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Sequential Hypothesis Testing Sequential Binary Hypothesis Testing

uential Binary Hypothesis Testing - Setting

@ Observation sequence:

Y1, Y2, V3, .. R

Q.

Z

P
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Sequential Hypothesis Testing Sequential Binary Hypothesis Testing

Sequential Binary Hypothesis Testing - Setting

@ Observation sequence:

Y17}/27}/E))7 cee '

Q.

P

Z

@ Two hypotheses:

Hy :P =P,
H1 :P:P1.

Where Py and P; are completely known distinct probability measures.
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Sequential Hypothesis Testing Sequential Binary Hypothesis Testing

Sequential Binary Hypothesis Testing - Setting

@ Observation sequence:

Y17}/27}/E))7 cee '

Q.

P

Z

@ Two hypotheses:

Hy :P =P,
H1 :P:P1.

Where Py and P; are completely known distinct probability measures.
@ Periors: ]P’{Ho} = T, and ]P){Hl} =71 = 1-— 0.
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Sequential Hypothesis Testing Sequential Binary Hypothesis Testing

Sequential Binary Hypothesis Testing - Basic Components

Definition - Sequential Binary Hypothesis Test

A Sequential binary hypothesis test is a pair A = (N, d) where:
e N is the stopping time (such that {N =n} ,{N > n} € o (Y]")).
o d:Y{N — {Hy, Hy} is the terminal decision rule.
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Sequential Hypothesis Testing Sequential Binary Hypothesis Testing

Sequential Binary Hypothesis Testing - Basic Components

Definition - Sequential Binary Hypothesis Test

A Sequential binary hypothesis test is a pair A = (N, d) where:
e N is the stopping time (such that {N =n} ,{N > n} € o (Y]")).
o d:Y{N — {Hy, Hy} is the terminal decision rule.

@ Two types of errors:
@ Type 1 error: Reject the null hypothesis when correct

a2 Py(d=Hy).
@ Type 2 error: Accept the null hypothesis when incorrect

B2 P (d= Hy).
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Sequential Hypothesis Testing Sequential Binary Hypothesis Testing

uential Probability Ratio Test (SPRT)
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Sequential Hypothesis Testing Sequential Binary Hypothesis Testing

Sequential Probability Ratio Test (SPRT)

e Define the Log Likelihood Ratio function (LLR):

L (57) 2 log | 215 — gl‘)g o)
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Sequential Hypothesis Testing Sequential Binary Hypothesis Testing

Sequential Probability Ratio Test (SPRT)

e Define the Log Likelihood Ratio function (LLR):

| > uos ]

Ly (1) £ log LIZ? E‘zg

o Select two boundary values A and B suchthat 0 < B<1< A
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Sequential Hypothesis Testing Sequential Binary Hypothesis Testing

Sequential Probability Ratio Test (SPRT)

e Define the Log Likelihood Ratio function (LLR):

| > uos ]

Ly (1) £ log Lljl) E‘zi:;

o Select two boundary values A and B suchthat 0 < B<1< A
Definition - SPRT (Wald 1943)

The Sequential Probability Ratio Test (SPRT) Asprt = (NsprT, dsprT)
is defined as follows:

Nsprt =2min {n € N: L, (Y{*) <log(B) or L, (Y{")>log(A)}

N Hy if  LiNgegr <YlNSPRT) <log (B)
dsprT =

Hy if Lger (YINS”RT) > log (A)

o
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Sequential Hypothesis Testing Sequential Binary Hypothesis Testing

Basic Properties of the SPRT
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Sequential Hypothesis Testing Sequential Binary Hypothesis Testing

Basic Properties of the SPRT

@ Define N £ min{n € N: L,, > log(A)}. Then,

log(4) _ —log(e)
(Po|| Pr) = D(Po |l P)

Ep, [NsprT] < Ep, [N} < D
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Basic Properties of the SPRT

@ Define N £ min{n € N: L,, > log(A)}. Then,

log(4) _ —log(e)
(Po|| Pr) = D(Po |l P)

Ep, [NsprT] < Ep, [N} < D

P —lo —lo
Slmllarlyv IEP1 [NSPRT] < D(Plgu(go)) < D(PlgH(Igo))
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Sequential Hypothesis Testing Sequential Binary Hypothesis Testing

Basic Properties of the SPRT

@ Define N £ min {n € N: L,, > log (A)}. Then,

log(4) _ —log(e)
(Po|| Pr) = D(Po |l P)

Ep, [NsprT] < Ep, [N} < D

P —lo — lo,
Slmllarlyv IEP1 [NSPRT] < D(Plgu(go)) < D(Plg\flgo))

Theorem - Optimality of the SPRT (Wald & Wolfowitz 1953)

Let Asprt = (NsprT, dsprT) be Wald's SPRT with error probabilities asprt and
BsprT, and let A’ = (N’,d’) be any other sequential decision rule with finite
Ep, [N'],Ep, [N'] and error probabilities o’ and (3’ satisfying

o < asprT and ﬂl < BspRrT-

Then

Ep, [N'] > Ep, [Nsprt], Ep, [N'] > Ep, [Nsprr]-

V.
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Sequential Hypothesis Testing Multi-hypothesis Testing

Sequential Multi-hypothesis Testing - Setting

o Observation sequence:

Y1, Y2, Ys,... <P

where Y; is an [-valued random vector (Y; = (Y;1...,Y;,)).
o Define M (> 2) hypotheses:

Hi:P=P, ic{0,...,.M—1}.

where P; are completely known distinct probability measures.
e Priors: m ={my...,mp—1} where m; = P{H;}
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Sequential Hypothesis Testing Multi-hypothesis Testing

Sequential Multi-hypothesis Testing - Setting

o Observation sequence:

Y1, Y2, Ys,... <P

where Y; is an [-valued random vector (Y; = (Y;1...,Y;,)).
o Define M (> 2) hypotheses:

Hi:P=P, ic{0,...,.M—1}.

where P; are completely known distinct probability measures.
e Priors: m ={my...,mp—1} where m; = P{H;}

e A Multi-hypothesis test A is a pair (N, d) where N is the stopping
time and d is the decision rule.
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Sequential Hypothesis Testing Multi-hypothesis Testing

Sequential Multi-hypothesis Testing - Risk and Error

Probabilities

@ Let aj; (A) = P;j (d = i) be the probability of accepting the hypothesis H;
when H; is true (defined for j # i).
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Sequential Hypothesis Testing Multi-hypothesis Testing

Sequential Multi-hypothesis Testing - Risk and Error

Probabilities

@ Let aj; (A) = P;j (d = i) be the probability of accepting the hypothesis H;
when H; is true (defined for j # i).

