
gp

= (1 − Ppct + ξ)gp
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whereξ is defined in (42). Since the degree distributionΓ is a monotonic increasing function, then

Γ




J∑

j=1

qjgj,p


 ≥ Γ

(
(1 − Ppct + ξ)gp

)
. (47)

By substituting (43) and (47) in the RHS of (26), we obtain thefollowing upper bound on the asymptotic design
rate of the original sequence

R′
d ≤ 1 −

1 − (1 − αPpct)C

1 −
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ
(
(1 − Ppct + ξ)gp

)} .

Since asr → ∞, in probability 1 w.r.t. the puncturing patterns, a fraction γ = αPpct of the code bits are punctured,
then the asymptotic design rate(Rd) of this sequence satisfies the equality

Rd =
R′

d

1 − αPpct
(48)

from which the theorem follows.
For the case where the degree distribution associated with the subset of code bits which are randomly punctured

depends on the codeC from the ensemble(nr, λ, ρ), the pair(λ[1]
r , λ

[2]
r ) cannot be considered to be uniform over

all the codes from this ensemble. In this case, Theorem 3.1 is not directly applicable. In order to circumvent the
problem, we rely on the discussion in Remark 3.2, and on the fact that the lower bound onq1g1,p + q2g2,p which
is given above in terms ofξ from (42) is universal for all the codes from this ensemble (i.e., it only depends on
λ, but does not depend on the specific degree distributionsλ

[1]
r (C) andλ

[2]
r (C) which are associated with the code

C from the ensemble). In light of this reasoning, the proof of the theorem for ensembles of RP-LDPC codes also
follows in the more general setting where the degree distribution associated with the subset of the code bits which
are randomly punctured depends on the specific code from the ensemble.

Remark 4.1:Note that in the above proof, we derive an upper bound on the number of edges adjacent to variable
nodes which are punctured in probabilityPpct; this is done by assuming that the degree of all the un-punctured
nodes is 2 (which is the minimal possible degree for a variable node), and counting the number of the remaining
edges. In the case that the original codes before puncturinghave a minimal variable degree ofΛmin > 2, the upper
bound can be tightened by assuming that each un-punctured node is of degreeΛmin. This results in replacingξ in
(42) with ξ′ , Λmin(1 − α)Ppct

∫ 1
0 λ(x) dx.

C. Intentionally Punctured LDPC Codes

In [4], Ha and McLaughlin show that good codes can be constructed by puncturing good ensembles of LDPC
codes using a technique called “intentional puncturing”. In this approach, the code bits are partitioned into disjoint
sets so that each set contains all the code bits whose corresponding variable nodes have the same degree. The code
bits in each of these sets are randomly punctured at a fixed puncturing rate.

We briefly present the notation used in [4] for the characterization of ensembles of intentionally punctured LDPC
(IP-LDPC) codes. Consider an ensemble of LDPC codes with left and right edge degree distributionsλ and ρ,
respectively. For each degreej such thatλj > 0, a puncturing rateπj ∈ [0, 1] is determined for randomly puncturing
the set of code bits which correspond to variable nodes of degreej. The polynomial associated with this puncturing
pattern is

π(0)(x) ,

∞∑

j=1

πjx
j−1. (49)

An ensemble of IP-LDPC codes can be therefore represented by thequadruplet(n, λ, ρ, π(0)) wheren designates
the block length of these codes,λ and ρ are the left and right degree distributions from the edge perspective,
respectively, andπ(0) is the polynomial which corresponds to the puncturing pattern, as given in (49). The average
fraction of punctured bits is given byp(0) =

∑∞
j=1 Λjπj whereΛ is the left node degree distribution of the original

LDPC ensemble. The following statement, which relies on Theorem3.1, provides an upper bound on the common
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design rate of a sequence of ensembles of IP-LDPC codes. This bound refers to ML decoding (and hence, it also
holds for any sub-optimal decoding algorithm).

Theorem 4.2:Let {(nr, λ, ρ, π(0))}∞r=1 be a sequence of ensembles of IP-LDPC codes transmitted over an MBIOS
channel, and assume thatnr tends to infinity asr → ∞. Let C be the channel capacity, anda be the pdf of the
LLR at the output of the channel given its input is zero. If the asymptotic bit error probability of this sequence
vanishes under ML decoding (or any sub-optimal decoding algorithm) asr → ∞, then in probability 1 w.r.t. the
puncturing patterns, the asymptotic design rateRd of these ensembles satisfies

Rd ≤
1

1 − p(0)

·



1−

1 − (1 − p(0))C

1 −
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ

((
1 −

∞∑

j=1

λjπj

)
gp

)}




(50)

whereΓ denotes the right degree distribution from the node perspective,

p(0) ,

∞∑

j=1

Λjπj (51)

designates the average puncturing rate of the code bits, andgp is the functional of the MBIOS channel introduced
in (40).

Proof: The proof follows from Theorem 3.1, and the observation that IP-LDPC codes form a special case of
the ensemble(n, λ, ρ) examined in Section III. For a sequence of ensembles of IP-LDPC codes,{(nr, λ, ρ, π(0))},
the number of parallel MBIOS channels used for transmissionis equal to the number of strictly positive coefficients
in the polynomialλ, i.e., J , |{i : λi > 0}|. Denote these degrees byi1, . . . , iJ , then the bits transmitted over
the jth channel are those involved in exactlyij parity-check equations (i.e., the bits whose corresponding variable
nodes are of degreeij). From the above discussion, it follows that the fraction of code bits transmitted over thejth

channel is given by
pj = Λij

, j ∈ {1, . . . , J} (52)

and the fraction of edges in the bipartite graph which are connected to variable nodes transmitted of thejth channel
is given by

qj = λij
, j ∈ {1, . . . , J}. (53)

