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Introduction

Hypothesis Testing

@ Bayesian M-ary hypothesis testing:
X is a random variable taking values on X with |X| = M;
a prior distribution Px on X;
M hypotheses for the V-valued data { Py |x—n,, m € X'}.
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Introduction

Hypothesis Testing

@ Bayesian M-ary hypothesis testing:

X is a random variable taking values on X with |X| = M;
a prior distribution Px on X;
M hypotheses for the V-valued data { Py |x—n,, m € X'}.

@ cx|y: the minimum probability of error of X given YV’
achieved by the maximum-a-posteriori (MAP) decision rule. Hence,

exjy = E [1 — max ny(le)] (1)
=1-) max Px,y (,y). (2)
yey

where (2) holds when Y is discrete.
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Introduction

Example
Let X and Y be random variables defined on the set A = {1,2,3}, and let
1 8 1 6
Prr(e 0] e =5 327 o
Then,
exiy =1- (3 +15+15) =15 (4)
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Introduction

Interplay x|y <— information measures

@ Bounds on ey involving information measures exist in the literature.
Those works attest that there is a considerable motivation for
studying the relationships between ¢ x|y and information measures.

@ cx|y Is rarely directly computable, and the best bounds are
information theoretic. )
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information theoretic.
o Useful for

the analysis of M-ary hypothesis testing
proofs of coding theorems.
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Introduction

Interplay x|y <— information measures

@ Bounds on ey involving information measures exist in the literature.
Those works attest that there is a considerable motivation for
studying the relationships between ¢ x|y and information measures.

@ cx|y Is rarely directly computable, and the best bounds are
information theoretic.

o Useful for

the analysis of M-ary hypothesis testing
proofs of coding theorems.

@ In this talk, we introduce:

upper and lower bounds on ex|y in terms of the Arimoto-Rényi

conditional entropy H,(X|Y) of any order «, and apply them in
coding.
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Preliminaries

The Rényi Entropy
Definition
Let Px be a probability distribution on a discrete set X'. The Rényi
entropy of order @ € (0,1) U (1,00) of X is defined as
1 [0%
Ho(X) = —— log ), P§ () (5)
TEX
By its continuous extension,
Ho(X) =log|{z € X: Px(z) > 0}|, (6)
Hy(X) = H(X), (7)
Hoo(X) = log ;- (8)
where pmax is the largest of the masses of X.
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I ..
The Binary Rényi Divergence

Definition

For @ € (0,1) U (1,00), the binary Rényi divergence of order « is given by

da(pllg) = — log(p°¢' ™+ (1 -p)°(1=0)' ). (9)
Nov. 23rd, 2017 6/ 34



The Binary Rényi Divergence

Definition

For @ € (0,1) U (1,00), the binary Rényi divergence of order « is given by

da(plla) = — log(pPd"*+ (1= p)*(1-0)'™).  (9)

a—1

1-p
1—q

(10)

v

lim do (pllg) = d(plla) = plog§ +(1—p)log
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Preliminaries

Rényi Conditional Entropy 7
o If we mimic the definition of H(X|Y) and define conditional Rényi

entropy as

> Py(y) Ho(X[Y =),

yey
we find that, for « # 1, the conditional version may be larger than
Hy(X) !
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Preliminaries

Rényi Conditional Entropy ?

o If we mimic the definition of H(X|Y) and define conditional Rényi
entropy as
> Py(y) Ho(X[Y =),
yey
we find that, for « # 1, the conditional version may be larger than
Ho(X) !
@ To remedy this situation, Arimoto introduced a notion of conditional
Rényi entropy, H,(X|Y) (named Arimoto-Rényi conditional entropy),
which is upper bounded by H,(X).
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Preliminaries

The Arimoto-Rényi Conditional Entropy (cont.)

Definition

Let Pxy be defined on X x ), where X is a discrete random variable.
o If € (—00,0) U (0,1) U(1,00), then

1

Ho(X|Y) = = log E (ZP;%W(&:IY))a (11)

—
zeX
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Preliminaries

The Arimoto-Rényi Conditional Entropy (cont.)

Definition

Let Pxy be defined on X x ), where X is a discrete random variable.
o If € (—00,0) U (0,1) U(1,00), then

* log B (ZP;‘}W(:EIY))a (11)

TeEX

Ho(X[Y) =

-«
log Z Py (y) exp ( H,(X|Y = y)) )

yey
(12)

where (12) applies if Y is a discrete random variable.
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Preliminaries

The Arimoto-Rényi Conditional Entropy (cont.)

