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Introduction

Hypothesis Testing

Bayesian M -ary hypothesis testing:
I X is a random variable taking values on X with |X | =M ;
I a prior distribution PX on X ;
I M hypotheses for the Y-valued data {PY |X=m,m ∈ X}.
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Introduction

Hypothesis Testing

Bayesian M -ary hypothesis testing:
I X is a random variable taking values on X with |X | =M ;
I a prior distribution PX on X ;
I M hypotheses for the Y-valued data {PY |X=m,m ∈ X}.

εX|Y : the minimum probability of error of X given Y
I achieved by the maximum-a-posteriori (MAP) decision rule. Hence,

εX|Y = E
[
1−max

x∈X
PX|Y (x|Y )

]
(1)

= 1−
∑
y∈Y

max
x∈X

PX,Y (x, y). (2)

where (2) holds when Y is discrete.
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Introduction

Example

Let X and Y be random variables defined on the set A = {1, 2, 3}, and let

[
PXY (x, y)

]
(x,y)∈A2 =

1

45

 8 1 6
3 5 7
4 9 2

 . (3)

Then,

εX|Y = 1−
(

8
45 + 9

45 + 7
45

)
= 7

15 . (4)
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Introduction

Interplay εX|Y ←→ information measures

Bounds on εX|Y involving information measures exist in the literature.
Those works attest that there is a considerable motivation for
studying the relationships between εX|Y and information measures.

εX|Y is rarely directly computable, and the best bounds are
information theoretic.
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Introduction

Interplay εX|Y ←→ information measures

Bounds on εX|Y involving information measures exist in the literature.
Those works attest that there is a considerable motivation for
studying the relationships between εX|Y and information measures.

εX|Y is rarely directly computable, and the best bounds are
information theoretic.

Useful for
I the analysis of M -ary hypothesis testing
I proofs of coding theorems.

In this talk, we introduce:

upper and lower bounds on εX|Y in terms of the Arimoto-Rényi

conditional entropy Hα(X|Y ) of any order α, and apply them in
coding.
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Preliminaries

The Rényi Entropy

Definition

Let PX be a probability distribution on a discrete set X . The Rényi
entropy of order α ∈ (0, 1) ∪ (1,∞) of X is defined as

Hα(X) =
1

1− α
log
∑
x∈X

PαX(x) (5)

By its continuous extension,

H0(X) = log
∣∣{x ∈ X : PX(x) > 0}

∣∣, (6)

H1(X) = H(X), (7)

H∞(X) = log 1
pmax

(8)

where pmax is the largest of the masses of X.
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Preliminaries

The Binary Rényi Divergence

Definition

For α ∈ (0, 1) ∪ (1,∞), the binary Rényi divergence of order α is given by

dα(p‖q) =
1

α− 1
log
(
pαq1−α + (1− p)α(1− q)1−α

)
. (9)

I. Sason & S. Verdú Seminar talk Nov. 23rd, 2017 6 / 34



Preliminaries

The Binary Rényi Divergence

Definition

For α ∈ (0, 1) ∪ (1,∞), the binary Rényi divergence of order α is given by

dα(p‖q) =
1

α− 1
log
(
pαq1−α + (1− p)α(1− q)1−α

)
. (9)

lim
α↑1

dα(p‖q) = d(p‖q) = p log
p

q
+ (1− p) log 1− p

1− q
. (10)
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Preliminaries

Rényi Conditional Entropy ?

If we mimic the definition of H(X|Y ) and define conditional Rényi
entropy as ∑

y∈Y
PY (y)Hα(X|Y = y),

we find that, for α 6= 1, the conditional version may be larger than
Hα(X) !
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Preliminaries

Rényi Conditional Entropy ?

If we mimic the definition of H(X|Y ) and define conditional Rényi
entropy as ∑

y∈Y
PY (y)Hα(X|Y = y),

we find that, for α 6= 1, the conditional version may be larger than
Hα(X) !

