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Abstract

Since the error performance of coded communication systems rarely admits exact ex-
pressions, one resorts to tight analytical upper and lower bounds as useful theoretical
and engineering tools for assessing performance and gaining insight into the main
system parameters. Since specific good codes are hard to identify, the average per-
formance of ensembles of codes is usually assessed. The reason in this direction was
stimulated in the last decade, due to the introduction of capacity-achieving codes, like
turbo codes and low-density parity-check codes. Clearly, such bounds should not be
subject to the union bounds limitations, as the aforementioned families of codes per-
form reliably at rates exceeding the cut-off rate of the channel. Furthermore, as the
explicit characterization of the Voronoi regions for linear codes is usually unknown,
useful bounds should depend solely on the distance spectrum or the input-output
weight-enumerating function of the code, which can be found analytically for many
codes or ensembles. Although turbo-like codes which closely approach the Shannon
capacity limit are decoded using practical and sub-optimal decoding algorithms, the
derivation of upper bounds on the maximum-likelihood error probability is of inter-
est. It provides an indication on the ultimate achievable performance of the system
under optimal decoding. Tight bounds on the maximum likelihood (ML) decoding
error probability also provide an indication on the inherent gap which exists between
optimal ML decoding and sub-optimal (e.g., iterative) decoding algorithms.

In addressing some improved versions of the tangential-sphere bound, we focus
on the error exponents associated with these bounds. We show that asymptotically,
these bounds provide the same error exponent as the tangential-sphere bound of
Poltyrev. In the random coding setting, the error exponent of the tangential-sphere
bound fails to reproduce the random coding exponent. This motivates us to explore

other bounding techniques which may improve the tangential-sphere bound, especially



for high code rates, where the weakness of the tangential-sphere bound is especially
pronounced.

In this work, we derive tightened upper bounds on the decoding error probability
of binary linear block codes (and ensembles), under maximum-likelihood decoding,
where the transmission takes place over an arbitrary binary-input output-symmetric
(MBIOS) channel. These bounds are shown to be at least as tight as the Shulman and
Feder bound, and are easier to compute than the generalized version of the Duman
and Salehi bounds. Hence these bounds reproduce the random coding error exponent
and are also suitable for various ensembles of linear codes (e.g., turbo-like codes). For
binary linear block codes, we also examine the effect of expurgation of the distance
spectrum on the tightness of the new bounds, as well as previously reported bound.
The effectiveness of the new bounds is exemplified for various ensembles of turbo-
like codes over the AWGN channel; for ensembles of high-rate linear codes, the new
bounds appear to be tighter than the tangential-sphere bound.

The good results obtained from the upper bounds which are derived in this thesis,
make these bounding techniques applicable to the design and analysis of efficient
turbo-like codes. Finally, topics which deserve further research are addressed at the
end of this thesis.
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Chapter 1
Introduction

Since the advent of information theory, the search for efficient coding systems has
motivated the introduction of efficient bounding techniques tailored to specific codes
or some carefully chosen ensembles of codes. The incentive for introducing and apply-
ing such bounds has strengthened with the introduction of various families of codes
defined on graphs which closely approach the channel capacity with feasible com-
plexity (e.g., turbo codes, repeat-accumulate codes [13], and low-density parity-check
(LDPC) [19, 27] codes). Moreover, a lot of applications for turbo-like codes were sug-
gested for a variety of digital communication systems, such as Digital Video Broad-
casting (DVB-S2), deep space communications and the third generation of CDMA
(WCDMA). Their broad applications and the existence of efficient algorithms imple-
mented in custom VLSI circuits (e.g., [26], [52], [53]) enable to apply these iterative
decoding schemes to a variety of digital communication systems. Clearly, the desired
bounds must not be subject to the union bound limitation, since for long blocks
these ensembles of turbo-like codes perform reliably at rates which considerably ex-
ceeds the cutoff rate (Ry) of the channel (recalling that for long codes, union bounds
are not informative at the portion of the rate region exceeding the cut-off rate of
the channel, where the performance of these capacity-approaching codes is most ap-
pealing). Although maximum-likelihood (ML) decoding is in general prohibitively
complex for long codes, the derivation of bounds on the ML decoding error probabil-
ity is of interest, providing an ultimate indication of the system performance. Further,
the structure of efficient codes is usually not available, necessitating efficient bounds

on performance to solely rely on basic features, such as the distance spectrum and



input-output weight enumeration function (IOWEF) of the examined code (for the
evaluation of the block and bit error probabilities, respectively, of a specific code or
ensemble).

A basic concept which lies in the base of many previously reported upper bounds

was introduced by Fano [16] in 1960. It relies on the following inequality:
Pr(word error | ¢) < Pr(word error,y € R |¢) +Pr(y ¢ R | ¢) (1.1)

where y denotes the received vector at the output of the channel, R is an arbitrary
geometrical region which can be interpreted as a subset of the observation space, and
c is an arbitrary transmitted codeword. The idea of this bounding technique is to use
the union bound only for the joint event where the decoder fails to decode correctly,
and in addition, the received signal vector falls inside the region R (i.e., the union
bound is used to upper bound the first term in the RHS of (1.1)). On the other hand,
the second term in the RHS of (1.1) represents the probability of the event where the
received vector y falls outside the region R; this event, which is likely to happen in
the low SNR regime, is calculated only one time. If we choose the region R to be
the whole observation space, then (1.1) provides the union bound. However, since
the upper bound (1.1) is valid for an arbitrary choice of R, many improved upper
bounds can be derived by an appropriate selection of this region. Upper bounds
from this category differ in the chosen region. For instance, the tangential bound
of Berlekamp [6] used the basic inequality in (1.1), where the volume R is a the n-
dimensional Euclidian space separated by a plane. For the derivation of the sphere
bound [21], Herzberg and Poltyrev have chosen the region R to be a sphere around
the transmitted signal vector, and then optimized the radius of the sphere in order to
get the tightest upper bound within this form. The region R in Divsalar’s bound [11]
was chosen to be a hyper-sphere with an additional degree of freedom with respect
to the location of its center. It should be noted, however, that the final form of
Divsalar’s bound was obtained by applying the Chernoff bounds on the encountered
probabilities, which results in a simple bound where nor integration or numerical
optimizations are needed. Finally, the tangential-sphere bound (TSB) which was
proposed for binary linear block codes by Poltyrev, and for M-ary phase-shift keying
(PSK) block coded-modulation schemes by Herzberg and Poltyrev [22] incorporate R

as a circular cone of half-angle 8, whose central axis passes through the transmitted



signal vector and the origin. The TSB is one of the tightest upper bounds known
to-date for linear block codes whose transmission takes place over the AWGN channel
(see [32, 33]). In [45] , Yousefi and Khandani show that the conical region of the TSB
is the optimal region among all regions which have azimuthal symmetry w.r.t. the
line which passes through the transmitted signal and the origin. This justifies the
tightness of the TSB, based on its geometrical interpretation.

All the aforementioned upper bounds are obtained by applying the union bound
on the first term in the RHS of (1.1). In [46], Yousefi and Khandani suggest to use
the Hunter bound [23] (an upper bound which belongs to the family of second-order
Bonferroni-type inequalities [17]) instead of the union bound, in order to get an upper
bound on the joint probability in the RHS of (1.1). This modification should result
in a tighter upper bound. They refer to the resulting upper bound as the added-
hyper-plane (AHP) bound. Yousefi and Mehrabian also apply the Hunter bound, but
implement it in a quite different way to obtain an upper bound which is called the
improved tangential-sphere bound (ITSB). The tightness of the AHP is demonstrated
for some short BCH codes [46] where it is shown to slightly outperform the TSB at the
low SNR range. In [47], a comparison between the ITSB and the TSB for few short
codes also slightly outperform the TSB, but in parallel, the computational complexity
of these bounds as compared to the TSB is significantly larger. An important question
which is not addressed analytically in [46, 47] is whether the new upper bounds
(namely, the AHP bound and the ITSB) provide an improved lower bound on the error
exponent as compared to the error exponent of the TSB. In this thesis, we address
this question, and prove that the error exponents of these improved tangential-sphere
bounds coincide with the error exponent of the TSB [44]. We note however that the
TSB fails to reproduce the random coding error exponent, especially for high-rate
linear block codes [21].

Another approach for the derivation of improved upper bounds is based on the
Gallager bounding technique which provides a conditional upper bound on the ML
decoding error probability given an arbitrary transmitted (length-N) codeword c,,

(Pejm)- The conditional decoding error probability is upper bounded by

Pam < <Z S wvlen)? gy (L)) ) (12)

m'#Fm y



where 0 < p < 1 and A > 0 (see [15, 35]). Here, ¢¥}i(y) is an arbitrary probability
tilting measure (which may depend on the transmitted codeword c,,), and py(y|c)
designates the transition probability measure of the channel. Connections between
these two seemingly different bounding techniques in (1.1) and (1.2) were demon-
strated in [38], showing that many previously reported bounds (or their Chernoff
versions) whose original derivation relies on the concept shown in inequality (1.1) can
in fact be re-produced as particular cases of the bounding technique used in (1.2). To
this end, one simply needs to choose the suitable probability tilting measure 13} which
serves as the "kernel” for reproducing various previously reported bounds. The ob-
servations in [38] relied on some fundamental results which were reported by Divsalar
[11].

