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Abstract

A variety of communication scenarios can be modeled by a E@amllel channels. Upper bounds on the achievable
rates under maximum-likelihood decoding, and lower boumidshe decoding complexity per iteration of ensembles of low
density parity-check (LDPC) codes are presented. The cariwation of these codes is assumed to take place over gtallist
independent parallel channels where the component ctaareimemoryless, binary-input and output-symmetric. Thentls
are applied to ensembles of punctured LDPC codes where thetiping patterns are either random or possess some sguctu
Our discussion is concluded by a diagram showing intercctiores between the new theorems and some previously reporte
results.

Index Terms

Complexity, low-density parity-check (LDPC) codes, mawmlikelihood (ML) decoding, iterative decoding, paralle
channels, punctured codes.

. INTRODUCTION

Parallel channels serve as a model for analyzing variousraoitation scenarios, e.g., rate-compatible puncturing
of error-correcting codes, non-uniformly error-protectodes, transmission over block-fading channels and multi
carrier signaling. All these scenarios can be modeled aanarmission of information over a set of parallel channels
where each code symbol is assigned to one of these compdmemtels. Naturally, analytical tools for evaluating
the performance and decoding complexity of error-comgctiodes whose transmission takes place over a set of
parallel channels are gaining theoretical and practideirést (see, e.g., [3], [7], [15]).

The channel model considered in this paper assumes that thewaication of binary linear block codes takes
place overJ statistically independent component channels where ehttedndividual channels is a memoryless
binary-input output-symmetric (MBIOS) channel whose ptuliy density function is given byp(:|- ;7) (j =
1,2,...,J). If we let Z(j) denote the set of indices of the symbols inratength codeword which are transmitted
over thej" channel, then

J
p (ylz) = T1 pwilzid)- 1)
J=14ieZ(j)

This paper focuses primarily on information-theoretic atpef low-density parity-check (LDPC) codes whose
transmission takes place over a set of parallel channelzoltides upper bounds on the achievable rates under
maximum-likelihood (ML) decoding, and lower bounds on theating complexity per iteration of ensembles of
LDPC codes. The paper forms a generalization of the results7ijn However, the bounds on the achievable rates
and decoding complexity derived in this paper hold asynigaty with probability 1 for ensembles of LDPC codes
where we let their block length tend to infinity; this is in cast to the results in [17] which refer to communication
over a single MBIOS channel, and are valid code by code. Thexdwintroduced in this paper are applied to
ensembles of punctured LDPC codes where the puncturing pataee either random or possess some structure.
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The performance of punctured LDPC codes under ML decoding walsesk in [2] via analyzing the asymptotic
growth rate of their average weight distributions and usipger bounds on the decoding error probability under
ML decoding. Based on this analysis, it was proved that for BiBIOS channel, capacity-achieving codes of
any desired rate can be constructed by puncturing the cddeobensembles of LDPC codes whose design rate
(before puncturing) is sufficiently low. The performance ohpwwred LDPC codes over the AWGN channel was
studied in [4] under message-passing iterative (MPI) dewpdiia and McLaughlin studied in [4] two methods for
puncturing LDPC codes where the first method assumes randontupagcof the code bits at a fixed rate, and
the second method assumes possibly different puncturiteg far each subset of code bits which corresponds to
variable nodes of a fixed degree. For the second approachdcaitentional puncturing’, the degree distributions
of the puncturing patterns were optimized in [4], [5] whela, a given design rate, it was aimed to minimize the
gap to capacity under iterative decoding (by using the Ganszpproximation); exact values of these optimized
puncturing patterns were also calculated by the densityudea analysis and show good agreement with the
Gaussian approximation. The results in [4], [5] exemplifg thisefulness of punctured LDPC codes for a relatively
wide range of rates, and therefore, they are suitable fergaimpatible puncturing.

The transmission of punctured codes over a single channdbeaagarded as a special case of communication
of the original code over a set of parallel channels (wheisegét of channels is defined by the different puncturing
rates applied to disjoint subsets of the code bits). We thereapply the bounds derived in this paper to the special
case of the transmission of ensembles of punctured LDPC cogeso arbitrary MBIOS channel. Theorems related
to the achievable rates and decoding complexity of pundtu2PC codes are derived. For ensembles of punctured
LDPC codes, the calculation of bounds on their thresholds uhtledecoding and their exact thresholds under
iterative decoding (based on the density evolution ang)ysiof interest; it enables one to distinguish between the
asymptotic loss in performance which follows from the syibioality of the iterative decoder and the inherent loss
in performance which is attributed to the structure of thdeso(so it therefore exists even under ML decoding).

The paper is organized as follows: Section Il derives boundghenconditional entropy of the transmitted
codeword given the received sequence at the output of thallglachannels where the component channels
are considered to be MBIOS. Section Il relies on the previooands and derives an upper bound on the
achievable rates of LDPC codes under ML decoding where thedescare transmitted over parallel MBIOS
channels. Section IV uses the latter result for the derimatibupper bounds on the achievable rates of ensembles
of randomly and intentionally punctured LDPC codes whosestrassion takes place over an arbitrary MBIOS
channel, and numerical results are exemplified for variolsembles. Section V provides a lower bound on the
decoding complexity (per iteration) of ensembles of LDPC sagdeder MPI decoding for parallel MBIOS channels.
The latter result is used for the derivation of lower boundshendecoding complexity of randomly and intentionally
punctured LDPC codes for MBIOS channels; looser versions e$dalbounds suggest a simplified re-derivation
of previously reported bounds on the decoding complexityapidomly punctured LDPC codes (as shown in the
appendix). Finally, Section VI summarizes our discussiom presents a diagram which shows interconnections
between the theorems introduced in this paper and some jtéeiously reported results from [1], [9], [10], [12],
[14], [17]. The preliminary material on ensembles of LDPC caaied notation required for this paper are introduced
in [13] and [17, Section 2].

II. BOUNDS ON THECONDITIONAL ENTROPY FORPARALLEL CHANNELS

This section serves as a preparatory step towards the deniaft upper bounds on the achievable rates of ML
decoded binary linear block codes whose transmission tplke® over statistically independent parallel MBIOS
channels. To this end, we present in this section upper avet lbounds on the conditional entropy of the transmitted
codeword given the received sequence at the output of thesmels.

A. Lower Bound on the Conditional Entropy

We begin by deriving an information-theoretic lower boumdtlee conditional entropy of the transmitted codeword
given the received sequence, when the transmission takes pler a set of independent parallel MBIOS channels.

Proposition 2.1:Let C be a binary linear block code of lengil) and assume that its transmission takes place
over a set ofJ statistically independent parallel MBIOS channels. Cgtdenote the capacity of th#" channel (in
bits per channel use), and-; j) designate the conditional pdf of the log-likelihood ratid R) at the output of the



4™ channel given its input is 0. L&X = (X;,...X,,) andY = (Y3,...,Y},) designate the transmitted codeword
and received sequence, respectivélyj) be the set of indices of the code bits transmitted overjthehannel,
nll £ |Z(j)| be the size of this set, ang = % be the fraction of bits transmitted over ti€ channel. For an
arbitrary ¢ x nparity-check matrix/ of the codeC, let 3, ,, designate the number of indicesTifj) referring to
bits which are involved in then™ parity-check equation off (wherem € {1,...,c}), and letRq = 1 — = be the
design rate of’. Then, the conditional entropy of the transmitted codewavergthe received sequence satisfies

J
HXJY) >1— ijcj — (1 - Rq)

n .
7j=1
-t
2n(1 — Rq)In2
00 1 n(lfRd) J
) > g }) )
p=1 {p(?p— D = j=1
where 0 n
PR _ l jed{l,...,
g3 [ i) (1t ey () ar ST )

Remark 2.1:Note that the input vectoK is chosen uniformly at random from the codewords of a binagalr
block code. Each input biK; therefore either gets the valuésor 1 with probability% or is set to zero (due to
the linearity of the code). In the following proof, we assuthat all the code symbols get the valuesr 1 with
equal probability. By slightly modifying the proof, it ismaple to show that the bound also holds for the other case
where some of the code bits are set to zero.

Proof: The proof relies on concepts which are presented in [1], [afl] generalizes them to the case of
parallel channels. If a symbol is transmitted over JieMBIOS channel and; is the corresponding output, then
the LLR gets the form (410:4)

. p(y|0;J .

LLR (y; ) 1n<p(y|l;j)>’ jed{l,....J}, yey
where) denotes the output alphabet of each component charawed,p(-|-; j) is the conditional pdf of thgt"
channel. For each one of thedecomponent channels, we move from the original mappingof~ Y (where
according to (1), each symbol is transmitted over only onthe$eJ channels) to an equivalent representation of
the channelX — Y, whereY represents the LLR of the channel outptt These channels are equivalent in the
sense that{ (X|Y) = H(X|Y). The basic idea for showing the equivalence between thenalfigiet of parallel
channels and the one which will be introduced shortly is tase the principle that the LLR forms a sufficient
statistics of an MBIOS channel.