@ By its continuous extension,

Ho(X[Y) = esssup Ho (Pxpy (V) (13)
=max Hy(X |Y =vy), (14)

yey
H(X|Y)=H(X|Y), (15)
Hoo(X[Y) = log = (16)

E[ P Y
glea% X|Y($| )

where (14) applies if Y is a discrete random variable.
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Preliminaries

The Arimoto-Rényi Conditional Entropy (cont.)

@ By its continuous extension,

Hy(X|Y) = esssup Hy (Pxpy (V) (13)

= miss L = 2)) (14)
Hy(X|Y) = H(X]Y), (15)
Hoo(X[Y) = log ! (16)

E[%%(PX\Y(MY)

where (14) applies if Y is a discrete random variable.

Monotonicity Properties

e H,(X|Y) is monotonically decreasing in « throughout the real line.

o “1H,(X|Y) is monotonically increasing in a on (0, 00) & (—00,0).
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Fano's Inequality
Let X take values in |X| = M, then

H(X|Y) < h(ex)y) + x|y log(M — 1)

(17)

o & = E DA
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Fano's Inequality
Let X take values in |X| = M, then

H(X|Y) < h(ex)y) + x|y log(M — 1)

=log M — d(€X|y”1 — %)

(17)
(18)

o = = £ DA
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Fano meets Rényi

Fano's Inequality
Let X take values in |X| = M, then

H(X|Y) < h(5X|Y) + 5X\Y log(M — 1) (17)
=logM —d(exy |l — 77) (18)

@ (18) is not nearly as popular as (17);

@ (18) turns out to be the version that admits an elegant (although not
immediate) generalization to the Arimoto-Rényi conditional entropy.
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Fano meets Rényi

Generalization of Fano's Inequality

@ It is easy to get Fano's inequality by averaging H(X|Y = y) with
respect to the observation y:

H(X|Y) =Y Py(y) HX|Y =y).
yey
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Fano meets Rényi

Generalization of Fano's Inequality

@ It is easy to get Fano's inequality by averaging H(X|Y = y) with
respect to the observation y:

H(X|Y)=>_ Py(y) HX|Y =y).
yey

@ This simple route is not viable in the case of H,(X|Y) since it is not
an average of Rényi entropies of conditional distributions:

Ho(X[Y) #> Py(y) Hu(X|Y =y), a#1. (19)
yey

v
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Fano meets Rényi

Generalization of Fano's Inequality
@ It is easy to get Fano's inequality by averaging H(X|Y = y) with
respect to the observation y:

H(X|Y)=>_ Py(y) HX|Y =y).
yey

@ This simple route is not viable in the case of H,(X|Y) since it is not
an average of Rényi entropies of conditional distributions:

Ho(X[Y) #> Py(y) Hu(X|Y =y), a#1. (19)
yey

@ The standard proof of Fano's inequality, also fails for H,(X|Y") of
order v # 1 since it does not satisfy the chain rule.
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Fano meets Rényi

Generalization of Fano's Inequality (cont.)

Before we generalize Fano's inequality by linking e x|y with Ho (X|Y") for
a € [0,00), note that for &« = oo, the following equality holds:

exyy =1 —exp(—Huwo(X|Y)). (20)
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Fano meets Rényi

Generalization of Fano's Inequality (cont.)

Lemma
Let a € (0,1) U (1,00) and (3,7) € (0,00)2. Then,
fapor() = (Y1 = ) + fu®)=, we0,1] (21)

is

o strictly convex for a € (1,00);

e strictly concave for a € (0,1).

1

« a) o a—2
Ji g () = (o= DBy (4(1 = w)* + Bu) ™ (u(l - w)) (22)
which is strictly negative if a € (0, 1), and strictly positive if a € (1, 00).
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Fano meets Rényi

Generalization of Fano's Inequality (cont.)

Theorem

Let Pxy be a probability measure defined on X x ) with |X| = M < oc.
For all & € (0, 00),

Ho(X[|Y) <log M — da(expy Il — £)- (23)
Equality holds in (23) if and only if, for all y,
EX|Y

: x # L (y)
Pypy(aly) = ¢ M 1 (24)

l—exyy, z=L(y)

where L*: Y — X is a deterministic MAP decision rule.
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Generalization of Fano's Inequality (cont.)