The transmission of IP-LDPC codes over an MBIOS channel is equivalent to transmitting the original codes
(before puncturing) over a set ofJ parallel MBIOS channels where each of these channels is formed by a serial
concatenation of a BEC whose erasure probability is equal to the puncturing rateπij

, followed by the original
MBIOS channel. Hence, the pdf of the LLR at the output of thejth MBIOS channel, given its symbol input is
zero, gets the form

a(l; j) = πij
δ0(l) + (1 − πij

)a(l), l ∈ R (54)

and the capacity of this channel is
Cj = (1 − πij

)C. (55)

By substituting (54) into (3), we get that for allj ∈ {1, . . . , J} andp ∈ N

gj,p =

∫ ∞

0

[
πij

δ0(l) + (1 − πij
)a(l)

]
(1 + e−l) tanh2p

(
l

2

)
dl

= (1 − πij
)

∫ ∞

0
a(l) (1 + e−l) tanh2p

(
l

2

)
dl

= (1 − πij
)gp (56)

where the last equality is based on (40). The statement now follows by substituting (52), (53), (55) and (56) in (26);
we use the scaling factor for the design rate of the puncturedcodes, as given in Definition 4.1. In this case, the
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parameterγ tends to the average puncturing ratep(0) of the code bits, as defined in (51), where this convergence is
in probability 1 w.r.t. the puncturing patterns. Finally, sinceλj = Λj = 0 for j /∈ {i1, . . . , iJ}, then regarding the
sums in the RHS of (50), we get the equalities

∑∞
j=1 Λjπj =

∑J
j=1 Λij

πij
and

∑∞
j=1 λjπj =

∑J
j=1 λij

πij
. This

completes the proof of the theorem.
Remark 4.2:Let us consider a more general case of punctured ensembles of LDPC codes where the original code

bits are split intoJ arbitrary sets and each set is punctured at a different rate.For this general case, it is possible to
apply Theorem 3.1 to derive an upper bound on the achievable rates which only depends on the expected fractions
of punctured code bits and edges in the graph attached to variable nodes of punctured bits. Theorems 4.1 and 4.2
emerge as corollaries of such a theorem (in this paper we do not take this approach since we analyze two strategies
of puncturing as special cases of transmission over parallel channels). In the case of ensembles of RP-LDPC codes,
the fraction of edges adjacent to punctured bits is not knownin general. Hence, for the derivation of upper bounds
on their achievable rates, we employ an upper bound on the fraction of edges adjacent to punctured bits in a similar
way to the proof of Theorem 4.1.

D. Numerical Results for Intentionally Punctured LDPC Codes

In this section, we present a comparison between thresholdsunder MPI decoding and bounds on thresholds under
ML decoding for ensembles of IP-LDPC codes. It is assumed that the transmission of the punctured LDPC codes
takes place over a binary-input AWGN channel. The pairs of degree distributions and the corresponding puncturing
patterns were originally presented in [4], [5]. We study theinherent gap to capacity and consider how close to
optimal iterative decoding is for these ensembles (in the asymptotic case where the block length goes to infinity).

We refer here to three ensembles of IP-LDPC codes: Tables I and IIrefer to two ensembles of rate−1
2 LDPC

codes which by puncturing, their rates vary between0.50 and 0.91; Table III refers to an ensemble of rate− 1
10

LDPC codes which by puncturing, its rate varies between0.10 and0.83. Based on [8, Lemma 7], we verify that
the design rates of these three ensembles of LDPC codes (beforepuncturing) are equal in probability 1 to the
asymptotic rates of codes from these ensembles. This conclusion still holds for the punctured LDPC ensembles
given in Tables I–III (see Lemma 4.2). This enables to calculate the capacity limits which refer to the design
rates of these ensembles, and to evaluate the gaps to capacity under ML decoding and iterative decoding for these
ensembles of punctured LDPC codes.

For various ensembles of IP-LDPC codes, Tables I–III provide lower bounds on the inherent gap to capacity under
optimal ML decoding (based on Theorem 4.2); these values are compared to the corresponding gaps to capacity
under MPI decoding (whose calculation is based on the densityevolution analysis). On one hand, Tables I–III
provide a quantitative assessment of the loss in the asymptotic performance which is attributed to the sub-optimality
of iterative decoding (as compared to ML decoding), and on the other hand, these tables provide an assessment
of the inherent loss in performance which is attributed to the structure of the ensembles, even if ML decoding
could be applied to decode these codes. The loss in performance in both cases is measured in terms ofEb

N0
in

decibels. It is demonstrated in Tables I–III that for various good ensembles of IP-LDPC codes, the asymptotic
loss in performance due to the code structure is non-negligible as compared to the corresponding loss due to the
sub-optimality of iterative decoding. As an example, for all the ensembles of IP-LDPC codes considered in Table I
(which were originally introduced in [4, Table 2]), the gap to capacity under the sum-product iterative decoding
algorithm does not exceed 0.6 dB; however, under ML decoding, the gap to capacity is always greater than1

3 of the
corresponding gap to capacity under this iterative decoding algorithm; therefore, the results in Table I regarding the
thresholds under ML decoding further emphasize the efficiency of the sum-product decoding algorithm for these
ensembles, especially in light of its moderate complexity.

Tables I–III also show that the performance of the puncturedLDPC codes is degraded at high rates, where one
needs to pay a considerable penalty for using punctured codes. This phenomenon was explained in [11, Theorem 1]
by the threshold effect for ensembles of punctured LDPC codes.