@ For a multiple hypothesis test A, the risk associated with making the
decision d = i is defined to be

Ri (A) =) mayi ().

J#i
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Sequential Hypothesis Testing Multi-hypothesis Testing

Sequential Multi-hypothesis Testing - Risk and Error

Probabilities

@ Let aj; (A) = P;j (d = i) be the probability of accepting the hypothesis H;
when H; is true (defined for j # i).

@ For a multiple hypothesis test A, the risk associated with making the
decision d = i is defined to be

Ri (A) =) mayi ().

J#i

o Let R 2 (Ro,Ry,...,Ray—1) be a vector of positive finite numbers and
define:

A(R)2{A:R;(A)<R;,ic{0,.... M —1}}.
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Sequential Hypothesis Testing Multi-hypothesis Testing

Sequential Multi-hypothesis Testing - Risk and Error

Probabilities

@ Let aj; (A) = P;j (d = i) be the probability of accepting the hypothesis H;
when H; is true (defined for j # i).

@ For a multiple hypothesis test A, the risk associated with making the
decision d = i is defined to be

Ri (A) =) mayi ().

J#i

o Let R 2 (Ro,Ry,...,Ray—1) be a vector of positive finite numbers and
define:

A(R)2{A:R;(A)<R;,ic{0,.... M —1}}.

@ Our focus: A € A (R) as Rpax = max; R; — 0 and M fixed.
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Sequential Hypothesis Testing Multi-hypothesis Testing

Multi-hypothesis SPRT (MSPRT)

@ Define the LLR of P; w.r.t. to a (dominating) measure Q by:

Pi(Yy,...,Yy)

=[G

}, ie€q{0,....,.M —1}.
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Multi-hypothesis SPRT (MSPRT)

@ Define the LLR of P; w.r.t. to a (dominating) measure Q by:

Pi(Yy,...,Yy)

=[G

}, ie€q{0,....,.M —1}.

@ Leta;, (i €{0,...,M — 1}) be positive threshold values.
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Sequential Hypothesis Testing Multi-hypothesis Testing

Multi-hypothesis SPRT (MSPRT)

@ Define the LLR of P; w.r.t. to a (dominating) measure Q by:

Pi(Yy,...,Yy)

=[G

}, ie€q{0,....,.M —1}.

@ Leta;, (i €{0,...,M — 1}) be positive threshold values.

@ Define the stopping times

- — mi . > a .
Ni=min g L; (n) = a; +log %;exp (Lj () | ¢>
VED)
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Sequential Hypothesis Testing Multi-hypothesis Testing

Multi-hypothesis SPRT (MSPRT)

@ Define the LLR of P; w.r.t. to a (dominating) measure Q by:

P (Yy,...,Y,)

=[G

}, ie€q{0,....,.M —1}.

@ Leta;, (i €{0,...,M — 1}) be positive threshold values.

@ Define the stopping times

- — mi . > a .
Ni=min g L; (n) = a; +log %;exp (Lj () | ¢>
VED)

Definition - A, (Baum & Veeravalli 1994, Fishman 1987)

Let A, = (IVa,d,) be a sequential test defined by:

N,= min N;, d,=i*if Ny = Nis.

S. Ginzach (Technion) December 25th, 2014 9 /30



Sequential Hypothesis Testing Multi-hypothesis Testing

Optimality of A,

@ Define D; £ minj;éi D (Pz || P])
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Sequential Hypothesis Testing Multi-hypothesis Testing

Optimality of A,

@ Define D; £ minj; D (P; | P;).

Theorem - Optimality of A, (Dragalin et al. 2000)

Q Forallie{0,1,...M — 1}
_ —log (R;)
inf [E;[N]> 1+o0(1
LR [ 28 | o)
@ Ifa; = log [%} then
—log (R;
Ez[ a] D( )
as Rmax — 0 for all m > 1.

v
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Sequential Hypothesis Testing Multi-hypothesis Testing with Control

Sequential Multi-hypothesis Testing w/ Control - Setting

@ Observation sequence: Y1,Ys,Ys, ... € Y.
@ Hypotheses: {H;,i=0,...,M — 1}.

@ Priors: P{H;} =m;, i€{0,...,.M —1}.
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Sequential Hypothesis Testing Multi-hypothesis Testing with Control

Sequential Multi-hypothesis Testing w/ Control - Setting

@ Observation sequence: Y1,Y5,Y3,... € Y.

@ Hypotheses: {H;,i=0,...,M — 1}.

@ Priors: P{H;} =m;, i€{0,...,.M —1}.

@ Control sequence: Uy,Us,Us,... €U, |U| < oc.
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Sequential Multi-hypothesis Testing w/ Control - Setting

@ Observation sequence: Y1,Y5,Y3,... € Y.

@ Hypotheses: {H;,i=0,...,M — 1}.

@ Priors: P{H;} =m;, i€{0,...,.M —1}.

@ Control sequence: Uy,Us,Us,... €U, |U| < oc.

o U,=qY1,...,Y,-1,Uy,...,U,_1) [Causality Constraint]
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Sequential Multi-hypothesis Testing w/ Control - Setting

@ Observation sequence: Y1,Y5,Y3,... € Y.

@ Hypotheses: {H;,i=0,...,M — 1}.

@ Priors: P{H;} =m;, i€{0,...,.M —1}.

@ Control sequence: Uy,Us,Us,... €U, |U| < oc.

o U,=qY1,...,Y,-1,Uy,...,U,_1) [Causality Constraint]

o Assume: Y, L (Y~ Un™1)
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Sequential Hypothesis Testing Multi-hypothesis Testing with Control

Sequential Multi-hypothesis Testing w/ Control - Setting

@ Observation sequence: Y1,Y5,Y3,... € Y.

@ Hypotheses: {H;,i=0,...,M — 1}.

@ Priors: P{H;} =m;, i€{0,...,.M —1}.