In the following, we characterize an equivalent channel doheof theJ parallel channels. The output of the
equivalent channel is defined to be= (@, ). For thej-th channelY is calculated fromy” as follows:

Q 2 [LLR(Y3))]
0 if LLR(Y;j) >0
P £ 1 if LLR(Y;5) <0 .
0Oorlwp.3 if LLR(Y;j)=0
Due to the symmetry of the communication channel, the etpritahannel can be seen as a channel with additive
noise where the transmitted signal affects only fhecomponent of the outpuY. The characterization of the

equivalent channel in this form is used for the continuatidrihis proof and is presented below. For each index
i € Z(j), let us choose independently a vallig according to the conditional pdf(-; j), given the input symbol

In case the output alphabets of the component channels are not #gue); can be defined as their union.



is zero. Fori € {1,...,n}, let
0 if L; >0
Qlé|Lz‘, @Zé 1 if L;<O0
Oorlwp.3 if L;=0

The output of the set of equivalent channels is defined f¥be (Y4, .. .,Y,) whereY; = (®;,Q;) and®; = O;+X;
where the addition is modul®. This defines the mapping

XY =(9,0)

where ® is a binary random variable which is affected By, and () is a non-negative random variable which
is independent ofX. Note that due to the symmetry of the parallel channels, &mhandexi € Z(j), the joint
distribution of (®;,€;) is independent of, and is equal to the distribution of the pair representing slgn and
magnitude ofLLR(Y; j). Hence,

a(w;j) +al-wij) o S0
fo.(w) 2 fa(wig) =¢ =@ +e¥)alw)) (4)
a(0; 5) if w=0

where we rely on the symmetry property @f; j).
Denoting byR the rate of the cod€, since the codewords are transmitted with equal probwgbilit

H(X) =nR. (5)

Also, since theJ parallel channels are memoryless, then

H(Y|X) = ZH Vil X:). (6)

The mappingY; — Y; is memoryless, hence
H(Y|Y) = ZH Y;|Y;)
and
H(Y) = H(Y)-H(Y|Y)+ H(Y[Y)
= H(?)—iH(ﬁm)JrH(YI?) @)
=1
HYIY) < S HIT)

= Y [HO) - HY) + HEY))|. (8)
=1



Applying the above towards the derivation of a lower boundtmn conditional entropy? (X|Y), we get
HX|Y) = HX)+ H(Y|X) - H(Y)
YR+ HYIX) - HY) - HY|Y)
=1

LS HEN

=1

—_
V<=

WR+ S HX) - HY) + 3 HEY)
=1 =1

—Z[ )+H(Y|Y)}

¢ J
(>)nR H(Y —l-zH ZTLHCJ‘ 9)

7j=1
where (a) relies on (5)—(7), (b) relies on (8), and (c) folosincel (X;;Y;) < C; for all i € Z(j), and|Z(j)| = nl]
for j € {1,...,J}. In order to obtain a lower bound aff (X|Y) from (9), we calculate the entropy of the random
variables{Y;}, and find an upper bound on the entropy of the random vextorhis finally provides the lower
bound on the conditional entropy given in (2). Consideringradexi € Z(j) for somej € {1,2,...J}, we get
H(Y;) = H(®;,Q)
= H(Q)+ H(P|Q)
= H() + B, [H(®4]Q = w)]

where the last transition is due to the fact that given thelalbs value of the LLR, since the parallel channels are
MBIOS and the coded bits are equally likely to be 0 or 1 (see &&rd.1), the sign of the LLR is equally likely
to be positive or negative. The entrop§/((2;) is not expressed explicitly as it cancels out later.

We now turn to derive an upper bound 6AY):

H(Y) = H((®1,...,P,), (Q1,...,Q))
=H(Qi,...,0%) + H((®1,...,Pn) [ (Q1,..., M)

n

=Y H(Q) + H((@1,...,®0) [ (..., ) (11)

=1
where the last equality follows since the random variaflegre statistically independent.
Define thec-dimensional syndrome vector as

S2(®y,...,0,)HT

where H is ac x n parity-check matrix of the binary linear block code and letM be the index of the vector
(®4,...,®,) in the coset which corresponds $o Since each coset contai2%® elements which are equally likely



then H(M) = nR, and we get
H((®1,..., %) | (Q1,..., %))
=H(S,M|(,...,2))
< H(M)+H(S|(Q1,...,0))
=nR+H(S|(,...,2))

<nR+ Y H(Sm| (..., Q). (12)

m=1

SinceXHT = 0 for any codewordX € C, and®; = ©, + X; for all i € {1,...,n}, thenS = (©4,...,0,)HT.

Let us consider then™ parity-check equation which involves,, variables, and assume that the set of indices
of these variables i$i1,...,i; }. Then, the componert,, of the syndrome is equal to 1 if and only if there is
an odd number of ones in the random vedtéy,,...,0;, ). To calculate the probability thaf,, is equal to 1,
we rely on the following lemma:

Lemma 2.1 ([17], Lemma 4.1)f the m™ linear constraint defined by the parity-check matkixinvolves k,,
variables, and if{i,. .., i, } denote the indices of these variables, then

Pr (Sm =1 | (Qil, ceey Qikm) = (al, oo ,Ozkm))
k
1 u Quyp
= [1 _ wH_ltanh (2)] . (13)
From this lemma, we obtain B
H (Sm’(ﬂh, e 7Qka) = (al, e ,Ctkm))

k
1 Qi
([ D5
where hy denotes the binary entropy function to base 2. By taking thtstical expectation over the,, random
variables(; ,...,€;, , we get
H (Sm|(Qy, -, Qi)
[e%e] [e%] 1 km Q

km
: H fa., () dardas . .. day,, .

w=1
Let 3;,, denote the number of indices € {i1,..., i, } referring to variables which are transmitted over jife
channel. From the Taylor series expansion of the binary ppfiunction(hs) aroundx = % (see [17, Appendix B.1])
1 & (1—22)%
h =1- <zr<l1 14
2(2) 21n2p; pap—1 0 V=TS (14)

it follows that




</ falas j) tanth( ) da)ﬁm } (15)

where the first transition is based on (14) and follows alomgstiime lines as [17, Appendix B.2]), and the second
transition is due to the fact that for alle Z(j), the pdf of the random variabl@; is independent of, see (4).
Summing over all the parity-check equationsifgives

> H(Sml(, -, 0))
m=1

1 1
T 2m2 Z{p@p—l)

[

~§j[ (/ falas ) tanh? (5 )mO&M]}. (16)

m=1

By combining (4), (11), (12) and (16), we get the followingpep bound onH (Y):

<ZH ) +nR

1 o C
1—
201n2Z 2p—1 {

+c

I1( [

Jj=1

- (1+ e~ *) tanh® (%) da) o }]

n

. 1

_;H i) +nR+n(l— Rq)|1 " 2n(1 — Rg)In2
Z{ ZHQM J" }] )
p=1 m 1j=1

where (a) follows from the definition ofg; ,, in (3), and sinceRq £ 1 — = denotes the design rate 6f Finally,
the substitution of (10) and (17) in the RHS of (9) provides kbwer bound on the conditional entrogf(X|Y)
given in (2). This completes the proof of the proposition. ]

B. Upper Bound on the Conditional Entropy

In this section, we provide an upper bound on the conditi@maiopy of the transmitted codeword given the
received sequence. The bound holds for an arbitrary binaeatiblock code whose transmission takes place over
a set of parallel channels, and is expressed in terms of tie e and the bit-error probability of the code (under
ML decoding or a sub-optimal decoding algorithm).

Lemma 2.2:Let C be a binary linear block code of lengthand rateR, and assume that its transmission takes

place over a set of parallel channels. Dét= (X;,...,X,) andY = (Y1,...,Y,) designate the transmitted
codeword and the received sequence, respectively. Then

HX|Y

X < R o) 18)

where B, designates the bit error probability of the cadleinder an arbitrary decoding algorithm.
Proof: See the proof in [17, Appendix I-A], which holds regardlesstlod model of the communication
channel. -



I1l. AN UPPER BOUND ON THEACHIEVABLE RATES OFLDPC cODES OVERPARALLEL CHANNELS

In this section, we derive an upper bound on the design rate séquence of ensembles of LDPC codes
whose transmission takes place over a set of statisticgadlgdendent parallel MBIOS channels, and which achieves
vanishing bit error probability under ML decoding. This bdus used in the next section for the derivation of an
upper bound on the design rate of an arbitrary sequence efrdiies of punctured LDPC codes.

Let us assume that a binary LDPC codeof lengthrn is transmitted over a set of statistically independent
parallel MBIOS channels. Denote the number of code bit§ afich are transmitted over th# channel bynl,
and the fraction of bits transmitted over tji& channel by

Let G be a bipartite graph which represents the cédand F be the set of edges i@. Let EU! designate the set
of edges connected to variable nodes which correspond te Ioitsl transmitted over thg" channel, and

2 \E[j]|
QJ |E| 9

je{l,....J} (20)

denote the fraction of edges connected to these variablesn@kferring to the edges from the subBét, let )\Ej]
designate the fraction of these edges which are connectedriable nodes of degreg and define the following
J degree distributions from the edge perspective:

AVl (z Z/\ . jed{l,... 0}

which correspond to each of theparallel channels. According to this notation, the numidezdges connected to
variable nodes corresponding to code bits transmitted theej™" channel is given by

(4]

g = "™
|E | 00 )\m ’
27

1=2
For the simplicity of the notation, let us define a vector of rdegdistributions for the variable nodes from the
edge perspective to be(z) = (All(z),...,A”)(z)). Following the notation in [10], the ensemble, ), p) is
defined to be the set of LDPC codes of lengthwhich according to their representation by bipartite hsapnd
the assignment of their code bits to the parallel channeigplyi left and right degree distributions of and p,

respectively.
Y dx_z{fo ) 2

Lemma 3.1:
where ) is the overall left degree distribution which serves to ¢ard the vector of left degree distributionsby
considering the assignments of variables nodes to/tiparallel channels. '
Proof: Sincer!, ..., El form a sequence of disjoint sets whose union is théZsete get|E| = 3~7_, |EV]).

From (21), we therefore get
J .
_ = E (23)
9] )\
Z’L 2 ’L ‘: { l 274 }

By dividing both sides of this equality by, and using (19) and the equalily’, AT = fol A(z) dz, the lemma
follows immediately. ]
Lemma 3.2:

jed{l,...,J} (21)

Pj 1 .
J }

. , Yiedl,...,J
f Al (2 J
" o)

k=1

q = (24)



Proof: The lemma follows directly from (20), (21) and Lemma 3.1. ]

In the following, we introduce a sequence of ensembles cdrihDPC codes{(n,, A, p)}>2,, where all the
codes in each ensemble have the same number of bits assigaadh of the/ parallel channels. The right degree
distributionp is assumed to be fixed for all the ensembles of this sequerceif(is independent af), and it is also
assumed to have a bounded maximal degree (which correspmdsounded maximal degree of the parity-check
nodes). We assume thatwhich corresponds to the overall left degree distributtbthe edges, is also independent
of r; due of the independence afandp in r, one can consider here the common design rate of the seqoénce
ensembleq(n,, A,, p)}>2, which does not depend an

This setting is general enough for applying the followingaifeen to various applications which form particular
cases of communication over parallel channels, e.g., poett. DPC codes [2], [4], non-uniformly error protected
LDPC codes [10], and LDPC-coded modulation (see e.g., [6], [16fhis setting, the fraction of code bits assigned
to the ;1 channel,p; ., depends ory € {1,...,J} andr € N, but not on the particular code chosen from each
ensemble. It follows from Lemma 3.2 that the same property htslds forg;, which designates the fraction of
edges connected to variable nodes whose code bits are eddigrhe;" channel. In the following, we assume
that the limits

Pi & limpir 0 lim g =)
exist and also that they are positive for gle {1,...,J} (though in general, they are non-negative).