The tangential-sphere bound (TSB) of Poltyrev often happens to be the tightest
upper bound on the ML decoding error probability of block codes whose transmission
takes place over a binary-input AWGN channel. However, in the random coding
setting, it fails to reproduce the random coding exponent [20] while the second version
of the Duman and Salehi (DS2) bound does (see [38]). In fact, also the Shulman-
Feder bound (SFB) [37] which is a special case of the latter bound achieves capacity
for the ensemble of fully random block codes. Though the SFB is informative for
some structured linear block codes with good Hamming properties, it appears to
be rather loose when considering sequences of linear block codes whose minimum
distance grows sub-linearly with the block length, as is the case with most capacity-
approaching ensembles of LDPC and turbo codes. However, the tightness of this
bounding technique is significantly improved by combining the SFB with the union
bound; this approach was exemplified for some structured ensembles of LDPC codes
(see e.g., 28] and the proof of [36, Theorem 2.2]).

In this thesis, we introduce improved upper bounds on the ML decoding error
probability of binary linear block codes, which are tightened versions of the SFB.
These bounds on the block and bit error probabilities depend on the distance spec-
trum of the code (or the average distance spectrum of the ensemble) and the input-
output weight enumeration function, respectively. The effect of an expurgation of
the distance spectrum on the tightness of the resulting bounds is also considered.
By applying the new bounds to ensembles of turbo-like codes over the binary-input

AWGN channel, we demonstrate the usefulness of these new bounds, especially for



some coding structures of high rates.

The thesis is organized as follows: we present some improved versions of the TSB
in Chapter 2, and derive their error exponents. In Chapter 3, we introduce an upper
bound on the block error probability which is in general tighter than the SFB, and
combine the resulting bound with the union bound. Similarly, appropriate upper
bounds on the bit error probability are introduced. Finally, we conclude our work
and propose some future research directions in Chapter 4.

For an extensive tutorial paper on performance bounds of linear codes, the reader
is referred to [35].



Chapter 2

The Error Exponents of Some
Improved Tangential-Sphere
Bound

Chapter overview: The performance of maximum-likelihood (ML) decoded binary lin-
ear block codes over the AWGN channel is addressed via the tangential-sphere bound
(TSB) and some of its improved variations. This chapter is focused on the derivation
of the error exponents of these bounds. Although it was previously exemplified that
some variations of the TSB suggest an improvement over the TSB for finite-length
codes, it is demonstrated in this chapter that all of these bounds possess the same
error exponent. Their common value is equal to the error exponent of the TSB, where
the latter error exponent was previously derived by Poltyrev and later its expression
was simplified by Divsalar.

This chapter is based on the following papers:

e M. Twitto and I. Sason, “On the Error Exponents of Some Improved Tangential-

2

Sphere Bounds,” accepted to the IEEE Trans. on Information Theory, August

2006.

e M. Twitto and I. Sason, “On the Error Exponents of Some Improved Tangential-
Sphere Bounds,” submitted to the 24th IEEE Convention of FElectrical and
Electronics Engineers in Israel, Eilat, Israel, Nov. 15-17, 2006.



2.1 Introduction

In recent years, much effort has been put into the derivation of tight performance
bounds on the error probability of linear block codes under soft-decision maximum-
likelihood (ML) decoding. During the last decade, this research was stimulated by
the introduction of various codes defined on graphs and iterative decoding algorithms,
achieving reliable communication at rates close to capacity with feasible complexity.
The remarkable performance of these codes at a portion of the rate region between the
channel capacity and cut-off rate, makes the union bound useless for their performance
evaluation. Hence, tighter performance bounds are required to gain some insight on
the performance of these efficient codes at rates remarkably above the cut-off rate.
Duman and Salehi pioneered this research work by adapting the Gallager bounding
technique in [19] and making it suitable for the performance analysis of ensembles,
based on their average distance spectrum. They have also applied their bound to
ensembles of turbo codes and exemplified its superiority over the union bound [14,
15]. Other performance bounds under ML decoding or ’typical pairs decoding’ are
derived and applied to ensembles of turbo-like codes by Divsalar [11], Divsalar and
Biglieri [12], Jin and McEliece [24, 25], Miller and Burshtein [28], Sason and Shamai
(32, 33, 35] and Viterbi [49, 50].

The tangential-sphere bound of Poltyrev [31] forms one of the tightest performance
bounds for ML decoded linear block codes transmitted over the binary-input additive
white Gaussian noise (BIAWGN) channel. The TSB was modified by Sason and
Shamai [32] for the analysis of the bit error probability of linear block codes, and was
slightly refined by Zangl and Herzog [51]. This bound only depends on the distance
spectrum of the code (or the input-output weight enumerating function (IOWEF) of
the code for the bit-error analysis [32]), and hence, it can be applied to various codes
or ensembles. The TSB falls within the class of upper bounds whose derivation relies

on the basic inequality
Pr(word error | ¢y) < Pr(word error, y € R | ¢g) + Pr(y ¢ R | co) (2.1)

where ¢ is the transmitted codeword, y denotes the received vector at the output
of the channel, and R designates an arbitrary geometrical region which can be inter-
preted as a subset of the observation space. The basic idea of this bounding technique

is to reduce the number of overlaps between the decision regions associated with the
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pairwise error probabilities used for the calculation of union bounds. This is done
by separately bounding the error events for which the noise resides in a region R.
The TSB, for example, uses a circular hyper-cone as the region R. Other important
upper bounds from this family include the simple bound of Divsalar [11], the tangen-
tial bound of Berlekamp [6], and the sphere bound of Herzberg and Poltyrev [21]. In
[45], Yousefi and Khandani prove that among all the volumes R which posses some
symmetry properties, the circular hyper-cone yields the tightest bound. This finding
demonstrates the optimality of the TSB among a family of bounds associated with
geometrical regions which possess some symmetry properties, and which are obtained
by applying the union bound on the first term in the RHS of (2.1). In [46], Yousefi and
Khandani suggest to use the Hunter bound [23] (an upper bound which belongs to the
family of second-order Bonferroni-type inequalities) instead of the union bound. This
modification should result in a tighter upper bound, and they refer to the resulting
upper bound as the added hyper plane (AHP) bound. Yousefi and Mehrabian also
apply the Hunter bound, but implement it in a quite different way in order to obtain
an improved tangential-sphere bound (ITSB) which solely depends on the distance
spectrum of the code. The tightness of the ITSB and the AHP bound is exemplified
in [46, 47] for some short linear block codes, where these bounds slightly outperform
the TSB at the low SNR range.

An issue which is not addressed analytically in [46, 47] is whether the new upper
bounds (namely, the AHP bound and the ITSB) provide an improved lower bound on
the error exponent as compared to the error exponent of the TSB. In this chapter, we
address this question, and prove that the error exponents of these improved tangential-
sphere bounds coincide with the error exponent of the TSB. We note however that
the TSB fails to reproduce the random coding error exponent, especially for high-rate
linear block codes [31].

This chapter is organized as follows: The TSB ([31], [32]), the AHP bound [46]
and the ITSB [47] are presented as a preliminary material in Section 2.2. In Section
2.3, we derive the error exponents of the ITSB and the AHP, respectively and state
our main result. We conclude our discussion in Section 2.4. An Appendix provides

supplementary details related to the proof of our main result.
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2.2 Preliminaries

We introduce in this section some preliminary material which serves as a prepara-
tory step towards the presentation of the material in the following section. We also
present notation from [11] which is useful for our analysis. The reader is referred to
[35, 48] which introduce material covered in this section. However, in the following
presentation, we consider boundary effects which were not taken into account in the
original derivation of the two improved versions of the TSB in [46]-[48]). Though
these boundary effects do not have any implication in the asymptotic case where we
let the block length tend to infinity, they are addressed in this section for finite block
lengths.

2.2.1 Assumption

Throughout this chapter, we assume a binary-input additive white Gaussian noise
(AWGN) channel with double-sided spectral power density of % The modulation
of the transmitted signals is antipodal, and the modulated signals are coherently
detected and ML decoded (with soft decision).