@ Control sequence: Uy,Us,Us,... €U, |U| < oc.
o U,=qY1,...,Y,-1,Uy,...,U,_1) [Causality Constraint]
o Assume: Y, L (Y~ Un™1)

@ Observation kernel:

pl-‘" (Yn) £ P(Yy=yn | Hi,Up = up) .
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Sequential Hypothesis Testing Multi-hypothesis Testing with Control

Hypothesis Testing with Control - Definitions

@ A Multi-hypothesis test with control A is a triplet (¢, N, d) where:
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Sequential Hypothesis Testing Multi-hypothesis Testing with Control

Hypothesis Testing with Control - Definitions

@ A Multi-hypothesis test with control A is a triplet (¢, N, d) where:

Q q={aq (Y1, U’“‘l)}k:LMN is an observation control policy.
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Sequential Hypothesis Testing Multi-hypothesis Testing with Control

Hypothesis Testing with Control - Definitions

@ A Multi-hypothesis test with control A is a triplet (¢, N, d) where:
Q ¢={q (YF 1 U1}, _,  isan observation control policy.
@ N is the stopping time, N € F, =0 (Y1,...,Yn,U1,...,Uy).

Q@ d=d (YN, UN) is the decision rule.
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Sequential Hypothesis Testing Multi-hypothesis Testing with Control

Hypothesis Testing with Control - Definitions

@ A Multi-hypothesis test with control A is a triplet (¢, N, d) where:
Q ¢={q (YF 1 U1}, _,  isan observation control policy.
@ N is the stopping time, N € F, =0 (Y1,...,Yn,U1,...,Uy).

Q@ d=d (YN, UN) is the decision rule.

@ The Objective: Find A that:

minimize E[N] subject to Pe, < ¢ [Max. Information]
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Sequential Hypothesis Testing Multi-hypothesis Testing with Control

Hypothesis Testing with Control - Definitions

A Multi-hypothesis test with control A is a triplet (¢, N, d) where:
Q ¢={q (YF 1 U1}, _,  isan observation control policy.
@ N is the stopping time, N € F, =0 (Y1,...,Yn,U1,...,Uy).

Q@ d=d (YN, UN) is the decision rule.

The Objective: Find A that:

minimize E[N] subject to Pe, < ¢ [Max. Information]

@ Let E[N*] be the minimal expected number of samples required to achieve
Per <e.

Achievablility: Chernoff (1960), Veeravalli (2012), Javidi (2013)...
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Sequential Hypothesis Testing Multi-hypothesis Testing with Control

Lower Bounds on [E [N*]

Theorem (Javidi et al. 2013)

For lozg(M) < w and arbitrary § € (0,0.5]:

0) + dlog (M —1)]

Imax

_|_

) w”? +
log (ﬂ) —log (W) >
]I{maxm- < 1—5} - K

DmaX i

where Dyyax = max D (p¥ || pJ“) and Iax = max I (7;p%).
i,ju

u, T
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Sequential Hypothesis Testing Multi-hypothesis Testing with Control

Lower Bounds on E [N*]

Theorem (Javidi et al. 2013)

For lozg(M) < w and arbitrary § € (0,0.5]:

H (0) — [ha (0) + dlog (M — 1)]

Imax

BV > (1- ) |

og (125 —loe (lwwll>]l{m,axm <1-5}- K +

* Do

where Dy = max D (pf I pJ“) and Iax = max I (7;p%).
i,ju

u, T

e Remainder [Fano's Inequality]: Let ¢ be the error probability of the
estimator 8 of 8. Then

H(0|0) < hy(6)+dlog (M —1)
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Sequential Hypothesis Testing Multi-hypothesis Testing with Control

Lower Bounds on E [N*]

Theorem (Javidi et al. 2013)

For lozg(M) < w and arbitrary § € (0,0.5]:

0) + dlog (M —1)]

Imax

_|_

og (125 ) —log (12— .
1 ! ]I{maxmgl—é}—K’
DmaX Z

where Dy = max D (pf I pJ“) and Iax = max I (7;p%).
i,ju

u, T

e Remainder [Fano's Inequality]: Let ¢ be the error probability of the
estimator 8 of 8. Then

H(08) <hs(5)+dlog (M —1)
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding with Perfect Feedback

oo oo :d

XeX Y € N
Encoder DMC | Decoder ————

@ Message: One of M equiprobable symbols 6 € {0..., M — 1}.
e Forward Channel: X ={1,...,K}and Y ={1,...,L}.

@ Feedback channel: Instantaneous, infinite capacity, noiseless.
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding with Perfect Feedback

oo oo :d

0 XeX Yec)y
——| Encoder | DMC [ Decoder ————

Message: One of M equiprobable symbols 8 € {0..., M — 1}.
Forward Channel: X ={1,...,K} and Y ={1,...,L}.
Feedback channel: Instantaneous, infinite capacity, noiseless.
Coding Algorithm: X, (0) = X,, (0,Y1,... Y1), VO,Y1,... Y, 4
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding with Perfect Feedback

oo oo :d

0 XeX Yec)y
——{ Encoder | DMC [ Decoder ————

Message: One of M equiprobable symbols 8 € {0..., M — 1}.
Forward Channel: X ={1,...,K} and Y ={1,...,L}.
Feedback channel: Instantaneous, infinite capacity, noiseless.
Coding Algorithm: X, (0) = X,, (0,Y1,... Y1), VO,Y1,... Y, 4

Decoding Criterion: A pair (N,d), where N is the stopping time and
d is the decision function.
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding - Performance Indices

X € X Y ¢
Encoder DMC @'—>

@ For block codes with fixed block-length n:
Q Rate: R 2 s

@ Error Exponent: E (R) = limsup,,_, . —log(Per)

n
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding - Performance Indices

XeX® —n Y €Y
Encoder DMC @'—>

@ For block codes with fixed block-length n:
Q Rate: R 2 s
@ Error Exponent. E (R) = limsup,,_, .,
@ For VL codes:
Q Rate R= 105[%\/]1).
@ Error Exponent: E (R) = lim supgnj_ BN

— log(Per)
n '

— log(Per)
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding - Performance Indices

X € X Y ¢
Encoder DMC @'—>

@ For block codes with fixed block-length n:
O Rate R 2 s
@ Error Exponent: E (R) = limsup,,_,
@ For VL codes:

@ Rate: R 2 loelM)

— E[N]
@ Error Exponent: E (R) = lim supg|y|_, 0 _l]gﬁy])e').

