Sequential Hypothesis Testing and Variable Length Coding

Graduate Seminar

Shai Ginzach

Supervised by Igal Sason and Neri Merhav

Department of Electrical Engineering Technion - Israel Institute of Technology Haifa, Israel

December 25th, 2014

Outline

- Sequential Hypothesis Testing
 - Sequential Binary Hypothesis Testing
 - Multi-hypothesis Testing
 - Multi-hypothesis Testing with Control

Outline

- Sequential Hypothesis Testing
 - Sequential Binary Hypothesis Testing
 - Multi-hypothesis Testing
 - Multi-hypothesis Testing with Control
- Variable-Length Coding with Feedback
 - Unlimited Feedback
 - ARQ Schemes
 - Stop-Feedback Scheme

Outline

- Sequential Hypothesis Testing
 - Sequential Binary Hypothesis Testing
 - Multi-hypothesis Testing
 - Multi-hypothesis Testing with Control
- Variable-Length Coding with Feedback
 - Unlimited Feedback
 - ARQ Schemes
 - Stop-Feedback Scheme
- 3 Summary and Conclusions

Sequential Binary Hypothesis Testing - Setting

Observation sequence:

$$Y_1, Y_2, Y_3, \dots \stackrel{\mathsf{i.i.d.}}{\sim} P.$$

Sequential Binary Hypothesis Testing - Setting

Observation sequence:

$$Y_1, Y_2, Y_3, \dots \stackrel{\mathsf{i.i.d.}}{\sim} P.$$

• Two hypotheses:

$$\left\{ \begin{array}{ll} H_0 & : P = P_0, \\ H_1 & : P = P_1. \end{array} \right.$$

Where P_0 and P_1 are completely known distinct probability measures.

<ロ > < 部 > < き > < き > 毛 = り < で

Sequential Binary Hypothesis Testing - Setting

Observation sequence:

$$Y_1, Y_2, Y_3, \dots \stackrel{\mathsf{i.i.d.}}{\sim} P.$$

• Two hypotheses:

$$\begin{cases} H_0 : P = P_0, \\ H_1 : P = P_1. \end{cases}$$

Where P_0 and P_1 are completely known distinct probability measures.

• *Priors*: $\mathbb{P}\{H_0\} = \pi_0$, and $\mathbb{P}\{H_1\} = \pi_1 = 1 - \pi_0$.

Sequential Binary Hypothesis Testing - Basic Components

Definition - Sequential Binary Hypothesis Test

A Sequential binary hypothesis test is a pair $\Delta = (N, d)$ where:

- N is the stopping time (such that $\{N=n\}, \{N>n\} \in \sigma(Y_1^n)$).
- $d: Y_1^N \to \{H_0, H_1\}$ is the terminal decision rule.

Sequential Binary Hypothesis Testing - Basic Components

Definition - Sequential Binary Hypothesis Test

A Sequential binary hypothesis test is a pair $\Delta = (N, d)$ where:

- N is the stopping time (such that $\{N=n\}, \{N>n\} \in \sigma(Y_1^n)$).
- $d: Y_1^N \to \{H_0, H_1\}$ is the terminal decision rule.
- Two types of errors:
 - ① Type 1 error: Reject the null hypothesis when correct

$$\alpha \triangleq P_0 (d = H_1)$$
.

2 Type 2 error: Accept the null hypothesis when incorrect

$$\beta \triangleq P_1 (d = H_0)$$
.

Define the Log Likelihood Ratio function (LLR):

$$L_n(y_1^n) \triangleq \log \left[\frac{P_0(y_1^n)}{P_1(y_1^n)} \right] = \sum_{i=1}^n \log \left[\frac{P_0(y_i)}{P_1(y_i)} \right]$$

5 / 30

Define the Log Likelihood Ratio function (LLR):

$$L_n(y_1^n) \triangleq \log \left[\frac{P_0(y_1^n)}{P_1(y_1^n)} \right] = \sum_{i=1}^n \log \left[\frac{P_0(y_i)}{P_1(y_i)} \right]$$

ullet Select two boundary values A and B such that 0 < B < 1 < A

< □ ▶ ◀륜 ▶ ◀분 ▶ 분들 ∽ QC

• Define the Log Likelihood Ratio function (LLR):

$$L_n(y_1^n) \triangleq \log \left[\frac{P_0(y_1^n)}{P_1(y_1^n)} \right] = \sum_{i=1}^n \log \left[\frac{P_0(y_i)}{P_1(y_i)} \right]$$

• Select two boundary values A and B such that 0 < B < 1 < A

Definition - SPRT (Wald 1943)

The Sequential Probability Ratio Test (SPRT) $\Delta_{SPRT} \triangleq (N_{SPRT}, d_{SPRT})$ is defined as follows:

$$\begin{split} N_{\mathsf{SPRT}} &\triangleq \min \left\{ n \in \mathbb{N} \colon L_n\left(Y_1^n\right) \leq \log\left(B\right) \quad \text{or} \quad L_n\left(Y_1^n\right) \geq \log\left(A\right) \right\} \\ d_{\mathsf{SPRT}} &\triangleq \left\{ \begin{array}{ll} H_1 & \text{if} \quad L_{N_{\mathsf{SPRT}}}\left(Y_1^{N_{\mathsf{SPRT}}}\right) \leq \log\left(B\right) \\ H_0 & \text{if} \quad L_{N_{\mathsf{SPRT}}}\left(Y_1^{N_{\mathsf{SPRT}}}\right) \geq \log\left(A\right) \end{array} \right. \end{split}$$

S. Ginzach (Technion)

December 25th, 2014 5 / 30

• Define $\bar{N} \triangleq \min \{ n \in \mathbb{N} \colon L_n \ge \log(A) \}$. Then,

$$\mathbb{E}_{P_0}\left[N_{\mathsf{SPRT}}\right] \le \mathbb{E}_{P_0}\left[\bar{N}\right] \le \frac{\log\left(A\right)}{D\left(P_0 \parallel P_1\right)} \le \frac{-\log\left(\alpha\right)}{D\left(P_0 \parallel P_1\right)}.$$

• Define $\bar{N} \triangleq \min \{ n \in \mathbb{N} \colon L_n \ge \log(A) \}$. Then,

$$\mathbb{E}_{P_0}\left[N_{\mathsf{SPRT}}\right] \leq \mathbb{E}_{P_0}\left[\bar{N}\right] \leq \frac{\log\left(A\right)}{D\left(P_0 \parallel P_1\right)} \leq \frac{-\log\left(\alpha\right)}{D\left(P_0 \parallel P_1\right)}.$$

Similarly,
$$\mathbb{E}_{P_1}[N_{\mathsf{SPRT}}] \leq \frac{-\log(B)}{D(P_1\|P_0)} \leq \frac{-\log(\beta)}{D(P_1\|P_0)}$$

6 / 30

• Define $\bar{N} \triangleq \min \{ n \in \mathbb{N} \colon L_n \ge \log(A) \}$. Then,

$$\mathbb{E}_{P_0}\left[N_{\mathsf{SPRT}}\right] \le \mathbb{E}_{P_0}\left[\bar{N}\right] \le \frac{\log\left(A\right)}{D\left(P_0 \parallel P_1\right)} \le \frac{-\log\left(\alpha\right)}{D\left(P_0 \parallel P_1\right)}.$$

Similarly,
$$\mathbb{E}_{P_1}\left[N_{\mathsf{SPRT}}\right] \leq \tfrac{-\log(B)}{D(P_1\|P_0)} \leq \tfrac{-\log(\beta)}{D(P_1\|P_0)}$$

Theorem - Optimality of the SPRT (Wald & Wolfowitz 1953)

Let $\Delta_{\mathsf{SPRT}} = (N_{\mathsf{SPRT}}, d_{\mathsf{SPRT}})$ be Wald's SPRT with error probabilities α_{SPRT} and β_{SPRT} , and let $\Delta' = (N', d')$ be any other sequential decision rule with finite $\mathbb{E}_{P_1}\left[N'\right], \mathbb{E}_{P_0}\left[N'\right]$ and error probabilities α' and β' satisfying

$$\alpha' < \alpha_{\mathsf{SPRT}}$$
 and $\beta' < \beta_{\mathsf{SPRT}}$.

Then

$$\mathbb{E}_{P_1}\left[N'\right] \geq \mathbb{E}_{P_1}\left[N_{\mathsf{SPRT}}\right], \quad \mathbb{E}_{P_0}\left[N'\right] \geq \mathbb{E}_{P_0}\left[N_{\mathsf{SPRT}}\right].$$

٩ㅂ▷٩☞▷٩至▷٩之▷ = */딱

Sequential Multi-hypothesis Testing - Setting

Observation sequence:

$$\mathbf{Y}_1, \mathbf{Y}_2, \mathbf{Y}_3, \dots \stackrel{\mathsf{i.i.d.}}{\sim} P.$$

where \mathbf{Y}_i is an l-valued random vector ($\mathbf{Y}_i = (Y_{i.1} \dots, Y_{i.l})$).

• Define M(>2) hypotheses:

$$H_i: P = P_i, i \in \{0, \dots, M-1\}.$$

where P_i are completely known distinct probability measures.

• Priors: $\pi = \{\pi_0, \dots, \pi_{M-1}\}$ where $\pi_i = \mathbb{P}\{H_i\}$

Sequential Multi-hypothesis Testing - Setting

Observation sequence:

$$\mathbf{Y}_1, \mathbf{Y}_2, \mathbf{Y}_3, \dots \overset{\mathsf{i.i.d.}}{\sim} P.$$

where \mathbf{Y}_i is an l-valued random vector $(\mathbf{Y}_i = (Y_{i,1}, \dots, Y_{i,l}))$.

• Define M (> 2) hypotheses:

$$H_i: P = P_i, i \in \{0, \dots, M-1\}.$$

where P_i are completely known distinct probability measures.

- ullet Priors: $\pi=\{\pi_0\ldots,\pi_{M-1}\}$ where $\pi_i=\mathbb{P}\left\{H_i\right\}$
- A Multi-hypothesis test Δ is a pair (N,d) where N is the stopping time and d is the decision rule.

4 D > 4 A > 4 E > 4 E > 5 E = 900

• Let $\alpha_{ji}(\Delta) = P_j(d=i)$ be the probability of accepting the hypothesis H_i when H_j is true (defined for $j \neq i$).