To remedy this situation, Arimoto introduced a notion of conditional
Rényi entropy, Hα(X|Y ) (named Arimoto-Rényi conditional entropy),
which is upper bounded by Hα(X).
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Preliminaries

The Arimoto-Rényi Conditional Entropy (cont.)

Definition

Let PXY be defined on X × Y, where X is a discrete random variable.

If α ∈ (−∞, 0) ∪ (0, 1) ∪ (1,∞), then

Hα(X|Y ) =
α

1− α
log E

(∑
x∈X

PαX|Y (x|Y )

) 1
α

 (11)
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Preliminaries

The Arimoto-Rényi Conditional Entropy (cont.)

Definition

Let PXY be defined on X × Y, where X is a discrete random variable.

If α ∈ (−∞, 0) ∪ (0, 1) ∪ (1,∞), then

Hα(X|Y ) =
α

1− α
log E

(∑
x∈X

PαX|Y (x|Y )

) 1
α

 (11)

=
α

1− α
log

∑
y∈Y

PY (y) exp

(
1− α
α

Hα(X|Y = y)

)
,

(12)

where (12) applies if Y is a discrete random variable.
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Preliminaries

The Arimoto-Rényi Conditional Entropy (cont.)

By its continuous extension,

H0(X|Y ) = ess supH0

(
PX|Y (·|Y )

)
(13)

= max
y∈Y

H0(X |Y = y), (14)

H1(X|Y ) = H(X|Y ), (15)

H∞(X|Y ) = log
1

E
[
max
x∈X

PX|Y (x|Y )
] (16)

where (14) applies if Y is a discrete random variable.
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Preliminaries

The Arimoto-Rényi Conditional Entropy (cont.)

By its continuous extension,

H0(X|Y ) = ess supH0

(
PX|Y (·|Y )

)
(13)

= max
y∈Y

H0(X |Y = y), (14)

H1(X|Y ) = H(X|Y ), (15)

H∞(X|Y ) = log
1

E
[
max
x∈X

PX|Y (x|Y )
] (16)

where (14) applies if Y is a discrete random variable.

Monotonicity Properties

Hα(X|Y ) is monotonically decreasing in α throughout the real line.
α−1
α Hα(X|Y ) is monotonically increasing in α on (0,∞) & (−∞, 0).
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Fano meets Rényi

Fano’s Inequality

Let X take values in |X | =M , then

H(X|Y ) ≤ h(εX|Y ) + εX|Y log(M − 1) (17)
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Fano meets Rényi

Fano’s Inequality

Let X take values in |X | =M , then

H(X|Y ) ≤ h(εX|Y ) + εX|Y log(M − 1) (17)

= logM − d
(
εX|Y ‖1− 1

M

)
(18)
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Fano meets Rényi

Fano’s Inequality

Let X take values in |X | =M , then

H(X|Y ) ≤ h(εX|Y ) + εX|Y log(M − 1) (17)

= logM − d
(
εX|Y ‖1− 1

M

)
(18)

(18) is not nearly as popular as (17);

(18) turns out to be the version that admits an elegant (although not
immediate) generalization to the Arimoto-Rényi conditional entropy.
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Fano meets Rényi

Generalization of Fano’s Inequality

It is easy to get Fano’s inequality by averaging H(X|Y = y) with
respect to the observation y:

H(X|Y ) =
∑
y∈Y

PY (y)H(X|Y = y).
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It is easy to get Fano’s inequality by averaging H(X|Y = y) with
respect to the observation y:

H(X|Y ) =
∑
y∈Y

PY (y)H(X|Y = y).

This simple route is not viable in the case of Hα(X|Y ) since it is not
an average of Rényi entropies of conditional distributions:

Hα(X|Y ) 6=
∑
y∈Y

PY (y)Hα(X|Y = y), α 6= 1. (19)
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Fano meets Rényi

Generalization of Fano’s Inequality

It is easy to get Fano’s inequality by averaging H(X|Y = y) with
respect to the observation y:

H(X|Y ) =
∑
y∈Y

PY (y)H(X|Y = y).