— log(Per)
n '

Q: Is the VL coding problem amenable to hypothesis testing analysis?
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding - Performance Indices

X € X Y ¢
Encoder DMC @'—>

@ For block codes with fixed block-length n:
O Rate R 2 s
@ Error Exponent: E (R) = limsup,,_,
@ For VL codes:

@ Rate: R 2 loelM)

— E[N]
@ Error Exponent: E (R) = lim supg|y|_, 0 _l]gﬁy])e').

— log(Per)
n '

Q: Is the VL coding problem amenable to hypothesis testing analysis?
A: Yes!
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding and Controlled Hypothesis Testing, Cont.

i€0,...,M— X € X Y € Yy i=dy
Encoder ——| Decoder |——

Y1,Y5,..., Y

11 L]
A T B

© p} (Yn) =P (Yn | ¥n (i,u)).
® Diax =max D (p(- | j) [ p (- | k)) £

)

0 Iax =max I (X;Y)=0C.
Px

o7r:[
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding and Controlled Hypothesis Testing, Cont.

@ Recap:

(Javidi et al. 2013)

For % < w < 1/e and arbitrary ¢ € (0, 0.5]:

Theorem

H (1) — ha (8) — 8log (M — 1)

Imax

log (fﬁ;l) —log (152)
Dmax

BN 2 (1-w) |

+

]I{m;fixm < 1—5}—K'

where Dy, = max D (p? I py) and Iax = max I (7;p%).
i,ju U,
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding and Controlled Hypothesis Testing, Cont.

@ Recap:

Theorem (Javidi et al. 2013)

Forw=—1—and § = —1—~:
slog(‘j) lo, (1 )

€

HE (1 T e (D)
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding and Controlled Hypothesis Testing, Cont.

Theorem (Javidi et al. 2013)

For large M and small e,

E[N*] > logéM ), = logfpe') +0 (log <log (%))) .
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding and Controlled Hypothesis Testing, Cont.

Theorem (Javidi et al. 2013)

For large M and small e,

E[N*] > logéM ), = logfpe’) +0 (log <log (%))) .

o Equivalently,
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Variable-Length Coding with Feedback Unlimited Feedback

VL Coding and Controlled Hypothesis Testing, Cont.

Theorem (Javidi et al. 2013)

For large M and small e,

E[N*] > logéM ) 4= logfpe’) ) (log <log (f))) .

o Equivalently,

Theorem (Burnashev 1976)

For any transmission method over a DMC with perfect feedback and any
Re[0,C]

E(R) = Eg (R).
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Variable-Length Coding with Feedback Unlimited Feedback

Achievablity - General Scheme

@ Akin to Yamamoto & Itoh (1979).
o

NACK

S. Ginzach (Technion)
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Variable-Length Coding with Feedback Unlimited Feedback

Direct Statement - Phase | (Tentative Decision)

@ Codebook: For each message i € {0,..., M — 1} randomly draw an infinite
Px-i.i.d. sequence.
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Variable-Length Coding with Feedback Unlimited Feedback

Direct Statement - Phase | (Tentative Decision)

@ Codebook: For each message i € {0,..., M — 1} randomly draw an infinite
Px-i.i.d. sequence.

@ Let (» be the codeword assigned to the i'th message.
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Variable-Length Coding with Feedback Unlimited Feedback

Direct Statement - Phase | (Tentative Decision)

@ Codebook: For each message i € {0,..., M — 1} randomly draw an infinite
Px-i.i.d. sequence.

@ Let (» be the codeword assigned to the i'th message.
@ Define:

yi | oy
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Variable-Length Coding with Feedback Unlimited Feedback

Direct Statement - Phase | (Tentative Decision)

@ Codebook: For each message i € {0,..., M — 1} randomly draw an infinite
Px-i.i.d. sequence.

@ Let (» be the codeword assigned to the i'th message.
@ Define:
Zl PO )] s
HllIl og | — | > (1+¢€¢)lo
& Pr (yx) &
@ Decoder: A; = (Ny,dy):

Ny= min N}, d;=i"if Ny=NV.

0<i<M—1

Assume x(® was transmitted. Then

(1+e)log(M)'

E[N;] <E[N}] £ c
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Variable-Length Coding with Feedback Unlimited Feedback

Achievability - Phase Il (Confirmation)

@ Encoder: Sends (j*,j*...) if d; is correct and (k*,k*...) otherwise.
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Variable-Length Coding with Feedback Unlimited Feedback

Achievability - Phase Il (Confirmation)

Encoder: Sends (j*,j*...) if ds is correct and (k*,k*...) otherwise.
Decoder: Runs an SPRT with

Huacx:Yi~p(-|7%),
Hyack:Yi~p(-| k).

@ Choose j* and k* st. D(p(- | %) || p(- | k%)) = C4
@ For large M,
—log (P,
E[Nul < 72( )-
1
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Variable-Length Coding with Feedback Unlimited Feedback

Achievability - Phase Il (Confirmation)

Encoder: Sends (j*,j*...) if ds is correct and (k*,k*...) otherwise.
Decoder: Runs an SPRT with

Huacx:Yi~p(-|7%),
Hyack:Yi~p(-| k).

@ Choose j* and k* st. D(p(- | %) || p(- | k%)) = C4
@ For large M,
—log (P,
E[Nul < 72( )-
1

@ = E[N]|~E[N;|+E[N;] < log(CM) + —10§(pe).

1
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Variable-Length Coding with Feedback ARQ Schemes

Limited Feedback - " One Shot” Schemes

ic{0,...,M —1} x® € {0,1}* y €{0,1}* i =dy
[Enc. [B5¢(0)] [Bec]

One bit per message

Example - ARQ scheme:
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[Enc. [B5¢(0)] [Bec]

One bit per message

Example - ARQ scheme:
@ Codebook: M randomly chosen codewords, each of length n.
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Variable-Length Coding with Feedback ARQ Schemes

Limited Feedback - " One Shot” Schemes

ic{0,...,M —1} x® € {0,1}* y €{0,1}* i =dy
[Enc. [B5¢(0)] [Bec]

One bit per message

Example - ARQ scheme:
@ Codebook: M randomly chosen codewords, each of length n.
@ Encoding: Send the ith codeword periodically to transmit the ith message.
@ Decoding:
o Partition R™ into M decision regions and one erasure area.
0 IfY € MleRZ send the stopping bit and decode.