◆□▶ ◆圖▶ ◆夏▶ ◆夏▶ 夏|〒 夕久@

- Let $\alpha_{ji}(\Delta) = P_j(d=i)$ be the probability of accepting the hypothesis H_i when H_j is true (defined for $j \neq i$).
- ullet For a multiple hypothesis test Δ , the risk associated with making the decision d=i is defined to be

$$R_{i}(\Delta) = \sum_{j \neq i} \pi_{j} \alpha_{ji}(\Delta).$$

(□▶ ◀鬪▶ ◀불▶ ◀불▶ 臺|= 쒸٩@

- Let $\alpha_{ji}(\Delta) = P_j(d=i)$ be the probability of accepting the hypothesis H_i when H_j is true (defined for $j \neq i$).
- ullet For a multiple hypothesis test Δ , the risk associated with making the decision d=i is defined to be

$$R_{i}\left(\Delta\right) = \sum_{j \neq i} \pi_{j} \alpha_{ji}\left(\Delta\right).$$

• Let $\overline{\mathbf{R}} \triangleq \left(\overline{R}_0, \overline{R}_1, \dots, \overline{R}_{M-1}\right)$ be a vector of positive finite numbers and define:

$$\Delta\left(\overline{\mathbf{R}}\right) \triangleq \left\{\Delta : R_i\left(\Delta\right) \leq \overline{R}_i, i \in \{0, \dots, M-1\}\right\}.$$

< □ > ◀♂ > ◀돌 > ◀돌 > 臺⊨ ♡Q♡

- Let $\alpha_{ji}(\Delta) = P_j(d=i)$ be the probability of accepting the hypothesis H_i when H_j is true (defined for $j \neq i$).
- ullet For a multiple hypothesis test Δ , the risk associated with making the decision d=i is defined to be

$$R_{i}\left(\Delta\right) = \sum_{j \neq i} \pi_{j} \alpha_{ji}\left(\Delta\right).$$

• Let $\overline{\mathbf{R}} \triangleq (\overline{R}_0, \overline{R}_1, \dots, \overline{R}_{M-1})$ be a vector of positive finite numbers and define:

$$\Delta\left(\overline{\mathbf{R}}\right) \triangleq \left\{\Delta : R_i\left(\Delta\right) \leq \overline{R}_i, i \in \{0, \dots, M-1\}\right\}.$$

ullet Our focus: $\Delta \in oldsymbol{\Delta}\left(\overline{\mathbf{R}}
ight)$ as $R_{\max} riangleq \max_i ar{R}_i o 0$ and M fixed.

◆□▶ ◆□▶ ◆ 글▶ ◆ 臺|■ 釣९○

• Define the LLR of P_i w.r.t. to a (dominating) measure Q by:

$$L_i(n) = \log \left[\frac{P_i(\mathbf{Y}_1, \dots, \mathbf{Y}_n)}{Q(\mathbf{Y}_1, \dots, \mathbf{Y}_n)} \right], \quad i \in \{0, \dots, M-1\}.$$

• Define the LLR of P_i w.r.t. to a (dominating) measure Q by:

$$L_i(n) = \log \left[\frac{P_i(\mathbf{Y}_1, \dots, \mathbf{Y}_n)}{Q(\mathbf{Y}_1, \dots, \mathbf{Y}_n)} \right], \quad i \in \{0, \dots, M-1\}.$$

• Let a_i , $(i \in \{0, ..., M-1\})$ be positive threshold values.

◆ロ → ◆団 → ◆ 圭 → ◆ 圭 | ● り へ ○ ○

9 / 30

ullet Define the *LLR* of P_i w.r.t. to a (dominating) measure Q by:

$$L_i(n) = \log \left[\frac{P_i(\mathbf{Y}_1, \dots, \mathbf{Y}_n)}{Q(\mathbf{Y}_1, \dots, \mathbf{Y}_n)} \right], \quad i \in \{0, \dots, M-1\}.$$

- Let a_i , $(i \in \{0, ..., M-1\})$ be positive threshold values.
- Define the stopping times

$$N_{i} = \min_{n \geq 0} \left\{ L_{i}\left(n\right) \geq a_{i} + \log \left(\sum_{j \neq i} \exp \left(L_{j}\left(n\right)\right) \right) \right\},\,$$

9 / 30

• Define the LLR of P_i w.r.t. to a (dominating) measure Q by:

$$L_i(n) = \log \left[\frac{P_i(\mathbf{Y}_1, \dots, \mathbf{Y}_n)}{Q(\mathbf{Y}_1, \dots, \mathbf{Y}_n)} \right], \quad i \in \{0, \dots, M-1\}.$$

- Let a_i , $(i \in \{0, ..., M-1\})$ be positive threshold values.
- Define the stopping times

$$N_{i} = \min_{n \geq 0} \left\{ L_{i}\left(n\right) \geq a_{i} + \log \left(\sum_{j \neq i} \exp\left(L_{j}\left(n\right)\right)\right) \right\},\,$$

Definition - Δ_a (Baum & Veeravalli 1994, Fishman 1987)

Let $\Delta_a = (N_a, d_a)$ be a sequential test defined by:

$$N_a = \min_{0 \le i \le M-1} N_i, \quad d_a = i^* \text{ if } N_a = N_{i^*}.$$

S. Ginzach (Technion)

Optimality of Δ_a

• Define $D_i \triangleq \min_{j \neq i} D(P_i \parallel P_j)$.

Optimality of Δ_a

• Define $D_i \triangleq \min_{j \neq i} D(P_i \parallel P_j)$.

Theorem - Optimality of Δ_a (Dragalin *et al. 2000*)

1 For all $i \in \{0, 1, \dots M - 1\}$

$$\inf_{\Delta \in \mathbf{\Delta}(\overline{\mathbf{R}})} \mathbb{E}_{i} \left[N \right] \ge \left[\frac{-\log \left(\overline{R_{i}} \right)}{D_{i}} \right] (1 + o(1))$$

2 If $a_i = \log \left[\frac{\pi_i}{R_i}\right]$ then

$$\mathbb{E}_i\left[N_a\right] \sim \frac{-\log\left(\overline{R_i}\right)}{D_i}$$

as $\overline{R}_{\max} \to 0$ for all $m \ge 1$.

- Observation sequence: $Y_1, Y_2, Y_3, \ldots \in \mathcal{Y}^{\infty}$.
- Hypotheses: $\{H_i, i = 0, \dots, M-1\}.$
- Priors: $\mathbb{P}\{H_i\} = \pi_i, \quad i \in \{0, \dots, M-1\}.$

- Observation sequence: $Y_1, Y_2, Y_3, \ldots \in \mathcal{Y}^{\infty}$.
- Hypotheses: $\{H_i, i = 0, \dots, M-1\}.$
- Priors: $\mathbb{P}\{H_i\} = \pi_i, \quad i \in \{0, \dots, M-1\}.$
- Control sequence: $U_1, U_2, U_3, \ldots \in \mathcal{U}^{\infty}, \quad |\mathcal{U}| < \infty.$

- Observation sequence: $Y_1, Y_2, Y_3, \ldots \in \mathcal{Y}^{\infty}$.
- Hypotheses: $\{H_i, i = 0, \dots, M-1\}.$
- Priors: $\mathbb{P}\{H_i\} = \pi_i, \quad i \in \{0, \dots, M-1\}.$
- Control sequence: $U_1, U_2, U_3, \ldots \in \mathcal{U}^{\infty}, \quad |\mathcal{U}| < \infty.$
 - $U_n = q(Y_1, \dots, Y_{n-1}, U_1, \dots, U_{n-1})$ [Causality Constraint]

- Observation sequence: $Y_1, Y_2, Y_3, \ldots \in \mathcal{Y}^{\infty}$.
- Hypotheses: $\{H_i, i = 0, \dots, M-1\}.$
- Priors: $\mathbb{P}\{H_i\} = \pi_i, \quad i \in \{0, \dots, M-1\}.$
- Control sequence: $U_1, U_2, U_3, \ldots \in \mathcal{U}^{\infty}, \quad |\mathcal{U}| < \infty.$
 - $U_n = q(Y_1, \dots, Y_{n-1}, U_1, \dots, U_{n-1})$ [Causality Constraint]
 - Assume: $Y_n \perp (Y^{n-1}, U^{n-1})$

◆ロト ◆団ト ◆豆ト ◆豆ト 亳1 900

- Observation sequence: $Y_1, Y_2, Y_3, \ldots \in \mathcal{Y}^{\infty}$.
- Hypotheses: $\{H_i, i = 0, \dots, M-1\}.$
- Priors: $\mathbb{P}\{H_i\} = \pi_i, \quad i \in \{0, \dots, M-1\}.$
- Control sequence: $U_1, U_2, U_3, \ldots \in \mathcal{U}^{\infty}, \quad |\mathcal{U}| < \infty.$
 - $U_n = q(Y_1, \dots, Y_{n-1}, U_1, \dots, U_{n-1})$ [Causality Constraint]
 - Assume: $Y_n \perp (Y^{n-1}, U^{n-1})$
- Observation kernel:

$$p_i^{u_n}(y_n) \triangleq \mathbb{P}\left(Y_n = y_n \mid H_i, U_n = u_n\right).$$

Hypothesis Testing with Control - Definitions

ullet A Multi-hypothesis test with control Δ is a triplet (q,N,d) where:

Hypothesis Testing with Control - Definitions

- ullet A Multi-hypothesis test with control Δ is a triplet (q,N,d) where:

< □ > < 圖 > < 필 > < 필 > 조림 = 이익()

Hypothesis Testing with Control - Definitions

- ullet A Multi-hypothesis test with control Δ is a triplet (q,N,d) where:

 - ② N is the stopping time, $N \in \mathcal{F}_n = \sigma(Y_1, \dots, Y_n, U_1, \dots, U_n)$.
 - \bullet $d = d(Y^N, U^N)$ is the decision rule.

Hypothesis Testing with Control - Definitions

- ullet A Multi-hypothesis test with control Δ is a triplet (q,N,d) where:

 - ② N is the stopping time, $N \in \mathcal{F}_n = \sigma(Y_1, \ldots, Y_n, U_1, \ldots, U_n)$.
- The Objective: Find Δ that:

minimize $\mathbb{E}[N]$ subject to $P_{\text{er}} \leq \epsilon$ [Max. Information]

Hypothesis Testing with Control - Definitions

- A Multi-hypothesis test with control Δ is a triplet (q, N, d) where:

 - ② N is the stopping time, $N \in \mathcal{F}_n = \sigma(Y_1, \dots, Y_n, U_1, \dots, U_n)$.
- The Objective: Find Δ that:

minimize $\mathbb{E}[N]$ subject to $P_{\mathsf{er}} \leq \epsilon \quad [\mathrm{Max.\ Information}]$

- Let $\mathbb{E}\left[N^{\star}\right]$ be the minimal expected number of samples required to achieve $P_{\mathrm{er}} < \epsilon$.
- Achievablility: Chernoff (1960), Veeravalli (2012), Javidi (2013)...