Theorem 3.1:Let a sequence of ensembles of binary LDPC codés,, \,, p)}>2,, be transmitted over a set
of J statistically independent parallel MBIOS channels, arsliage that the block lengtfn,) goes to infinity as
we letr tend to infinity. LetC; denote the capacity of thé" channel, andi(-; j) designate the pdf of the LLR at
the output of thej" channel, given its input symbol is zero. If in the limit wherdends to infinity, the bit error
probability of this sequence vanishes under ML decodingntthe common design ratgy of these ensembles

satisfies
J

1-— ijCj

=1 (26)

B 2112;{ (2p—1) (Zqﬁ 9]@)}

whereI" denotes the right degree distribution from the node pets@e@ndyg;,, is introduced in (3).

Proof: Let {C,}, be a sequence of binary LDPC codes chosen uniformly at randmm thhe sequence of
ensembleg(n,, A,, p)}°2,. Denote the rate of the codg by R,, and letF,, be its bit error probability under
ML decoding. Letg, be a bipartite graph of the codg whose left and right degree distributions from the edge
perspective arg,. andp, respectively. From Proposition 2.1 and Lemma 2.2, it follolt the following inequality
holds for the binary linear block codg::

Rth (Pb,r)

J
>1- ij,’l'cj
j=1

1
— (1~ Fa) (1 " 2n,(1 — Rg)In2

Z;i{ Gr—1) m(lszHffm }) @7)

wheren,. is the block length of the codé., R4 is the common de3|gn rate for all the codes from the sequeince o
ensembleg(n,, A, p)}2,, and 3, ., denotes the number of edges which are connected tanthearity-check
node of the graplg, and are related to code bits transmitted over fflechannel (wherej € {1,...,.J} and
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m € {1,...n,.(1 — Rq)}). By taking the expectation on both sides of (27) and lettintgnd to infinity, we get

0>1—Zp] — (1= Ry)

1
-l 1—
b ( 2n,(1 — Rg)In2

) { 1 n,.(1—Rq) J
DN 2 E( H(gj,mfw) }) (28)
p=1 p2p—1) = j=1

The LHS of (28) follows from the LHS of (27), due to the concavitytlee binary entropy function and Jensen’s

inequality, and since by our assumption, the bit error pbdlhg of the ensembles vanishes in the limit where
tends to infinity.

The derivation of an upper bound on the design rate is procebdesalculating the expectation of the product
inside the RHS of (28). Let,,,, denote the degree of the'" parity-check node of the bipartite gragh, then the

smoothing theorem gives
J
E | IT o)™
j=1

J
=K |:E (H (gj,p)ﬂr‘j'm

Jj=1

J
Z ﬁr,j,m = kr,m) ] (29)
j=1

where the outer expectation in the RHS of (29) is carried dwerandom variablé, ,,,. We begin by calculating the
inner expectation in the RHS of (29). It follows from (21) thie number of edge$Em| |EV1(G,)|, connected
to variable nodes corresponding to code bits transmitted the ;™ channel, is independent of the cadechosen
from the ensemblén,, \,, p). The same property also holds for the total number of edgelengtaph (since

|E.| = Z}-]:1 \E}nﬂp. Since the cod€, is chosen uniformly at random from the ensemble, it followat tif %, ,,
is a given positive integer, then

J
(i

Z 67‘,] m — r,m)

. {Pr(ﬁmm = b, Vje{l,...,J})

bi,...,b7 >0
Tl b=k
J
Tl w"}
j=1
[1] /']
(5 <' ) {
- ¥ { by 7 I1 )" } (30)
bi,..., by >0 km 7=1
SJ1bj = krm
Lemma 3.3:
G50 o :
. () - ijqJ) » i (b1,b2, . ,bj) (31)

Proof: By assumption, in the limit where we lettend to infinity, the block length,. also tends to infinity.
Hence, from (21) and the assumption that> 0 for every;j € {1,...,J}, we get that for allj € {1,...,J}, gy
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approaches infinity in the limit where tends to infinity.

EE] ELJ]
lim (| by ‘) (' by ‘)

e (1))
J
_ oy 1B B (1B | = krm)!
r—oo |E|! (EM = b))t (|EY = b))
kr,m
b17b27"'abJ
o J1E 1B (E:| = kran)!
r—o0 E,|! (EM = b))t (|EYY - b))

- lim ( Frm )
r—oo b17b27"'7bJ
1 J
= lim |E7[ ]|b1 — |E7L ]|bJ lim Koram
T—00 |y |Form r—oo \by,ba,...,b;

b1 by
© pyy (1B ] i (0 )
r—oo \ |Ey| | B | r—o0 \ by, b2,...,bs

J
c) .. bi 3 Krim
= lim [[(g)" 1 7
Tirgojzl(q% ) P <b17b2’ o "b‘]>

J k
b 1: Tm
= | | ;)77 lim '
j 1(q]) r—00 <b1,b2,...,bj>

where equality (a) follows since for ajle {1,..., J}, E,[ﬂy — oo as we letr tend to infinity, while on the other
hand, the maximal right degree (and hence, &lso. ., b; andk, ;,) stay bounded; equality (b) is valid due to the
constraintZ}’:1 b; = kr.m, and equality (c) follows from (20). ]

By letting r tend to infinity in both sides of (29), and substituting (30§14B1) in the RHS of (29), we get that
forallp e N

J
(i) E |:TIEEOE (H (gj,p BT]m Zﬂr],m = krm)]

Jmo D <b1,b2, )H % 952)"

J kr,m
lim Z igi
et 4395.p
=1
de,max J
k=1

& {Tk ( ngj,p)k}
j=1

|+|

=E
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=T <JZ:; qjgj,p> (32)

where equality (a) follows from (29) and since the right aéegdistribution is independent of(note that the outer
expectation in equality (a) is performed w.r.t. the degreéhe m™ parity-check node); equality (b) follows from
(30) and (31), and since the number of terms in the sum is lidithis number is upper bounded B. ,,)” !
so it is bounded for all € N due to the fact that the maximal right degree is fixed), and legu@) holds since
the right degree distribution is independentrofSince the limit in (32) does not depend on the indexwhich
appears in the inner summation at the LHS of (28) and htsp_.., n,(1 — Rq) = oo, then we get from (32)

1 nT(l Rd) J
i E \Brim
oo nr(1 — Rg) mz: i (9ir)

O (Z qjgj,p> (33)

where equality (a) follows from the fact that{i&, } is a convergent sequence thén, ., , % S a; = limy oo ap,
and also since any sub-sequence of a convergent sequeneaFgasito the same limit as of the original sequence;
equality (b) follows from (32). Combining (28) and (33) géve

O>1—ij — (1 — Rq)

'<1_21112p§{ 2p—1) (Zq]g“’>}>

Finally, solving the last inequality foRy gives the upper bound on the design rate in (26). ]
Example 3.1:For the particular case where thieparallel MBIOS channels are binary erasure channels where
the erasure probability of thg" channel issj, we get from (3)

Since g;,, is independent of) for a BEC, and based on the equali}y =, W = In2, we obtain from
Theorem 3.1 that the common design rate of the sequence of LDB&ndies is upper bounded by

ijej

Ry <1-— =1 . (35)

- J
— F(l — qu' €j>
7=1

This result coincides with [10, Theorem 2].

The proof of Theorem 3.1 relies on the assumption that the dglgtee distributiorp is fixed, and does not
depend on the ordinal numberof the ensemble. For a capacity-achieving sequence of LDP€ndiies, both
the maximal and the average right degrees tend to infinity [(s&eTheorem 1]). Hence, for a capacity-achieving
sequence of LDPC codeg,cannot be fixed.

Remark 3.1:0ne can think of Lemma 3.3 in terms of drawing colored ballsnfran urn (where the colors are
determined in one to one correspondence with the assigsnoéribe various edges to the component channels).
Since an edge can only be assigned once to a channel, the l@ahstareturned to the urn after they are chosen.
As the block length tends to infinity, so does the number of sdgginating in each of the parallel channels (this
is the reason for requiring thay is positive for allj). Since the degree of the parity-check nodes remains finite,
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we are drawing a finite number of balls from an urn which corstan infinite number of balls of each color.
Lemma 3.3 simply says that drawing without replacement isvatgnt to drawing with replacement if the number
of draws is finite and the number of balls of each color becomisite. Note that this result looks rather intuitive
from a statistical point of view.

Remark 3.2:We wish to discuss a possible refinement of the statement inréire8.1. Let us assume that the
(overall) degree distributions andp are fixed, but due to the transmission over parallel chanties;orresponding
vector of degree distributions, = (A[T”, .. .,A[TJ]) and alsop;, andg;, depend on the code from the ensemble
(nr, A, p). Since the derivation of this theorem relies on the boundshenconditional entropy from Section I
(which are valid code by code), one can refine the statementéorém 3.1 so that the modified theorem permits
the dependency of the vectt()AL”,...,)\L‘”) on the specific code chosen from the ensemble. In this case, the
equalities in (25) are transformed to

pj = lim E[p;,(C)], ¢; = lim E[g;,(C)]

where the expectation is carried over the c6deom the ensemblén,., \, p). In this case, the proof of Theorem 3.1
involves an expectation ové€ron both sides of (27) (which is valid code by code) and thenate tend to infinity,
as in (28). By invoking Jensen’s inequality, Lemma 3.3 is gfeghunder the above assumption to the inequality

[1] [J]

r—00 (\Er|)
J ; ki
. bj . T,m
ZjHl(qf) rlf?o(bl,bQ,...,bJ>

which holds for any set of non-negative integébs, ..., b} wherezjz1 b; = k.. Correspondingly, (32) changes

to
J J
: . ﬁr,j,rn > . .
Tlggo Ee 1_[1 (95p) =T <Z qﬁm) :
j:

j=1

Therefore, from (28) and the last inequality, the upper boomdhe design rate in (26) holds in the more general
setting as above.

IV. ACHIEVABLE RATES OFPUNCTURED LDPC CODES

In this section we derive upper bounds on the achievable m@ftgpunctured LDPC codes whose transmission
takes place over an MBIOS channel, and the codes are ML ddcdde analysis in this section relies on the
bound presented in Section lIl.