This simple route is not viable in the case of Hα(X|Y ) since it is not
an average of Rényi entropies of conditional distributions:

Hα(X|Y ) 6=
∑
y∈Y

PY (y)Hα(X|Y = y), α 6= 1. (19)

The standard proof of Fano’s inequality, also fails for Hα(X|Y ) of
order α 6= 1 since it does not satisfy the chain rule.
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Fano meets Rényi

Generalization of Fano’s Inequality (cont.)

Before we generalize Fano’s inequality by linking εX|Y with Hα(X|Y ) for
α ∈ [0,∞), note that for α =∞, the following equality holds:

εX|Y = 1− exp
(
−H∞(X|Y )

)
. (20)
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Fano meets Rényi

Generalization of Fano’s Inequality (cont.)

Lemma

Let α ∈ (0, 1) ∪ (1,∞) and (β, γ) ∈ (0,∞)2. Then,

fα,β,γ(u) = (γ(1− u)α + βuα)
1
α , u ∈ [0, 1] (21)

is

strictly convex for α ∈ (1,∞);

strictly concave for α ∈ (0, 1).

f ′′α,β,γ(u) = (α− 1)βγ
(
γ(1− u)α + βuα

) 1
α
−2(

u(1− u)
)α−2

(22)

which is strictly negative if α ∈ (0, 1), and strictly positive if α ∈ (1,∞).
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Fano meets Rényi

Generalization of Fano’s Inequality (cont.)

Theorem

Let PXY be a probability measure defined on X × Y with |X | =M <∞.
For all α ∈ (0,∞),

Hα(X|Y ) ≤ logM − dα
(
εX|Y ‖1− 1

M

)
. (23)

Equality holds in (23) if and only if, for all y,

PX|Y (x|y) =


εX|Y

M − 1
, x 6= L∗(y)

1− εX|Y , x = L∗(y)
(24)

where L∗ : Y → X is a deterministic MAP decision rule.
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Fano meets Rényi

Generalization of Fano’s Inequality (cont.)

If X,Y are vectors of dimension n, then εX|Y → 0 ⇒ 1
nH(X|Y )→ 0.

However, the picture with Hα(X|Y ) is more nuanced !
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Fano meets Rényi

Generalization of Fano’s Inequality (cont.)

If X,Y are vectors of dimension n, then εX|Y → 0 ⇒ 1
nH(X|Y )→ 0.

However, the picture with Hα(X|Y ) is more nuanced !

Theorem

Assume

{Xn} is a sequence of random variables;

Xn takes values on Xn such that |Xn| ≤Mn for M ≥ 2 and all n;

{Yn} is a sequence of random variables, for which εXn|Yn → 0.

a) If α ∈ (1,∞], then Hα(Xn|Yn)→ 0;

b) If α = 1, then 1
n H(Xn|Yn)→ 0;

c) If α ∈ [0, 1), then 1
n Hα(Xn|Yn) is upper bounded by logM ;

nevertheless, it does not necessarily tend to 0.
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Fano meets Rényi

Lower Bound on Hα(X|Y )

Theorem

If α ∈ (0, 1) ∪ (1,∞), then

α

1− α
log gα(εX|Y ) ≤ Hα(X|Y ), (25)

with the piecewise linear function

gα(t) =
(
k(k + 1)

1
α − k

1
α (k + 1)

)
t+ k

1
α
+1 − (k − 1)(k + 1)

1
α (26)

on the interval t ∈
[
1− 1

k , 1−
1

k+1

)
for k ∈ {1, 2, . . .}.

Not restricted to finite M .
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Fano meets Rényi

Proof Outline

Lemma

Let X be a discrete random variable attaining maximal mass pmax. Then,
for α ∈ (0, 1) ∪ (1,∞),

Hα(X) ≥ sα(εX) (27)

where εX = 1− pmax is the minimum error probability of guessing X, and
sα : [0, 1)→ [0,∞) is given by

sα(x) :=
1

1− α
log

(⌊ 1

1− x

⌋
(1− x)α +

(
1− (1− x)

⌊ 1

1− x

⌋)α)
.

Equality holds in (27) if and only if PX has
⌊

1
pmax

⌋
masses equal to pmax.