Following the performance analysis of punctured LDPC codes in[2], [4], [5], [11], the numerical results shown
in Tables I–III exemplify the high potential of puncturing in designing codes which operate closely to the Shannon
capacity limit and are used for rate-compatible coding for various MBIOS channels. Other examples of capacity-
achieving ensembles of punctured codes on graphs are the irregular repeat-accumulate (IRA) codes and accumulate-
repeat-accumulate (ARA) codes. Recently, it was shown by Pfister et al. that properly designed nonsystematic IRA
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TABLE I

COMPARISON OF THRESHOLDS FOR ENSEMBLES OFIP-LDPC CODES WHERE THE ORIGINAL ENSEMBLE BEFORE PUNCTURING HAS THE

DEGREE DISTRIBUTIONSλ(x) = 0.25105x + 0.30938x2 + 0.00104x3 + 0.43853x9 AND ρ(x) = 0.63676x6 + 0.36324x7 (SO ITS DESIGN

RATE IS 1

2
). THE TRANSMISSION OF THESE CODES TAKES PLACE OVER A BINARY-INPUT AWGN CHANNEL. THE TABLE COMPARES

VALUES OF
Eb
N0

REFERRING TO THE CAPACITY LIMIT, THE BOUND GIVEN IN THEOREM 4.2 (WHICH PROVIDES A LOWER BOUND ON THE
Eb
N0

-THRESHOLD UNDERML DECODING), AND THRESHOLDS UNDER ITERATIVE DECODING. THE FRACTIONAL GAP TO CAPACITY IN

THE RIGHTMOST COLUMN MEASURES THE RATIO OF THE GAP TO CAPACITY UNDER ML DECODING AND THE ACHIEVABLE GAP TO

CAPACITY UNDER ITERATIVE DECODING. THE DEGREE DISTRIBUTIONS FOR THE ENSEMBLE OFLDPC CODES, AND THE POLYNOMIALS

WHICH CORRESPOND TO ITS PUNCTURING PATTERNS ARE GIVEN IN[4, TABLE 2].

π(0)(x) Design Capacity Lower bound Iterative (IT) Fractional gap to
(puncturing pattern) rate limit (ML decoding) Decoding capacity (ML vs. IT)

0 0.500 0.187 dB 0.270 dB 0.393 dB ≥ 40.3%
0.07886x + 0.01405x2 +
0.06081x3 + 0.07206x9 0.528 0.318 dB 0.397 dB 0.526 dB ≥ 37.9%

0.20276x + 0.09305x2 +
0.03356x3 + 0.16504x9 0.592 0.635 dB 0.716 dB 0.857 dB ≥ 36.4%

0.25381x + 0.15000x2 +
0.34406x3 + 0.019149x9 0.629 0.836 dB 0.923 dB 1.068 dB ≥ 37.3%

0.31767x + 0.18079x2 +
0.05265x3 + 0.24692x9 0.671 1.083 dB 1.171 dB 1.330 dB ≥ 35.6%

0.36624x + 0.24119x2 +
0.49649x3 + 0.27318x9 0.719 1.398 dB 1.496 dB 1.664 dB ≥ 36.9%

0.41838x + 0.29462x2 +
0.05265x3 + 0.30975x9 0.774 1.814 dB 1.927 dB 2.115 dB ≥ 37.2%

0.47074x + 0.34447x2 +
0.02227x3 + 0.34997x9 0.838 2.409 dB 2.547 dB 2.781 dB ≥ 37.1%

0.52325x + 0.39074x2 +
0.01324x3 + 0.39436x9 0.912 3.399 dB 3.607 dB 3.992 dB ≥ 35.1%

codes achieve the capacity of the BEC with bounded decoding complexity per information bit [9]. This bounded
complexity result is achieved by puncturing all the information bits of the IRA codes, and allowing in this way
a sufficient number of state nodes in the Tanner graph representing the codes. This is in contrast to all previous
constructions of capacity-achieving LDPC codes which refer to bipartite graphs without state nodes and whose
complexity becomes unbounded as their gap to capacity vanishes (for an information-theoretic proof which explains
why the complexity becomes unbounded in this case, the reader is referred to [14, Theorem 2.1]). The decoding
complexity of punctured LDPC codes for parallel channels is addressed in the next section.

V. L OWER BOUNDS ON THEDECODING COMPLEXITY OF LDPC CODES FORPARALLEL CHANNELS

The scope of this section is to derive a lower bound on the decoding complexity (per iteration) of LDPC codes
transmitted over parallel MBIOS channels. The lower bound holds under MPI decoding, and it grows like the
logarithm of the inverse of the gap (in rate) to capacity. Interestingly, a logarithmic behavior of the parity-check
density (which forms a measure of the decoding complexity per iteration) in terms of the gap to capacity also
characterizes the upper bound derived in [3, Section 3]; thisupper bound refers to MacKay’s ensemble of LDPC
codes whose transmission takes place over a set of parallel MBIOS channels.

In the previous section we regarded the transmission of punctured LDPC codes over MBIOS channels as a special
case of the transmission of the original codes (before puncturing) over a set of parallel MBIOS channels. Hence,
the aforementioned bound is later applied to obtain lower bounds on the decoding complexity of punctured LDPC
codes. This section refers to an appendix which suggests a simplified re-derivation of [9, Theorems 3 and 4], and
shows that the bounds introduced in this section are tighter.
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TABLE II

COMPARISON OF THRESHOLDS FOR ENSEMBLES OFIP-LDPC CODES WHERE THE ORIGINALLDPC ENSEMBLE BEFORE PUNCTURING

HAS THE DEGREE DISTRIBUTIONSλ(x) = 0.23403x + 0.21242x2 + 0.14690x5 + 0.10284x6 + 0.30381x19 AND

ρ(x) = 0.71875x7 + 0.28125x8 (SO ITS DESIGN RATE IS1

2
). THE TRANSMISSION OF THESE CODES TAKES PLACE OVER A BINARY-INPUT

AWGN CHANNEL. THE TABLE COMPARES VALUES OF
Eb
N0

REFERRING TO THE CAPACITY LIMIT, THE BOUND GIVEN IN THEOREM 4.2

(WHICH PROVIDES A LOWER BOUND ON THE
Eb
N0

-THRESHOLD UNDERML DECODING), AND THRESHOLDS UNDER ITERATIVE

DECODING. THE FRACTIONAL GAP TO CAPACITY IN THE RIGHTMOST COLUMN MEASURES THE RATIO OF THE GAP TO CAPACITY UNDER

ML DECODING AND THE ACHIEVABLE GAP TO CAPACITY UNDER ITERATIVEDECODING. THE DEGREE DISTRIBUTIONS FOR THE

ENSEMBLE OFLDPC CODES, AND THE POLYNOMIALS WHICH CORRESPOND TO THE PUNCTURING PATTERNS ARE GIVEN IN [4,

TABLE 3].