4 ロ ト 4 周 ト 4 至 ト 4 目 ト タ の へ

Lower Bounds on $\mathbb{E}\left[N^{\star}\right]$

Theorem (Javidi et al. 2013)

For $\frac{\log(M)}{I_{\max}} < w$ and arbitrary $\delta \in (0, 0.5]$:

$$\mathbb{E}\left[N^{\star}\right] \ge \left(1 - \epsilon w\right) \left[\frac{H\left(\theta\right) - \left[h_{2}\left(\delta\right) + \delta\log\left(M - 1\right)\right]}{I_{\max}} + \frac{\log\left(\frac{\delta}{1 - \delta}\right) - \log\left(\frac{w^{-1}}{1 - w^{-1}}\right)}{D_{\max}} \mathbb{I}\left\{\max_{i} \pi_{i} \le 1 - \delta\right\} - \hat{K}'\right]^{+}$$

where
$$D_{\max} = \max_{i,ju} D\left(p_i^u \parallel p_j^u\right)$$
, and $I_{\max} = \max_{u,\tilde{\pi}} I\left(\tilde{\pi}; p_{\tilde{\pi}}^u\right)$.

ロ > 4回 > 4 E > 4 E > を E = か 9 C C

Lower Bounds on $\mathbb{E}\left[N^{\star}\right]$

Theorem (Javidi et al. 2013)

For $\frac{\log(M)}{I_{\max}} < w$ and arbitrary $\delta \in (0, 0.5]$:

$$\mathbb{E}\left[N^{\star}\right] \geq \left(1 - \epsilon w\right) \left[\frac{H\left(\theta\right) - \left[h_{2}\left(\delta\right) + \delta\log\left(M - 1\right)\right]}{I_{\max}} + \frac{\log\left(\frac{\delta}{1 - \delta}\right) - \log\left(\frac{w^{-1}}{1 - w^{-1}}\right)}{D_{\max}} \mathbb{I}\left\{\max_{i} \pi_{i} \leq 1 - \delta\right\} - \hat{K}'\right]^{+}$$

where
$$D_{\max} = \max_{i,ju} D\left(p_i^u \parallel p_j^u\right)$$
, and $I_{\max} = \max_{u,\tilde{\pi}} I\left(\tilde{\pi}; p_{\tilde{\pi}}^u\right)$.

• Remainder [Fano's Inequality]: Let δ be the error probability of the estimator $\hat{\theta}$ of θ . Then

$$H(\theta \mid \hat{\theta}) \le h_2(\delta) + \delta \log (M - 1)$$

4日 > 4日 > 4日 > 4日 > 4日 = 990

Lower Bounds on $\mathbb{E}\left[N^{\star}\right]$

Theorem (Javidi et al. 2013)

For $\frac{\log(M)}{I_{\max}} < w$ and arbitrary $\delta \in (0, 0.5]$:

$$\mathbb{E}\left[N^{\star}\right] \ge \left(1 - \epsilon w\right) \left[\frac{H\left(\theta\right) - \left[h_{2}\left(\delta\right) + \delta\log\left(M - 1\right)\right]}{I_{\max}} + \frac{\log\left(\frac{\delta}{1 - \delta}\right) - \log\left(\frac{w^{-1}}{1 - w^{-1}}\right)}{D_{\max}} \mathbb{I}\left\{\max_{i} \pi_{i} \le 1 - \delta\right\} - \hat{K}'\right]^{+}$$

where
$$D_{\max} = \max_{i,ju} D\left(p_i^u \parallel p_j^u\right)$$
, and $I_{\max} = \max_{u,\tilde{\pi}} I\left(\tilde{\pi}; p_{\tilde{\pi}}^u\right)$.

• Remainder [Fano's Inequality]: Let δ be the error probability of the estimator $\hat{\theta}$ of θ . Then

$$H(\theta \mid \hat{\theta}) \le h_2(\delta) + \delta \log (M-1)$$

VL Coding with Perfect Feedback

- *Message*: One of M equiprobable symbols $\theta \in \{0 \dots, M-1\}$.
- Forward Channel: $\mathcal{X} = \{1, \dots, K\}$ and $\mathcal{Y} = \{1, \dots, L\}$.
- Feedback channel: Instantaneous, infinite capacity, noiseless.

◆ロ → ◆部 → ◆ き → ◆ き ー からぐ

VL Coding with Perfect Feedback

- *Message*: One of M equiprobable symbols $\theta \in \{0..., M-1\}$.
- Forward Channel: $\mathcal{X} = \{1, \dots, K\}$ and $\mathcal{Y} = \{1, \dots, L\}$.
- Feedback channel: Instantaneous, infinite capacity, noiseless.
- Coding Algorithm: $X_n(\theta) \triangleq X_n(\theta, Y_1, \dots, Y_{n-1}), \forall \theta, Y_1, \dots, Y_{n-1}$

◆ロト ◆団ト ◆豆ト ◆豆ト を目す からぐ

VL Coding with Perfect Feedback

- *Message*: One of M equiprobable symbols $\theta \in \{0..., M-1\}$.
- Forward Channel: $\mathcal{X} = \{1, \dots, K\}$ and $\mathcal{Y} = \{1, \dots, L\}$.
- Feedback channel: Instantaneous, infinite capacity, noiseless.
- Coding Algorithm: $X_n(\theta) \triangleq X_n(\theta, Y_1, \dots, Y_{n-1}), \forall \theta, Y_1, \dots, Y_{n-1}$
- Decoding Criterion: A pair (N,d), where N is the stopping time and d is the decision function.

◆ロ → ◆母 → ◆き → ◆き → を き を り へ ②

- For block codes with fixed block-length n:
 - Rate: $R \triangleq \frac{\log(M)}{n}$.
 - 2 Error Exponent: $E(R) = \limsup_{n \to \infty} \frac{-\log(P_{er})}{n}$.

- For block codes with fixed block-length n:
 - Rate: $R \triangleq \frac{\log(M)}{n}$.
 - 2 Error Exponent: $E(R) = \limsup_{n \to \infty} \frac{-\log(P_{er})}{n}$.
- For VL codes:

 - **2** Error Exponent: $E(R) = \limsup_{\mathbb{E}[N] \to \infty} \frac{-\log(P_{\text{er}})}{\mathbb{E}[N]}$.

- For block codes with fixed block-length n:
 - Rate: $R \triangleq \frac{\log(M)}{n}$.
 - 2 Error Exponent: $E(R) = \limsup_{n \to \infty} \frac{-\log(P_{er})}{n}$.
- For VL codes:
 - Rate: $R \triangleq \frac{\log(M)}{\mathbb{E}[N]}$.
 - ② Error Exponent: $E(R) = \limsup_{\mathbb{E}[N] \to \infty} \frac{-\log(P_{\text{er}})}{\mathbb{E}[N]}$.

Q: Is the VL coding problem amenable to hypothesis testing analysis?

◆ロ > ◆昼 > ◆昼 > 昼 | 単 | ● | ● | ● | ● | り < ○

- For block codes with fixed block-length n:
 - Rate: $R \triangleq \frac{\log(M)}{n}$.
 - 2 Error Exponent: $E(R) = \limsup_{n \to \infty} \frac{-\log(P_{er})}{n}$.
- For VL codes:

 - **2** Error Exponent: $E(R) = \limsup_{\mathbb{E}[N] \to \infty} \frac{-\log(P_{\text{er}})}{\mathbb{E}[N]}$.

Q: Is the VL coding problem amenable to hypothesis testing analysis?

A: Yes!

$$\underbrace{i \in 0, \dots, M-1}_{\text{Encoder}} \underbrace{\mathbf{X} \in \mathcal{X}^{\infty}}_{\text{DMC}} \underbrace{\mathbf{Y} \in \mathcal{Y}^{\infty}}_{\text{Decoder}} \underbrace{\hat{i} = d_{N}}_{\hat{i}}$$

- $\bullet \ \pi = \left[\frac{1}{M}, \frac{1}{M}, \dots, \frac{1}{M}\right].$
- $D_{\max} = \max_{j,k} D(p(\cdot \mid j) \parallel p(\cdot \mid k)) \triangleq C_1.$
- $\bullet \ I_{\max} = \max_{P_Y} I(X;Y) = C.$

《ロ → 《部 → 《注 → 《注 → 注 目 ※ の Q ()

Recap:

Theorem (Javidi et al. 2013)

For $\frac{\log(M)}{I_{\max}} < w < 1/\epsilon$ and arbitrary $\delta \in (0, 0.5]$:

$$\mathbb{E}\left[N^{\star}\right] \ge \left(1 - \epsilon w\right) \left[\frac{H\left(\pi\right) - h_2\left(\delta\right) - \delta\log\left(M - 1\right)}{I_{\max}} + \frac{\log\left(\frac{1 - w^{-1}}{w^{-1}}\right) - \log\left(\frac{1 - \delta}{\delta}\right)}{D_{\max}} \mathbb{I}\left\{\max_{i} \pi_i \le 1 - \delta\right\} - \hat{K}'\right]^{+}$$

where
$$D_{\max} = \max_{i,ju} D\left(p_i^u \parallel p_j^u\right)$$
, and $I_{\max} = \max_{u,\tilde{\pi}} I\left(\tilde{\pi}; p_{\tilde{\pi}}^u\right)$.