Let C be a binary linear block code. Assume that its code bits artitipaed into J disjoint sets, and the bits
of the ;™ set are randomly punctured with a puncturing raje(where;j € {1,...,J}). The transmission of this
code over an MBIOS channel is equivalent to transmittingctheée over a set of parallel MBIOS channels where
each of these channels forms a serial concatenation of a BESendrasure probability is equal to the puncturing
rate 7, followed by the original MBIOS channel (see e.qg., [4], [B10], [11]).

A. Some Preparatory Lemmas

This sub-section presents two lemmas which are later usedole pesults for ensembles of randomly and
intentionally punctured LDPC codes (denoted by RP-LDPC and IP-LD&Ies; respectively).

In the following lemma, we consider a punctured linear bloole and provide an upper bound on the conditional
entropy of a codeword before puncturing, given the receseguence at the output of the channel. This upper
bound is expressed in terms of the bit error probability @ plunctured code.

Lemma 4.1:Let C’ be a binary linear block code of lengthand rateR’, and letC be a code which is obtained
from C’ by puncturing some of its code bits. Assume that the trarsariof the cod€ takes place over an arbitrary
communication channel, and the code is decoded by an aybieoding algorithm. LeX’' = (X7,..., X],) and
Y = (Y3,...,Y,) (where the punctured bits are replaced by question markshwiave an LLR of zero) designate
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the transmitted codeword ¢f and the received sequence, respectively. Then, the comaligmtropy of the original

codeword ofC’ given the received sequence satisfies
H(X'Y)
n
where B, designates the bit error probability of the punctured c6de
Proof: The proof follows directly from Lemma 2.2, and the equivalebeaveen the transmission of punctured
codes over an MBIOS channel and the special case of traiggniktese codes over a set of parallel channels (see
the introductory paragraph of Section V). ]
Puncturing serves to increase the rate of the original codedhycing the length of the codeword. It may however
cause several codewords to be mapped onto a single coddathereby reducing the dimension of the code. Consider
a binary linear code?’, of lengthn and rateR’ and assume a fraction of its code bits are punctured. In the case
that the dimension is not reduced by puncturing, the ratb@fpunctured code is given by = %. In the general
case, we cannot guarantee that the dimension of the code iediced. However, for a sequence of punctured
codes whose bit error probability vanishes as the blocktlenfjthe codes tends to infinity, the following lemma
shows that the rate of the punctured codes converges to HiedeateR.

Lemma 4.2:Let {C..} be a sequence of binary linear block codes of lengttand rateR,.,, and let{C,} be a
sequence of codes which is obtained fré@j} by puncturing a fractiony of the code bits. Assume the sequence
of punctured code$C, } achieves vanishing bit error probability in the limit whewe letr tend to infinity. Then,
the asymptotic raté® of the sequence of punctured codes is given by

R/
where R’ = lim,_,, R, is the asymptotic rate of the original sequence of cod#s.
Proof: LetX) = (X{,...,X] )andY, = (Y;...,Y,, ) designate the original codeword (before puncturing)
and the received sequence (after puncturing), respecti8aice we assume the there exists a decoding algorithm
such that the punctured codes achieve vanishing bit ercirghility, we have from lemma 4.1 that
H(X|Y,
o HXLY,)

r—00 Ny

< R hy(B) (36)

37)

=0.

Let X, = (Xy,...,X,, ) designate the codeword after puncturing (where the puedtiits are replaced by
question marks). SincX/. = X, = Y, forms a Markov chain, then by the information processingjirsdity, we
get H(X!|X,) < H(X!|Y,). The non-negativity of the conditional entropy thereforelgs that
/
o HXGX,)

r—00 TNy

—0. (38)

Denote the dimensions of the codés and C, by d, and d,, respectively. Sinc€,. is binary and linear, every
codeword ofC, originates from exactly2?-—¢- different codewords of’.. The codewords are assumed to be
transmitted with equal probability, and therefdi#&X'.|X, ) = d,. — d,. Let R, designate the rate of the punctured
codeC,. By definition, d,, = R n,, and sincen,(1 — ) forms the block length of the punctured cofg then

d, = Ryn,(1 — ). Substituting the last three equalities into (38) gives

lim (R, — R,(1 7)) =0.

This completes the proof of the lemma. ]

For a sequence of cod¢€ }, it is natural to refer to their code ratég.. However, for sequences of ensembles,
where parity-check matrices are randomly picked, suchicestiare unlikely to be full rank. Hence, a more natural
approach is to refer to their design rates. To this end, we el¢fia design rate of codes which are obtained by
puncturing some code bits of binary linear block codes.

Definition 4.1: Let C’ be a binary linear block code of length H’ be ac x n parity-check matrix ofC’ and
R/, £ 1 — £ designate the design rate of the catieLet C be a code which is obtained fro@{ by puncturing a
fraction v of the code bits. Thelesign rateof C is defined as

>
=y
g2

Ry (39)

1—7
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From Lemma 4.2, it follows that for an arbitrary sequence ofghured codes which achieves vanishing bit error
probability, their asymptotic design rate is equal in ptubty 1 to their asymptotic rate if and only if this conditio
also holds for the original sequence of codes before theictoming. For un-punctured ensembles of LDPC codes,
a sufficient condition for the asymptotic convergence of e to the design rate is introduced in [8, Lemma 7]
(which is also presented in the preliminaries of our comparpaper as [17, Lemma 2.1]). In Section IV-D, we
apply this lemma to show that the bounds on the achievabés @t ensembles of punctured LDPC codes apply
to their actual code rates and not only to their asymptotgigiterates.

B. Randomly Punctured LDPC Codes

In this section, we consider the achievable rates of ranggumctured LDPC (RP-LDPC) codes. We assume that
the transmission of these codes takes place over an MBIO$ehand refer to their achievable rates under optimal
ML decoding. The upper bound on the achievable rates of edssmb RP-LDPC codes relies on the analysis in
Section Il where we derived an upper bound on the achievatites rof LDPC codes for parallel channels.

In the following, we assume that the communication takeselaver an MBIOS channel with capacity, and
define

gp 2 / a(l) (1+e7!) tanh? <;) dl, peN (40)
0

wherea designates the pdf of the LLR of the channel given that its inpuero.

Theorem 4.1:Let {(n,, A\, p)}2, be a sequence of ensembles of binary LDPC codes whose blodk leng
tends to infinity ag — oo. Assume that a sequence of ensembles of RP-LDPC codes is abadtinithe following
way: for each code from an ensemble of the original sequemnsepset ofvn, code bits is a-priori selected, and
these bits are randomly punctured at a fixed (dtg;). Assume that the punctured codes are transmitted over an
MBIOS channel with capacity’, and that in the limit where approaches infinity, the sequence of ensembles of
RP-LDPC codes achieves vanishing bit error probability undenes decoding algorithm. Then in probability 1
w.r.t. the random puncturing patterns, the asymptoticgiesite y) of the new sequence satisfies

1
Ry < —mM— 41
d_l—aPpct (41)

1 - (1 - OéPpct)C
1 F((l — Poer + f)9p>
2In2 = p(2p—1)

wherelI" denotes the right degree distribution (from the node pets@) of the original sequence, is introduced
in (40), and¢ is the following positive number:

1
E22(1— )Pyt [ Az) da. (42)

Proof: By assumption, we select a set of code bitsowhose size is foinae of the n,. code bits, and these
bits are randomly punctured at rafg.. The transmission of the resulting codeword over an MBIOShokhis
equivalent to the transmission of the original codewordr@veset ofJ = 2 parallel channels. The first channel,
referring to the set of code bits which are randomly punctuie a serial concatenation of a BEC with erasure
probability Pyt and the original MBIOS channel; the second channel whicrseto the rest of the bits (which are
transmitted without being randomly punctured) is the ordiMBIOS channel. For simplicity, let us first assume
that the degree distribution associated with the seleatbdet ofan, code bits which are randomly punctured is
independent of the specific code from the ensenfhle \, p). Based on the discussion above and the notation in
Section Ill, the transmission of the. code bits over these two parallel channels induces a segudrensembles
of LDPC codes{(n,, A, p)}>2,, where), = (Aq[a”,)\?}) depends on the selection of the subsetvaf code bits
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which are randomly punctured. Following this equivalenge,get from the notation in Theorem 3.1 that

pr=a, p=1l—a C=C1-PF g, C=C
J

= p;Cj = C(1 — aPuy). (43)
j=1

In order to apply Theorem 3.1 to our case, we find a global lowentan the sun{jjzl ¢;95,p Which does not
depend on the a-priori selection of the subset of randomhcpuwed code bits. From (3) and (40), it follows that
for all p € N:

91p = /Ooo[Ppct5(l) +(1— Ppct)a(l)] (1+e7!) tanh? (é) di

e l
=(1- Ppct)/ a(l)(1 4 e7!) tanh? <2> di
0
= (1 — Ppcet) gp
andg, , = g,. Based on Lemmas 3.1 and 3.2, we get that fopadl N

Q191,p + q292.p
1 1
agp(l — Ppct)/ AMz)dz (11— a)gp/ Az)dz
0 0

= il + T (44)
/ MY (z)dz / A2 (z)dz
0 0
where the following constraint is satisfied (see (22) and){(43)
0" 11—« 1
1 + = T (45)
/ A (z)dz / A2 (z)dz / Az)dx
0 0 0
and
! 1 ! 1
/ A(z)de < =, / M (z)de < = (46)
0 2 0 2

due to the fact thaix[r” () <z and )\?] (x) <z for z € [0, 1] (even without explicitly knowing>\7[~” and )\?] which
depend on the a-priori choice of the subset of bits which anelemly punctured). Based on (44)—(46), we get

N191p + q292,p

1
=(1- Ppct)gp/o AMz)dzx - T +

1
N (1-— a)Ppctgp/O Az)dz

T
/ M2 (z)da
0
1
(1-— a)Ppctgp/ AMz) dx
= (1 - Ppct)gp + 1 t
/ A2 (z)da
0

1
> (1 — Pyt +2(1 — a)Ppct/ A(z) dx) 9p
0
= (1= FBat8&)gp
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where¢ is defined in (42). Since the degree distributidoris a monotonic increasing function, then

J
r (Z ngj,p) > F((l — Bpet + f)gp)' (47)
=1

By substituting (43) and (47) in the RHS of (26), we obtain tbilowing upper bound on the asymptotic design
rate of the original sequence

e}

1= 21112 Z {p(Zpl— 1 F((l - Ppct+§)9p>}

p=1

Since ag" — oo, in probability 1 w.r.t. the puncturing patterns, a fraotip = a.Fp,; of the code bits are punctured,
then the asymptotic design rat&y) of this sequence satisfies the equality
Ry

Ry———4d

(48)
from which the theorem follows.