2.2.2 Tangential-Sphere Bound (TSB)

The TSB forms an upper bound on the decoding error probability of ML decoding of
linear block code whose transmission takes place over a binary-input AWGN channel
31, 32]. Consider an (N, K) linear block code C of rate R = £ bits per channel
use. Let us designate the codewords of C by {c;}, where i = 0,1,...,25 — 1. As-
sume a BPSK modulation and let s; € {++v/E;, —/FE}" designate the corresponding
equi-energy, modulated vectors, where Eg designates the transmitted symbol energy.
The transmitted vectors {s;} are obtained from the codewords {c;} by applying the
mapping s; = (2¢; — 1)v/Es, so their energy is NE,. Since the channel is memoryless,
the received vector y = (y1,v2, ..., Yn), given that s; is transmitted, can be expressed
as

yi=si,;+z%, j=12,....N (2.2)

11



where s; ; is the j™ component of the transmitted vector s;, and z = (21, 29, ..., 2x)
designates an N-dimensional Gaussian noise vector which corresponds to N orthog-
onal projections of the AWGN. Since z is a Gaussian vector and all its components

are un-correlated, then the N components of z are i.i.d., and each component has a

No

zero mean and variance o2 = 5

22

Si

'si —so [I=

Figure 2.1: The geometric interpretation of the TSB.

Let E be the event of deciding erroneously (under ML decoding) on a codeword

12



other than the transmitted codeword. The TSB is based on the central inequality
Pr(E|cy) < Pr(E,y € R|co) + Pr(y ¢ R|co) (2.3)

where R is an N-dimensional circular cone with a half angle 6 and a radius r, whose
vertex is located at the origin and whose main axis passes through the origin and
the point corresponding to the transmitted vector (see Fig. 2.1). The optimization is
carried over r (r and 6 are related as shown in Fig. 2.1). Let us designate this circular
cone by Cn(f). Since we deal with linear codes, the conditional error probability
under ML decoding does not depend on the transmitted codeword of the code C,
so without any loss of generality, one can assume that the all-zero codeword, sq, is
transmitted. Let z; be the radial component of the noise vector z (see Fig. 2.1) so
the other N — 1 components of z are orthogonal to the radial component z;. From
Fig. 2.1, we obtain that

r=+/NFEstan6
T2 = (\/NES —z1> tan 6

Br(z1) = (\/ NE; — 21) tan ¢ = WA o (2.4)

52 2
\VNE; — ¢

The random variable Y £ ZZ]\LQ 2?2 is x? distributed with N — 1 degrees of freedom,
so its pdf is given by

y >0 (2.5)

where U designates the unit step function, and the function I' is the complete Gamma

function

I(z) = / #le~dt,  Real(z) > 0. (2.6)
0

Conditioned on the value of the radial component of the noise, z1, let E(z)
designate the decoding error event. The conditional error probability satisfies the

inequality

Pr(E(z1) [ z1) < Pr(E(z),y € Cn(0) | 21) + Pr(y ¢ Cn(0) | 1) (2.7)

13



The conditional error event F/(z;) can be expressed as a union of pairwise error events,
SO

M-1

Pr(E(z),y € Cn(8) | 1) =Pr ( U Eo.i(%1),y € Cn(0) | zl> : M 228 (2.8)
i=1
where Fy_;(z1) designates the event of error had the only codewords been ¢ and c;,
given the value z; of the radial component noise in Fig. 2.1, and M £ 2% denotes
the number of codewords of the code C. We note that for BPSK modulation, the
Euclidean distance between the two signals s; and sy is directly linked to the Hamming
weight of the codeword c;. Let the Hamming weight of ¢; be h, then the Euclidean
distance between sq and s; is equal to 6, = 2v/hE. Let {A;} be the distance spectrum
of the linear code C, and let Ej(z1) be the event of deciding under ML decoding in
favor of other codeword c; whose Hamming weight is h, given the value of z;. By

applying the union bound on the RHS of (2.8), we get

Pr(E(zl),y S CN(H) ‘ 21) < ZAh Pr(Eh(zl),y € CN(Q) | 21). (29)

h=1

Combining (2.7) and (2.9) gives

Pr(E(z) | z1) < Z {A,Pr(Ep(z1),y € Cn(0) | 21) }+Pr(y ¢ Cn(0) | 21). (2.10)
h

The second term in the RHS of (2.10) is evaluated from (2.5)

Pr(y ¢ Cy(0) | z1) =Pr (Y > 72 | z1)

= | Iy
T2
o N2 =gty
_ / [ &)1 dy. (2.11)
i, 277 oNTIT (B
This integral can be expressed in terms of the incomplete Gamma function
v(a,r) = / tle7tdt, a>0,2>0 (2.12)
I'(a) Jo
and it is transformed to
N—-1 12
Prly ¢ C(6) | 2 =17 (5 5% ). (2.13)

14



Let 29 designate the tangential component of the noise vector z, which is on the
plane that contains the signals sy, s; and the origin of the space, and orthogonal to
21 (see Fig. 2.1). Referring to the first term in the RHS of (2.10), it follows from the
geometry in Fig. 2.1 that if 2; < v/NE; then
Pr(Ep(21),y € COn(0) | 21) = Pr(Ex(z1),Y <72 | 21)
=Pr (Bu(z1) <22 <1, Y <02 | 1) (2.14)

Let V £ Zf\;g 22, then V =Y — 22. If 2; < /NEj, then we obtain the equality
Pr(En(21),y € Cn(0) | z1) =Pr (Bu(z1) < 22 <.y, V <012 — 25 | 1) (2.15)
The random variable V is y? distributed with N — 2 degrees of freedom, so its pdf is

v UG)

2T oN e (32)

fv(v) = >0 (2.16)

and since the random variables V' and Z, are statistically independent, then if z; <

N Ej

2
T 7422
1 e 202

Pr(En(z),y € Cn(0) | z1) = / /07”21—22 fv(v)dv dz,. (2.17)

Bu(z1) V2O
In order to obtain an upper bound on the decoding error probability, Pr(E), one
should apply the statistical expectation operator on the RHS of (2.10) w.r.t. the
radial noise component z;. Referring to the upper half azimuthal cone depicted in

Fig. 2.1 which corresponds to the case where the radial noise component satisfies the
condition z; < /N Eg, the inequality (5(21) < 7., holds for the values of h for which

%h < «y, where
A 5f2z
ap = 1_4NE' (2.18)

On the other hand, if z; > \/NE;, the range of integration for the component noise
2518 fBp(21) < 29 < —r,, which is satisfied for all values of h (since for 2; > \/NEj, we
get from (2.4) that r,, < 0 and £,(2z1) < 0, so the inequality £;(z1) < —r,, holds in
this case for all values of h). Since Z; ~ N(0,0?) where 0% = %, then the probability
that the Gaussian random variable Z; exceeds /N E; is equal to

o(25)-o25)
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This results in the following upper bound on the decoding error probability under
ML decoding

2

T’zl 6—% ’I"Zl 72%
Z Ay, > fv(v)dv dz
h:%‘<o¢h Bn(21) ToJo
,,,2
+1—17 (% 2;12) }dzl +Q (\/—Wjﬁfb) (2.19)

The upper bound (2.19) is valid for all positive values of r. Hence, in order to

Pr(FE) <

2
)
+VNE: 3%
s 2mo

achieve the tightest upper bound of the form (2.19) one should set to zero the partial
derivative of the RHS of (2.19) w.r.t. r,,. After straightforward algebra the following
optimization equation for the optimal value of r is obtained [31]:
On, (=2
S [ = YIECE)
0

re) (2.20)

5
h:?h<ah

_ -1 ( 6n
0;, = cos <2ah>

where «y, is given in (2.18). A proof for the existence and uniqueness of a solution r
to the optimization equation (2.20) was provided in [33, Appendix B], together with
an efficient algorithm to solve this equation numerically. In order to derive an upper
bound on the bit error probability, let A, ; designate the corresponding coefficient
in the IOWEF which is the number of codewords which are encoded by information
bits whose number of ones is equal to w (where 0 < w < nR) and whose Hamming

weights (after encoding) are equal to h, and define

NR
A, 2 wzl (%%) Awp, h=0,...,N. (2.21)

In [33, Appendix C], Sason and Shamai derive an upper bound on the bit error
probability by replacing the distance spectrum {A,} in (2.19) and (2.20) with the
sequence {A}}, and show some properties on the resulting bound on the bit error

probability.

2.2.3 Improved Tangential-Sphere Bound (ITSB)

In [47], Yousefi and Mehrabian derive a new upper bound on the block error proba-

bility of binary linear block codes whose transmission takes place over a binary-input
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AWGN channel, and which are coherently detected and ML decoded. This upper
bound, which is called improved tangential-sphere bound (ITSB) is based on inequal-
ity (2.3), where the region R is the same as of the TSB (i.e., an N-dimensional circular
cone). To this end, the ITSB is obtained by applying a Bonferroni-type inequality of
the second order [17, 23] (instead of the union bound) to get an upper bound on the
joint probability of decoding error and the event that the received vector falls within
the corresponding conical region around the transmitted signal vector.