◆ロト 4周ト 43ト 43ト 314 900

Recap:

Theorem (Javidi et al. 2013)

For
$$w = \frac{1}{\epsilon \log \left(\frac{M}{\epsilon} \right)}$$
 and $\delta = \frac{1}{\log \left(\frac{M}{\epsilon} \right)}$:

$$\mathbb{E}\left[N^{\star}\right] \gtrsim \left(1 - \frac{1}{\log\left(\frac{M}{\epsilon}\right)}\right) \left[\frac{\log\left(M\right) - h_2\left(\frac{1}{\log\left(\frac{M}{\epsilon}\right)}\right) - \frac{\log\left(M - 1\right)}{\log\left(\frac{M}{\epsilon}\right)}}{C} - \hat{K}'\right] + \frac{-\log\left(\epsilon\log\left(\frac{M}{\epsilon}\right)\right) - \log\left(\log\left(\frac{M}{\epsilon}\right)\right)}{C_1} \mathbb{I}\left\{\frac{1}{M} \leq 1 - \frac{1}{\log\left(\frac{M}{\epsilon}\right)}\right\}^{+}$$

<ロ> <部> <き> <き> をき をき をき を を で を で で の へ で 。

Theorem (Javidi et al. 2013)

For large M and small ϵ ,

$$\mathbb{E}\left[N^{\star}\right] \gtrsim \frac{\log\left(M\right)}{C} + \frac{-\log\left(P_{\mathsf{er}}\right)}{C_{1}} + O\left(\log\left(\log\left(\frac{M}{\epsilon}\right)\right)\right).$$

Theorem (Javidi et al. 2013)

For large M and small ϵ ,

$$\mathbb{E}\left[N^{\star}\right] \gtrsim \frac{\log\left(M\right)}{C} + \frac{-\log\left(P_{\mathsf{er}}\right)}{C_{1}} + O\left(\log\left(\log\left(\frac{M}{\epsilon}\right)\right)\right).$$

Equivalently,

$$E(R) \lesssim C_1 \left(1 - \frac{R}{C}\right) \triangleq E_{\mathsf{B}}(R).$$

Theorem (Javidi et al. 2013)

For large M and small ϵ ,

$$\mathbb{E}\left[N^{\star}\right] \gtrsim \frac{\log\left(M\right)}{C} + \frac{-\log\left(P_{\mathsf{er}}\right)}{C_{1}} + O\left(\log\left(\log\left(\frac{M}{\epsilon}\right)\right)\right).$$

Equivalently,

$$E(R) \lesssim C_1 \left(1 - \frac{R}{C}\right) \triangleq E_{\mathsf{B}}(R).$$

Theorem (Burnashev 1976)

For any transmission method over a DMC with perfect feedback and any $R \in \left[0,C\right]$

$$E(R) = E_{\mathsf{B}}(R)$$
.

Achievablity - General Scheme

• Akin to Yamamoto & Itoh (1979).

 \bullet Codebook: For each message $i \in \{0,\dots,M-1\}$ randomly draw an infinite P_{X^-} i.i.d. sequence.

- Codebook: For each message $i \in \{0,\dots,M-1\}$ randomly draw an infinite P_{X^-} i.i.d. sequence.
- ullet Let $x^{(i)}$ be the codeword assigned to the i'th message.

- Codebook: For each message $i \in \{0, \dots, M-1\}$ randomly draw an infinite P_{X^-} i.i.d. sequence.
- ullet Let $x^{(i)}$ be the codeword assigned to the i'th message.
- Define:

$$N_{I}^{i} = \min_{n \ge 0} \left\{ \sum_{k=1}^{n} \log \left[\frac{p\left(y_{k} \mid x_{k}^{(i)}\right)}{\Pr\left(y_{k}\right)} \right] \ge (1 + \epsilon) \log\left(M\right) \right\}.$$

- Codebook: For each message $i \in \{0, \dots, M-1\}$ randomly draw an infinite P_{X^-} i.i.d. sequence.
- ullet Let $x^{(i)}$ be the codeword assigned to the i'th message.
- Define:

$$N_{I}^{i} = \min_{n \geq 0} \left\{ \sum_{k=1}^{n} \log \left[\frac{p\left(y_{k} \mid x_{k}^{(i)}\right)}{\Pr\left(y_{k}\right)} \right] \geq (1 + \epsilon) \log\left(M\right) \right\}.$$

• Decoder: $\Delta_I = (N_I, d_I)$:

$$N_I = \min_{0 < i < M-1} N_I^i, \quad d_I = i^\star \text{ if } N_I = N_I^{i^\star}.$$

ullet Assume $\mathbf{x}^{(0)}$ was transmitted. Then

$$\mathbb{E}\left[N_{I}\right] \leq \mathbb{E}\left[N_{I}^{0}\right] \lesssim \frac{(1+\epsilon)\log\left(M\right)}{C}.$$

• Encoder: Sends $(j^*, j^*...)$ if d_I is correct and $(k^*, k^*...)$ otherwise.

- Encoder: Sends $(j^*, j^*...)$ if d_I is correct and $(k^*, k^*...)$ otherwise.
- Decoder: Runs an SPRT with

$$H_{ACK}: Y_i \sim p(\cdot \mid j^*),$$

 $H_{NACK}: Y_i \sim p(\cdot \mid k^*).$

- Encoder: Sends $(j^*, j^*...)$ if d_I is correct and $(k^*, k^*...)$ otherwise.
- Decoder: Runs an SPRT with

$$H_{ACK}: Y_i \sim p(\cdot \mid j^*),$$

 $H_{NACK}: Y_i \sim p(\cdot \mid k^*).$

• Choose j^{\star} and k^{\star} s.t. $D\left(p\left(\cdot\mid j^{\star}\right)\parallel p\left(\cdot\mid k^{\star}\right)\right)=C_{1}$

- Encoder: Sends $(j^*, j^*...)$ if d_I is correct and $(k^*, k^*...)$ otherwise.
- Decoder: Runs an SPRT with

$$H_{ACK}: Y_i \sim p(\cdot \mid j^*),$$

 $H_{NACK}: Y_i \sim p(\cdot \mid k^*).$

- Choose j^{\star} and k^{\star} s.t. $D\left(p\left(\cdot\mid j^{\star}\right)\parallel p\left(\cdot\mid k^{\star}\right)\right)=C_{1}$
- For large M,

$$\mathbb{E}\left[N_{II}\right] \lesssim \frac{-\log\left(P_e\right)}{C_1}.$$

- Encoder: Sends $(j^*, j^*...)$ if d_I is correct and $(k^*, k^*...)$ otherwise.
- Decoder: Runs an SPRT with

$$H_{ACK}: Y_i \sim p(\cdot \mid j^*),$$

 $H_{NACK}: Y_i \sim p(\cdot \mid k^*).$

- Choose j^* and k^* s.t. $D\left(p\left(\cdot\mid j^*\right)\parallel p\left(\cdot\mid k^*\right)\right)=C_1$
- For large M,

$$\mathbb{E}\left[N_{II}\right] \lesssim \frac{-\log\left(P_e\right)}{C_1}.$$

• $\Rightarrow \mathbb{E}[N] \approx \mathbb{E}[N_I] + \mathbb{E}[N_{II}] \lesssim \frac{\log(M)}{C} + \frac{-\log(P_e)}{C_1}$.

Example - ARQ scheme:

Example - ARQ scheme:

• Codebook: M randomly chosen codewords, each of length n.

Example - ARQ scheme:

- ullet Codebook: M randomly chosen codewords, each of length n.
- Encoding: Send the *i*th codeword periodically to transmit the *i*th message.

Example - ARQ scheme:

- ullet Codebook: M randomly chosen codewords, each of length n.
- ullet Encoding: Send the ith codeword periodically to transmit the ith message.
- Decoding:
 - Partition \mathbb{R}^n into M decision regions and one erasure area.
 - If $\mathbf{Y} \in \bigcup_{i=0}^{M-1} \mathcal{R}_i$ send the stopping bit and decode.
 - ullet Else, wait for the next n symbols and repeat the process.

◆ロト 4周ト 4 至ト 4 至ト 至 回 め Q Q Q

Forney's Decision Regions (Forney 1968)

• Define T>0 and for all $i\in\{0,\ldots,M-1\}$

$$\mathcal{R}_{i}^{\star} = \left\{ y \in \mathcal{Y}^{n} : \frac{p\left(y \mid x^{(i)}\right)}{\sum_{j \neq i} p\left(y \mid x^{(j)}\right)} \ge \exp\left(nT\right) \right\}, \quad i \in \left\{0, \dots, M - 1\right\},$$

$$\mathcal{R}_{M}^{\star} = \bigcap_{i=1}^{M-1} \left(\mathcal{R}_{i}^{\star}\right)^{c},$$

Forney's Decision Regions (Forney 1968)

• Define T>0 and for all $i\in\{0,\ldots,M-1\}$

$$\mathcal{R}_{i}^{\star} = \left\{ y \in \mathcal{Y}^{n} : \frac{p\left(y \mid x^{(i)}\right)}{\sum_{j \neq i} p\left(y \mid x^{(j)}\right)} \ge \exp\left(nT\right) \right\}, \quad i \in \left\{0, \dots, M - 1\right\},$$

$$\mathcal{R}_{M}^{\star} = \bigcap_{i=0}^{M-1} \left(\mathcal{R}_{i}^{\star}\right)^{c},$$

• Achievability: $E(R) \ge E_{\mathsf{Forney}}(R)$.

$$E_{\mathsf{Forney}}\left(R\right)\triangleq E_{\mathsf{sp}}\left(R\right)+C-R=\beta\left(\delta_{\mathsf{GV}}\left(R\right)-\delta_{\mathsf{GV}}\left(C\right)\right).$$

where $\beta = \log\left(\frac{1-\epsilon}{\epsilon}\right)$ and $\delta_{\text{GV}}\left(R\right)$ is the smaller solution to

$$R + h_2(\delta) - \log(2) = 0$$

◆ロト ◆団ト ◆豆ト ◆豆ト ●目 めらぐ

Stop-Feedback Scheme

- Main difference: decoding can stop at any time.
- ullet Codebook: M i.i.d.-drawn sequences, each assigned to a message.

| ㅁ▶ ◀♬▶ ◀불▶ ◀불▶ 臺|ᆿ 쒸९♡

Stop-Feedback Scheme

- Main difference: decoding can stop at any time.
- ullet Codebook: M i.i.d.-drawn sequences, each assigned to a message.
- This a multi-hypothesis testing problem:

$$\pi_i = \frac{1}{M}, \quad R_i\left(\Delta\right) = \sum_{j=0, j \neq i}^{M-1} \pi_j P_j\left(d=i\right) = \frac{P_{\mathsf{er}}\left(\Delta\right)}{M}.$$

(ロ) (레) (토) (토) 토(H) 9Q(C)

Stop-Feedback Scheme

- Main difference: decoding can stop at *any* time.
- ullet Codebook: M i.i.d.-drawn sequences, each assigned to a message.
- This a multi-hypothesis testing problem:

$$\pi_i = \frac{1}{M}, \quad R_i\left(\Delta\right) = \sum_{j=0, j \neq i}^{M-1} \pi_j P_j\left(d=i\right) = \frac{P_{\mathsf{er}}\left(\Delta\right)}{M}.$$

- Obstacles:
 - **1** M is not fixed as $\mathbb{E}[N] \to \infty$.
 - ② Observations are not i.i.d. (?)