For the case where the degree distribution associated kétisubset of code bits which are randomly punctured
depends on the cod from the ensemblén,, A, p), the pair(/\L”, /\LQ]) cannot be considered to be uniform over
all the codes from this ensemble. In this case, Theorem 3.dtiglirectly applicable. In order to circumvent the
problem, we rely on the discussion in Remark 3.2, and on tbetfeat the lower bound ot g1, + g292, Which
is given above in terms of from (42) is universal for all the codes from this ensemble. (iit only depends on
A, but does not depend on the specific degree distribuﬂé%@(]) and \? (C) which are associated with the code
C from the ensemble). In light of this reasoning, the proofted theorem for ensembles of RP-LDPC codes also
follows in the more general setting where the degree digioh associated with the subset of the code bits which
are randomly punctured depends on the specific code from tendie. ]

Remark 4.1:Note that in the above proof, we derive an upper bound on th&beu of edges adjacent to variable
nodes which are punctured in probabilify; this is done by assuming that the degree of all the un-puedtu
nodes is 2 (which is the minimal possible degree for a vagialnde), and counting the number of the remaining
edges. In the case that the original codes before puncthauag a minimal variable degree af,;, > 2, the upper
bound can be tightened by assuming that each un-punctual in@f degree\ ;. This results in replacing in
(42) with & 2 Ayin (1 — @) Poce fy A(x) da.

C. Intentionally Punctured LDPC Codes

In [4], Ha and McLaughlin show that good codes can be constdubly puncturing good ensembles of LDPC
codes using a technique called “intentional puncturing’this approach, the code bits are partitioned into disjoint
sets so that each set contains all the code bits whose condigg variable nodes have the same degree. The code
bits in each of these sets are randomly punctured at a fixedynng rate.

We briefly present the notation used in [4] for the characéion of ensembles of intentionally punctured LDPC
(IP-LDPC) codes. Consider an ensemble of LDPC codes with left eyd edge degree distributions and p,
respectively. For each degrgeuch that\; > 0, a puncturing rater; € [0, 1] is determined for randomly puncturing
the set of code bits which correspond to variable nodes afeggg The polynomial associated with this puncturing
pattern is

7O (2) 23 mjad L, (49)
j=1

An ensemble of IP-LDPC codes can be therefore represented hyutigruplet(n, \, p, 7(?)) wheren designates
the block length of these codes,and p are the left and right degree distributions from the edgespgewstive,
respectively, and(?) is the polynomial which corresponds to the puncturing paitas given in (49). The average
fraction of punctured bits is given bhy? = Z;’il A m; whereA is the left node degree distribution of the original
LDPC ensemble. The following statement, which relies on Thed@edmprovides an upper bound on the common
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design rate of a sequence of ensembles of IP-LDPC codes. Thisl befers to ML decoding (and hence, it also
holds for any sub-optimal decoding algorithm).

Theorem 4.2:Let {(n,, \, p, 7))}, be a sequence of ensembles of IP-LDPC codes transmitted oveBEDV
channel, and assume that tends to infinity ag- — oo. Let C' be the channel capacity, andbe the pdf of the
LLR at the output of the channel given its input is zero. If thgnagtotic bit error probability of this sequence
vanishes under ML decoding (or any sub-optimal decodingrdlgn) asr — oo, then in probability 1 w.r.t. the
puncturing patterns, the asymptotic design rAteof these ensembles satisfies

1
R < 1—p©
1— 1- (1 _p(O))C (50)
JR— 1 >
1-— (1= i
21n2;{p(2p—1) (( j;&m)g;;)}

whereI" denotes the right degree distribution from the node petsgec
pO &Y A (51)
j=1

designates the average puncturing rate of the code bitsg,aisdthe functional of the MBIOS channel introduced
in (40).
Proof: The proof follows from Theorem 3.1, and the observation thatDfC codes form a special case of

the ensemblén, \, p) examined in Section Ill. For a sequence of ensembles of IP-LDRESH(n,., ), p, 7(0)},
the number of parallel MBIOS channels used for transmisisi@qual to the number of strictly positive coefficients
in the polynomial), i.e., J = |{i : \; > 0}|. Denote these degrees by, ...,i;, then the bits transmitted over
the ™ channel are those involved in exactly parity-check equations (i.e., the bits whose correspanuariable
nodes are of degreg). From the above discussion, it follows that the fraction o€ bits transmitted over thih
channel is given by

p]:A’L]7 ]6{1,,J} (52)
and the fraction of edges in the bipartite graph which areneoted to variable nodes transmitted of fHechannel
is given by

G =X,, je{l,...,J}. (53)
The transmission of IP-LDPC codes over an MBIOS channel is elgmdo transmitting the original codes
(before puncturing) over a set of parallel MBIOS channels where each of these channels isefdbriny a serial
concatenation of a BEC whose erasure probability is equahéopuncturing rater; , followed by the original
MBIOS channel. Hence, the pdf of the LLR at the output of jHeMBIOS channel, given its symbol input is

zero, gets the form
a(l;j) = m;60(l) + (1 = m;,)a(l), leR (54)

and the capacity of this channel is
Cj = (1 — 7TZ'].)C. (55)

By substituting (54) into (3), we get that for alle {1,...,J} andp € N

9jp= /Ooo[rrijéo(l) + (1 —m,)a(l)] (1 + e~ ') tanh?? (;) dl
=(1-m;,) /OOO a(l) (14 e~ tanh?? (;) dl

=(1- Wij)gp (56)

where the last equality is based on (40). The statement ndaw®by substituting (52), (53), (55) and (56) in (26);
we use the scaling factor for the design rate of the punctacetks, as given in Definition 4.1. In this case, the
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parametery tends to the average puncturing rat® of the code bits, as defined in (51), where this convergence is
in probability 1 w.r.t. the puncturing patterns. Finallynsé \; = A; = 0 for j ¢ {i1,...,4;}, then regarding the
sums in the RHS of (50), we get the equalite¥, Ajm; = Y7 Ay m, and Y 22, Ajm; = 274 Ay ;. This
completes the proof of the theorem. ]

Remark 4.2:Let us consider a more general case of punctured ensemblesRE icbdes where the original code
bits are split intoJ arbitrary sets and each set is punctured at a different Fatethis general case, it is possible to
apply Theorem 3.1 to derive an upper bound on the achievatas vehich only depends on the expected fractions
of punctured code bits and edges in the graph attached tablamodes of punctured bits. Theorems 4.1 and 4.2
emerge as corollaries of such a theorem (in this paper we titake this approach since we analyze two strategies
of puncturing as special cases of transmission over pacilénnels). In the case of ensembles of RP-LDPC codes,
the fraction of edges adjacent to punctured bits is not kniowgreneral. Hence, for the derivation of upper bounds
on their achievable rates, we employ an upper bound on tkhédraof edges adjacent to punctured bits in a similar
way to the proof of Theorem 4.1.

D. Numerical Results for Intentionally Punctured LDPC Codes

In this section, we present a comparison between threshaldisr MP| decoding and bounds on thresholds under
ML decoding for ensembles of IP-LDPC codes. It is assumed tleatrémsmission of the punctured LDPC codes
takes place over a binary-input AWGN channel. The pairs ofakegdistributions and the corresponding puncturing
patterns were originally presented in [4], [5]. We study thberent gap to capacity and consider how close to
optimal iterative decoding is for these ensembles (in thy@nasotic case where the block length goes to infinity).

We refer here to three ensembles of IP-LDPC codes: Tables | aredell to two ensembles of ra%% LDPC
codes which by puncturing, their rates vary betw@®es0 and 0.91; Table Il refers to an ensemble of rat@%
LDPC codes which by puncturing, its rate varies betwedid and0.83. Based on [8, Lemma 7], we verify that
the design rates of these three ensembles of LDPC codes (hmiacturing) are equal in probability 1 to the
asymptotic rates of codes from these ensembles. This camelgsll holds for the punctured LDPC ensembles
given in Tables I-Ill (see Lemma 4.2). This enables to caleuthe capacity limits which refer to the design
rates of these ensembles, and to evaluate the gaps to gapadér ML decoding and iterative decoding for these
ensembles of punctured LDPC codes.

For various ensembles of IP-LDPC codes, Tables I-Ill providetdoounds on the inherent gap to capacity under
optimal ML decoding (based on Theorem 4.2); these values @reared to the corresponding gaps to capacity
under MPI decoding (whose calculation is based on the demsibjution analysis). On one hand, Tables I-llI
provide a quantitative assessment of the loss in the asyimptrformance which is attributed to the sub-optimality
of iterative decoding (as compared to ML decoding), and @dther hand, these tables provide an assessment
of the inherent loss in performance which is attributed te #tructure of the ensembles, even if ML decoding
could be applied to decode these codes. The loss in perfoananboth cases is measured in terms%f in
decibels. It is demonstrated in Tables I-lll that for vagagood ensembles of IP-LDPC codes, the asymptotic
loss in performance due to the code structure is non-néfgigis compared to the corresponding loss due to the
sub-optimality of iterative decoding. As an example, fdrtiak ensembles of IP-LDPC codes considered in Table |
(which were originally introduced in [4, Table 2]), the gap ¢apacity under the sum-product iterative decoding
algorithm does not exceed 0.6 dB; however, under ML decodivggap to capacity is always greater th@of the
corresponding gap to capacity under this iterative degpdigorithm; therefore, the results in Table | regarding the
thresholds under ML decoding further emphasize the effigiemidhe sum-product decoding algorithm for these
ensembles, especially in light of its moderate complexity.

Tables I-lll also show that the performance of the punctwB&C codes is degraded at high rates, where one
needs to pay a considerable penalty for using puncturedscddiés phenomenon was explained in [11, Theorem 1]
by the threshold effect for ensembles of punctured LDPC codes.