The basic idea in [47] relies on Hunter’s bound which states that if { £;}¥, desig-

nates a set of M events, and Ef designates the complementary event of £;, then

M
Pr <U E) = Pr(E)) +Pr(Ey NES) + ...+ Pr(Eyy NES, ... NES)
i=1 ;
<Pr(Ey)+ Y Pr(E;nE). (2.22)
i=2
where the indices 7 € {1,2,...i— 1} are chosen arbitrarily for i € {2,..., M}.
Clearly, the upper bound (2.22) is tighter than the union bound. The LHS of (2.22)
is invariant to the ordering of the events (since it only depends on the union of
these events), while the RHS of (2.22) depends on this ordering. Hence, the tight-
est bound of the form (2.22) is obtained by choosing the optimal indices ordering
ie{1,2,...,M}and i € {1,2,...,i — 1}. Let us designate by II(1,2,..., M) =
{m, 7, ..., ™y} an arbitrary permutation among the M! possible permutations of
the set {1,2,..., M} (i.e., a permutation of the indices of the events E; to Ey;),
and let A = (A9, A3, ... A\ys) designate an arbitrary sequence of integers where \; €
{my, 7, ... mi_1}. Then, the tightest form of of the bound in (2.22) is given by

Pr (U E) < min {Pr(Em) +3 Pr(E, N Eﬁi)} . (2.23)

i=1 1=2

Similar to the TSB, the derivation of the I'TSB originates from the upper bound
(2.7) on the conditional decoding error probability, given the radial component (z;)
of the noise vector (see Fig. 2.1). In [47], it is proposed to apply the upper bound
(2.23) on the RHS of (2.8) which for an arbitrary permutation {m, mo,..., 7y} and
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a corresponding sequence of integers (A, Az, ... A\y_1) as above, gives

M-1
Pr ( U E0_>i,y € CN(Q) | Zl) S Il[[l}/{l{Pl"(Eo_)m,y € CN(Q) | Zl)

=1

M-1
+ Z Pr(Eor;, Eg .y, y € Cn(0) | zl)}
i=2

(2.24)

where Ey_,; designates the pairwise error event where the decoder decides on code-
word c; rather than the transmitted codeword co. As indicated in [45, 47], the opti-
mization problem of (2.24) is prohibitively complex. In order to simplify it, Yousefi
and Mehrabian suggest to choose m; = A\; = iy, for all ¢ = 2,..., M — 1, where
imin designates the index of a codeword which is closest (in terms of Euclidian dis-
tance) to the transmitted signal vector sq. Since the code is linear and the channel is
memoryless and symmetric, one can assume without any loss of generality that the
all-zero codeword is transmitted. Moreover, since we deal with antipodal modulation,
then wp(c;, . ) = dmin Where dpi, is the minimum distance of the code. Hence, by
this specific choice of m; and A (which in general loosen the tightness of the bound
in (2.24)), the ordering of the indices {m,...,mp} is irrelevant, and one can omit
the optimization over II and A. The above simplification results in the following

inequality:

PI'(E|2’1) S Pr (E()_,imin,y € CN(Q) | Zl)
M—-1

+ Y Pr(Eo_i B, .y €Cn(0) | 21) + Pr(y ¢ Cn(0) | z1). (2.25)

=2

Based on Fig. 2.1, the first and the third terms in the RHS of (2.25) can be evaluated
in similarity with the TSB, and we get

Pr(Eo_i .,y € Cn(0) ]| 2z1) = Pr(Bmin(z1) < 22 <71y, V < 7"31 — z% | z1)  (2.26)

Pr(y ¢ On(0) | 1) =1~ (E ) (2.27)

2 202

ﬁmin(zl) = (\/ NES - Zl) “ ]V(ﬁn%’ (228)
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zy is the tangential component of the noise vector z, which is on the plane that
contains the signals s, s; . and the origin (see Fig. 2.1), and the other parameters
are introduced in (2.4).

For expressing the probabilities of the form Pr(Ey_;, E5_; .,y € Cn(0) | z1)
encountered in the RHS of (2.25), we use the three-dimensional geometry in Fig. 2.2-
(a). The BPSK modulated signals s, s; and s; are all on the surface of a hyper-sphere
centered at the origin and with radius /N E;. The planes P, and P, are constructed
by the points (0, sg,s;) and (0,sg,s;), respectively. In the derivation of the ITSB,
Yousefi and Mehrabian choose s; to correspond to codeword ¢; with Hamming weight
dmin- Let 25 be the noise component which is orthogonal to z; and which lies on the
plane P, (see Fig 2.2-a). Based on the geometry in Fig. 2.2-a (the probability of the
event Eg_ . is the probability that y falls in the dashed area) we obtain the following

equality if z; < /NE:

Pr(Eo—i, B§_;,.,y € On(0) | 21)
= Pr (ﬁl(’zl) < 29 < Toy =Ty < Zé < ﬁmin(21)7 Y < 751 ‘ Zl) : (229>

Furthermore, from the geometry in Fig. 2.2-b, it follows that
24 = z38in ¢ + 25 oS ¢. (2.30)

where 23 is the noise component which is orthogonal to both z; and 29, and which
resides in the three-dimensional space that contains the signal vectors s, s;, s; . and
the origin. Plugging (2.30) into the condition —r,, < 2§ < Bun(21) in (2.29) yields

the condition —r,, < z3 < min{l(z1, 23), 7, } where

I(z1,2) = Puin(21) — p22 (2.31)

V1—p?
N
and p = cos ¢ is the correlation coefficient between planes P; and P,. Let W = Z 22,

=4
then if 21 S vV NES
PI(EO*)’L.7 E(C)HimmJy € CN(6> | Zl)
=Pr(0i(z1) < 20 <y, =1y < zg <min{l(zy, 2),72, ), W <r2 — 25 — 23 | 1)
(2.32)
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The random variable W is Chi-squared distributed with N — 3 degrees of freedom,
so its pdf is given by

N— 5

fiwlw) = e W) sy (2.33)

2N230N 3T (N 3)

M\é

Since the probabilities of the form Pr(Ey_;, E§

0—%min

,y € Cn(0) | z1) depend on the
correlation coefficients between the planes (o, sq, s;_. ) and (0, s, S;), the overall upper
bound requires the characterization of the global geometrical properties of the code
and not only the distance spectrum. To circumvent this problem and obtain an upper
bound which is solely depends on the distance spectrum of the code, it is suggested in
[47] to loosen the bound as follows. It is shown [46, Appendix B] that the correlation

coefficient p, corresponding to codewords with Hamming weights d; and d; satisfies

(N—d)(N—d,)’ did, == \/dd N d)(N d)

(2.34)

Moreover, the RHS of (2.32) is shown to be a monotonic decreasing function of p
(see [47, Appendix 1]). Hence, one can omit the dependency in the geometry of the
code (and loosen the upper bound) by replacing the correlation coefficients in (2.32)
with their lower bounds which solely depend on the weights of the codewords. In the
derivation of the ITSB, we consider the correlation coefficients between two planes

which correspond to codewords with Hamming weights d; = h, h > N and d; = din.

Let
P hd. (N — B)(N — dyuin)
pr = (N = )N — don)’ hdor

hd min
- ‘\/ (N )N — don) (2:3)

where the last equality follows directly from the basic property of dy,;, as the minimum

distance of the code. From (2.25)-(2.26) and averaging w.r.t. Z;, one gets the
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following upper bound on the decoding error probability:

Pr(E) < Pr <Z1 < VNE;g, Buin(z1) < 22 <1y, V <02 — zg)

N
+ >0 AnPr(a < VNE, Bila) < 2 <7,

h=dmin
— 7y < 2z <min{ly (21, 22), 7} W <72 — 25 — z§>
4 Pr (Zl <\/NE,, Y > r;) +Pr(z > V/NE,) (2.36)

where the parameter [, (z1, z2) is simply [(z1, 22) in (2.31) with p replaced by py, i.e.,

lh(zl722) 7y 5min(21) - phz2‘
Vi-7

Using the probability density functions of the random variables in the RHS of (2.36),
and since the random variables 7, Z5, Z3 and W are statistically independent, the
final form of the ITSB is given by

(2.37)

2

VNE; T2 2 —23
P, S/ [ fZQ(ZQ)/ fv(v)dv - dz

oo ﬂmll’l
min{lp(21,22),72; } Tzl —22—22
+ Ah/ / [ 24,2, (22, 23) / fw(w)dw - dzg - dzs
h:Bp (21)<rzy Br(z1) / —rz 0
N-1 1} 2NRE
tl=l—— fz,(21)dz + @ 2. (2.38)
2 202 Ny

Note that V 2 32V 22 and W £ S°N 22 are Chi-squared distributed with (N — 2)
and (N — 3) degrees of freedom, respectively.