The proof relies on the Schur-concavity of Hα(·).
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Fano meets Rényi

Proof Outline (cont.)

For every y ∈ Y, the lemma yields Hα(X |Y = y) ≥ sα
(
εX|Y (y)

)
.
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Fano meets Rényi

Proof Outline (cont.)

For every y ∈ Y, the lemma yields Hα(X |Y = y) ≥ sα
(
εX|Y (y)

)
.

For α ∈ (0, 1), let fα : [0, 1)→ [1,∞) be defined as

fα(x) = exp
(
1−α
α sα(x)

)
gα is the piecewise linear function which coincides with fα at all
points 1− 1

k for k ∈ N;

gα is the lower convex envelope of fα;

Hα(X|Y ) ≥ α
1−α logE

[
fα
(
εX|Y (Y )

)]
(Lemma; fα increasing)

≥ α
1−α logE

[
gα
(
εX|Y (Y )

)]
(gα ≤ fα)

≥ α
1−α log gα(εX|Y ) (Jensen)

I. Sason & S. Verdú Seminar talk Nov. 23rd, 2017 18 / 34



Fano meets Rényi

Proof Outline (cont.)

For every y ∈ Y, the lemma yields Hα(X |Y = y) ≥ sα
(
εX|Y (y)

)
.

For α ∈ (0, 1), let fα : [0, 1)→ [1,∞) be defined as

fα(x) = exp
(
1−α
α sα(x)

)
gα is the piecewise linear function which coincides with fα at all
points 1− 1

k for k ∈ N;

gα is the lower convex envelope of fα;

Hα(X|Y ) ≥ α
1−α logE

[
fα
(
εX|Y (Y )

)]
(Lemma; fα increasing)

≥ α
1−α logE

[
gα
(
εX|Y (Y )

)]
(gα ≤ fα)

≥ α
1−α log gα(εX|Y ) (Jensen)

For α ∈ (1,∞), −gα is the lower convex envelope of −fα, and fα is
monotonically decreasing. Proof is similar.
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Fano meets Rényi

Hα(X|Y )←→ εX|Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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) 

 [b
its

]

α = 1/4

α = 4

Figure: Upper and lower bounds on Hα(X|Y ) in Theorems 5 and 7, respectively,
as a function of εX|Y ∈ [0, 1− 1

M ] for α = 1
4 (solid lines) and α = 4 (dash-dotted

lines) with M = 8.
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Fano meets Rényi

Asymptotic Tightness

Both upper and lower bounds on εX|Y are asymptotically tight as α→∞.
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Fano meets Rényi

Asymptotic Tightness

Both upper and lower bounds on εX|Y are asymptotically tight as α→∞.

Special cases

As α→ 1, we get existing bounds as special cases:

Fano’s inequality,

Its counterpart by Kovalevsky (’68), and Tebbe and Dwyer (’68).
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Fano meets Rényi

Asymptotic Tightness

Both upper and lower bounds on εX|Y are asymptotically tight as α→∞.

Special cases

As α→ 1, we get existing bounds as special cases:

Fano’s inequality,

Its counterpart by Kovalevsky (’68), and Tebbe and Dwyer (’68).

Upper bound on εX|Y

The most useful domain of applicability of the counterpart to the
generalization of Fano’s inequality is εX|Y ∈ [0, 12 ], in which case the lower
bound specializes to (k = 1)

α

1− α
log
(
1 +

(
2

1
α − 2

)
εX|Y

)
≤ Hα(X|Y ). (28)
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List Decoding

List Decoding

Decision rule outputs a list of choices.

The extension of Fano’s inequality to list decoding, expressed in terms
of the conditional Shannon entropy, was initiated by Ahlswede, Gacs
and Körner (’66).

Useful for proving converse results.
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List Decoding

Generalization of Fano’s Inequality for List Decoding

A generalization of Fano’s inequality for list decoding of size L is

H(X|Y ) ≤ logM − d
(
PL‖1− L

M

)
, (29)

where PL denotes the probability of X not being in the list.