=0

o Else, wait for the next n symbols and repeat the process.
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Variable-Length Coding with Feedback ARQ Schemes

Forney's Decision Regions (Forney 1968)

@ Define "> 0 and for all i € {0,..., M — 1}

. p(ylz?) .
R=<Ryey": — >exp(nT),, 1€40,...,M —1},
{ S Ty 2D { )
M—1
Rir =[] (R)",
i=0
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Variable-Length Coding with Feedback ARQ Schemes

Forney's Decision Regions (Forney 1968)

@ Define "> 0 and for all i € {0,..., M — 1}

. p(ylaz?) .
Ri=RyeY": ——F————>exp(nT),, i€{0,...,.M —1},
M—1
Rir =[] (R)",
i=0

@ Achievability: E (R) > Eromey (R).

EForney (R) £ Esp (R) + C—-R= ﬁ (5GV (R) - 5GV (C)) .

1—¢
€

where 3 = log (=) and dgv (R) is the smaller solution to

R+ hy(0)—log(2) =0
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Variable-Length Coding with Feedback Stop-Feedback Scheme

Stop-Feedback Scheme

i€{0,... . M-1}__xDe{01} o ye{0.}" _ i=dy
| Enc | EECe) | Dec. |

One bit per message

@ Main difference: decoding can stop at any time.

@ Codebook: M i.i.d.-drawn sequences, each assigned to a message.
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Variable-Length Coding with Feedback Stop-Feedback Scheme

Stop-Feedback Scheme

i€{0,...,M — 1},_|x<i> {01} ey € {01}

i=dy

| Enc. | BSC(e) | Dec. |

One bit per message

@ Main difference: decoding can stop at any time.

@ Codebook: M i.i.d.-drawn sequences, each assigned to a message.

@ This a multi-hypothesis testing problem:

M-1

1 . Per (A)

T = Ri(A)_'EO';e'ﬂij(d_Z)_ M
J=0,571
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Variable-Length Coding with Feedback Stop-Feedback Scheme

Stop-Feedback Scheme

i€{0,... . M-1}__xDe{01} o ye{0.}" _ i=dy
| Enc | EECe) | Dec. |

One bit per message

@ Main difference: decoding can stop at any time.
@ Codebook: M i.i.d.-drawn sequences, each assigned to a message.
@ This a multi-hypothesis testing problem:
M—-1
1 . Per (A)
mo=gp BiA)= 3 mPid=i)= =T
Jj=0,j#i
@ Obstacles:

Q@ M is not fixed as E[N] — oo.
@ Observations are not i.i.d. (?)
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Variable-Length Coding with Feedback Stop-Feedback Scheme

Error Exponent at R =0

@ Define
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Variable-Length Coding with Feedback Stop-Feedback Scheme

Error Exponent at R =0

@ Define

H;: Pr(z)=PF(z), i€{0,...,.M -1}

M
() =P () x(D) (M-1) A () O]
P, (z) R(XO,X1 , X 1,y)Apy|X(y|x ) E)PX(X )

@ Under each H; the elements of z are i.i.d.
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Variable-Length Coding with Feedback Stop-Feedback Scheme

Error Exponent at R =0

@ Define
H;: Pr(z)=PF(z), i€{0,...,.M -1}

M
() =P () x(D) (M-1) A () O]
P, (z) R(XO,X1 , X 1,y)Apy|X(y|x ) E)PX(X )

@ Under each H; the elements of z are i.i.d.
@ Hence, it the limit

—log (R (A)) _ log M — log (Pur)

(}\rflfl)]E N = D; B D;
—log (P,
< E(0) :hmEg[](V]e) =D; £ D = Eromey (0) ,

where
(0)
A (1 (y|a: )
D2 S S S A ety s [2E
20 eX zMex yey
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Variable-Length Coding with Feedback Stop-Feedback Scheme

Lower Bound on F (R)

@ Main idea: Decode using A,
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Variable-Length Coding with Feedback Stop-Feedback Scheme

Lower Bound on F (R)

@ Main idea: Decode using A,

@ Recall we've defined

N; =min< L; (n) > a+log Zexp {L; (n)}

"= i#i
| Pyix (vl | 1)
:glzuol log S, P ([ LI ](j))
YED) Y|X y n X n

@ A, = (N,,d,) is then defined as follows:

N,= min N;, d,=1if N, = N;.
0<i<M—1
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Variable-Length Coding with Feedback Stop-Feedback Scheme

Lower Bound on F (R)

@ Main idea: Decode using A,

@ Recall we've defined

N; =min< L; (n) > a+log Zexp {L; (n)}

"= i#i
| Pyix (vl | 1)
:glzuol log S, P ([ LI ](j))
YED) Y|X y n X n

@ A, = (N,,d,) is then defined as follows:

N,= min N;, d,=1"if N, = N;.
0<i<M—1

Result: Eq [No] S 72425y = Ea (R) 2 Eromey (R)
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Variable-Length Coding with Feedback Stop-Feedback Scheme

The Stop-Feedback Error Exponent

Theorem - Random Coding Stop-Feedback Error Exponent

The random-coding error exponent of the stop-feedback communication setup
with a binary symmetric forward channel is given by

E(R) =B (dev (R) —dav (C)) = E5 (R) + C — R.

Error Exponents — BSC(0.3)

- (R)
ARQ
018 : eme®

Eaun®)
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Summary and Conclusions
Summary and Conclusions

@ We have seen an example as to how hypothesis testing theory can help gain
intuition and prove results in coding theory.

@ New achievable scheme was given for the unlimited feedback case.

@ Results from multi-hypothesis testing were used in order to obtain a tight
bound on the error exponent at zero rate.

@ An optimal multi-hypothesis test was used in order to prove achievability of
an error exponent function for a BSC.

@ This lower bound was then shown to be tight for the BSC case.
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Summary and Conclusions
Summary and Conclusions

@ We have seen an example as to how hypothesis testing theory can help gain
intuition and prove results in coding theory.

@ New achievable scheme was given for the unlimited feedback case.