2.2.4 Added-Hyper-Plane (AHP) Bound

In [46], Yousefi and Khandani introduce a new upper bound on the ML decoding block
error probability, called the added hyper plane (AHP) bound. In similarity with the
ITSB, the AHP bound is based on using the Hunter bound (2.22) as an upper bound
on the LHS of (2.9), which results in the inequality (2.24). The complex optimization
problem in (2.24), however, is treated differently. Let us denote by Z,, the set of the
indices of the codewords of C with Hamming weight w. For i € {1,2,..., M} \ Z,,
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let {j;} be a sequence of integers chosen from the set Z,,. Then the following upper
bound holds

Pr(E(z1),y € Cn(0) | z1)

< gl}il Pr ( U {EO_U-},y e Cn(0) | zl> + Z Pr (EO_,i,Eg_,ji,y e Cn(0) | zl)

JE€Tw ie{1,... M—11\T,

(2.39)
The probabilities inside the summation in the RHS of (2.39) are evaluated in a similar
manner to the probabilities in the LHS of (2.29). From the analysis in Section 2.2.3
and the geometry in Fig. 2.2-(b), it is clear that the aforementioned probabilities
depend on the correlation coefficients between the planes (o, sg,s;) and (o, s, s;,).
Hence, in order to compute the upper bound (2.39), one has to know the geometrical
characterization of the Voronoi regions of the codewords. To obtain an upper bound
requiring only the distance spectrum of the code, Yousefi and Khandani suggest to
extend the codebook by adding all the (g ) — A, N-tuples with Hamming weight w
(i.e., the extended code contains all the binary vectors of length N and Hamming

weight w). Let us designate the new code by C,, and denote its codewords by

N
c?, ie{O,l,...,M+< )—Aw—l}.
w

The new codebook is not necessarily linear, and all possible correlation coefficients
between two codewords with Hamming weight i, where i € {dpn, - . . dmax }, and w are
available. Thus, for each layer of the codebook, one can choose the largest available
correlation® p with respect to any possible N-tuple binary vector of Hamming weight
w. Now one may find the optimum layer at which the codebook extension is done, i.e.,
finding the optimum w € {1,2,...n} which yields the tightest upper bound within
this form. We note that the resulting upper bound is not proved to be uniformly
tighter than the TSB, due to the extension of the code. The maximum correlation
coefficient between two codewords of Hamming weight d; and d; is introduced in the
RHS of (2.34) (see [46]). Let us designate the maximal possible correlation coefficient
between two N-tuples with Hamming weights w and h by py, 5 , i.e.,

min(h, w)[N — max(h, w)]

Vhw(N — h)(N —w)

Puwh = , w#h. (2.40)

!The RHS of (2.39) is a monotonically decreasing function of p, as noted in [47].
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By using the same bounding technique of the I'TSB, and replacing the correlation
coefficients with their respective upper bounds, py p, (2.39) gets the form

Pr(E(z),y € Cn(0) | 1) §1rgn { Pr U {Eo—;},y e Cn(8) | 2

Jrwn(cy)=w

+ ZAh Pr(Y <72, Bu(21) < 2, 23 < lywp(21,22) | 21) }
h#w

(2.41)

where

ﬁw(zl) — Pw,h?2

lun(21,22) = .
\/ 1- pw,h

Now, applying Hunter bound on the first term in the RHS of (2.41) yields

(2.42)

Pr U E(]*)j, y € CN(9> | z1
Jrwn (¥ )=w
(M)-1
< PI’(E@HZO,Y € CN(H) ‘ 21) + PI"(EOHI” Eg_jzy S CN(H) ’ 21) (243)
1

=4
~—

i

where {l;}, i € {0, 1,..., (g) — 1} is a sequence which designates the indices of
the codewords of C, with Hamming weight w with an arbitrary order, and I, €
(lo,l1,...,1i—1). In order to obtain the tightest bound on the LHS of (2.43) in this
approach, one has to order the error events such that the correlation coefficients

which correspond to codewords ¢;, and ¢; get their maximum available value, which

N

is1— w(N=m) [46, Appendix D]. Let us designate this value by py ., ,i-e.,

Pww=1— ,w ¢ {0,N}.

w(N — w)
Hence, based on the geometry in Fig. 2.2, if z; < y/NE;, we can rewrite (2.43) as

Pr ( U Ey_;,y € Cn(6) |21>
Jiwn

(c1)=w

<Pr(Bu(z1) <20 <7y, V<12 —25 | 21)

N
+ [(w> — 1} Pr (Bu(z1) < 22 <1y, =12y < 23 < min{luw(z1,22),72, ), W <12 — 25 — 25 | 1)

(2.44)
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where
\V - p%u,w
By replacing the first term in the RHS of (2.41) with the RHS of (2.44), plugging the

result in (2.7) and averaging w.r.t. Z; finally gives the following upper bound on the
block error probability:

lw,w (zla 22) =

Pr(E) < mui)n { Pr <21 <V NE;, Bu(z1) <z <r,,,V < 7’51 — z%)

N
+ ( > Pr (Zl S V NES7 ﬁw(zl) S zZ9 S Tz s
w

Tz <z3 < min{lw,w(zb Z2)>Tzl}a W < rzl - Z% - Z?z,)

+ZAhPr <Zl S V NESa ﬁh(’zl) S z9 S T2

h#w

—Tz < Z3 < min{lw,h<zla 22)7 TZ1}7 w < Tgl - Zg - Zg) }
+Pr <z1 </NE, Y > r;) } +Pr <21 > NES> . (2.46)

Rewriting the RHS of (2.46) in terms of probability density functions, the AHP bound
gets the form

vV NEs T2y Tzl —z3
P. < mln / / fZ2<ZQ)/ fv(v)dv - dz
Buw(21) 0

wzl

min{lw,w(21,22),721 } 3 —25—23
( ) / / [ 2,25 (22, 23)/ fw(w)dw - dzg - dzs
w Zl Tz1 0

min{ly, p(21,22),r21 } 7"51 —z5—23
+ Z Ah/ / [ 24,75 (22, 23)/ fw(w)dw - dzy - dz
h(21) 0

-
h:Br(z1) < 7Tz 1
h # w

_ 2
+1—7 (%7 %)] le(Z1)d21} +Q ( QNJ\?;E]D) (2.47)

where V' and W are introduced at the end of Section 2.2.3 (after Eq. (2.38)), and the
last term in (2.47) follows from (2.13).
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2.3 The Error Exponents of the ITSB and AHP

Bounds

The ITSB and the AHP bound were originally derived in [46, 47] as upper bounds
on the ML decoding error probability of specific binary linear block codes. In the
following, we discuss the tightness of the new upper bounds for ensemble of codes, as

compared to the TSB. The following lemma is also noted in [47].

Lemma 2.1 Let C be a binary linear block code, and let us denote by I'TSB(C) and
TSB(C) the ITSB and TSB, respectively, on the decoding error probability of C. Then

ITSB(C) < TSB(C).

Proof: Since Pr(A, B) < Pr(A) for arbitrary events A and B, the lemma follows
immediately by comparing the bounds in the RHS of (2.10) and (2.25), reffering to
the TSB and the I'TSB, respectively. |

Corollary 1 The ITSB can not exceed the value of the TSB referring to the average

error probability of an arbitrary ensemble of binary linear block codes.

Lemma 2.2 The AHP bound is asymptotically (as we let the block length tend to
infinity) at least as tight as the T'SB.

Proof: To show this, we refer to (2.46), where we choose the layer w at which the
extension of the code is done to be N. Hence, the extended code contains at most
one codeword with Hamming weight N more than the original code, which has no
impact on the error probability for infinitely long codes. The resulting upper bound
is evidently not tighter than the AHP (which carries an optimization over w), and it
is at least as tight as the T'SB (since the joint probability of two events cannot exceed

the probabilities of these individual events). n

The extension of Lemma 2.2 to ensembles of codes is straightforward (by taking the
expectation over the codes in an ensemble, the same conclusion in Lemma 2.2 holds
also for ensembles). From the above, it is evident that the error exponents of both
the AHP bound and the ITSB cannot be below the error exponent of the TSB. In
the following, we introduce a lower bound on both the ITSB and the AHP bound. It

serves as an intermediate stage to get our main result.
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Lemma 2.3 Let C designate an ensemble of linear codes of length NV, whose trans-
mission takes place over an AWGN channel. Let A;, be the number of codewords of
Hamming weight h, and let E. designate the statistical expectation over the code-
books of an ensemble C. Then both the ITSB and AHP upper bounds on the average
ML decoding error probability of C are lower bounded by the function (C) where

P(C) & mui)n {]EC [Pr <21 < \/N_Es, Buw(z1) <2z <.,V < 7"31 - Z;)
+ Z{Ah Pr(zl < \/N_Es, Bn(z1) < 29 <y,
h
e N ).
4 Pr <21 <\/NE, Y > r§1>] } (2.48)

and [y (21, 22) is defined in (2.42).