Following the performance analysis of punctured LDPC coddg]in4], [5], [11], the numerical results shown
in Tables I-111 exemplify the high potential of puncturing designing codes which operate closely to the Shannon
capacity limit and are used for rate-compatible coding farious MBIOS channels. Other examples of capacity-
achieving ensembles of punctured codes on graphs are dgeiliar repeat-accumulate (IRA) codes and accumulate-
repeat-accumulate (ARA) codes. Recently, it was shown byelP®gtal. that properly designed nonsystematic IRA
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TABLE |
COMPARISON OF THRESHOLDS FOR ENSEMBLES OP-LDPC CODES WHERE THE ORIGINAL ENSEMBLE BEFORE PUNCTURING HAS THE
DEGREE DISTRIBUTIONSA(z) = 0.25105x + 0.3093827 + 0.001042> + 0.438532° AND p(z) = 0.636762° + 0.363242" (SO ITS DESIGN
RATE IS £). THE TRANSMISSION OF THESE CODES TAKES PLACE OVER A BINARWPUT AWGN CHANNEL. THE TABLE COMPARES
VALUES OF £ REFERRING TO THE CAPACITY LIMIT, THE BOUND GIVEN IN THEOREM4.2 (WHICH PROVIDES A LOWER BOUND ON THE
N -THRESHOLD UNDERML DECODING), AND THRESHOLDS UNDER ITERATIVE DECODING THE FRACTIONAL GAP TO CAPACITY IN
THE RIGHTMOST COLUMN MEASURES THE RATIO OF THE GAP TO CAPACN UNDER ML DECODING AND THE ACHIEVABLE GAP TO
CAPACITY UNDER ITERATIVE DECODING. THE DEGREE DISTRIBUTIONS FOR THE ENSEMBLE OEDPC CODES AND THE POLYNOMIALS
WHICH CORRESPOND TO ITS PUNCTURING PATTERNS ARE GIVEN I, TABLE 2].

7O (z) Design| Capacity | Lower bound | Iterative (IT) Fractional gap to
(puncturing pattern) rate limit (ML decoding)| Decoding | capacity (ML vs. IT)

0 0500 | 0.187 dB| 0270dB | 0.393 dB > 40.3%
o, 0%0712‘(1)%5;@2 T 0528 |0318dB| 0397dB | 0526 dB > 37.9%
ggggggzg jr o(.)i%%%%if *| 0592 | 0635dB| 0.716dB | 0.857 dB > 36.4%
TN 00011%013%? T | 0620 | 0836 dB| 0923dB | 1.068 dB > 37.3%
oI N 0(.)'211%%721@2 *| 0671 |1.083dB| 1171dB | 1.330dB > 35.6%
8123§i3i3 j: 0‘?'227?5111%399::32 t| 0719 | 1.3908 dB|  1.496 dB 1.664 dB > 36.9%
8:81?;2?;3 i 093%2476515 | 0774 | 1.814dB| 1.927 dB 2.115 dB > 37.2%
o O%i‘;‘;“?;fgz "1 0838 |2409dB| 2547dB | 2.781dB > 37.1%
e N 0%?;51%76%2 *1 0912 | 3309 dB| 3.607dB | 3.992dB > 35.1%

codes achieve the capacity of the BEC with bounded decodimplexity per information bit [9]. This bounded
complexity result is achieved by puncturing all the infotioa bits of the IRA codes, and allowing in this way
a sufficient number of state nodes in the Tanner graph refiegethe codes. This is in contrast to all previous
constructions of capacity-achieving LDPC codes which refebipartite graphs without state nodes and whose
complexity becomes unbounded as their gap to capacityvamigor an information-theoretic proof which explains
why the complexity becomes unbounded in this case, the reéadeferred to [14, Theorem 2.1]). The decoding
complexity of punctured LDPC codes for parallel channels idresked in the next section.

V. LOWERBOUNDS ON THEDECODING COMPLEXITY OF LDPC CoDES FORPARALLEL CHANNELS

The scope of this section is to derive a lower bound on the degatbmplexity (per iteration) of LDPC codes
transmitted over parallel MBIOS channels. The lower bountidqyainder MPI decoding, and it grows like the
logarithm of the inverse of the gap (in rate) to capacityetaestingly, a logarithmic behavior of the parity-check
density (which forms a measure of the decoding complexityifggation) in terms of the gap to capacity also
characterizes the upper bound derived in [3, Section 3];upj®er bound refers to MacKay's ensemble of LDPC
codes whose transmission takes place over a set of paraBéDBl channels.

In the previous section we regarded the transmission oftpuet LDPC codes over MBIOS channels as a special
case of the transmission of the original codes (before puimgf) over a set of parallel MBIOS channels. Hence,
the aforementioned bound is later applied to obtain lowemis on the decoding complexity of punctured LDPC
codes. This section refers to an appendix which suggests @ifs&t re-derivation of [9, Theorems 3 and 4], and
shows that the bounds introduced in this section are tighter
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TABLE 1l
COMPARISON OF THRESHOLDS FOR ENSEMBLES OP-LDPC CODES WHERE THE ORIGINALLDPC ENSEMBLE BEFORE PUNCTURING
HAS THE DEGREE DISTRIBUTIONS\(z) = 0.23403z + 0.21242z% + 0.146902° + 0.102842° 4 0.30381x'° AND
p(z) = 0.71875z7 + 0.281252® (SO ITS DESIGN RATE ISL). THE TRANSMISSION OF THESE CODES TAKES PLACE OVER A BINARWPUT
AWGN CHANNEL. THE TABLE COMPARES VALUES OF 2 REFERRING TO THE CAPACITY LIMIT, THE BOUND GIVEN IN THEOREM4.2
(WHICH PROVIDES A LOWER BOUND ON THERE -THRESHOLD UNDERML DECODING), AND THRESHOLDS UNDER ITERATIVE
DECODING. THE FRACTIONAL GAP TO CAPACITY IN THE RIGHTMOST COLUMN MEASURES THE RATIO OF THE GAP TO CAPACITY UNDER
ML DECODING AND THE ACHIEVABLE GAP TO CAPACITY UNDER ITERATIVEDECODING. THE DEGREE DISTRIBUTIONS FOR THE
ENSEMBLE OFLDPC CODES AND THE POLYNOMIALS WHICH CORRESPOND TO THE PUNCTURING PATHRNS ARE GIVEN IN[4,

TABLE 3].
7O () Design| Capacity | Lower bound | Iterative (IT)| Fractional gap to
(puncturing pattern) rate limit (ML decoding) Decoding | capacity (ML vs. IT)

0 0.500 | 0.187 dB 0.234 dB 0.299 dB > 41.5%
0.102040z + 0.06497z% +
0.065492° + 0.003312% + | 0.555 | 0.450 dB 0.473 dB 0.599 dB > 15.4%
0.39377z19
0.226410z + 0.14149z% +
0.21268z° + 0.000012% + | 0.625 | 0.816 dB 0.841 dB 1.028 dB > 11.9%
0.4424 1
0.348940x + 0.2101522 +
0.38902z° + 0.000032% + | 0.714 | 1.368 dB 1.398 dB 1.699 dB > 8.9%
0.48847z1°
0.410320x + 0.243302% +
0.48388z° + 0.00004z% + | 0.769 | 1.777 dB 1.811 dB 2.215 dB > 7.8%
0.5054121°
0.469100x + 0.28408z2 +
0.56178z° + 0.00002z% + | 0.833 | 2.362 dB 2.404 dB 3.004 dB > 6.6%
0.53412z1°
0.533750z + 0.30992z2 +
0.663752° + 0.00001z% + | 0.909 | 3.343 dB 3.410 dB 4.634 dB > 5.2%
0.54837z19

A. A Lower Bound on the Decoding Complexity for Parallel MBIOS riCieds

Consider a binary linear block code which is represented bipartite graph, and assume that the graph serves
for the decoding with an iterative algorithm. Following [&hd [9], the decoding complexity under MPI decoding
is defined as the number of edges in the graph normalized pmmafion bit. This quantity measures the number
of messages which are delivered through the edges of thé ghagm left to right and vice versa) during a single
iteration. Equivalently, since there is a one-to-one c@uadence between a bipartite graph and the parity-check
matrix H which represents the code, the decoding complexity is ajs@leo the number of non-zero elements in
H normalized per information bit (i.e., it is equal to the dgnsf the parity-check matrix [14, Definition 2.2]).
Hence, the decoding complexity and performance of itegbtidecoded binary linear block codes depend on the
specific representation of the code by a parity-check ma8irce the average right degréer) of a bipartite
graph is equal to the number of edges per parity-check emuatien the average right degree and the decoding
complexity are two related quantities. Consider an enserabLDPC codes whose design rateRg. It is natural
to relate the decoding complexity of the ensemble, gay to its average right degree and design rate, as follows:

_(1— R4 a
XD = Ry R -

We note thaty is fixed for all the codes from an ensemble of LDPC codes with angbar of degree distributions.
The following lemma is used in the continuation for the deiomof a lower bound on the decoding complexity
per iteration under MPI decoding.
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TABLE I

COMPARISON OF THRESHOLDS FOR ENSEMBLES OiP-LDPC CODES WHERE THE ORIGINAL ENSEMBLE BEFORE PUNCTURING HAS THE
DEGREE DISTRIBUTIONSA(z) = 0.414936x + 0.183492z7 + 0.013002z° + 0.093081z" + 0.147017z" + 0.148472x>** AND
p(z) = 0.42° + 0.62” (SO ITS DESIGN RATE IS;5). THE TRANSMISSION OF THESE CODES TAKES PLACE OVER A BINARWPUT AWGN
CHANNEL. THE TABLE COMPARES VALUES OF% REFERRING TO THE CAPACITY LIMIT, THE BOUND GIVEN IN THEOREM 4.2 (WHICH
PROVIDES A LOWER BOUND ON THE%-THRESHOLD UNDERML DECODING), AND THRESHOLDS UNDER ITERATIVE DECODING THE
FRACTIONAL GAP TO CAPACITY (SEE THE RIGHTMOST COLUMI\) MEASURES THE RATIO OF THE GAP TO CAPACITY UNDERML

DECODING AND THE ACHIEVABLE GAP TO CAPACITY UNDER ITERATIVE(SUM-PRODUCT) DECODING. THE DEGREE DISTRIBUTIONS FOR

THE ENSEMBLE OFLDPC CODES AND THE POLYNOMIALS CORRESPONDING TO THE PUNCTURING PATTEWS ARE GIVEN IN [5,

TABLE 5.1].
7O () Design| Capacity | Lower bound | lterative (IT)| Fractional gap to
(puncturing pattern) rate limit (ML decoding)| Decoding | capacity (ML vs. IT)
0 0.100 | —1.286 dB —1.248 dB —1.028 dB > 14.5%
0.486490z + 0.69715z% +
0.03287z3 + 0.042482z* + | 0.203 | —0.953 dB —0.917 dB —0.731 dB > 16.3%