@ Results from multi-hypothesis testing were used in order to obtain a tight
bound on the error exponent at zero rate.

@ An optimal multi-hypothesis test was used in order to prove achievability of
an error exponent function for a BSC.

@ This lower bound was then shown to be tight for the BSC case.

Thank you!
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More On Multi-hypothesis Testing With
Control
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Hypothesis Testing with Control - Definitions

e A Multihypothesis test with control A is a triplet (N, g, d) where:
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Hypothesis Testing with Control - Definitions

e A Multihypothesis test with control A is a triplet (N, g, d) where:
@ N is the stopping time, N € F, = o (Y1,..., Y, Uy,...,Up).
Q q={aq (Y1, Uk_l)}kzl,...,N is an observation control policy.
© d=d(YN,U") is the decision rule.

@ Assume w > 0 is the loss associated with making the wrong decision.

e The objective: Find a sequential test A = (¢, N, d) that minimizes
the total cost defined as:

V(r) 2E[N +wl{d(U",Y") = error}] = E[N] + wPer.
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Hypothesis Testing with Control - Definitions

e A Multihypothesis test with control A is a triplet (N, g, d) where:
@ N is the stopping time, N € F, = o (Y1,..., Y, Uy,...,Up).
Q ¢={q (YF 1 U1}, _,  isan observation control policy.

© d=d(YN,U") is the decision rule.

@ Assume w > 0 is the loss associated with making the wrong decision.

e The objective: Find a sequential test A = (¢, N, d) that minimizes
the total cost defined as:

V(r) 2E[N +wl{d(U",Y") = error}] = E[N] + wPer.

@ Asymptotic regime: w — oo.
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Minimization of the Cost Using DP

@ Problem (P): Find A = (NN, ¢, d) that minimizes V (7).
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@ Solution - Dynamic Programming:
@ Assume control u has been taken and Y has been observed.
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@ Then the posterior distribution of the hypotheses, ®" (7, y) is given by
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Minimization of the Cost Using DP

@ Problem (P): Find A = (NN, ¢, d) that minimizes V (7).

@ Solution - Dynamic Programming:

@ Assume control u has been taken and Y has been observed.

@ Then the posterior distribution of the hypotheses, ®" (7, y) is given by

u (. Py (y) - Pt (y) - Pir—1 (Y) y
@(“”‘<°ﬁ@ylﬁ@y“’M*zﬂw>)’Veu’

where
QO 7= (mo,...,Tar—1)-

Q p(y) =i, i (v).
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Minimization of the Cost Using DP

@ Problem (P): Find A = (NN, ¢, d) that minimizes V (7).

@ Solution - Dynamic Programming:

@ Assume control u has been taken and Y has been observed.

@ Then the posterior distribution of the hypotheses, ®" (7, y) is given by

u (. Py (y) - Pt (y) - Pir—1 (Y) y
® “’”‘( O ) M) ™ () )’V U,

where
QO 7= (mo,...,Tar—1)-

Q p(y) =i, i (v).

@ Define the operator T%, uw € U, such that for any measurable function
g: Ay — R

(Tug) (x) = / g (% (1)) B () dy.
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Lower Bounds on V* ()

Fact - Solution to Problem (P) (Bertsekas, Shereve 2007)

The optimal value function V* satisfies the fixed point equation:

V* (7) = min {1 + min (T*“V™) () ’je{o?}{%—l} (1—my) w} .
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Lower Bounds on V* ()

Fact - Solution to Problem (P) (Bertsekas, Shereve 2007)

The optimal value function V* satisfies the fixed point equation:

V* (1) = min {1 +min (TV*) (7), min (1—7;) w} .

well ’je{o,..‘l,M—l}
Theorem (Javidi et al. 2013)
Define Duax = max  max D (p{ || pf), and Iinax = max max I(%;p3).
For w > % and arbitrary § € (0,0.5],

v* (7‘[‘) > |:H(7T) — ha (5) — 510% (M — 1)
_ +
log(lz_ff 1) — log (%) R
+ D ]I{maxmglf(s}—K/

v
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Information Acquisition Problem
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Information Acquisition Problem

e Find a test A = (N, ¢, d) with the object to

minimize E [N] subject to Pey < €

@ This is the primal (constrained) version of the previous problem

Theorem - The relation between the stopping time and the value function

(Javidi et al. 2013)

Let E [N?] be the minimal expected number of samples required to
achieve Per < €. Then

E[N] > (1 —ew)(V*(m)—1)

where V* () is the optimal solution to Problem (P) for a prior 7 and cost
for wrong decision w.

v
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More On Fictitious Agent
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VL Coding and Controlled Hypothesis Testing

0 X € X o0 =d
e (6) [Chamnel ]
€n ()
|

‘ Fictitious Agent |

Yi,Yo..., Y0

o Error Probability: Per = 47 Ly Moip (dN #1]0=1).

e Expected Transmission Time: E[N] = 4; ZM 'E[N |6 =i

@ Rate R 2 lO]Eg[%).

o Error exponent: E (R) = lim Supgyy_,oq 71](E)[g]$”).

Q: Is the VL coding problem amenable to hypothesis testing analysis?
A: Yes!
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VL Coding and Controlled Hypothesis Testing, Cont.

0=d

0 X e X® Y ¢ Y=
e (6) [Chamnell—-[Decader}——
€n ()

‘ Fictitious Agent I

Yi,Yo..., Y0

om=[L L . 1]

o b (k) =p (k| e (i)
_ U pt | — Sl . £
© Dus = maxmax D (pl || 7)) = max D(p(- | ) [ p(- | K)) £ Cu.

(S

e I = max max [ (7;p%) =C.
MaX el 7€l (7 p7)
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More On Phase | (Burnashev
Achievability)
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Direct Statement - Phase | (Tentative Decision)

@ For each message i € {0,..., M — 1} randomly draw an infinite Px-
i.i.d. sequence.
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i.i.d. sequence.
o Let (¥ be the codeword assigned to the i'th message.
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Direct Statement - Phase | (Tentative Decision)

@ For each message i € {0,..., M — 1} randomly draw an infinite Px-
i.i.d. sequence.

o Let (¥ be the codeword assigned to the i'th message.
@ For each i € {0,..., M — 1}, define the following two hypotheses:

Hg: Pr (m(i),y) =p (y | a:(")) Px (x(i)) ;

Hi: Pr <m(i),y> =Pr(y) Px (a:(i)> .