If X,Y are vectors of dimension n, then ex;y — 0 = %H(X|Y) —0
However, the picture with H,(X|Y") is more nuanced !

o = = £ DA
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Fano meets Rényi

Generalization of Fano's Inequality (cont.)

If X,Y are vectors of dimension n, then exy — 0 = LH(X|Y)—o0.

However, the picture with H,(X|Y") is more nuanced !

Theorem

Assume
o {X,} is a sequence of random variables;

e X, takes values on X,, such that |X,,| < M™ for M > 2 and all n;

o {Y,} is a sequence of random variables, for which ex. |y, — 0.

a) Ifa € (1,00], then Hy(X,|Y,,) — 0;
b) Ifa =1, then L H(X,|Y,) — 0;

c) Ifa€]0,1), then %Ha(Xn\Yn) is upper bounded by log M ;
nevertheless, it does not necessarily tend to 0.
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Lower Bound on H,(X|Y)

Theorem

If a € (0,1)U(1,00), then

o
— 10g galexpy) < Ha(X[Y), (25)

with the piecewise linear function
1 1 144 1
galt) = (k:(k: +1)F — ka(k+ 1)>t FEE (k- 1)(k+1)%  (26)

on the interval t € [1 — §,1— =47) fork € {1,2,...}.

@ Not restricted to finite M.
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Fano meets Rényi

Proof Outline

Lemma

Let X be a discrete random variable attaining maximal mass pmax- Then,
for a € (0,1) U (1, 00),

Ho(X) > sa(ex) (27)

where ex = 1 — pmax IS the minimum error probability of guessing X, and
Sa: [0,1) — [0,00) is given by

sa(T) = 1ia log([ﬁj (1—a2)* + (1—(1-@ hixDa)

Equality holds in (27) if and only if Px has L;J masses equal to Py ax.

Pmax

v

The proof relies on the Schur-concavity of H,(-).
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Proof Outline (cont.)

For every y € ), the lemma yields H, (X |Y =y) > sa(exy (¥))- J

o & = E DA
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Fano meets Rényi

Proof Outline (cont.)
For every y € ), the lemma yields H,(X |Y = y) > s, (€X|y( ).
For o € (0,1), let fo: [0,1) — [1,00) be defined as

fa(z) = exp (152 sa(2))

@ g, is the piecewise linear function which coincides with f, at all
points 1 — % for k € N;

@ g, is the lower convex envelope of fu;
Ho(X|Y) > 122 10gE [fa(exy (Y))] (Lemma; f, increasing)

= 10gE [ga(exv (Y))] (9a < fa)

125 1og ga(ex|y) (Jensen)

v

v
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Fano meets Rényi

Proof Outline (cont.)
For every y € ), the lemma yields Ho (X |Y = y) > sa(ex )y (y))-
For a € (0,1), let fo:[0,1) — [1,00) be defined as
fa(z) = exp (— sa(:c))

@ g, is the piecewise linear function which coincides with f, at all
points 1 — % for k € N;

@ g, is the lower convex envelope of fu;
Ho(X|Y) > 122 10gE [fo(exy (Y))] (Lemma; f, increasing)
1% 10gE [ga(exjy (V)] (g0 < fa)

125 log ga(ex|y) (Jensen)

v

v

For a € (1,00), —gq is the lower convex envelope of —f,, and f, is
monotonically decreasing. Proof is similar.
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Fano meets Rényi

HQ(X‘Y) < EX|Y

@

Upper/lower bounds on H (X]Y) [bits]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Exiy
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Asymptotic Tightness
Both upper and lower bounds on x|y are asymptotically tight as @ — oo.
=] 5 = E DAy




Fano meets Rényi

Asymptotic Tightness
Both upper and lower bounds on x|y are asymptotically tight as @ — oo.

v

Special cases
As o — 1, we get existing bounds as special cases:
@ Fano's inequality,
@ Its counterpart by Kovalevsky ('68), and Tebbe and Dwyer ('68).
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Fano meets Rényi

Asymptotic Tightness

Both upper and lower bounds on x|y are asymptotically tight as @ — oo.

v

Special cases
As o — 1, we get existing bounds as special cases:
@ Fano's inequality,
@ Its counterpart by Kovalevsky ('68), and Tebbe and Dwyer ('68).