0.69048z7 + 0.45209z2*
0.655580x + 0.83201x2 +
0.48916x% + 0.33917z* + | 0.304 | —0.605 dB | —0.570 dB —0.317 dB > 12.0%
0.63990z7 + 0.76947x2*
0.745690z + 0.87184z2 +
0.38179z% + 0.48427z* + | 0.406 | —0.226 dB | —0.189 dB +0.029 dB > 14.7%
0.74655x7 + 0.79130z2*
0.838470x + 0.651052% +
0.04527z% + 0.95233z* + | 0.487 | +0.130 dB | +40.171 dB +0.599 dB > 8.7%
0.74808z7 + 0.80845x24
0.979320x + 0.46819z2 +
0.71050z% + 0.59816z* + | 0.577 | +0.556 dB | +0.840 dB +1.152 dB > 47.7%
0.79485x" + 0.0576522
0.895200x + 0.84401z2 +
0.98541z% + 0.42518z* + | 0.663 | +1.039 dB | +1.232 dB +1.806 dB > 25.2%
0.9297627 + 0.30225z24
0.910960z + 0.9157322 +
0.232882% + 0.40977z* + | 0.747 | +1.605 dB | +1.958 dB +2.637 dB > 34.2%
0.9981127 + 0.15915224
0.904130z + 0.96192z2 +
0.359962° + 0.96980z* + | 0.828 | +2.303 dB | +2.505 dB +3.863 dB > 13.0%
0.3175727 + 0.892502%4

Lemma 5.1:Let I" be the right degree distribution of an ensemble of LDPC codesnTh

INa) > a®™, Ya>D0.
Proof: Using the convexity of the functiorfi(x) = o*, it follows from Jensen’s inequality that far > 0

o
T() =) Tia' > a==T = o™,
i=1

Consider a sequence of ensembles of LDPC cofles., \,, p) }>2,, whose transmission takes place over a set

of J statistically independent parallel MBIOS channels. Létand p; be the capacity and the fraction of code
bits assigned to thet" channel, respectively (wheree {1,...,J}). We define the average capacity of the set
of J parallel channels a§' = ijlijj. For an ensemble of LDPC codes which achieves vanishing lot err

probability as the block length tends to infinity, the multpkive gap (in rate) to capacity is defined as
R
£71 = 57
€ = (57)
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We now present a lower bound on the decoding complexity peatibon under MPI decoding for this sequence.
The bound is given in terms of the gap to capacity.

Theorem 5.1:Let a sequence of ensembles of binary LDPC cofles,, \,, p) }22, be transmitted over a set gf
statistically independent parallel MBIOS channels. Cetbe the capacity of thg" channel (wherg € {1,...,J}),
and denote the average capacity@y= 23 1 p;C;. If this sequence achieves a fractibr ¢ of C with vanlshmg
bit error probability, then the asymptotic decodlng comfleunder MPI decoding satisfies

1
xo(e) > K1 + KoIn <E> . (58)
The coefficientsk > in this lower bound are as follows:
1 1-C 1-C
Ki=Kyln|——>"—— =—
1 Qn(m - ) 2= (59)
C ln qung
j=1
whereg; ; is introduced in (3), and; is introduced in (25) and is assumed to be positive forjafl {1,...,J}.
For parallel BECs, the ter% can be removed from the numerator in the expressioA of
Proof: Substituting (57) in (26) gives
_ 1-C
(1-e)C<1- pos . (60)
1
T 2m2 Z{ 2p— 1) (Zqﬂg“”> }
p=1
Sinceg;, in (3) is non-negative foy € {1,...,J} andp € N, and the functiorl’ is non-negative o™, then

the terms in the infinite sum above are all non-negative. Byttilnecation of this series where we only take into
account its first term (note that this is the largest term ingth), we obtain a lower bound on the RHS of (60).
This implies that o

1-C

2ln2 (Z Gt >

1-e)0<1-—

Invoking Lemma 5.1 vyields that
1-C
1 (< o
T 2In2 (Z qjgj’1>
j=1

The solution of the last inequality for the average right dedrnr) gives
1n<21}12 (1 + 105))

J
In <Z qg‘gj,l)
j=1

> K+ K}l <1> (61)
3

where the last step follows by dropping the 1 which appeansaié the logarithm at the numerator (this step is
valid since the denominator is strictly negative due to et thatg;; < 1 for all j), and

1-e)C<1-—

ar > -

1“(1 :5> 1

(o) n{gem)
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SinceRy < C, it follows thatyp = 1;,le agr > @ ar. The proof of the Iower bound on the decoding complexity

for parallel MBIOS channels follows by multlplylng both sisl of (61) by
For parallel BECs, we get from (3) that for everye N

°° l
o= [ a1+ )t (2) d=1_c,
0

wheree; denotes the erasure probability of ti& BEC. This gives

1 o0
21n2p;{ 2p—1) (Zq]g]’p>}
1 oo
- 21112Z (2p—1 (Zqﬂgj’>
J
=T (Z qjgj,1> :
j=1

Substituting this in (60), gives B
1-C

5 .
-T <Z q]‘ng)
j=1

The continuation of the proof follows the same steps as thefgmr parallel MBIOS channels, and leads to an
improved coefficient; where the factok; - in the numerator ofi; for general MBIOS channels (see (59)) is
replaced by 1. ]

We proceed the analysis by the derivation of lower bound$ierdecoding complexity of sequences of ensembles
of punctured LDPC codes where it is assumed that these sequactiieve vanishing bit error probability; similarly
to Theorem 5.1, the lower bounds are expressed in terms of tittgphcative gap (in rate) to capacity.

(1-e)C<1-

B. Lower Bounds on the Decoding Complexity for Punctured LDPC Codes

As discussed in the previous section, transmission of puedtcodes can be interpreted as a special case of
transmitting the original (un-punctured) codes over a $giavallel channels where these component channels are
formed by a mixture of the communication channel and BECs wlepasure probabilities are the puncturing rates
of the different subsets of code bits. Hence, the bounds erddtoding complexity of punctured codes can be
derived as special cases of the bound given in Theorem 5.1thEosake of brevity, we derive these bounds by
using the upper bounds on the achievable rates of puncturéCLEbdes as given in Theorem 4.1 (for random
puncturing) and Theorem 4.2 (for intentional puncturingdtéthat the derivation of these two theorems relies on
Theorem 3.1 (as shown in Fig. 1 on p. 27).

Consider an ensemble of LDPC codes of lengthnd design raté?/;, and let the code bits be partitioned info
disjoint sets where thg" set contains a fractiop; of these bits { € {1,...,J}). Assume that the bits in thgh
set are randomly punctured at ratg, and let the punctured codes be transmitted over an MBIOSnehavhose
capacity isC. As shown in the previous section, this is equivalent todmaitting the original (un-punctured) codes
over a set ofJ parallel channels, where thé&" set of code bits is transmitted over a channel whose capicity
C; = (1 —m;)C. The average capacity of this set Hfparallel channels is therefore given by

J J
C=>pj(1-m)C= (1= pm)C=(1-7)C (62)
7j=1 7=1

wherey £ Z]_lpm is the overall puncturing rate. Denote the design rate ofpinectured codes byg £ Rd7

(see Definition 4.1 on p. 14), then it follows that the multiplive gap to capacity of the punctured codes is given
by

/
5—1—]2?—1—12 (63)
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For punctured codes, the iterative decoder is based on plagtié graph of the 'mother code’ where the channel
input to the variable nodes which correspond to the pundteamele bits is defined to be 0. Hence, the decoding
complexity of the punctured ensemble under MPI decodingestidal to the decoding complexity of the original
ensemble (before puncturing), and is given by

- R,
XD = Réj aRr

_ (1 — (- ”Rd) o | (64)

(1 —7)Rq

In the following, we derive a lower bound on the decoding ctaxipy of a sequence of ensembles of RP-LDPC
codes.

Theorem 5.2:Let {(n,, \, p)}22, be a sequence of ensembles of binary LDPC codes whose blodk leng
tends to infinity ag: — co. Assume that a sequence of ensembles of RP-LDPC codes is abedtiithe following
way: for each code from an ensemble of the original sequemsepset oftvn, code bits is a-priori selected, and
these bits are randomly punctured at a fixed fdtg:). Assume that the punctured codes are transmitted over an
MBIOS channel with capacity’, and that as- tends to infinity, the sequence of ensembles of puncturedscode
achieves a fractio — ¢ of the capacity with vanishing bit error probability. Thengrobability 1 w.r.t. the random
puncturing patterns, the decoding complexity of this segaeunder MPI decoding satisfies

XD(‘C:) > K+ Ksln <i) . (65)

The coefficientsk; » in this lower bound are as follows:

1 1-C
Ki=Kh(-—"—"
! 2“(21112 C )

B 1-C
C ln((l — Ppct—i—f)gl)

whereg; is introduced in (40)¢ is introduced in (42), and’ £ (1 — aPy)C. For the particular case of a BEC,
the termﬁ can be dropped, thus improving the tightness of the addigwe (/) in the lower bound.

Proof: Since a subset of the code bits of size, is randomly punctured at rat&,, then the average
puncturing rate is given by = a Py Hence, Eq. (62) yields that' = (1 — aFPy)C. By multiplying both sides
of (41) by 1 — aPy and getting from (63) thaRy = (1 — ¢)C, we obtain

Koy = (66)

1-C
1 & F((l — Poot + £)gp)
2In2 = p(2p—1)

Following the same steps as in the proof of Theorem 5.1, we ¢mter bound on the average right degree of the
bipartite graph which corresponds to the pair of degreeildigions (), p). This lower bound is of the form

(1-e)C<1-—

1
ar > K| + Kyln <€> (67)

where

1 1-C
K =Ki(-—"""%
1 2n<21n2 c )

|
1n((1 - Ppct+§)gl) '

Note thatK is positive; this follows from (42), which yields thgt< (1 — a) Pyet (due to the fact that the integral
of X\ over the interval [0, 1] is upper bounded @y This assures that as the gap (in rate) to capacity vanities,
lower bound orup scales like the logarithm of the inverse of this gap.