π(0)(x) Design Capacity Lower bound Iterative (IT) Fractional gap to
(puncturing pattern) rate limit (ML decoding) Decoding capacity (ML vs. IT)

0 0.500 0.187 dB 0.234 dB 0.299 dB ≥ 41.5%
0.102040x + 0.06497x2 +
0.06549x5 + 0.00331x6 +
0.39377x19

0.555 0.450 dB 0.473 dB 0.599 dB ≥ 15.4%

0.226410x + 0.14149x2 +
0.21268x5 + 0.00001x6 +
0.4424x19

0.625 0.816 dB 0.841 dB 1.028 dB ≥ 11.9%

0.348940x + 0.21015x2 +
0.38902x5 + 0.00003x6 +
0.48847x19

0.714 1.368 dB 1.398 dB 1.699 dB ≥ 8.9%

0.410320x + 0.24330x2 +
0.48388x5 + 0.00004x6 +
0.50541x19

0.769 1.777 dB 1.811 dB 2.215 dB ≥ 7.8%

0.469100x + 0.28408x2 +
0.56178x5 + 0.00002x6 +
0.53412x19

0.833 2.362 dB 2.404 dB 3.004 dB ≥ 6.6%

0.533750x + 0.30992x2 +
0.66375x5 + 0.00001x6 +
0.54837x19

0.909 3.343 dB 3.410 dB 4.634 dB ≥ 5.2%

A. A Lower Bound on the Decoding Complexity for Parallel MBIOS Channels

Consider a binary linear block code which is represented by abipartite graph, and assume that the graph serves
for the decoding with an iterative algorithm. Following [3]and [9], the decoding complexity under MPI decoding
is defined as the number of edges in the graph normalized per information bit. This quantity measures the number
of messages which are delivered through the edges of the graph (from left to right and vice versa) during a single
iteration. Equivalently, since there is a one-to-one correspondence between a bipartite graph and the parity-check
matrix H which represents the code, the decoding complexity is also equal to the number of non-zero elements in
H normalized per information bit (i.e., it is equal to the density of the parity-check matrix [14, Definition 2.2]).
Hence, the decoding complexity and performance of iteratively decoded binary linear block codes depend on the
specific representation of the code by a parity-check matrix.Since the average right degree(aR) of a bipartite
graph is equal to the number of edges per parity-check equation, then the average right degree and the decoding
complexity are two related quantities. Consider an ensemble of LDPC codes whose design rate isRd. It is natural
to relate the decoding complexity of the ensemble, sayχD, to its average right degree and design rate, as follows:

χD =

(
1 − Rd

Rd

)
aR .

We note thataR is fixed for all the codes from an ensemble of LDPC codes with a given pair of degree distributions.
The following lemma is used in the continuation for the derivation of a lower bound on the decoding complexity

per iteration under MPI decoding.
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TABLE III

COMPARISON OF THRESHOLDS FOR ENSEMBLES OFIP-LDPC CODES WHERE THE ORIGINAL ENSEMBLE BEFORE PUNCTURING HAS THE

DEGREE DISTRIBUTIONSλ(x) = 0.414936x + 0.183492x2 + 0.013002x3 + 0.093081x4 + 0.147017x7 + 0.148472x24 AND

ρ(x) = 0.4x2 + 0.6x3 (SO ITS DESIGN RATE IS 1

10
). THE TRANSMISSION OF THESE CODES TAKES PLACE OVER A BINARY-INPUT AWGN

CHANNEL. THE TABLE COMPARES VALUES OF
Eb
N0

REFERRING TO THE CAPACITY LIMIT, THE BOUND GIVEN IN THEOREM 4.2 (WHICH

PROVIDES A LOWER BOUND ON THE
Eb
N0

-THRESHOLD UNDERML DECODING), AND THRESHOLDS UNDER ITERATIVE DECODING. THE

FRACTIONAL GAP TO CAPACITY (SEE THE RIGHTMOST COLUMN) MEASURES THE RATIO OF THE GAP TO CAPACITY UNDERML

DECODING AND THE ACHIEVABLE GAP TO CAPACITY UNDER ITERATIVE(SUM-PRODUCT) DECODING. THE DEGREE DISTRIBUTIONS FOR

THE ENSEMBLE OFLDPC CODES, AND THE POLYNOMIALS CORRESPONDING TO THE PUNCTURING PATTERNS ARE GIVEN IN [5,

TABLE 5.1].