Error Exponent at R = 0

Define

$$H_i$$
: $\Pr(\mathbf{z}) = P_i(\mathbf{z}), \quad i \in \{0, \dots, M-1\}$

$$P_{i}\left(\mathbf{z}\right) = P_{i}\left(\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \dots, \mathbf{x}^{(M-1)}, \mathbf{y}\right) \triangleq P_{\mathbf{Y} \mid \mathbf{X}}\left(\mathbf{y} \mid \mathbf{x}^{(i)}\right) \prod_{l=0}^{M-1} P_{\mathbf{X}}\left(\mathbf{x}^{(l)}\right)$$

Error Exponent at R = 0

Define

$$H_{i} \colon \operatorname{Pr}\left(\mathbf{z}\right) = P_{i}\left(\mathbf{z}\right), \quad i \in \{0, \dots, M-1\}$$

$$P_{i}\left(\mathbf{z}\right) = P_{i}\left(\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M-1)}, \mathbf{y}\right) \triangleq P_{\mathbf{Y}|\mathbf{X}}\left(\mathbf{y} \mid \mathbf{x}^{(i)}\right) \prod_{l=0}^{M-1} P_{\mathbf{X}}\left(\mathbf{x}^{(l)}\right)$$

• Under each H_i the elements of z are i.i.d.

Error Exponent at R = 0

Define

$$H_{i}: \operatorname{Pr}\left(\mathbf{z}\right) = P_{i}\left(\mathbf{z}\right), \quad i \in \{0, \dots, M-1\}$$

$$P_{i}\left(\mathbf{z}\right) = P_{i}\left(\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M-1)}, \mathbf{y}\right) \triangleq P_{\mathbf{Y}|\mathbf{X}}\left(\mathbf{y} \mid \mathbf{x}^{(i)}\right) \prod_{l=0}^{M-1} P_{\mathbf{X}}\left(\mathbf{x}^{(l)}\right)$$

- Under each H_i the elements of z are i.i.d.
- Hence, it the limit

$$\begin{split} &\inf_{(N,d)} \mathbb{E}\left[N\right] = & \frac{-\log\left(R_i\left(\Delta\right)\right)}{D_i} = \frac{\log M - \log\left(P_{\text{er}}\right)}{D_i} \\ &\Leftrightarrow E\left(0\right) = \lim \frac{-\log\left(P_{\text{er}}\right)}{\mathbb{E}\left[N\right]} = D_i \triangleq D = E_{\text{Forney}}\left(0\right), \end{split}$$

where

$$D \triangleq \sum_{x^{(0)} \in \mathcal{X}} \sum_{x^{(1)} \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_X(x^{(0)}) P_X(x^{(1)}) p(y \mid x^{(0)}) \log \left[\frac{p(y \mid x^{(0)})}{p(y \mid x^{(1)})} \right].$$

S. Ginzach (Technion)

December

Lower Bound on E(R)

ullet Main idea: Decode using Δ_a

Lower Bound on E(R)

- ullet Main idea: Decode using Δ_a
- Recall we've defined

$$N_{i} = \min_{n \geq 0} \left\{ L_{i}\left(n\right) \geq a + \log \left(\sum_{j \neq i} \exp \left\{ L_{j}\left(n\right) \right\} \right) \right\}$$
$$= \min_{n \geq 0} \left\{ \log \left[\frac{P_{\mathbf{Y}|\mathbf{X}}\left([\mathbf{y}]_{n} \mid [\mathbf{x}]_{n}^{(i)} \right)}{\sum_{j \neq i} P_{\mathbf{Y}|\mathbf{X}}\left([\mathbf{y}]_{n} \mid [\mathbf{x}]_{n}^{(j)} \right)} \right] \geq a \right\}.$$

• $\Delta_a = (N_a, d_a)$ is then defined as follows:

$$N_a = \min_{0 \le i \le M-1} N_i, \quad d_a = i^* \text{ if } N_a = N_{i^*}.$$

Lower Bound on E(R)

- ullet Main idea: Decode using Δ_a
- Recall we've defined

$$N_{i} = \min_{n \geq 0} \left\{ L_{i}\left(n\right) \geq a + \log \left(\sum_{j \neq i} \exp \left\{ L_{j}\left(n\right) \right\} \right) \right\}$$
$$= \min_{n \geq 0} \left\{ \log \left[\frac{P_{\mathbf{Y}|\mathbf{X}}\left([\mathbf{y}]_{n} \mid [\mathbf{x}]_{n}^{(i)} \right)}{\sum_{j \neq i} P_{\mathbf{Y}|\mathbf{X}}\left([\mathbf{y}]_{n} \mid [\mathbf{x}]_{n}^{(j)} \right)} \right] \geq a \right\}.$$

• $\Delta_a = (N_a, d_a)$ is then defined as follows:

$$N_a = \min_{0 \le i \le M-1} N_i, \quad d_a = i^* \text{ if } N_a = N_{i^*}.$$

Result: $\mathbb{E}_0\left[N_a\right] \lesssim \frac{-\log P_{\text{er}}}{E_{\text{Forney}}(R+\delta)} \Rightarrow E_a\left(R\right) \gtrsim E_{\text{Forney}}\left(R\right)$

◆ロ > ◆部 > ◆き > ◆き > 毛 = ** の Q (**)

The Stop-Feedback Error Exponent

Theorem - Random Coding Stop-Feedback Error Exponent

The random-coding error exponent of the stop-feedback communication setup with a binary symmetric forward channel is given by

$$E\left(R\right) = \beta\left(\delta_{\mathsf{GV}}\left(R\right) - \delta_{\mathsf{GV}}\left(C\right)\right) = E_{\mathsf{sp}}\left(R\right) + C - R.$$

◆ロ > ◆母 > ◆き > ◆き > き = か 9 < 0 >

Summary and Conclusions

- We have seen an example as to how hypothesis testing theory can help gain intuition and prove results in coding theory.
- New achievable scheme was given for the unlimited feedback case.
- Results from multi-hypothesis testing were used in order to obtain a tight bound on the error exponent at zero rate.
- An optimal multi-hypothesis test was used in order to prove achievability of an error exponent function for a BSC.
- This lower bound was then shown to be tight for the BSC case.

Summary and Conclusions

- We have seen an example as to how hypothesis testing theory can help gain intuition and prove results in coding theory.
- New achievable scheme was given for the unlimited feedback case.
- Results from multi-hypothesis testing were used in order to obtain a tight bound on the error exponent at zero rate.
- An optimal multi-hypothesis test was used in order to prove achievability of an error exponent function for a BSC.
- This lower bound was then shown to be tight for the BSC case.

Thank you!

Appendix:

```
    ▶ DP Formulation
    ▶ Fictitious Agent
    ▶ Phase I - Cont.
    ▶ Phase II
    ▶ Forney's Exponent
    ▶ Stop Feedback
```

More On Multi-hypothesis Testing With Control

• A Multihypothesis test with control Δ is a triplet (N, q, d) where:

- A Multihypothesis test with control Δ is a triplet (N, q, d) where:
 - **1** N is the stopping time, $N \in \mathcal{F}_n = \sigma(Y_1, \dots, Y_n, U_1, \dots, U_n)$.

- A Multihypothesis test with control Δ is a triplet (N, q, d) where:
 - **1** N is the stopping time, $N \in \mathcal{F}_n = \sigma(Y_1, \dots, Y_n, U_1, \dots, U_n)$.

- A Multihypothesis test with control Δ is a triplet (N, q, d) where:
 - **1** N is the stopping time, $N \in \mathcal{F}_n = \sigma(Y_1, \dots, Y_n, U_1, \dots, U_n)$.

- A Multihypothesis test with control Δ is a triplet (N,q,d) where:
 - **1** N is the stopping time, $N \in \mathcal{F}_n = \sigma(Y_1, \dots, Y_n, U_1, \dots, U_n)$.

 - \bullet $d = d(Y^N, U^N)$ is the decision rule.
- ullet Assume w>0 is the *loss* associated with making the wrong decision.

- ullet A Multihypothesis test with control Δ is a triplet (N,q,d) where:
 - **1** N is the stopping time, $N \in \mathcal{F}_n = \sigma(Y_1, \dots, Y_n, U_1, \dots, U_n)$.

 - **3** $d = d(Y^N, U^N)$ is the decision rule.
- \bullet Assume w>0 is the \emph{loss} associated with making the wrong decision.
- The objective: Find a sequential test $\Delta=(q,N,d)$ that minimizes the total cost defined as:

$$V\left(\pi\right)\triangleq\mathbb{E}\left[N+w\mathbb{I}\left\{d\left(U^{N},Y^{N}\right)\rightarrow\text{ error}\right\}\right]=\mathbb{E}\left[N\right]+wP_{\text{er}}.$$

- ullet A Multihypothesis test with control Δ is a triplet (N,q,d) where:
 - **1** N is the stopping time, $N \in \mathcal{F}_n = \sigma(Y_1, \dots, Y_n, U_1, \dots, U_n)$.

 - \bullet $d = d(Y^N, U^N)$ is the decision rule.
- \bullet Assume w>0 is the \emph{loss} associated with making the wrong decision.
- The objective: Find a sequential test $\Delta = (q, N, d)$ that minimizes the total *cost* defined as:

$$V\left(\pi\right)\triangleq\mathbb{E}\left[N+w\mathbb{I}\left\{ d\left(U^{N},Y^{N}\right)\rightarrow\text{ error}\right\} \right]=\mathbb{E}\left[N\right]+wP_{\text{er}}.$$

• Asymptotic regime: $w \to \infty$.

• Problem (P): Find $\Delta = (N, q, d)$ that minimizes $V(\pi)$.

- Problem (P): Find $\Delta = (N, q, d)$ that minimizes $V(\pi)$.
- Solution Dynamic Programming:
- Assume control u has been taken and Y has been observed.