K} = -
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From (63), we get thaf?, = (1 — )C < C, and thereforeyp = 1;32%3 ar > % ar. The proof of the lower

bound on the decoding complexity is completed by multigyboth sides of (67) by%c. In the particular case
where the communication channel is a BEC, following the saoreept as in the proof of Theorem 5.1 leads to
the improved coefficienf; where the ter% is dropped. ]

The upper bound on the decoding complexity for sequences s#nailes of IP-LDPC codes is also given in
terms of the gap between the rate of the punctured rate anchémeel capacity.

Theorem 5.3:Let {(n,, A, p, 77(0))};?11 be a sequence of ensembles of binary IP-LDPC codes transmitezd 0
an MBIOS channel whose channel capacityCisIf this sequence achieves a fraction- ¢ of the capacity with
vanishing bit error probability, then in probability 1 w.ithe random puncturing patterns, the decoding complexity
of this sequence under MPI decoding satisfies

xo(e) > K1 + Ky In (i) . (68)

The coefficientsk » in this lower bound are as follows:

K1:K21n< 1 1_C>

2In2 C

B 1-C
C 1n<<1 — >0 /\jo) gl>

whereg; is introduced in (40), and’ = (1 — > 721 Ajm;)C. For the particular case of a BEC, the te% can
be dropped, thus improving the tightness of the additive1ték’;) in the lower bound.

Proof: The proof follows from the same concepts as the proof of Thed&nbut is based on (50) instead
of (41). Note thatk,, which reflects the logarithmic growth rate of the lower bound68), is always positive;
this follows from (69) and due to the fact that from (49),< 1, and alsa) < 1 — Z;";l A < 1. ]

Ky = (69)

C. Re-Derivation of Reported Lower Bounds on the Decoding Cotityple

In [9, Theorems 3 and 4], Pfister et al. introduced lower boundtherdecoding complexity of punctured codes
under iterative decoding. The bounds were derived for the edwre a subset of linearly independent code bits
whose size is equal to the code dimension are randomly puttt a fixed rate ), and the transmission of
the codes takes place over an MBIOS channel. In particliés, dcenario corresponds to RP-LDPC codes (see
Section IV-B) where we choose a subset of the code bits to lonaly punctured at rat&,;; under the assumption
in [9, Theorems 3 and 4], the fractigfa) of the code bits which are randomly punctured is equal to theec
rate. In the appendix, we show that for RP-LDPC codes, the lowands on the decoding complexity given in
[9, Theorems 3 and 4] follow from a looser version of the boumd heorem 5.2.

VI. SUMMARY AND OUTLOOK

Theorem 3.1, which is one of the main results in this papetyiges an upper bound on the asymptotic rate
of a sequence of ensembles of binary low-density paritgki{eDPC) codes which achieves vanishing bit error
probability. We assume that the communication takes plaee @ set of parallel memoryless binary-input output-
symmetric (MBIOS) channels. The derivation of Theorem 3.Jesetin upper and lower bounds on the conditional
entropy of the transmitted codeword given the received eecgl at the output of the parallel channels (see
Section II), and it holds under optimal maximume-likelihoddLl() decoding (or an arbitrary sub-optimal decoding
algorithm). This theorem enables the derivation of a lowenrimbon the decoding complexity (per iteration) of
ensembles of binary LDPC codes under message-passingvitedatcoding when the transmission of the codes
takes place over a set of parallel MBIOS channels. The latianth is given in terms of the gap between the rate
of these codes for which reliable communication is achikvabd the channel capacity. Similarly to a lower bound
on the decoding complexity of ensembles of LDPC codes for desiftiBIOS channel [14], the lower bound on
the decoding complexity which is derived for parallel chelsrgrows like the log of the inverse of the gap (in rate)
to capacity.



Information-theoretic bounds:

Proposition 2.1 and Lemma 2.2

Achievable rates of LDPC codes
> for parallel MBIOS channels

Theorem 3.1

AN

Upper bounds on the achievable
rates of punctured LDPC codes
for MBIOS channels

Theorems 4.1 and 4.2

Upper bound on the
achievable rates of LDPC
codes for MBIOS channels

[17, Corollary 4.1]

Upper bound on the
achievable rates of LDPC
codes for parallel BECs

[10, Theorem 2]

Lower bound on the
decoding complexity of LDPC
codes for parallel channels

Theorem 5.1
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NN

Upper bound on the rates Upper bound on the rates
of LDPC codes based on [BEC| of LDPC codes based on
two-level quantization [*€ | two-level quantization

[1, Theorems 1 and 2] [14, Theorem 2.5]

VAN

Lower bound on the Lower bound on the
decoding complexity of decoding complexity of
randomly punctured LDPC intentionally punctured
codes (Theorem 5.2) LDPC codes (Theorem 5.3)

/ / /
Lower bounds on the Upper bound on the Lower bounds on the
parity-check density achievable rates for a decoding complexity of
uniform BEC: randomly punctured LDPC
[12, Theorem 3] and codes for MBIOS channels
[14, Theorem 2.1] [14, Eq. (36)] [9, Theorems 3 and 4]

Fig. 1. An interconnections diagram among the bounds in this paper anel greviously reported bounds which follow as special cases.

Theorem 3.1 can be used for various applications which forrticodar cases of communication over parallel
channels, e.g., intentionally punctured LDPC codes [4], moifiermly error protected LDPC codes [10], and LDPC-
coded modulation (see e.g., [6], [16]). In Section IV, we retyTheorem 3.1 for the derivation of upper bounds on
the achievable rates under ML decoding of (randomly andhtideally) punctured LDPC codes whose transmission
takes place over an arbitrary MBIOS channel. It is exemplifiecherically that for various good ensembles of
intentionally punctured LDPC codes, the asymptotic loss ifiopmance due to the code structure is non-negligible
as compared to the corresponding loss due to the sub-ojitirofiterative decoding (as compared to optimal ML
decoding). Looser versions of the bounds derived in this pégrepunctured LDPC codes suggest a simplified
re-derivation of previously reported bounds on the degpdiomplexity of randomly punctured LDPC codes (see
[9, Theorems 3 and 4] and the appendix).

Interconnections between the information-theoretic lisuntroduced in this paper and some previously reported
results are shown in Fig. 1; it is shown in this figure that resintim [1], [9], [10], [12], [14], [17], which correspond
to the achievable rates and decoding complexity of LDPC codéhk @nd without puncturing), follow as special
cases of the bounds introduced in this paper.
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APPENDIX. RE-DERIVATION OF [9, THEOREMS3 AND 4]

In the following, we start with the re-derivation of [9, Theaon 4] for general MBIOS channels, and then re-
derive the refined bound in [9, Theorem 3] for a BEC. For the résdgon of [9, Theorems 3 and 4] we rely on
Theorem 5.2 whose derivation is based on Theorem 4.1. Henchisivebosen the upper bound on the achievable
rates given in (41), and then re-derive [9, Theorem 4] as aerprence of this looser version. The loosening of
(41) is done by replacing the positive parametantroduced in (42) by zero, and then using the lower bound on
I" from Lemma 5.1. This gives

1
Ry<——
1— 1—P "
2m22§{mmy—n« WM@ }

Truncating the infinite series in the RHS of (A.1) by only takiits first term which corresponds o= 1 further
loosens the upper bound on the achievable rates, and gives

Rd< 1-—
1-— 1-F
iz (L~ Feeen

(A.2)

aRr

From (63), we get the inequality
1 - (1 - OéPpct)C

1 - 21112 ((1 - Ppct)91>aR

(I-e)(1 —aPygy)C <1—

which after straightforward algebra gives
1-(1—-aPy)C ( 1 )“R
1+ <2In2(——— . A3
eC(l — aPoct) — (1= Poct)gn (A3)

We proceed by giving a simple lower bound gnin (40).
Lemma A.1:The inequalityg; > (1 — 2w)? holds for any MBIOS channel where

w =2 Pe(a) = %Pr(L =0)+ /0 a(l) dl

—00

designates the uncoded bit error probability of the MBIO&rutel given the channel input is zero.
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Proof: Based on the symmetry property wherg) = e'a(—1) and Jensen’s inequality, we get

o= / T a(l) (1 + e tanh? (;) al
e (3

RS

/Oooa Y1 4o )tanh(é>dz)2

o1

Frao-scn)

|- Pr(L —2/_[;a(l)dl>2

g
<
<
<
[

(1-

Replacingg; in the RHS of (A.3) by its lower bound from Lemma A.1 gives
1—-(1—-aP)C < 1 )“R
2In2

=2in2 <<1 —Eie 2w>>m '

i (rka 1+ 20
21n  r=refrr=z)

Based on the equality (64) which relates the complexity uvitdeative decoding to the average right degfeg)
and also sincéry < C, we get from the last inequality

(1 aP; c{)o
1—-C 1n<21n2<1+ eC(1— a;pct) ))
2C 1 ’
In <7(1—Ppct)(1—2w))

Note that in the setting of [9, Theorem 4},= R). This gives the equality = (1 —)C = (1 — ¢)(1 — aPper)C
whose solution is

1+

Solving the last inequality foug gives

aRr 2

xo(e) = (A.4)

(1-¢)C
= . A5
Finally, the substitution ofx in (A.5) into the RHS of (A.4) gives
1—(1— Pypet) C—C Pyt
1-C ln<2ln2(1+ e >>
>
XD(E)_ 2C 111( 1 )
=Py (1—2w)
In 117(17Ppm)c)
1-C (5 2C'1In2
> A.
e (A.6)

In (m)
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which coincides with [9, Theorem 4] for a sequence of ensesbfeandomly punctured LDPC codes.

For the derivation of the refined bound for the BEC which is giiref®, Theorem 3], we start from (A.1). The
refinement of the latter bound is due to the fact that for the B&Cin (40) is independent of, and satisfies
gp = 1 — Peec Where Peec designates the erasure probability of the BEC. From (A.1), atetlie following upper
bound on the achievable rates:

= aRr
1- aPpCt 1— ((1 — Ppct)(l — PBEC))
which follows from the equality) L~ = 1In2. SubstitutingRyg = (1 — )(1 — Pgec) and thea in (A.5)

) - p=1 2p(2p—1) ) .
gives a lower bound ong. Finally, the fjovger bound in [9, Theorem 3] follows from the ukig lower bound on

ar and the inequalityyp(e) > =% ag.
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