Proof: By comparing (2.46) with (2.48), it is easily verified that the RHS of (2.48)
is not larger than the RHS of (2.46) (actually, the RHS of (2.48) is just the AHP
without any extension of the code). Referring to the ITSB, we get

ITSB(C) = E¢ [Pr <z1 <V NEg, Buin(z1) <20 <7,V < rzl — z%)

+ Z{Ah Pr(z1 S VNE, Bu(z) < 22 <1y
h

— Ty < z3 < min{lh(zla 22)7r21}7 w < 7"51 - Z% - Z;)}

+Pr <z1 < /NE., Y > 7"2)} +Pr <z1 > NES)
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> mqgn {Ec [Pr (2’1 < \/N_Es, Buw(z1) < 20 <1,V < 7“,31 - Z%)
+Z{AhPr(z1 < \/N_Es, Br(z1) < 29 <1y,
h
— 1y < zz <min{lyp(z1,22), 7., ), W < 7’51 — 22— Zg)}
+Pr (21 <\/NE., Y > 7“2)} } +Pr <z1 > NES>

> (C). (2.49)

The first inequality holds since the I'TSB is a monotonically decreasing function w.r.t.
the correlation coefficients (see Appendix C). The equality in (2.49) is due to the lin-
earity of the function in (2.49) w.r.t. the distance spectrum, on which the expectation

operator is applied, and the last transition follows directly from (2.48). |

In [46] and [47], the RHS of (2.46) and (2.36), respectively, were evaluated by
integrals, which results in the upper bounds (2.47) and (2.38). In [11, Section D], Di-
vsalar introduced an alternative way to obtain a simple, yet asymptotically identical,
version of the TSB by using the Chernoff bounding technique. Using this technique

we obtain the exponential version of ¥(C). In the following, We use the following

C—NO, 5—N, A_Hl—é’ r(d) = N

where for the sake of clear writing we denote the average spectrum of the ensemble

notation [11]:

by Aj. We now state the main result of this chapter.

Theorem 2.4 (The error exponent of the AHP and the ITSB bounds coin-
cide with the error exponent of the TSB) The upper bounds ITSB, AHP and

the TSB have the same error exponent, which is

.1 9 vAZ%c
— - _ 7(6) =
E(c) nin {2 In(1—v+ne )+ 1A (2.50)
where
A l=0

v =(9)

5 [\/COC +(1+e?-1-( +c)} (2.51)



and
1—-96

) 55
Proof: The exponential version of ¢(C) in (2.48) is identical to the exponential
version of the TSB (see Appendices A and B). Since ¢(C) does not exceed the AHP
and the ITSB, this implies that the error exponents of the AHP and the I'TSB are
not larger than the error exponent of the TSB. On the other hand, from Lemmas 2.1
and 2.2 it follows that asymptotically, both the AHP and the I'TSB are at least as
tight as the TSB, so their error exponents are at least as large as the error exponent
of the TSB. Combining these results we obtain that the error exponent of the I'TSB,
AHP and the TSB are all identical. In [11], Divsalar shows that the error exponent
of the T'SB is determined by (2.50)—(2.52), which concludes the proof of the theorem.
m

co(6) & (1 —e 2@ (2.52)

Remark 1 The bound on the bit error probability in [33] is exactly the same as the
TSB on the block error probability by Poltyrev [31], except that the average distance

spectrum {Ap} of the ensemble is now replaced by the sequence { A} where

NR
A;L:Z(NﬂR)Aw,h, he{o,...,N}

w=0

and A, » denotes the average number of codewords encoded by information bits of

Hamming weight w and having a Hamming weight (after encoding) which is equal to
h. Since A;, = ngo Ay, then

Ay
VESA <A, he{o... NY.

The last inequality therefore implies that the replacement of the distance spectrum
{An} by {A},} (for the analysis of the bit error probability) does not affect the asymp-
totic growth rate of r(§) where § = £
the block and bit error probabilities coincide.

and hence, the error exponents of the TSB on

Remark 2 In [51], Zangl and Herzog suggest a modification of the TSB on the bit
error probability. Their basic idea is tightening the bound on the bit error probability
when the received vector y falls outside the cone R in the RHS of (2.3) (see Fig. 2.1).
In the derivation of the version of the T'SB on the bit error probability, as suggested
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by Sason and Shamai [33], the conditional bit error probability in this case was upper
bounded by 1, where Zangl and Herzog [51] refine the bound and provide a tighter
bound on the conditional bit error probability when the vector y falls in the bad region
(i.e., when it is outside the cone in Fig. 2.1). Though this modification tightens the
bound on the bit error probability at low SNR (as exemplified in [51] for some short
linear block codes), it has no effect on the error exponent. The reason is simply
because the conditional bit error probability in this case cannot be below ﬁ% (i.e.,
one over the dimension of the code), so the bound should still possess the same error
exponent. This shows that the error exponent of the TSB versions on the bit error

probability, as suggested in [33] and [51], coincide.

Corollary 2 The error exponents of the TSB on the bit error probability coincides
with the error exponent of the TSB on the block error probability. Moreover, the
error exponents of the TSB on the bit error probability, as suggested by Sason and
Shamai [33] and refined by Zangl and Herzog [51], coincide. The common value of

these error exponents is explicitly given in Theorem 2.4.
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2.4 Summary and Conclusions

The tangential-sphere bound (TSB) of Poltyrev [31] often happens to be the tightest
upper bound on the ML decoding error probability of block codes whose transmission
takes place over a binary-input AWGN channel. However, in the random coding
setting, it fails to reproduce the random coding error exponent [20] while the second
version of the Duman and Salehi (DS2) bound does [15, 35]. The larger the code
rate is, the more significant becomes the gap between the error exponent of the TSB
and the random coding error exponent of Gallager [20] (see Fig. 2.3, and the plots in
(7, Figs. 2-4]). In this respect, we note that the expression for the error exponent of
the TSB, as derived by Divsalar [11], is significantly easier for numerical calculations
than the original expression of this error exponent which was provided by Poltyrev
[?7, Theorem 2]. Moreover, the analysis made by Divsalar is more general in the sense
that it applies to an arbitrary ensemble, and not only to the ensemble of fully random
block codes.

In this chapter, we consider some recently introduced performance bounds which
suggest an improvement over the TSB. These bounds rely solely on the distance
spectrum of the code (or their input-output weight enumerators for the analysis of
the bit error probability). We study the error exponents of these recently introduced
bounding techniques. This work forms a direct continuation to the derivation of these
bounds by Yousefi et al. [46, 47, 48] who also exemplified their superiority over the
TSB for short binary linear block codes.

Putting the results reported by Divsalar [11] with the main result in this chapter
(see Theorem 2.4), we conclude that the error exponents of the simple bound of
Divsalar [11], the first version of Duman and Salehi bounds [14], the TSB [31] and its
improved versions by Yousefi et al. [45, 46, 47] all coincide. This conclusion holds for
any ensemble of binary linear block codes (e.g., turbo codes, LDPC codes etc.) where
we let the block lengths tend to infinity, so it does not only hold for the ensemble
of fully random block codes (whose distance spectrum is binomially distributed).
Moreover, the error exponents of the TSB versions for the bit error probability, as
provided in [33, 51], coincide and are equal to the error exponent of the TSB for
the block error probability. The explicit expression of this error exponent is given in

Theorem 2.4, and is identical to the expression derived by Divsalar [11] for his simple
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bound. Based on Theorem 2.4, it follows that for any value of SNR, the same value of
the normalized Hamming weight dominates the exponential behavior of the TSB and
its two improved versions. In the asymptotic case where we let the block length tend
to infinity, the dominating normalized Hamming weight can be explicitly calculated
in terms of the SNR; this calculation is based on finding the value of the normalized
Hamming weight § which achieves the minimum in the RHS of (2.50), where this
value clearly depends on the asymptotic growth rate of the distance spectrum of
the ensemble under consideration. A similar calculation of this critical weight as a
function of the SNR was done in [18], referring to the ensemble of fully random block
codes and the simple union bound.