Upper bound on exy

The most useful domain of applicability of the counterpart to the
generalization of Fano's inequality is e x|y € [0, %] in which case the lower
bound specializes to (k = 1)

o

- 10g<1 + (25 — 2)5X|Y) < Ho(X|Y). (28)

v
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List Decoding

List Decoding

@ Decision rule outputs a list of choices.

@ The extension of Fano's inequality to list decoding, expressed in terms
of the conditional Shannon entropy, was initiated by Ahlswede, Gacs

and Korner ('66).
@ Useful for proving converse results.
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List Decoding

Generalization of Fano's Inequality for List Decoding
@ A generalization of Fano's inequality for list decoding of size L is

H(X|Y) <logM —d(P||1 - &), (29)

where P, denotes the probability of X not being in the list.

@ Averaging a conditional version of H,(X|Y = y) with respect to the
observation is not viable in the case of H,(X|Y') with a # 1.
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Generalization of Fano's Inequality for List Decoding (cont.)

Theorem (Fixed List Size)

Let Pxy be a probability measure defined on X x ) where |X| = M.
Consider a decision rule® L: Y — ()L() and denote the decoding error
probability by P =P[X ¢ L(Y)]. Then, for all a € (0,1) U (1, 00),

Ho(X|Y) <log M — do(Pe||1 — 4)
with equality in (30) if and only if

Pr
o TELW)

Pxy(zly) =
1—- P,

L )

x € L(y).

a(f) stands for the set of all subsets of X' with cardinality L, with L < |X|.

(30)

(31)
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Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Arimoto-Rényi Conditional Entropy Averaged over Codebook
Ensembles

@ Consider the channel coding setup with a code ensemble C, over
which we are interested in averaging the Arimoto-Rényi conditional
entropy of the channel input given the channel output.

@ Denote such averaged quantity by
Ec[Ho(X"|Y™)]

where X" = (X1,...,X,) and Y™ = (Y1,...,Y,).
@ Some motivation for this study:
The normalized equivocation 1+ H(X™|Y™) was used by Shannon to

prove that reliable communication is impossible at rates above capacity;
The asymptotic convergence to zero of the equivocation H(X"|Y™) at

rates below capacity was studied by Feinstein.
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Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Coding Theorem 1 (Feder and Merhav, 1994)

For a DMC with transition probability matrix Py|x, the conditional
entropy of the transmitted codeword given the channel output, averaged
over a random coding selection with per-letter distribution Px such that

I(Px, Py|x) > 0, is bounded (in nats) by
1
Ec|HX™"Y™")| < |14+ ——=—— | exp(—nE:(R, P
with

o R="18M < [(Px, Pyx);
@ F is the random-coding error exponent, given by

Ei(R, Px) = max p <IL(PXaPY\X) - R) ; (32)
p€E[0,1] 1+p
@ the argument that maximizes (32) is denoted by p*(R, Px).
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Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Coding Theorem 2 (ISSV, 2017)
The following results hold under the setting in the previous theorem:

e For all @ > 0, and rates R below the channel capacity C,

limsup — — logEc[ a(X”|Y”)] < E(R), (33)

n—oo

where Es,(-) denotes the sphere-packing error exponent

Ew(R) = sgg p (max[ 1 (@x, Pyix) — R) (34)
p> X

with the maximization in the right side of (34) over all single-letter
distributions () x defined on the input alphabet.
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Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Coding Theorem 2 (ISSV '17, cont.)

e Forall e (0,1),

1
lim inf — p logEc [Ho(X"Y™)] > aEr(R,Px) — (1 — )R, (35)

n—o0
provided that
R < Ro(Px, Py|x) (36)

where R, (Px, Py|x) is the unique solution r € (0, I(Px, Py|x)) to

Bu(r, Px) = (é _ 1) 7 (37)

v
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Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Coding Theorem 2 (ISSV '17, cont.)

@ The rate R, (Px, Py|X) is monotonically increasing and continuous in
a € (0,1), and

h?()l RO!(PXv PY|X) =0, (38)

2?11 Ro(Px, Py|x) = I(Px, Py|x)- (39)

v
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Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Coding Theorem 3 (ISSV '17, cont.)