S. Ginzach (Technion) December 25th, 2014 41 / 30



Direct Statement - Phase | (Tentative Decision)

@ For each message i € {0,..., M — 1} randomly draw an infinite Px-
i.i.d. sequence.

o Let (¥ be the codeword assigned to the i'th message.

@ For each i € {0,..., M — 1}, define the following two hypotheses:

Pr (m(i),y) =p (y ’ g;(i)) Px (a:(i)) ,

Hi: Pr <m(i),y> =Pr(y) Px (a:(i)> .

.

Hy:

=
o
|
5
=
—
=}
o
—
=
—
&
N
)
S
—
S~—
[
v

(1+e)log(M)}

:im; Zlog T?Jg) > (1+¢€)log (M)
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More On Phase Il (Burnashev
Achievability)
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Achievability - Phase Il (Confirmation)

@ Let m; be the message chosen at Phase I.
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Achievability - Phase Il (Confirmation)

@ Let m; be the message chosen at Phase I.
o Define j* and k* by D (p(- | j*) | p(- | k*)) = Cy
@ Encoder: Sends (j*,j*...) if my is correct and (k*,k*...) o.w.
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Achievability - Phase Il (Confirmation)

Let m, be the message chosen at Phase I.

Define j* and k* by D (p(- | 7*) || p(-| k")) = Cs

Encoder: Sends (j*,j*...) if my is correct and (k*,k*...) o.w.
Decoder: Runs an SPRT with

Hycrx:Yi~p(-|75%),
Hyack:Yi~p(-| k).

S. Ginzach (Technion) December 25th, 2014 43 / 30



Achievability - Phase Il (Confirmation)

@ For large M,

Let m, be the message chosen at Phase I.

Define j* and k* by D (p(- | 7*) || p(-| k")) = Cs

Encoder: Sends (j*,j*...) if my is correct and (k*,k*...) o.w.
Decoder: Runs an SPRT with

Hycrx:Yi~p(-|75%),
Hyack:Yi~p(-| k).

—log (Pe).

E[Nirx) = maEp, [Nkl + nEpy [Nrrg] = Ep, [Nkl S 8

© = E[N]~E[N;1] +E[Ny,] < e ~logFe),

C
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Forney's Error Exponent
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Limited Feedback - " One Shot” Schemes

Example - ARQ scheme:
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Example - ARQ scheme:
@ Codebook: M randomly chosen codewords, each of length n.

@ Encoding: Send the ith codeword periodically to transmit the ith
message.

S. Ginzach (Technion) December 25th, 2014 45 / 30



Limited Feedback - " One Shot” Schemes

Example - ARQ scheme:
@ Codebook: M randomly chosen codewords, each of length n.

@ Encoding: Send the ith codeword periodically to transmit the ith
message.

@ Decoding:

S. Ginzach (Technion) December 25th, 2014 45 / 30



Limited Feedback - " One Shot” Schemes

Example - ARQ scheme:
@ Codebook: M randomly chosen codewords, each of length n.

@ Encoding: Send the ith codeword periodically to transmit the ith
message.

@ Decoding:

e Partition R™ into M decision regions and one erasure area.

®
® ®
®
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Limited Feedback - " One Shot” Schemes

Example - ARQ scheme:
@ Codebook: M randomly chosen codewords, each of length n.

@ Encoding: Send the ith codeword periodically to transmit the ith
message.

@ Decoding:

e Partition R™ into M decision regions and one erasure area.

ik M N
o IfY, /17" € J R sent the stopping bit and decode.
i=0
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Limited Feedback - " One Shot” Schemes

Example - ARQ scheme:
@ Codebook: M randomly chosen codewords, each of length n.

@ Encoding: Send the ith codeword periodically to transmit the ith
message.

@ Decoding:

e Partition R™ into M decision regions and one erasure area.

o If Y(Z_tll)k € U R sent the stopping bit and decode.

o Else, wait for the next n symbols and repeat the process.
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ARQ Scheme - Analysis

o Let

Eip = {Not making the right decision on the kth round} ,
(‘:27]6 = {Making an undetected error on the kth round} .
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ARQ Scheme - Analysis

o Let

Eip = {Not making the right decision on the kth round} ,
(‘:27]6 = {Making an undetected error on the kth round} .

@ Then P (errasure) =P (Ry) =P (&) — P (&) .
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ARQ Scheme - Analysis

o Let

Eip = {Not making the right decision on the kth round} ,
52,k = {Making an undetected error on the kth round} .

@ Then P (errasure) =P (Ry) =P (&) — P (&) .
@ More results:

) QL K o e rowds) = g
. ZI?S[(J]\\T? _ e pr, )= R(1-P(R,))
Pou=Y (P(Ry)" "P(&)
k=1
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ARQ scheme - Analysis

o Let

Eip = {Not making the right decision on the kth round}
5’27;€ = {Making an undetected error on the kth round}

o Then P (errasure) =P (Ry) =P (&1) — P (&) — 0.
@ More results:

E[N] :n,;l kP (stop after k rounds) = TRM)% n.
R :kﬁ[%) - logflM) (1-P(Ry,) logr(f”) 2 p
P =3 (B(Ry)) T P(E) > P (E).
k=1
Eramey (1) =it s log (P (€2).
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Forney's Decision Regions (Forney 1968)

@ Define
RE {y ey
M-1
Ry = (R
m=0

S. Ginzach (Technion)
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Forney's Decision Regions (Forney 1968)

@ Define

. _ n. Py lTm) 3
Rm{yey .Zm/?émp(y'xm)Zexp(nT)}, me{0,...,M—1},

M—-1
Rir= [ (Rh)",

m=0

and ¢; (R, T) £ limsup,,_,, [—11log (P(&))].
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Forney's Decision Regions (Forney 1968)

@ Define

x n. Py lTm) 3
Ry, {yey .Zm/?ﬁmp(ylxm)Zexp(nT)}, me{0,...,M—1},

and ¢; (R, T) £ limsup,,_,, [—11log (P(&))].