In a the next chapter, new upper bounds on the block and bit error probabilities
of linear block codes are derived. These bounds improve the tightness of the Shulman

and Feder bound [37] and therefore also reproduce the random coding error exponent.
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Figure 2.2: (a): s is the transmitted vector, z; is the radial noise component, z5 and
z4 are two (not necessarily orthogonal) noise components, which are perpendicular
to z1, and lie on planes P, and P, respectively. The doted and dashed areas are the
regions where E; and Ef occur, respectively. (b): A cross-section of the geometry in

(a).
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the AHP bounds), and the random coding bound (RCE) of Gallager [19]. The upper
and lower plots refer to code rates of 0.5 and 0.9 bits per channel use, respectively.
The error exponents are plotted versus the reciprocal of the energy per bit to the
one-sided spectral noise density. 33



Chapter 3

Tightened Upper Bounds on the
ML Decoding Error Probability of
Binary Linear Block Codes

Short overview: The performance of maximum-likelihood (ML) decoded binary linear
block codes is addressed via the derivation of tightened upper bounds on their decod-
ing error probability. The upper bounds on the block and bit error probabilities are
valid for any memoryless, binary-input and output-symmetric communication chan-
nel, and their effectiveness is exemplified for various ensembles of turbo-like codes
over the AWGN channel. An expurgation of the distance spectrum of binary linear
block codes further tightens the resulting upper bounds.
This chapter is based on the following papers:

e M. Twitto, I. Sason and S. Shamai, “Tightened upper bounds on the ML de-
coding error probability of binary linear block codes,” submitted to the IEFEFE
Trans. on Information Theory, February 2006.

e M. Twitto, I. Sason and S. Shamai, “Tightened upper bounds on the ML de-
coding error probability of binary linear codes,” Proceedings 2006 IEEE Inter-
national Symposium on Information Theory, Seattle, USA, July 9-14, 2006.
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3.1 Introduction

In this chapter we focus on the upper bounds which emerge from the second version of
Duman and Salehi (DS2) bounding technique. The DS2 bound provides a conditional
upper bound on the ML decoding error probability given an arbitrary transmitted
(length-N') codeword ¢, (Pejm). The conditional decoding error probability is upper
bounded by

P < (Z S pvtlen vy (200 ) 5.1)

mi#m pN(Y|cm)

where 0 < p < 1 and A > 0 (see [15, 35]; in order to make the presentation self-
contained, it will be introduced shortly in the next section as part of the preliminary
material). Here, ¥¥(y) is an arbitrary probability tilting measure (which may depend
on the transmitted codeword c,,), and py(y|c) designates the transition probability
measure of the channel.

The tangential-sphere bound (TSB) of Poltyrev often happens to be the tightest
upper bound on the ML decoding error probability of block codes whose transmission
takes place over a binary-input AWGN channel. However, in the random coding
setting, it fails to reproduce the random coding exponent [20] while the second version
of the Duman and Salehi (DS2) bound, to be reviewed in the next section, does (see
[38]). The Shulman-Feder bound (SFB) can be derived as a particular case of the DS2
bound (see [38]), and it achieves the random coding error exponent. Though the SFB
is informative for some structured linear block codes with good Hamming properties,
it appears to be rather loose when considering sequences of linear block codes whose
minimum distance grows sub-linearly with the block length, as is the case with most
capacity-approaching ensembles of LDPC and turbo codes. However, the tightness
of this bounding technique is significantly improved by combining the SFB with the
union bound; this approach was exemplified for some structured ensembles of LDPC
codes (see e.g., [28] and the proof of [36, Theorem 2.2}).

In this chapter, we introduce improved upper bounds on both the bit and block
error probabilities. Section 3.2 presents some preliminary material. In Section 3.3, we
introduce an upper bound on the block error probability which is in general tighter
than the SFB, and combine the resulting bound with the union bound. Similarly,
an appropriate upper bound on the bit error probability is introduced. The effect of
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an expurgation of the distance spectrum on the tightness of the resulting bounds is
considered in Section 3.4. By applying the new bounds to ensembles of turbo-like
codes over the binary-input AWGN channel, we demonstrate the usefulness of the
new bounds in Section 3.5, especially for some coding structures of high rates. We

conclude the chapter in Section 3.6.

3.2 Preliminaries

We introduce in this section some preliminary material which serves as a preparatory

step towards the presentation of the material in the following sections.

3.2.1 The DS2 Bound

The bounding technique of Duman and Salehi [14, 15] originates from the 1965 Gal-
lager bound. Let 93}(y) designate an arbitrary probability measure (which may also

depend on the transmitted codeword ™). The Gallager bound [20] can then be put
in the form (see [38])

P <) R ¥R() ™ oy (ylem) (Z (]M)>

m£m pn(ylem)
A P
— ;wmw (wmy)pm(yrcm)p m%jm (%))  Vaps0.
(3.2)

By invoking the Jensen inequality in (3.2) for 0 < p < 1, the DS2 bound results

A\ P
Pem < (Z S px(ylen)r vRy)' (ZM) ) . 0<p<L A0

m'Em y pN(Y|Cm)
(3.3)
Let G%i(y) be an arbitrary non-negative function of y, and let the probability density
function ¥ (y) be

mioy — _ GN(Y) py(ylem)
)= 5 G o len) 0

The functions G (y) and ¥} (y) are referred to as the un-normalized and normalized

tilting measures, respectively. The substitution of (3.4) into (3.3) yields the following
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upper bound on the conditional ML decoding error probability

Pem < <ZGN PN y|cm)>
nigyt (PrOlen))’ ’
(Z S ov(ylen) GR(y) (pN(Y|Cm)> ) L0<p<1,A>0

'Fmy

(3.5)

The upper bound (3.5) was also derived in [11, Eq. (62)].

For the case of memoryless channels, and for the choice of ¥} (y) as Y (y) =
N

H Y™ (y;) (recalling that the function ¥} may depend on the transmitted codeword
i=1
x™), the upper bound (3.3) is relatively easily evaluated (similarly to the standard

union bounds) for linear block codes. In that case, (3.3) is calculable in terms of the
distance spectrum of the code, not requiring the fine details of the code structure.
Moreover, (3.3) is also amenable to some generalizations, such as for the class of

discrete memoryless channels with arbitrary input and output alphabets.

3.2.2 The Shulman and Feder bound

We consider here the transmission of a binary linear block code C where the com-
munication takes place over a memoryless binary-input output-symmetric (MBIOS)
channel. The analysis refers to the decoding error probability under soft-decision ML
decoding.

The Shulman and Feder bound (SFB) [37] on the block error probability of an

(N, K) binary linear block code C, transmitted over a memoryless channel is given by

P, < 2 NE(RHEEE) (3.6)

where

E\(R) = max (Ey(p) — pR) (3.7)

0<p<l1

Ey(p) £ ~ log, {Z P07 + S } . (38)

)
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A

E, is the random coding error exponent [20], R £ £ designates the code rate in bits

per channel use, and
A

a(C) = (3.9)

In the RHS of (3.9), {A4;} denotes the distance spectrum of the code. Hence, for
fully random block codes, a(C) is equal to 1, and the Shulman-Feder bound (SFB)
particularizes to the random coding bound [20]. In general, the parameter «(C) in
the SFB (3.6) measures the maximal ratio of the distance spectrum of a code (or
ensemble) and the average distance spectrum which corresponds to fully random
block codes of the same block length and rate.

The original proof of the SFB is quite involved. In [38], a simpler proof of the SFB
is derived, and by doing so, the simplified proof reproduces the SFB as a particular
case of the DS2 bound (see Eq. (3.3)). In light of the significance of the proof concept
to the continuation of this chapter, we outline this proof briefly.

Since we deal with linear block codes and the communication channel is memory-
less, binary-input output-symmetric channel (MBIOS), one can assume without any
loss of generality that the all zero codeword cy is the transmitted vector. In order to
facilitate the expression of the upper bound (3.5) in terms of distance spectrum of
the block code C, we consider here the case where the un-normalized tilting measure

G%(y) can be expressed in the following product form:

N

G(y)=]] o) (3.10)

i=1
where g is an arbitrary non-negative scalar function, and the channel is by assumption

MBIOS, so that the transition probability measure is expanded in the product form

py(Ylew) = [ ] p(vilem ) (3.11)

i=1
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where ¢,y = (¢1,.. ., ). Hence, the upper bound on the conditional ML de-

coding error probability given in (3.5) can be rewritten as

P, = Pe|0

N(1-p)
. (zg ym)

l
A>0
A 0 0)'*p(y[1 -
Z z(Zg p(yl )) (Zg p(y]0)' (Y| )) o< pet
N(1-p)
< e —N(1-R)p
- (OIEKNQ N(1- R ) (Zg y|0> 2

‘{Zg( p(y|0) +Zg *p(y]0) ~p(y[1)* } : (3.12)

By setting

1

p
o) = | g0yt + 0| w0 A= e ey

and using the symmetry of the channel (where p(y|0) = p(—y|1)), the SFB follows
readily.

3.3 Improved Upper Bounds

3.3.1 Upper Bound on the Block Error Probability

It is well known that at rates below the channel capacity, the block error probability
of the ensemble of fully random block codes vanishes exponentially with the block
length. In the random coding setting, the TSB [31] fails to reproduce the random
coding exponent, while the SFB [37] particularizes to the 1965 Gallager bound for
random codes, and hence, the SFB reproduces the random coding exponent. The
SEB is therefore advantageous over the TSB in the random coding setting when we
let the block length be sufficiently large. Equations (3.6) and (3.9) imply that for
specific linear codes (or ensembles), the tightness of the SFB depends on the maximal

ratio between the distance spectrum of the code (or the average distance spectrum of

39



the ensemble) and the average distance spectrum of fully random block codes of the
same length and rate which has a binomial distribution.