Let Py |x be the transition probability matrix of a memoryless binary-input
output-symmetric channel, and let Py = [% %] Let R., Ry, and C denote
the critical and cutoff rates and the channel capacity, respectively, and let

R.
Q¢ Ro € ( ) ) ( )

The rate R, = Ro(P%, Py|x), with the symmetric input distribution P,
can be expressed as follows:

a) for a € (0, ¢}, Ry = aRy;

b) for & € (aw, 1), Ra € (R, C) is the solution to Egy(r) = (£ —1)r;

c) Rq is continuous, monotonically increasing in « € [, 1) from R to C.
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Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Example: BSC(J)
o Consider a BSC with crossover probability 6, and let Px = [ 1].
o the cutoff rate, critical rate and capacity (in bits) are given by
Ro =1—1log(1+ /46(1 —9)), (41)
V6
Re=1-h|————, 42
<x/3 +vV1-34 (42)
C = I(Px, Py|x) =1— h(9). (43)
@ The sphere-packing error exponent is given by
Esp(R) = d(dav(R) | 6) (44)
where the normalized Gilbert-Varshamov distance is denoted by
sav(R) = h7'(1 - R). (45)
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Example: BSC(6) (cont.)

04r i

0371 ]

bits per channel use
Om .

0 0.5 1
Qe 0%

Figure: The rate R, for o € (0,1) for BSC(d) with crossover prob. § = 0.110.
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Conclusions

Conclusions
@ We have shown new bounds on the minimum Bayesian error prob.
ex|y of M-ary hypothesis testing.
@ Our major focus has been the Arimoto-Rényi conditional entropy of
the hypothesis index given the observation.

|. Sason & S. Verdi Seminar talk Nov. 23rd, 2017 32 /34



Conclusions

Conclusions

@ We have shown new bounds on the minimum Bayesian error prob.
ex|y of M-ary hypothesis testing.

@ Our major focus has been the Arimoto-Rényi conditional entropy of
the hypothesis index given the observation.

@ Changing the conventional form of Fano's inequality from
H(X|Y) < h(ex)y) +exy log(M — 1) (46)
=log M — d(sX|y||1 - ﬁ) (47)
to the right side of (47), where d(-||-) is the binary relative entropy,

allows a natural generalization where the Arimoto-Rényi conditional
entropy of an arbitrary positive order « is upper bounded by

Ho(X|Y) <log M —do(exylll — 77) (48)

with do(-||-) denoting the binary Rényi divergence.

v
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Conclusions

Conclusions (Cont.)

@ The Schur-concavity of the Rényi entropy yields a lower bound on
Ho(X[Y) in terms of e x|y, which holds even if M = oco. It recovers
existing bounds by letting o — 1.
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Conclusions

Conclusions (Cont.)
@ The Schur-concavity of the Rényi entropy yields a lower bound on
Ho(X[Y) in terms of e x|y, which holds even if M = oco. It recovers
existing bounds by letting o — 1.

@ Our techniques were extended to list decoding with a fixed list size,
generalizing all the H, (X |Y)—ex|y bounds to that setting.
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Conclusions

Conclusions (Cont.)

@ The Schur-concavity of the Rényi entropy yields a lower bound on
Ho(X[Y) in terms of e x|y, which holds even if M = oco. It recovers
existing bounds by letting o — 1.

@ Our techniques were extended to list decoding with a fixed list size,
generalizing all the H, (X |Y)—ex|y bounds to that setting.

@ Application: We analyzed the exponentially vanishing decay of the
Arimoto-Rényi conditional entropy of the transmitted codeword given
the channel output for DMCs and random coding ensembles.
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Further Results in This Work

o Explicit lower bounds on ex|y as a function of H,(X|Y") for an
arbitrary « (also, for a < 0).

@ Explicit lower bounds on the list decoding error probability for fixed
list size as a function of H,(X|Y') for an arbitrary « (also, for a < 0).

@ We also explored some facets of the role of binary hypothesis testing
in analyzing M-ary Bayesian hypothesis testing problems, and have
shown new bounds in terms of Rényi divergence.

Journal Paper

I. Sason and S. Verdd, “Arimoto-Rényi conditional entropy and Bayesian
M-ary hypothesis testing,” to appear in the /EEE Trans. on Information
Theory. [Online]. Available at https://arxiv.org/abs/1701.01974.

v
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