π(0)(x) Design Capacity Lower bound Iterative (IT) Fractional gap to
(puncturing pattern) rate limit (ML decoding) Decoding capacity (ML vs. IT)

0 0.100 −1.286 dB −1.248 dB −1.028 dB ≥ 14.5%
0.486490x + 0.69715x2 +
0.03287x3 + 0.04248x4 +
0.69048x7 + 0.45209x24

0.203 −0.953 dB −0.917 dB −0.731 dB ≥ 16.3%

0.655580x + 0.83201x2 +
0.48916x3 + 0.33917x4 +
0.63990x7 + 0.76947x24

0.304 −0.605 dB −0.570 dB −0.317 dB ≥ 12.0%

0.745690x + 0.87184x2 +
0.38179x3 + 0.48427x4 +
0.74655x7 + 0.79130x24

0.406 −0.226 dB −0.189 dB +0.029 dB ≥ 14.7%

0.838470x + 0.65105x2 +
0.04527x3 + 0.95233x4 +
0.74808x7 + 0.80845x24

0.487 +0.130 dB +0.171 dB +0.599 dB ≥ 8.7%

0.979320x + 0.46819x2 +
0.71050x3 + 0.59816x4 +
0.79485x7 + 0.05765x24

0.577 +0.556 dB +0.840 dB +1.152 dB ≥ 47.7%

0.895200x + 0.84401x2 +
0.98541x3 + 0.42518x4 +
0.92976x7 + 0.30225x24

0.663 +1.039 dB +1.232 dB +1.806 dB ≥ 25.2%

0.910960x + 0.91573x2 +
0.23288x3 + 0.40977x4 +
0.99811x7 + 0.15915x24

0.747 +1.605 dB +1.958 dB +2.637 dB ≥ 34.2%

0.904130x + 0.96192x2 +
0.35996x3 + 0.96980x4 +
0.31757x7 + 0.89250x24

0.828 +2.303 dB +2.505 dB +3.863 dB ≥ 13.0%

Lemma 5.1:Let Γ be the right degree distribution of an ensemble of LDPC codes. Then

Γ(α) ≥ αaR, ∀ α ≥ 0.
Proof: Using the convexity of the functionf(x) = αx, it follows from Jensen’s inequality that forα ≥ 0

Γ(α) =

∞∑

i=1

Γiα
i ≥ α

∑
∞

i=1 iΓi = αaR.

Consider a sequence of ensembles of LDPC codes,{(nr, λr, ρ)}∞r=1, whose transmission takes place over a set
of J statistically independent parallel MBIOS channels. LetCj and pj be the capacity and the fraction of code
bits assigned to thejth channel, respectively (wherej ∈ {1, . . . , J}). We define the average capacity of the set
of J parallel channels asC ,

∑J
j=1 pjCj . For an ensemble of LDPC codes which achieves vanishing bit error

probability as the block length tends to infinity, the multiplicative gap (in rate) to capacity is defined as

ε , 1 −
Rd

C
. (57)
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We now present a lower bound on the decoding complexity per iteration under MPI decoding for this sequence.
The bound is given in terms of the gap to capacity.

Theorem 5.1:Let a sequence of ensembles of binary LDPC codes,{(nr, λr, ρ)}∞r=1, be transmitted over a set ofJ
statistically independent parallel MBIOS channels. LetCj be the capacity of thejth channel (wherej ∈ {1, . . . , J}),
and denote the average capacity byC ,

∑J
j=1 pjCj . If this sequence achieves a fraction1−ε of C with vanishing

bit error probability, then the asymptotic decoding complexity under MPI decoding satisfies

χD(ε) ≥ K1 + K2 ln

(
1

ε

)
. (58)

The coefficientsK1,2 in this lower bound are as follows:

K1 = K2 ln

(
1

2 ln 2

1 − C

C

)
, K2 = −

1 − C

C ln

(
J∑

j=1

qjgj,1

) (59)

wheregj,1 is introduced in (3), andqj is introduced in (25) and is assumed to be positive for allj ∈ {1, . . . , J}.
For parallel BECs, the term 1

2 ln 2 can be removed from the numerator in the expression ofK1.
Proof: Substituting (57) in (26) gives

(1 − ε)C ≤ 1 −
1 − C

1 −
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ

(
J∑

j=1

qjgj,p

)} . (60)

Sincegj,p in (3) is non-negative forj ∈ {1, . . . , J} and p ∈ N, and the functionΓ is non-negative onR+, then
the terms in the infinite sum above are all non-negative. By thetruncation of this series where we only take into
account its first term (note that this is the largest term in thesum), we obtain a lower bound on the RHS of (60).
This implies that

(1 − ε)C ≤ 1 −
1 − C

1 −
1

2 ln 2
Γ

(
J∑

j=1

qjgj,1

) .

Invoking Lemma 5.1 yields that

(1 − ε)C ≤ 1 −
1 − C

1 −
1

2 ln 2

(
J∑

j=1

qjgj,1

)aR
.

The solution of the last inequality for the average right degree (aR) gives

aR ≥ −

ln

(
1

2 ln 2

(
1 + 1−C

Cε

))

ln

(
J∑

j=1

qjgj,1

)

> K ′
1 + K ′

2 ln

(
1

ε

)
(61)

where the last step follows by dropping the 1 which appeared inside the logarithm at the numerator (this step is
valid since the denominator is strictly negative due to the fact thatgj,1 ≤ 1 for all j), and

K ′
1 = −

ln
(

1
2 ln 2

1−C

C

)

ln

(
J∑

j=1

qjgj,1

) , K ′
2 = −

1

ln

(
J∑

j=1

qjgj,1

) .
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SinceRd < C, it follows thatχD = 1−Rd
Rd

aR > 1−C

C
aR. The proof of the lower bound on the decoding complexity

for parallel MBIOS channels follows by multiplying both sides of (61) by1−C

C
.

For parallel BECs, we get from (3) that for everyp ∈ N

gj,p =

∫ ∞

0
a(l; j)(1 + e−l) tanh2p

(
l

2

)
dl = 1 − εj

whereεj denotes the erasure probability of thejth BEC. This gives

1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
Γ

(
J∑

j=1

qjgj,p

)}

=
1

2 ln 2

∞∑

p=1

1

p(2p − 1)
· Γ

(
J∑

j=1

qjgj,1

)

= Γ

(
J∑

j=1

qjgj,1

)
.

Substituting this in (60), gives

(1 − ε)C ≤ 1 −
1 − C

1 − Γ

(
J∑

j=1

qjgj,1

) .