- Problem (P): Find $\Delta = (N, q, d)$ that minimizes $V(\pi)$.
- Solution Dynamic Programming:
- ullet Assume control u has been taken and Y has been observed.
- \bullet Then the posterior distribution of the hypotheses, $\Phi^{u}\left(\pi,y\right)$ is given by

- Problem (P): Find $\Delta = (N, q, d)$ that minimizes $V(\pi)$.
- Solution Dynamic Programming:
- ullet Assume control u has been taken and Y has been observed.
- \bullet Then the posterior distribution of the hypotheses, $\Phi^{u}\left(\pi,y\right)$ is given by

$$\Phi^{u}(\pi, y) = \left(\pi_{0} \frac{p_{0}^{u}(y)}{p_{\pi}^{u}(y)}, \pi_{1} \frac{p_{1}^{u}(y)}{p_{\pi}^{u}(y)}, \dots, \pi_{M-1} \frac{p_{M-1}^{u}(y)}{p_{\pi}^{u}(y)}\right), \ \forall u \in \mathcal{U},$$

where

- **1** $\pi \triangleq (\pi_0, \dots, \pi_{M-1}).$
- $p_{\pi}^{u}(y) = \sum_{i=0}^{M-1} \pi_{i} p_{i}^{u}(y).$

- Problem (P): Find $\Delta = (N, q, d)$ that minimizes $V(\pi)$.
- Solution Dynamic Programming:
- ullet Assume control u has been taken and Y has been observed.
- ullet Then the posterior distribution of the hypotheses, $\Phi^{u}\left(\pi,y\right)$ is given by

$$\Phi^{u}(\pi, y) = \left(\pi_{0} \frac{p_{0}^{u}(y)}{p_{\pi}^{u}(y)}, \pi_{1} \frac{p_{1}^{u}(y)}{p_{\pi}^{u}(y)}, \dots, \pi_{M-1} \frac{p_{M-1}^{u}(y)}{p_{\pi}^{u}(y)}\right), \ \forall u \in \mathcal{U},$$

where

- \bullet $\pi \triangleq (\pi_0, \dots, \pi_{M-1}).$
- $p_{\pi}^{u}(y) = \sum_{i=0}^{M-1} \pi_{i} p_{i}^{u}(y).$
- Define the operator $\mathbb{T}^u, u \in \mathcal{U}$, such that for any measurable function $g: \triangle_M \to \mathbb{R}$:

$$\left(\mathbb{T}^{u}g\right)\left(\pi\right) = \int g\left(\Phi^{u}\left(\pi,y\right)\right)p_{\pi}^{u}\left(y\right)dy.$$

◆ロト ◆部ト ◆書ト ◆書ト 書庫 からぐ

Lower Bounds on $V^{\star}(\pi)$

Fact - Solution to Problem (P) (Bertsekas, Shereve 2007)

The optimal value function V^{\star} satisfies the fixed point equation:

$$V^{\star}\left(\pi\right) = \min\left\{1 + \min_{u \in \mathcal{U}}\left(\mathbb{T}^{u}V^{\star}\right)\left(\pi\right), \min_{j \in \{0, \dots, M-1\}}\left(1 - \pi_{j}\right)w\right\}.$$

Lower Bounds on $V^{\star}(\pi)$

Fact - Solution to Problem (P) (Bertsekas, Shereve 2007)

The optimal value function V^{\star} satisfies the fixed point equation:

$$V^{\star}\left(\pi\right) = \min\left\{1 + \min_{u \in \mathcal{U}}\left(\mathbb{T}^{u}V^{\star}\right)\left(\pi\right), \min_{j \in \{0, \dots, M-1\}}\left(1 - \pi_{j}\right)w\right\}.$$

Theorem (Javidi et al. 2013)

$$\text{Define } D_{\max} = \max_{i,j \in \{0,\dots,M-1\}} \max_{u \in \mathcal{U}} D\left(p_i^u \parallel p_j^u\right) \text{, and } I_{\max} = \max_{u \in \mathcal{U}} \max_{\tilde{\pi} \in \triangle_M} I\left(\tilde{\pi}; p_{\tilde{\pi}}^u\right).$$

For $w>\frac{\log(M)}{I_{\max}}$ and arbitrary $\delta\in(0,0.5]$,

$$V^{\star}\left(\pi\right) \geq \left[\frac{H\left(\pi\right) - h_{2}\left(\delta\right) - \delta\log\left(M - 1\right)}{I_{\max}} + \frac{\log\left(\frac{1 - w^{-1}}{w^{-1}}\right) - \log\left(\frac{1 - \delta}{\delta}\right)}{D_{\max}} \mathbb{I}\left\{\max_{i} \pi_{i} \leq 1 - \delta\right\} - \hat{K}'\right]^{+}$$

 \bullet Find a test $\Delta = (N,q,d)$ with the object to

 $\text{minimize } \mathbb{E}\left[N\right] \text{ subject to } P_{\text{er}} \leq \epsilon$

• Find a test $\Delta=(N,q,d)$ with the object to $\text{minimize }\mathbb{E}\left[N\right] \text{ subject to } P_{\text{er}} \leq \epsilon$

• This is the primal (constrained) version of the previous problem

• Find a test $\Delta = (N, q, d)$ with the object to minimize $\mathbb{E}[N]$ subject to $P_{\text{er}} \leq \epsilon$

This is the primal (constrained) version of the previous problem

Theorem - The relation between the stopping time and the value function (Javidi *et al. 2013*)

Let $\mathbb{E}\left[N_{\epsilon}^{\star}\right]$ be the minimal expected number of samples required to achieve $P_{\text{er}} < \epsilon$. Then

$$\mathbb{E}\left[N_{\epsilon}^{\star}\right] \ge \left(1 - \epsilon w\right) \left(V^{\star}\left(\pi\right) - 1\right)$$

where $V^{\star}(\pi)$ is the optimal solution to Problem (P) for a prior π and cost for wrong decision w.

S. Ginzach (Technion) December 25th, 2014

More On Fictitious Agent

VL Coding and Controlled Hypothesis Testing

- Error Probability: $P_{\mathsf{er}} \triangleq \frac{1}{M} \sum_{i=0}^{M-1} \mathbb{P}\left(d_N \neq i \mid \theta = i\right)$.
- Expected Transmission Time: $\mathbb{E}\left[N\right] = \frac{1}{M} \sum_{i=0}^{M-1} \mathbb{E}\left[N \mid \theta = i\right]$.
- Rate: $R \triangleq \frac{\log(M)}{\mathbb{E}[N]}$.
- Error exponent: $E(R) = \limsup_{\mathbb{E}[N] \to \infty} \frac{-\log(P_{\text{er}})}{\mathbb{E}[N]}$.

Q: Is the VL coding problem amenable to hypothesis testing analysis?

A: Yes!

◆ロト ◆部 → ◆注 > ◆注 > 注 = からで

VL Coding and Controlled Hypothesis Testing, Cont.

- $\bullet \ \pi = \left[\frac{1}{M}, \frac{1}{M}, \dots, \frac{1}{M}\right].$
- $\bullet \ p_i^u(k) = p(k \mid e(i)).$
- $\bullet \ D_{\max} = \max_{i,k} \max_{u \in \mathcal{U}} D\left(p_i^u \parallel p_j^u\right) = \max_{j,k} D\left(p\left(\cdot \mid j\right) \parallel p\left(\cdot \mid k\right)\right) \triangleq C_1.$
- $I_{\max} = \max_{u \in \mathcal{U}} \max_{\tilde{\pi} \in \Delta_M} I\left(\tilde{\pi}; p^u_{\tilde{\pi}}\right) = C.$

◆ロト ◆部ト ◆注ト ◆注ト 注目 からで

More On Phase I (Burnashev Achievability)

Direct Statement - Phase I (Tentative Decision)

• For each message $i \in \{0, \dots, M-1\}$ randomly draw an infinite P_X -i.i.d. sequence.

Direct Statement - Phase I (Tentative Decision)

- For each message $i \in \{0, \dots, M-1\}$ randomly draw an infinite P_X -i.i.d. sequence.
- ullet Let $x^{(i)}$ be the codeword assigned to the i'th message.

Direct Statement - Phase I (Tentative Decision)

- For each message $i \in \{0, \dots, M-1\}$ randomly draw an infinite P_X -i.i.d. sequence.
- Let $x^{(i)}$ be the codeword assigned to the i'th message.
- For each $i \in \{0, \dots, M-1\}$, define the following two hypotheses:

$$H_0^i: \operatorname{Pr}\left(\boldsymbol{x^{(i)}}, \boldsymbol{y}\right) = p\left(\boldsymbol{y} \mid \boldsymbol{x^{(i)}}\right) P_X\left(\boldsymbol{x^{(i)}}\right),$$

$$H_1^i: \operatorname{Pr}\left(\boldsymbol{x^{(i)}}, \boldsymbol{y}\right) = \operatorname{Pr}\left(\boldsymbol{y}\right) P_X\left(\boldsymbol{x^{(i)}}\right).$$

Direct Statement - Phase I (Tentative Decision)

- For each message $i \in \{0, \dots, M-1\}$ randomly draw an infinite P_X -i.i.d. sequence.
- Let $x^{(i)}$ be the codeword assigned to the i'th message.
- For each $i \in \{0, \dots, M-1\}$, define the following two hypotheses:

$$H_0^i$$
: $\Pr\left(\boldsymbol{x^{(i)}}, \boldsymbol{y}\right) = p\left(\boldsymbol{y} \mid \boldsymbol{x^{(i)}}\right) P_X\left(\boldsymbol{x^{(i)}}\right),$
 H_1^i : $\Pr\left(\boldsymbol{x^{(i)}}, \boldsymbol{y}\right) = \Pr\left(\boldsymbol{y}\right) P_X\left(\boldsymbol{x^{(i)}}\right).$

Define

$$N_{I,k}^{i} = \inf_{n \geq 0} \left\{ \log \left[\frac{p\left([\boldsymbol{y}]_{n} \mid [\boldsymbol{x}^{(i)}]_{n} \right)}{\Pr\left([\boldsymbol{y}]_{n} \right)} \right] \geq (1 + \epsilon) \log (M) \right\}$$
$$= \inf_{n \geq 0} \left\{ \sum_{j=1}^{n} \log \left[\frac{p\left(y_{j} \mid x_{j}^{(i)} \right)}{\Pr\left(y_{j} \right)} \right] \geq (1 + \epsilon) \log (M) \right\}.$$

S. Ginzach (Technion)

December 25th, 2014 41 / 30

More On Phase II (Burnashev Achievability)

 \bullet Let m_1 be the message chosen at Phase I.

- Let m_1 be the message chosen at Phase I.
- Define j^{\star} and k^{\star} by $D\left(p\left(\cdot\mid j^{\star}\right)\parallel p\left(\cdot\mid k^{\star}\right)\right)=C_{1}$

- Let m_1 be the message chosen at Phase I.
- Define j^{\star} and k^{\star} by $D\left(p\left(\cdot\mid j^{\star}\right)\parallel p\left(\cdot\mid k^{\star}\right)\right)=C_{1}$
- Encoder: Sends $(j^*, j^*...)$ if m_1 is correct and $(k^*, k^*...)$ o.w.