Averaging a conditional version of Hα(X|Y = y) with respect to the
observation is not viable in the case of Hα(X|Y ) with α 6= 1.
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List Decoding

Generalization of Fano’s Inequality for List Decoding (cont.)

Theorem (Fixed List Size)

Let PXY be a probability measure defined on X × Y where |X | =M .
Consider a decision rulea L : Y →

(X
L

)
, and denote the decoding error

probability by PL = P
[
X /∈ L(Y )

]
. Then, for all α ∈ (0, 1) ∪ (1,∞),

Hα(X|Y ) ≤ logM − dα
(
PL‖1− L

M

)
(30)

with equality in (30) if and only if

PX|Y (x|y) =


PL

M − L
, x /∈ L(y)

1− PL
L

, x ∈ L(y).

(31)

a
(X
L

)
stands for the set of all subsets of X with cardinality L, with L ≤ |X |.

I. Sason & S. Verdú Seminar talk Nov. 23rd, 2017 23 / 34



Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Arimoto-Rényi Conditional Entropy Averaged over Codebook
Ensembles

Consider the channel coding setup with a code ensemble C, over
which we are interested in averaging the Arimoto-Rényi conditional
entropy of the channel input given the channel output.

Denote such averaged quantity by

EC
[
Hα(X

n|Y n)
]

where Xn = (X1, . . . , Xn) and Y n = (Y1, . . . , Yn).

Some motivation for this study:
I The normalized equivocation 1

nH(Xn|Y n) was used by Shannon to
prove that reliable communication is impossible at rates above capacity;

I The asymptotic convergence to zero of the equivocation H(Xn|Y n) at
rates below capacity was studied by Feinstein.
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Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Coding Theorem 1 (Feder and Merhav, 1994)

For a DMC with transition probability matrix PY |X , the conditional
entropy of the transmitted codeword given the channel output, averaged
over a random coding selection with per-letter distribution PX such that
I(PX , PY |X) > 0, is bounded (in nats) by

EC
[
H(Xn|Y n)

]
≤
(
1 +

1

ρ∗(R,PX)

)
exp
(
−nEr(R,PX)

)
with

R = logM
n ≤ I(PX , PY |X);

Er is the random-coding error exponent, given by

Er(R,PX) = max
ρ∈[0,1]

ρ
(
I 1

1+ρ
(PX , PY |X)−R

)
; (32)

the argument that maximizes (32) is denoted by ρ∗(R,PX).
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Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Coding Theorem 2 (ISSV, 2017)

The following results hold under the setting in the previous theorem:

For all α > 0, and rates R below the channel capacity C,

lim sup
n→∞

− 1

n
logEC

[
Hα(X

n|Y n)
]
≤ Esp(R), (33)

where Esp(·) denotes the sphere-packing error exponent

Esp(R) = sup
ρ≥0

ρ

(
max
QX

I 1
1+ρ

(QX , PY |X)−R
)

(34)

with the maximization in the right side of (34) over all single-letter
distributions QX defined on the input alphabet.
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Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Coding Theorem 2 (ISSV ’17, cont.)

For all α ∈ (0, 1),

lim inf
n→∞

− 1

n
logEC

[
Hα(X

n|Y n)
]
≥ αEr(R,PX)− (1− α)R, (35)

provided that

R < Rα(PX , PY |X) (36)

where Rα(PX , PY |X) is the unique solution r ∈ (0, I(PX , PY |X)) to

Er(r, PX) =

(
1

α
− 1

)
r. (37)
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Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Coding Theorem 2 (ISSV ’17, cont.)

The rate Rα(PX , PY |X) is monotonically increasing and continuous in
α ∈ (0, 1), and

lim
α↓0

Rα(PX , PY |X) = 0, (38)

lim
α↑1

Rα(PX , PY |X) = I(PX , PY |X). (39)
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Arimoto-Rényi Conditional Entropy Averaged over Ensembles

Coding Theorem 3 (ISSV ’17, cont.)