Theorem - Forney's error exponents for the BSC(¢) (Somekh-Baruch,Merhav

2011)

Let B = log (=¢). If R <log(2) — hs (e—l— %) then e; (R,T) > 0 and

E

ez (R,T) =e1 (R,T)+ T. Otherwise e; (R,T) = 0.

@ = If 0 <e; (R,T)— 0 then and Eromey (R) = €2 (R, T) =T
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Forney's Achievable Error Exponent (Forney 1968)

@ Define dgv (R) = {J: ha (§) = log (2) — R}.
@ Then,

T
R ~log (2) — he (e+ ,3>
& Efomey () =T =03 (dev (R) — dev (C)) = Eg (R) + C — R.
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Forney's Achievable Error Exponent (Forney 1968)

@ Define dgv (R) = {d: ha (9)

@ Then,

=log (2) — R}.

R ~log (2) — he (e+ g)

= EForney (R) -

T R‘Jﬂ (5GV (R) —

dev (C)) =

Error Exponents — BSC(0.3)

== Earg®)||
- - -EyR

Eaun®) |

el S

0
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Reliability Func. (Stop Feedback)
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Lower Bound on F (R)

@ Main idea: Decode using A,
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Lower Bound on F (R)

@ Main idea: Decode using A,

@ Recall we've defined

= mi . > .
N; min L;(n) > a+log gexp {L; (n)}
j#i

=min < lo M “
T >0 {1 & Ej;ﬁi P; ([Z]n)] =
' Py ix ([y}n | [X]ni)
= min < log ‘ =
n20 >z Prix (Mn | [X]”j))

o A, =(N,,d,) is then defined as follows:

N,= min N;, d,=1if N, = N;.
a 0<i<M—1 % a a i
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Lower Bound - Proof Outline, Cont.

@ It holds that a < —log P,.
0EQ[NG]:ZZOZOPQ(N()ETL)ST_l+ZOO P()(N()Zn)

n=n-+1
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Lower Bound - Proof Outline, Cont.

@ It holds that a < —log P,.

o ]E()[Na] :Zzozopo(Nozn) §ﬁ+zn=ﬁ+1P0(N02n).

@ For arbitrarily small § > 0, take
n £ max,ecy {IOgTM >log (2) — ha (e + %) — (5}.
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Lower Bound - Proof Outline, Cont.

@ It holds that a < —log P,.
o ]EQ [Na] = Z;l.oz(]PO(NO > n) < T_l+zzo=ﬁ+1po(N0 > n)
@ For arbitrarily small § > 0, take
n £ max,ecy {IOgTM >log (2) — ha (e + %) — (5}.
@ Then:

Q@ n— o0 as M — oo.
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Lower Bound - Proof Outline, Cont.

@ It holds that a < —log P,.
© Eg[Ny|=>"0Po(No>n)<n+ Z:’zﬁﬂ Py(No>mn).
@ For arbitrarily small § > 0, take
7 2 max,en {lgTM > log (2) — hs (e—l— %) . 5}.
@ Then:
Q@ 7 —o0as M — 0.

_ — log P
< a < g Ler
e n= EForney(RJ"é) - EForney(R+5).
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Lower Bound - Proof Outline, Cont.

@ It holds that a < —log P,.
o ]EQ [Na] = Z;l.oz(]PO(NO > n) < T_l+zzo=ﬁ+1po(N0 > TL)
@ For arbitrarily small § > 0, take
n £ max,ecy {IOgTM >log (2) — ha (e + %) — (5}.
@ Then:

Q@ n— o0 as M — oo.

_ a — log Per
e n S EForney(RJ"é) S EForne(;%R+5).
© Foranyng>n+1
P (4)
Y|X [Y]no | [X}no
Y
Zj;éi PY|X ([Y]no I [X]n0>

@ = Asymptotically, Eq [N,] < ,5;107%’%) = E,(R) 2 Eromey (R).

Po(NQZTL())SPO IOg
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Upper Bound on E (R) - Proof Outline

p(yl=®)

@ Define A; (N) £ log {W

] and Q5 2 {d=i,N <n}.

S. Ginzach (Technion) December 25th, 2014 53 / 30



Upper Bound on E (R) - Proof Outline

p(yl=®)

@ Define A; (N) £ log {W

] and Q5 2 {d=i,N <n}.

@ On the one hand P, (A) = Z]Aiglﬁéz Pj(d=1).
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Upper Bound on E (R) - Proof Outline

p(yl=®)

@ Define A; (N) £ log {W

] and Q5 2 {d=i,N <n}.

@ On the one hand P, (A) = S2M ! Pj(d=1).

j=0,j#1
@ On the other hand:
M—1 M-1
Y Pid=i)= > Y I{z:d=i}P;(2)
j=0,j#i j=0,j#i z
- Y Pi(2)
—Ei H{Zd—Z}R(z)]

>e P, <Qi,n, stig {A; (n) < a}) )
° = p.(A)e* >1—p.(A) = Pi(N >n)— P (sup, <, {Ai (n) > a}).
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Upper bound on E (R) - Proof Outline, Cont.

@ Using Markov ineq. we obtaine

M >1—p.(A)(e*—=1)— P, <sup {A; (n) > a}) .

n n<n
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Upper bound on E (R) - Proof Outline, Cont.

@ Using Markov ineq. we obtaine

M >1—p.(A)(e*—=1)— P, <sup {A; (n) > a}) .

n n<n

@ Takea = —(1—d1)log (pe (A)).
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Upper bound on E (R) - Proof Outline, Cont.

@ Using Markov ineq. we obtaine

@ >1-—pe(A)(e"=1)-F <7SLEIZ {A; (n) > a}) .
@ Takea £ —(1—61)log (pe (A)).

@ Take 2 = (14 d2) E [N], assume by contradiction that E (R) > Efomey (R)
and get that

P, (sup {A; (n) > a}> - 0.

n<n

S. Ginzach (Technion) December 25th, 2014 54 / 30



Upper bound on E (R) - Proof Outline, Cont.

Using Markov ineq. we obtaine

M >1—p.(A)(e*—=1)— P, <sup {A; (n) > a}) .

n n<n

@ Takea = —(1—d1)log (pe (A)).

@ Take 2 = (14 d2) E [N], assume by contradiction that E (R) > Efomey (R)
and get that

P, (sup {A; (n) > a}> - 0.

n<n

@ Conclude that E (R) < Efomey (R).
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