- Let m_1 be the message chosen at Phase I.
- Define j^{\star} and k^{\star} by $D\left(p\left(\cdot\mid j^{\star}\right)\parallel p\left(\cdot\mid k^{\star}\right)\right)=C_{1}$
- Encoder: Sends $(j^{\star}, j^{\star}...)$ if m_1 is correct and $(k^{\star}, k^{\star}...)$ o.w.
- Decoder: Runs an SPRT with

$$H_{ACK}: Y_i \sim p(\cdot \mid j^*),$$

 $H_{NACK}: Y_i \sim p(\cdot \mid k^*).$

- Let m_1 be the message chosen at Phase I.
- Define j^{\star} and k^{\star} by $D\left(p\left(\cdot\mid j^{\star}\right)\parallel p\left(\cdot\mid k^{\star}\right)\right)=C_{1}$
- Encoder: Sends $(j^*, j^*...)$ if m_1 is correct and $(k^*, k^*...)$ o.w.
- Decoder: Runs an SPRT with

$$H_{ACK}: Y_i \sim p(\cdot \mid j^*),$$

 $H_{NACK}: Y_i \sim p(\cdot \mid k^*).$

ullet For large M,

$$\mathbb{E}\left[N_{II,k}\right] = \pi_A \mathbb{E}_{P_A}\left[N_{II,k}\right] + \pi_N \mathbb{E}_{P_N}\left[N_{II,k}\right] \approx \mathbb{E}_{P_A}\left[N_{II,k}\right] \lesssim \frac{-\log\left(P_e\right)}{C_1}.$$

 $\bullet \ \Rightarrow \mathbb{E}\left[N\right] \approx \mathbb{E}\left[N_{I,1}\right] + \mathbb{E}\left[N_{II,1}\right] \lesssim \frac{\log(M)}{C} + \frac{-\log(P_e)}{C_1}.$

Forney's Error Exponent

Example - ARQ scheme:

ullet Codebook: M randomly chosen codewords, each of length n.

- ullet Codebook: M randomly chosen codewords, each of length n.
- Encoding: Send the *i*th codeword periodically to transmit the *i*th message.

- ullet Codebook: M randomly chosen codewords, each of length n.
- Encoding: Send the *i*th codeword periodically to transmit the *i*th message.
- Decoding:

- ullet Codebook: M randomly chosen codewords, each of length n.
- ullet Encoding: Send the ith codeword periodically to transmit the ith message.
- Decoding:
 - Partition \mathbb{R}^n into M decision regions and one erasure area.

Example - ARQ scheme:

- ullet Codebook: M randomly chosen codewords, each of length n.
- ullet Encoding: Send the ith codeword periodically to transmit the ith message.
- Decoding:
 - Partition \mathbb{R}^n into M decision regions and one erasure area.

• If $Y_{nk+1}^{(n+1)k} \in \bigcup_{i=0}^{M-1} \mathcal{R}_i$ sent the stopping bit and decode.

- ullet Codebook: M randomly chosen codewords, each of length n.
- Encoding: Send the *i*th codeword periodically to transmit the *i*th message.
- Decoding:
 - Partition \mathbb{R}^n into M decision regions and one erasure area.

- If $Y_{nk+1}^{(n+1)k} \in \bigcup_{i=0}^{M-1} \mathcal{R}_i$ sent the stopping bit and decode.
- ullet Else, wait for the next n symbols and repeat the process.

ARQ Scheme - Analysis

Let

 $\mathcal{E}_{1,k} = \{ \text{Not making the right decision on the } k \text{th round} \},$ $\mathcal{E}_{2,k} = \{ \text{Making an undetected error on the } k \text{th round} \}.$

ARQ Scheme - Analysis

Let

$$\mathcal{E}_{1,k} = \{ \text{Not making the right decision on the kth round} \},$$

 $\mathcal{E}_{2,k} = \{ \text{Making an undetected error on the kth round} \}.$

• Then $\mathbb{P}\left(\text{errasure}\right) = \mathbb{P}\left(\mathcal{R}_{M}\right) = \mathbb{P}\left(\mathcal{E}_{1}\right) - \mathbb{P}\left(\mathcal{E}_{2}\right)$.

ARQ Scheme - Analysis

Let

$$\mathcal{E}_{1,k} = \{ \text{Not making the right decision on the } k \text{th round} \},$$

 $\mathcal{E}_{2,k} = \{ \text{Making an undetected error on the } k \text{th round} \}.$

- Then $\mathbb{P}\left(\text{errasure}\right) = \mathbb{P}\left(\mathcal{R}_{M}\right) = \mathbb{P}\left(\mathcal{E}_{1}\right) \mathbb{P}\left(\mathcal{E}_{2}\right)$.
- More results:

$$\mathbb{E}\left[N\right] = n \sum_{k=1}^{\infty} k \mathbb{P}\left(\text{stop after } k \text{ rounds}\right) = \frac{n}{1 - \mathbb{P}\left(\mathcal{R}_{M}\right)}$$

$$R = \frac{\log\left(M\right)}{\mathbb{E}\left[N\right]} = \frac{\log\left(M\right)}{n} \left(1 - \mathbb{P}\left(\mathcal{R}_{M}\right)\right) = \tilde{R}\left(1 - \mathbb{P}\left(\mathcal{R}_{M}\right)\right)$$

$$P_{\text{er}} = \sum_{k=1}^{\infty} \left(\mathbb{P}(\mathcal{R}_{M})\right)^{k-1} \mathbb{P}\left(\mathcal{E}_{2}\right)$$

ARQ scheme - Analysis

Let

$$\mathcal{E}_{1,k} = \{ \text{Not making the right decision on the } k \text{th round} \}$$

 $\mathcal{E}_{2,k} = \{ \text{Making an undetected error on the } k \text{th round} \}$

- Then $\mathbb{P}\left(\text{errasure}\right) = \mathbb{P}\left(\mathcal{R}_{M}\right) = \mathbb{P}\left(\mathcal{E}_{1}\right) \mathbb{P}\left(\mathcal{E}_{2}\right) \to 0$.
- More results:

$$\begin{split} \mathbb{E}\left[N\right] = & n \sum_{k=1}^{\infty} k \mathbb{P}\left(\text{stop after } k \text{ rounds}\right) = \frac{n}{1 - \mathbb{P}\left(\mathcal{R}_{M}\right)} \to n. \\ & R = \frac{\log\left(M\right)}{\mathbb{E}\left[N\right]} = \frac{\log\left(M\right)}{n} \left(1 - \mathbb{P}\left(\mathcal{R}_{M}\right)\right) \to \frac{\log\left(M\right)}{n} \triangleq \tilde{R}. \\ & P_{\text{er}} = \sum_{k=1}^{\infty} \left(\mathbb{P}(\mathcal{R}_{M})\right)^{k-1} \mathbb{P}\left(\mathcal{E}_{2}\right) \to \mathbb{P}\left(\mathcal{E}_{2}\right). \\ & E_{\text{Forney}}\left(R\right) = \frac{-\log\left(P_{\text{er}}\right)}{\mathbb{E}\left[N\right]} \to -\frac{1}{n}\log\left(\mathbb{P}\left(\mathcal{E}_{2}\right)\right). \end{split}$$

Forney's Decision Regions (Forney 1968)

Define

$$\mathcal{R}_{m}^{\star} = \left\{ y \in \mathcal{Y}^{n} : \frac{p(y \mid x_{m})}{\sum_{m' \neq m} p(y \mid x_{m})} \ge \exp(nT) \right\}, \quad m \in \{0, \dots, M - 1\},$$

$$\mathcal{R}_{M}^{\star} = \bigcap_{m=0}^{M-1} (\mathcal{R}_{m}^{\star})^{c},$$

Forney's Decision Regions (Forney 1968)

Define

$$\mathcal{R}_{m}^{\star} = \left\{ y \in \mathcal{Y}^{n} : \frac{p(y \mid x_{m})}{\sum_{m' \neq m} p(y \mid x_{m})} \ge \exp(nT) \right\}, \quad m \in \{0, \dots, M - 1\},$$

$$\mathcal{R}_{M}^{\star} = \bigcap_{m=0}^{M-1} (\mathcal{R}_{m}^{\star})^{c},$$
and $e_{i}(R, T) \triangleq \limsup_{n \to \infty} \left[-\frac{1}{r} \log \left(\mathbb{P} \left(\mathcal{E}_{i} \right) \right) \right].$

Forney's Decision Regions (Forney 1968)

Define

$$\mathcal{R}_{m}^{\star} = \left\{ y \in \mathcal{Y}^{n} : \frac{p(y \mid x_{m})}{\sum_{m' \neq m} p(y \mid x_{m})} \ge \exp(nT) \right\}, \quad m \in \{0, \dots, M - 1\},$$

$$\mathcal{R}_{M}^{\star} = \bigcap_{m=0}^{M-1} (\mathcal{R}_{m}^{\star})^{c},$$

and $e_i(R,T) \triangleq \limsup_{n \to \infty} \left[-\frac{1}{n} \log \left(\mathbb{P} \left(\mathcal{E}_i \right) \right) \right].$

Theorem - Forney's error exponents for the BSC(ϵ) (Somekh-Baruch,Merhav 2011)

Let
$$\beta \triangleq \log\left(\frac{1-\epsilon}{\epsilon}\right)$$
. If $R < \log\left(2\right) - h_2\left(\epsilon + \frac{T}{\beta}\right)$ then $e_1\left(R,T\right) > 0$ and $e_2\left(R,T\right) = e_1\left(R,T\right) + T$. Otherwise $e_1\left(R,T\right) = 0$.

ullet \Rightarrow If $0 < e_1\left(R,T
ight)
ightarrow 0$ then and $E_{\mathsf{Forney}}\left(R
ight) = e_2\left(R,T
ight) pprox T$

S. Ginzach (Technion)

December 25th, 2014 48 / 30

Forney's Achievable Error Exponent (Forney 1968)

- Define $\delta_{\mathsf{GV}}\left(R\right) = \{\delta \colon h_2\left(\delta\right) = \log\left(2\right) R\}.$
- Then,

$$\begin{split} R \approx \log{(2)} - h_2\left(\epsilon + \frac{T}{\beta}\right) \\ \Leftrightarrow E_{\mathsf{Forney}}\left(R\right) = T \approx &\beta\left(\delta_{\mathsf{GV}}\left(R\right) - \delta_{\mathsf{GV}}\left(C\right)\right) = E_{\mathsf{sp}}\left(R\right) + C - R. \end{split}$$

Forney's Achievable Error Exponent (Forney 1968)

- Define $\delta_{GV}(R) = \{\delta : h_2(\delta) = \log(2) R\}.$
- Then,

$$\begin{split} R \approx \log\left(2\right) - h_2\left(\epsilon + \frac{T}{\beta}\right) \\ \Leftrightarrow E_{\mathsf{Forney}}\left(R\right) = T \approx &\beta\left(\delta_{\mathsf{GV}}\left(R\right) - \delta_{\mathsf{GV}}\left(C\right)\right) = E_{\mathsf{sp}}\left(R\right) + C - R. \end{split}$$

Reliability Func. (Stop Feedback)