The continuation of the proof follows the same steps as the proof for parallel MBIOS channels, and leads to an
improved coefficientK1 where the factor 1

2 ln 2 in the numerator ofK1 for general MBIOS channels (see (59)) is
replaced by 1.

We proceed the analysis by the derivation of lower bounds on the decoding complexity of sequences of ensembles
of punctured LDPC codes where it is assumed that these sequences achieve vanishing bit error probability; similarly
to Theorem 5.1, the lower bounds are expressed in terms of the multiplicative gap (in rate) to capacity.

B. Lower Bounds on the Decoding Complexity for Punctured LDPC Codes

As discussed in the previous section, transmission of punctured codes can be interpreted as a special case of
transmitting the original (un-punctured) codes over a set of parallel channels where these component channels are
formed by a mixture of the communication channel and BECs whose erasure probabilities are the puncturing rates
of the different subsets of code bits. Hence, the bounds on the decoding complexity of punctured codes can be
derived as special cases of the bound given in Theorem 5.1. Forthe sake of brevity, we derive these bounds by
using the upper bounds on the achievable rates of punctured LDPC codes as given in Theorem 4.1 (for random
puncturing) and Theorem 4.2 (for intentional puncturing). Note that the derivation of these two theorems relies on
Theorem 3.1 (as shown in Fig. 1 on p. 27).

Consider an ensemble of LDPC codes of lengthn and design rateR′
d, and let the code bits be partitioned intoJ

disjoint sets where thejth set contains a fractionpj of these bits (j ∈ {1, . . . , J}). Assume that the bits in thejth

set are randomly punctured at rateπj , and let the punctured codes be transmitted over an MBIOS channel whose
capacity isC. As shown in the previous section, this is equivalent to transmitting the original (un-punctured) codes
over a set ofJ parallel channels, where thejth set of code bits is transmitted over a channel whose capacityis
Cj = (1 − πj)C. The average capacity of this set ofJ parallel channels is therefore given by

C =
J∑

j=1

pj (1 − πj)C =
(
1 −

J∑

j=1

pjπj

)
C = (1 − γ)C (62)

whereγ ,
∑J

j=1 pjπj is the overall puncturing rate. Denote the design rate of thepunctured codes byRd ,
R′

d
1−γ

(see Definition 4.1 on p. 14), then it follows that the multiplicative gap to capacity of the punctured codes is given
by

ε = 1 −
Rd

C
= 1 −

R′
d

C
. (63)
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For punctured codes, the iterative decoder is based on the bipartite graph of the ’mother code’ where the channel
input to the variable nodes which correspond to the punctured code bits is defined to be 0. Hence, the decoding
complexity of the punctured ensemble under MPI decoding is identical to the decoding complexity of the original
ensemble (before puncturing), and is given by

χD =

(
1 − R′

d

R′
d

)
aR

=

(
1 − (1 − γ)Rd

(1 − γ)Rd

)
aR . (64)

In the following, we derive a lower bound on the decoding complexity of a sequence of ensembles of RP-LDPC
codes.

Theorem 5.2:Let {(nr, λ, ρ)}∞r=1 be a sequence of ensembles of binary LDPC codes whose block length (nr)
tends to infinity asr → ∞. Assume that a sequence of ensembles of RP-LDPC codes is constructed in the following
way: for each code from an ensemble of the original sequence,a subset ofαnr code bits is a-priori selected, and
these bits are randomly punctured at a fixed rate(Ppct). Assume that the punctured codes are transmitted over an
MBIOS channel with capacityC, and that asr tends to infinity, the sequence of ensembles of punctured codes
achieves a fraction1−ε of the capacity with vanishing bit error probability. Then inprobability 1 w.r.t. the random
puncturing patterns, the decoding complexity of this sequence under MPI decoding satisfies

χD(ε) ≥ K1 + K2 ln

(
1

ε

)
. (65)

The coefficientsK1,2 in this lower bound are as follows:

K1 = K2 ln

(
1

2 ln 2

1 − C

C

)

K2 = −
1 − C

C ln
(
(1 − Ppct + ξ)g1

) (66)

whereg1 is introduced in (40),ξ is introduced in (42), andC , (1 − αPpct)C. For the particular case of a BEC,
the term 1

2 ln 2 can be dropped, thus improving the tightness of the additiveterm (K1) in the lower bound.
Proof: Since a subset of the code bits of sizeαnr is randomly punctured at ratePpct, then the average

puncturing rate is given byγ = αPpct. Hence, Eq. (62) yields thatC = (1 − αPpct)C. By multiplying both sides
of (41) by 1 − αPpct and getting from (63) thatRd = (1 − ε)C, we obtain

(1 − ε)C ≤ 1 −
1 − C

1 −
1

2 ln 2

∞∑

p=1

Γ
(
(1 − Ppct + ξ)gp

)

p(2p − 1)

.

Following the same steps as in the proof of Theorem 5.1, we get alower bound on the average right degree of the
bipartite graph which corresponds to the pair of degree distributions (λ, ρ). This lower bound is of the form

aR > K ′
1 + K ′

2 ln

(
1

ε

)
(67)

where

K ′
1 = K ′

2 ln

(
1

2 ln 2

1 − C

C

)

K ′
2 = −

1

ln
(
(1 − Ppct + ξ)g1

) .