Let PY |X be the transition probability matrix of a memoryless binary-input

output-symmetric channel, and let P ∗X =
[
1
2

1
2

]
. Let Rc, R0, and C denote

the critical and cutoff rates and the channel capacity, respectively, and let

αc =
Rc

R0
∈ (0, 1). (40)

The rate Rα = Rα(P
∗
X , PY |X), with the symmetric input distribution P ∗X ,

can be expressed as follows:

a) for α ∈ (0, αc], Rα = αR0;

b) for α ∈ (αc, 1), Rα ∈ (Rc, C) is the solution to Esp(r) =
(
1
α − 1

)
r;

c) Rα is continuous, monotonically increasing in α ∈ [αc, 1) from Rc to C.
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Example: BSC(δ)

Consider a BSC with crossover probability δ, and let PX =
[
1
2

1
2

]
.

the cutoff rate, critical rate and capacity (in bits) are given by

R0 = 1− log
(
1 +

√
4δ(1− δ)

)
, (41)

Rc = 1− h

( √
δ√

δ +
√
1− δ

)
, (42)

C = I(PX , PY |X) = 1− h(δ). (43)

The sphere-packing error exponent is given by

Esp(R) = d
(
δGV(R) ‖ δ

)
(44)

where the normalized Gilbert-Varshamov distance is denoted by

δGV(R) = h−1(1−R). (45)
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Example: BSC(δ) (cont.)
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Figure: The rate Rα for α ∈ (0, 1) for BSC(δ) with crossover prob. δ = 0.110.
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Conclusions

Conclusions

We have shown new bounds on the minimum Bayesian error prob.
εX|Y of M -ary hypothesis testing.

Our major focus has been the Arimoto-Rényi conditional entropy of
the hypothesis index given the observation.
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Conclusions

Conclusions

We have shown new bounds on the minimum Bayesian error prob.
εX|Y of M -ary hypothesis testing.

Our major focus has been the Arimoto-Rényi conditional entropy of
the hypothesis index given the observation.

Changing the conventional form of Fano’s inequality from

H(X|Y ) ≤ h(εX|Y ) + εX|Y log(M − 1) (46)

= logM − d
(
εX|Y ‖1− 1

M

)
(47)

to the right side of (47), where d(·‖·) is the binary relative entropy,
allows a natural generalization where the Arimoto-Rényi conditional
entropy of an arbitrary positive order α is upper bounded by

Hα(X|Y ) ≤ logM − dα
(
εX|Y ‖1− 1

M

)
(48)

with dα(·‖·) denoting the binary Rényi divergence.
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Conclusions

Conclusions (Cont.)

The Schur-concavity of the Rényi entropy yields a lower bound on
Hα(X|Y ) in terms of εX|Y , which holds even if M =∞. It recovers
existing bounds by letting α→ 1.
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Conclusions

Conclusions (Cont.)

The Schur-concavity of the Rényi entropy yields a lower bound on
Hα(X|Y ) in terms of εX|Y , which holds even if M =∞. It recovers
existing bounds by letting α→ 1.

Our techniques were extended to list decoding with a fixed list size,
generalizing all the Hα(X|Y )–εX|Y bounds to that setting.
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Conclusions

Conclusions (Cont.)

The Schur-concavity of the Rényi entropy yields a lower bound on
Hα(X|Y ) in terms of εX|Y , which holds even if M =∞. It recovers
existing bounds by letting α→ 1.

Our techniques were extended to list decoding with a fixed list size,
generalizing all the Hα(X|Y )–εX|Y bounds to that setting.

Application: We analyzed the exponentially vanishing decay of the
Arimoto-Rényi conditional entropy of the transmitted codeword given
the channel output for DMCs and random coding ensembles.
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Conclusions

Further Results in This Work

Explicit lower bounds on εX|Y as a function of Hα(X|Y ) for an
arbitrary α (also, for α < 0).

Explicit lower bounds on the list decoding error probability for fixed
list size as a function of Hα(X|Y ) for an arbitrary α (also, for α < 0).

We also explored some facets of the role of binary hypothesis testing
in analyzing M -ary Bayesian hypothesis testing problems, and have
shown new bounds in terms of Rényi divergence.

Journal Paper
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