Lower Bound on E(R)

ullet Main idea: Decode using Δ_a

Lower Bound on E(R)

- ullet Main idea: Decode using Δ_a
- Recall we've defined

$$N_{i} = \min_{n \geq 0} \left\{ L_{i}\left(n\right) \geq a + \log \left(\sum_{j \neq i} \exp \left\{ L_{j}\left(n\right) \right\} \right) \right\}$$

$$= \min_{n \geq 0} \left\{ \log \left[\frac{P_{i}\left(\left[\mathbf{z}\right]_{n}\right)}{\sum_{j \neq i} P_{j}\left(\left[\mathbf{z}\right]_{n}\right)} \right] \geq a \right\}$$

$$= \min_{n \geq 0} \left\{ \log \left[\frac{P_{\mathbf{Y}|\mathbf{X}}\left(\left[\mathbf{y}\right]_{n} \mid \left[\mathbf{x}\right]_{n}^{(i)}\right)}{\sum_{j \neq i} P_{\mathbf{Y}|\mathbf{X}}\left(\left[\mathbf{y}\right]_{n} \mid \left[\mathbf{x}\right]_{n}^{(j)}\right)} \right] \geq a \right\}.$$

• $\Delta_a = (N_a, d_a)$ is then defined as follows:

$$N_a = \min_{0 \le i \le M-1} N_i, \quad d_a = i^\star \text{ if } N_a = N_{i^\star}.$$

←□ + ←□ + ←□ + ←□ + ←□ + ←□ +

- It holds that $a \leq -\log P_{\text{er}}$.
- $\mathbb{E}_0[N_a] = \sum_{n=0}^{\infty} P_0(N_0 \ge n) \le \bar{n} + \sum_{n=\bar{n}+1}^{\infty} P_0(N_0 \ge n)$.

- It holds that $a \leq -\log P_{\text{er}}$.
- $\mathbb{E}_0[N_a] = \sum_{n=0}^{\infty} P_0(N_0 \ge n) \le \bar{n} + \sum_{n=\bar{n}+1}^{\infty} P_0(N_0 \ge n)$.
- For arbitrarily small $\delta > 0$, take

$$\bar{n} \triangleq \max_{n \in \mathbb{N}} \left\{ \frac{\log M}{n} \ge \log(2) - h_2 \left(\epsilon + \frac{a}{n\beta} \right) - \delta \right\}.$$

- It holds that $a \leq -\log P_{\text{er}}$.
- $\mathbb{E}_0[N_a] = \sum_{n=0}^{\infty} P_0(N_0 \ge n) \le \bar{n} + \sum_{n=\bar{n}+1}^{\infty} P_0(N_0 \ge n)$.
- For arbitrarily small $\delta > 0$, take $\bar{n} \triangleq \max_{n \in \mathbb{N}} \left\{ \frac{\log M}{n} \ge \log\left(2\right) h_2\left(\epsilon + \frac{a}{n\beta}\right) \delta \right\}.$
- Then:

- It holds that $a \leq -\log P_{\rm er}$.
- $\mathbb{E}_0[N_a] = \sum_{n=0}^{\infty} P_0(N_0 \ge n) \le \bar{n} + \sum_{n=\bar{n}+1}^{\infty} P_0(N_0 \ge n)$.
- For arbitrarily small $\delta > 0$, take $\bar{n} \triangleq \max_{n \in \mathbb{N}} \left\{ \frac{\log M}{n} \ge \log\left(2\right) h_2\left(\epsilon + \frac{a}{n\beta}\right) \delta \right\}.$
- Then:

 - $2 \ \bar{n} \leq \tfrac{a}{E_{\mathsf{Forney}}(R+\delta)} \leq \tfrac{-\log P_{\mathsf{er}}}{E_{\mathsf{Forney}}(R+\delta)}.$

- It holds that $a \leq -\log P_{\text{er}}$.
- $\mathbb{E}_0[N_a] = \sum_{n=0}^{\infty} P_0(N_0 \ge n) \le \bar{n} + \sum_{n=\bar{n}+1}^{\infty} P_0(N_0 \ge n)$.
- For arbitrarily small $\delta > 0$, take $\bar{n} \triangleq \max_{n \in \mathbb{N}} \left\{ \frac{\log M}{n} \ge \log\left(2\right) h_2\left(\epsilon + \frac{a}{n\beta}\right) \delta \right\}.$
- Then:

 - $2 \ \bar{n} \leq \tfrac{a}{E_{\mathsf{Forney}}(R+\delta)} \leq \tfrac{-\log P_{\mathsf{er}}}{E_{\mathsf{Forney}}(R+\delta)}.$

$$P_0\left(N_0 \ge n_0\right) \le P_0\left(\log\left[\frac{P_{\mathbf{Y}|\mathbf{X}}\left(\left[\mathbf{y}\right]_{n_0} \mid \left[\mathbf{x}\right]_{n_0}^{(i)}\right)}{\sum_{j \ne i} P_{\mathbf{Y}|\mathbf{X}}\left(\left[\mathbf{y}\right]_{n_0} \mid \left[\mathbf{x}\right]_{n_0}^{(j)}\right)}\right] < a\right) \le e^{-n\delta}$$

• \Rightarrow Asymptotically, $\mathbb{E}_{0}\left[N_{a}\right]\lesssim\frac{-\log P_{\mathrm{er}}}{E_{\mathrm{Forney}}\left(R+\delta\right)}\Rightarrow E_{a}\left(R\right)\gtrsim E_{\mathrm{Forney}}\left(R\right).$

◆□▶ ◆圖▶ ◆불▶ ◆불性 釣९○

Upper Bound on $E\left(R\right)$ - Proof Outline

 $\bullet \ \, \mathsf{Define} \,\, \Lambda_i\left(N\right) \triangleq \log\left[\frac{p\left(y|x^{(i)}\right)}{\sum_{j=0,j\neq i}^{M-1}p\left(y|x^{(j)}\right)}\right] \, \mathsf{and} \,\, \Omega_{i,\bar{n}} \triangleq \{d=i,N\leq \bar{n}\}.$

Upper Bound on $E\left(R\right)$ - Proof Outline

- Define $\Lambda_i\left(N\right) \triangleq \log\left[\frac{p\left(y|x^{(i)}\right)}{\sum_{j=0, j \neq i}^{M-1} p\left(y|x^{(j)}\right)}\right]$ and $\Omega_{i,\bar{n}} \triangleq \{d=i, N \leq \bar{n}\}.$
- On the one hand $P_{\mathsf{er}}\left(\Delta\right) = \sum_{j=0, j \neq i}^{M-1} P_{j}\left(d=i\right)$.

Upper Bound on E(R) - Proof Outline

- Define $\Lambda_i\left(N\right) \triangleq \log\left[\frac{p\left(y|x^{(i)}\right)}{\sum_{j=0,j\neq i}^{M-1}p\left(y|x^{(j)}\right)}\right]$ and $\Omega_{i,\bar{n}} \triangleq \{d=i,N\leq \bar{n}\}.$
- On the one hand $P_{\text{er}}\left(\Delta\right) = \sum_{j=0, j \neq i}^{M-1} P_{j}\left(d=i\right)$.
- On the other hand:

$$\sum_{j=0,j\neq i}^{M-1} P_{j}\left(d=i\right) = \sum_{j=0,j\neq i}^{M-1} \sum_{\mathbf{z}} \mathbb{I}\left\{\mathbf{z}:d=i\right\} P_{j}\left(\mathbf{z}\right)$$

$$= \mathbb{E}_{i} \left[\mathbb{I}\left\{\mathbf{z}:d=i\right\} \frac{\sum_{j=0,j\neq i}^{M-1} P_{j}\left(\mathbf{z}\right)}{P_{i}\left(\mathbf{z}\right)}\right]$$

$$\geq e^{-a} P_{i} \left(\Omega_{i,\bar{n}}, \sup_{n \leq \bar{n}} \left\{\Lambda_{i}\left(n\right) < a\right\}\right).$$

 $\bullet \Rightarrow p_e(\Delta) e^a \ge 1 - p_e(\Delta) - P_i(N \ge \bar{n}) - P_i\left(\sup_{n \le \bar{n}} \left\{\Lambda_i(n) > a\right\}\right).$

◆ロ → ◆園 → ◆恵 → ◆恵 → 恵 ■ りゅぐ

Using Markov ineq. we obtaine

$$\frac{\mathbb{E}\left[N\right]}{\bar{n}} \ge 1 - p_e\left(\Delta\right)\left(e^a - 1\right) - P_i\left(\sup_{n \le \bar{n}} \left\{\Lambda_i\left(n\right) > a\right\}\right).$$

Using Markov ineq. we obtaine

$$\frac{\mathbb{E}\left[N\right]}{\bar{n}} \ge 1 - p_e\left(\Delta\right)\left(e^a - 1\right) - P_i\left(\sup_{n \le \bar{n}} \left\{\Lambda_i\left(n\right) > a\right\}\right).$$

• Take $a \triangleq -(1-\delta_1)\log(p_e(\Delta))$.

Using Markov ineq. we obtaine

$$\frac{\mathbb{E}\left[N\right]}{\bar{n}} \ge 1 - p_e\left(\Delta\right)\left(e^a - 1\right) - P_i\left(\sup_{n \le \bar{n}} \left\{\Lambda_i\left(n\right) > a\right\}\right).$$

- Take $a \triangleq -(1 \delta_1) \log (p_e(\Delta))$.
- Take $\bar{n}=(1+\delta_2)\,\mathbb{E}\left[N\right]$, assume by contradiction that $E\left(R\right)>E_{\mathsf{Forney}}\left(R\right)$ and get that

$$P_{i}\left(\sup_{n\leq\bar{n}}\left\{\Lambda_{i}\left(n\right)>a\right\}\right)\to0.$$

Using Markov ineq. we obtaine

$$\frac{\mathbb{E}\left[N\right]}{\bar{n}} \ge 1 - p_e\left(\Delta\right)\left(e^a - 1\right) - P_i\left(\sup_{n \le \bar{n}} \left\{\Lambda_i\left(n\right) > a\right\}\right).$$

- Take $a \triangleq -(1 \delta_1) \log (p_e(\Delta))$.
- Take $\bar{n}=(1+\delta_2)\,\mathbb{E}\left[N\right]$, assume by contradiction that $E\left(R\right)>E_{\mathsf{Forney}}\left(R\right)$ and get that

$$P_{i}\left(\sup_{n\leq\bar{n}}\left\{\Lambda_{i}\left(n\right)>a\right\}\right)\to0.$$

• Conclude that $E(R) \leq E_{\mathsf{Forney}}(R)$.