Note thatK ′
2 is positive; this follows from (42), which yields thatξ < (1−α)Ppct (due to the fact that the integral

of λ over the interval [0, 1] is upper bounded by1
2 ). This assures that as the gap (in rate) to capacity vanishes,the

lower bound onaR scales like the logarithm of the inverse of this gap.
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From (63), we get thatR′
d = (1 − ε)C < C, and thereforeχD =

1−R′

d
R′

d
aR > 1−C

C
aR. The proof of the lower

bound on the decoding complexity is completed by multiplying both sides of (67) by1−C

C
. In the particular case

where the communication channel is a BEC, following the same concept as in the proof of Theorem 5.1 leads to
the improved coefficientK1 where the term 1

2 ln 2 is dropped.
The upper bound on the decoding complexity for sequences of ensembles of IP-LDPC codes is also given in

terms of the gap between the rate of the punctured rate and thechannel capacity.
Theorem 5.3:Let {(nr, λ, ρ, π(0))}∞r=1 be a sequence of ensembles of binary IP-LDPC codes transmitted over

an MBIOS channel whose channel capacity isC. If this sequence achieves a fraction1 − ε of the capacity with
vanishing bit error probability, then in probability 1 w.r.t. the random puncturing patterns, the decoding complexity
of this sequence under MPI decoding satisfies

χD(ε) ≥ K1 + K2 ln

(
1

ε

)
. (68)

The coefficientsK1,2 in this lower bound are as follows:

K1 = K2 ln

(
1

2 ln 2

1 − C

C

)

K2 = −
1 − C

C ln

((
1 −

∑∞
j=1 λjπj

)
g1

) (69)

whereg1 is introduced in (40), andC , (1 −
∑∞

j=1 Λjπj)C. For the particular case of a BEC, the term12 ln 2 can
be dropped, thus improving the tightness of the additive term (K1) in the lower bound.

Proof: The proof follows from the same concepts as the proof of Theorem5.2, but is based on (50) instead
of (41). Note thatK2, which reflects the logarithmic growth rate of the lower boundin (68), is always positive;
this follows from (69) and due to the fact that from (40),g1 ≤ 1, and also0 < 1 −

∑∞
j=1 λjπj ≤ 1.

C. Re-Derivation of Reported Lower Bounds on the Decoding Complexity

In [9, Theorems 3 and 4], Pfister et al. introduced lower bounds onthe decoding complexity of punctured codes
under iterative decoding. The bounds were derived for the case where a subset of linearly independent code bits
whose size is equal to the code dimension are randomly punctured at a fixed rate (Ppct), and the transmission of
the codes takes place over an MBIOS channel. In particular, this scenario corresponds to RP-LDPC codes (see
Section IV-B) where we choose a subset of the code bits to be randomly punctured at ratePpct; under the assumption
in [9, Theorems 3 and 4], the fraction(α) of the code bits which are randomly punctured is equal to the code
rate. In the appendix, we show that for RP-LDPC codes, the lower bounds on the decoding complexity given in
[9, Theorems 3 and 4] follow from a looser version of the bound in Theorem 5.2.

VI. SUMMARY AND OUTLOOK

Theorem 3.1, which is one of the main results in this paper, provides an upper bound on the asymptotic rate
of a sequence of ensembles of binary low-density parity-check (LDPC) codes which achieves vanishing bit error
probability. We assume that the communication takes place over a set of parallel memoryless binary-input output-
symmetric (MBIOS) channels. The derivation of Theorem 3.1 relies on upper and lower bounds on the conditional
entropy of the transmitted codeword given the received sequence at the output of the parallel channels (see
Section II), and it holds under optimal maximum-likelihood (ML) decoding (or an arbitrary sub-optimal decoding
algorithm). This theorem enables the derivation of a lower bound on the decoding complexity (per iteration) of
ensembles of binary LDPC codes under message-passing iterative decoding when the transmission of the codes
takes place over a set of parallel MBIOS channels. The latter bound is given in terms of the gap between the rate
of these codes for which reliable communication is achievable and the channel capacity. Similarly to a lower bound
on the decoding complexity of ensembles of LDPC codes for a single MBIOS channel [14], the lower bound on
the decoding complexity which is derived for parallel channels grows like the log of the inverse of the gap (in rate)
to capacity.
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Achievable rates of LDPC codes
for parallel MBIOS channels

Theorem 3.1

Information-theoretic bounds:

Proposition 2.1 and Lemma 2.2

Upper bounds on the achievable
rates of punctured LDPC codes

for MBIOS channels

Theorems 4.1 and 4.2

Upper bound on the
achievable rates of LDPC

codes for MBIOS channels

[17, Corollary 4.1]

Upper bound on the
achievable rates of LDPC
codes for parallel BECs

[10, Theorem 2]

Lower bound on the
decoding complexity of LDPC

codes for parallel channels

Theorem 5.1

Upper bound on the rates
of LDPC codes based on

two-level quantization

[1, Theorems 1 and 2]

Upper bound on the rates
of LDPC codes based on

two-level quantization

[14, Theorem 2.5]

BEC
Lower bound on the

decoding complexity of
randomly punctured LDPC

codes (Theorem 5.2)

Lower bound on the
decoding complexity of
intentionally punctured

LDPC codes (Theorem 5.3)

Lower bounds on the
parity-check density

[14, Theorem 2.1]

Upper bound on the
achievable rates for a

uniform BEC:
[12, Theorem 3] and

[14, Eq. (36)]

Lower bounds on the
decoding complexity of

randomly punctured LDPC
codes for MBIOS channels

[9, Theorems 3 and 4]

Fig. 1. An interconnections diagram among the bounds in this paper and some previously reported bounds which follow as special cases.

Theorem 3.1 can be used for various applications which form particular cases of communication over parallel
channels, e.g., intentionally punctured LDPC codes [4], non-uniformly error protected LDPC codes [10], and LDPC-
coded modulation (see e.g., [6], [16]). In Section IV, we relyon Theorem 3.1 for the derivation of upper bounds on
the achievable rates under ML decoding of (randomly and intentionally) punctured LDPC codes whose transmission
takes place over an arbitrary MBIOS channel. It is exemplifiednumerically that for various good ensembles of
intentionally punctured LDPC codes, the asymptotic loss in performance due to the code structure is non-negligible
as compared to the corresponding loss due to the sub-optimality of iterative decoding (as compared to optimal ML
decoding). Looser versions of the bounds derived in this paper for punctured LDPC codes suggest a simplified
re-derivation of previously reported bounds on the decoding complexity of randomly punctured LDPC codes (see
[9, Theorems 3 and 4] and the appendix).

Interconnections between the information-theoretic bounds introduced in this paper and some previously reported
results are shown in Fig. 1; it is shown in this figure that results from [1], [9], [10], [12], [14], [17], which correspond
to the achievable rates and decoding complexity of LDPC codes (with and without puncturing), follow as special
cases of the bounds introduced in this paper.
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APPENDIX: RE-DERIVATION OF [9, THEOREMS3 AND 4]

In the following, we start with the re-derivation of [9, Theorem 4] for general MBIOS channels, and then re-
derive the refined bound in [9, Theorem 3] for a BEC. For the re-derivation of [9, Theorems 3 and 4] we rely on
Theorem 5.2 whose derivation is based on Theorem 4.1. Hence, wefirst loosen the upper bound on the achievable
rates given in (41), and then re-derive [9, Theorem 4] as a consequence of this looser version. The loosening of
(41) is done by replacing the positive parameterξ introduced in (42) by zero, and then using the lower bound on
Γ from Lemma 5.1. This gives

Rd ≤
1

1 − αPpct

·




1 −
1 − (1 − αPpct)C

1 −
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

(
(1 − Ppct)gp

)aR

}




. (A.1)

Truncating the infinite series in the RHS of (A.1) by only taking its first term which corresponds top = 1 further
loosens the upper bound on the achievable rates, and gives

Rd ≤
1

1 − αPpct


1 −

1 − (1 − αPpct)C

1 −
1

2 ln 2

(
(1 − Ppct)g1

)aR


 . (A.2)

From (63), we get the inequality

(1 − ε)(1 − αPpct)C ≤ 1 −
1 − (1 − αPpct)C

1 −
1

2 ln 2

(
(1 − Ppct)g1

)aR

which after straightforward algebra gives

1 +
1 − (1 − αPpct)C

εC(1 − αPpct)
≤ 2 ln 2

(
1

(1 − Ppct)g1

)aR

. (A.3)

We proceed by giving a simple lower bound ong1 in (40).
Lemma A.1:The inequalityg1 ≥ (1 − 2w)2 holds for any MBIOS channel where

w , Pe(a) =
1

2
Pr(L = 0) +

∫ 0−

−∞
a(l) dl

designates the uncoded bit error probability of the MBIOS channel given the channel input is zero.
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Proof: Based on the symmetry property wherea(l) = ela(−l) and Jensen’s inequality, we get

g1=

∫ ∞

0
a(l) (1 + e−l) tanh2

(
l

2

)
dl

=

∫ ∞

−∞
a(l) tanh2

(
l

2

)
dl

≥

(∫ ∞

−∞
a(l) tanh

(
l

2

)
dl

)2

=

(∫ ∞

0
a(l) (1 + e−l) tanh

(
l

2

)
dl

)2

=

(∫ ∞

0
a(l) (1 − e−l) dl

)2

=

(∫ ∞

0+

(
a(l) − a(−l)

)
dl

)2

=

(
1 − Pr(L = 0) − 2

∫ 0−

−∞
a(l) dl

)2

=(1 − 2w)2.

Replacingg1 in the RHS of (A.3) by its lower bound from Lemma A.1 gives

1 +
1 − (1 − αPpct)C

εC(1 − αPpct)
≤2 ln 2

(
1

(1 − Ppct)(1 − 2w)2

)aR

≤2 ln 2

(
1

(1 − Ppct)(1 − 2w)

)2aR

.

Solving the last inequality foraR gives

aR ≥

ln

(
1

2 ln 2

(
1 +

1−(1−αPpct)C
εC(1−αPpct)

))

2 ln
(

1
(1−Ppct)(1−2w)

) .

Based on the equality (64) which relates the complexity under iterative decoding to the average right degree(aR)
and also sinceRd < C, we get from the last inequality

χD(ε) ≥
1 − C

2C

ln

(
1

2 ln 2

(
1 +

1−(1−αPpct)C
εC(1−αPpct)

))

ln
(

1
(1−Ppct)(1−2w)

) . (A.4)

Note that in the setting of [9, Theorem 4],α = R′
d. This gives the equalityα = (1 − ε)C = (1 − ε)(1 − αPpct)C

whose solution is

α =
(1 − ε)C

1 + (1 − ε)CPpct
. (A.5)

Finally, the substitution ofα in (A.5) into the RHS of (A.4) gives

χD(ε)≥
1 − C

2C

ln

(
1

2 ln 2

(
1 +

1−(1−Ppct)C−εCPpct

εC

))

ln
(

1
(1−Ppct)(1−2w)

)

≥
1 − C

2C

ln
(

1
ε

1−(1−Ppct)C
2C ln 2

)

ln
(

1
(1−Ppct)(1−2w)

) (A.6)
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which coincides with [9, Theorem 4] for a sequence of ensembles of randomly punctured LDPC codes.
For the derivation of the refined bound for the BEC which is givenin [9, Theorem 3], we start from (A.1). The

refinement of the latter bound is due to the fact that for the BEC,gp in (40) is independent ofp, and satisfies
gp = 1−PBEC wherePBEC designates the erasure probability of the BEC. From (A.1), we get the following upper
bound on the achievable rates:

Rd ≤
1

1 − αPpct


1 −

1 − (1 − αPpct)C

1 −
(
(1 − Ppct)(1 − PBEC)

)aR




which follows from the equality
∑∞

p=1
1

2p(2p−1) = ln 2. SubstitutingRd = (1 − ε)(1 − PBEC) and theα in (A.5)
gives a lower bound onaR. Finally, the lower bound in [9, Theorem 3] follows from the resulting lower bound on
aR and the inequalityχD(ε) ≥ 1−C

C
aR.
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