In order to tighten the SFB bound for linear block codes, Miller and Burshtein
[28] suggested to partition the original linear code C into two subcodes, namely C’
and C”; the subcode C’ contains the all-zero codeword and all the codewords with
Hamming weights of | € & C {1,2,..., N}, while C" contains the other codewords
which have Hamming weights of I € U = {1,2,..., N} \ U and the all-zero codeword.
From the symmetry of the channel, the union bound provides the following upper

bound on the ML decoding error probability:
P, = Pe|0 < Pe|0(C’) + Pe|0(C”) (314)

where P,o(C’) and P o(C") designate the conditional ML decoding error probabilities
of C" and C”, respectively, given that the all zero codeword is transmitted. We note
that although the code C is linear, its two subcodes C' and C” are in general non-linear.
One can rely on different upper bounds on the conditional error probabilities Peo(C’)
and Fyo(C"), i.e., we may bound P.p(C’) by the SFB, and rely on an alternative
approach to obtain an upper bound on P,z(C”). For example, if we consider the
binary-input AWGN channel, then the TSB (or even union bounds) may be used in
order to obtain an upper bound on the conditional error probability Feo(C"”) which
corresponds to the subcode C”. In order to obtain the tightest bound in this approach,
one should look for an optimal partitioning of the original code C into two sub-codes,
based on the distance spectrum of C. The solution of the problem is quite tedious,
because in general, if the subset U can be an arbitrary subset of the set of integers
{1,..., N}, then one has to compare Zf\io (]j) = 2% different possibilities for U.
However, we may use practical optimization schemes to obtain good results which
may improve the tightness of both the SFB and TSB.

An easy way to make an efficient partitioning of a linear block code C is to compare
its distance spectrum (or the average distance spectrum for an ensemble of linear
codes) with the average distance spectrum of the ensemble of fully random block
codes of the same rate and block length. Let us designate the average distance

spectrum of the ensemble of fully random block codes of length N and rate R by

B, é2N<1R>( ) 1=0,1,...,N. (3.15)

l
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Then, it is suggested to partition C in a way so that all the codewords with Hamming
weight [ for which %ﬁ is greater than some threshold (which should be larger than 1
but close to it) are associated with C”, and the other codewords are associated with
C'. The following algorithm is suggested for the calculation of the upper bound on
the block error probability under ML decoding:

Algorithm 1

1. Set
U=3o, U°={1,2,..N}, =1

where ® designates an empty set, and set the initial value of the upper bound
to be 1.

2. Compute the ratio %ﬁ where {A;} is the distance spectrum of the binary linear
block code (or the average distance of an ensemble of such codes), and {B;} is

the binomial distribution introduced in (3.15).

3. If this ratio is smaller than some threshold (where the value of the threshold is
typically set to be slightly larger than 1), then the element [ is added to the set
U, ie.,
U:=U+{l}, U :=U\{l}.

4. Update correspondingly the upper bound in the RHS of (3.14) (we will derive
later the appropriate upper bounds on Fyo(C’) and Py o(C”).

5. Set the bound to be the minimum between the RHS from Step 4 and its previous

value.
6. Set [ =1+ 1 and go to Step 2.

7. The algorithm terminates when [ gets the value N (i.e., the block length of the

code) or actually, the maximal value of [ for which A; does not vanish.!

'The number of steps can be reduced by factor of 2 for binary linear codes which contain the
all-ones codeword (hence maintain the property A; = Ay_;). For such codes, the update equation
in Step 3 becomes: U :=U+ {l, N =1}, U :=U"—{l,N — 1} and the algorithm terminates when
[ gets the value [5].
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Fig. ??(a) shows a plot of the ratio %ﬁ as a function of § £ L for an ensemble of
uniformly interleaved turbo-random codes. The calculation of the average distance
spectrum of these ensemble relies on the results of Soljanin and Urbanke in [40].

From the discussion above, it is clear that the combination of the SFB with an-
other upper bound has the potential to tighten the overall upper bound on the ML
decoding probability; this improvement is expected to be especially pronounced for
ensembles whose average distance spectrum resembles the binomial distribution of
fully random block codes over a relatively large range of Hamming weights, but devi-
ates significantly from the binomial distribution for relatively low and large Hamming
weights (e.g., ensembles of uniformly interleaved turbo codes possess this property,
as indicated in [33, Section 4]). This bounding technique was successfully applied
by Miller and Burshtein [28] and also by Sason and Urbanke [36] to ensembles of
regular LDPC codes where the SFB was combined with union bounds. If the range of
Hamming weights where the average distance spectrum of an ensemble resembles the
binomial distribution is relatively large, then according to the above algorithm, one
would expect that C’ typically contains a very large fraction of the overall number
of the codewords of a code from this ensemble. Hence, in order to obtain an upper
bound on Py o(C”), where C" is expected to contain a rather small fraction of the
codewords in C, we may use a simple bound such as the union bound while expecting
not to pay a significant penalty in the tightness of the overall bound on the decoding
error probability (FP,).

The following bound introduced in Theorem 3.1 is derived as a particular case of
the DS2 bound [15]. The beginning of its derivation is similar to the steps in [38,
Section 4A], but we later deviate from the analysis there in order to modify the SFB.
We finally obtain a tighter version of this bound.

Theorem 3.1 (Modified Shulman and Feder Bound) Let C be a binary linear
block code of length N and rate R, and let {4,} designate its distance spectrum. Let
this code be partitioned into two subcodes, C' and C”, where C’' contains the all-zero
codeword and all the other codewords of C whose Hamming weights are in an arbitrary
set U C {1,2,,...,N}; the second subcode C” contains the all-zero codeword and the
other codewords of C which are not included in C’. Assume that the communication
takes place over a memoryless binary-input output-symmetric (MBIOS) channel with

transition probability measure p(y|x), € {0,1}. Then, the block error probability
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of C under ML decoding is upper bounded by

Pe < Pe\0<cl) + Pe|0(cll)

A2y {[p<y|o>p<y|1>]1+3 P01 + Sty | } (317

Y

p—1
B &Y {p@\ow@ P07 + S } . (318)
The multiplicative term, SFB(p), in the RHS of (3.16) designates the conditional
Shulman-Feder upper bound of the subcode C’ given the transmission of the all-zero

codeword, i.e.,

SFB(p) = 2~V (Bo-p(Re==5EM) g o )y (3.19)

and Ej is introduced in (3.8). An upper bound on the conditional block error proba-
bility for the subcode C”, Fo(C"), can be either a standard union bound or any other
bound.

Proof: Since the block code C is linear and the channel is MBIOS, the conditional
block error probability of C is independent of the transmitted codeword. Hence,
the union bound gives the following upper bound on the block error probability:
P, < Pyo(C') + Pyo(C").

In order to prove the theorem, we derive an upper bound on Po(C’). Let {A;(C’)}
denote the weight spectrum of the subcode C’, and let Gy (y) be an arbitrary non-
negative function of the received vector y = (y1,%s,...,yny) where this function is
assumed to be expressible in the product form (3.10). Then, we get from (3.5) and
(3.10) the following upper bound on the conditional ML decoding error probability
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of the subcode C:

N(1-p)
e\O (Zg p(y|0) )
0" >0
'{;Al (Zg yO)) (Zg Pl ey ) } 0<p<1

- (o)
{E () () (S-bom) ™
(Zg p(y[0)'*p(y|1) )l}p

N(1-p)
—N(1-R)p
g(%%2N1R ) (Zg y|0> 2

{;( ) <Zg y!0)> (Zg p(10)' p(y|1) )l}p. (3.20)

The transition in the first equality above follows since A4;(C’) = 0 for | ¢ U, and
Ai(C") coincide with the distance spectrum of the code C for all [ € U. Note that
(3.20) is a tighter version of the bound in [38, Eq. (32)]. The difference between the
modified and the original bounds is that in the former, we only sum over the indices
[ € U while in the latter, we sum over the whole set of indices, i.e., [ € {1,2,..., N}.
By setting the tilting measure in (3.13), the symmetry of the MBIOS channel gives

the equality
p+1

Zg pl0) = 3 | 2p(10) ™ + 2p(yl1) (3.21)
2 2

)
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and from (3.17) and (3.18)

> p(l0) P ply[1) g(y)'

-3 { OV | o0 + Jotuln) | }

_ A(p) (3.22)

p(y|0)g(y)' >

1 a1 El e
— y‘o 1+p |:§p(y’0) 1+p + §p(y’1)1+ﬂj|

<™

= (p) (3.23)
where the RHS of (3.22) and (3.23) are obtained by setting A = 11—. Finally, based
on (3.13) and the symmetry of the channel, one can verify that

A(p) + B(p
Zg p(y|o) = % (3.24)

Substituting (3.21)—(3.24) into (3.20) gives the following conditional upper bound on
the ML decoding error probability of the subcode C':

(1-p)
Pe|0(c,) < a(Cy)” (w) 9-N(1-R)p (Z (‘7) Al(p)BNl(p)>
- (3.25)

p

where we use the notation

A
/ —_
a(C) = Ne NG R ()

The latter parameter measures by how much the (expected) number of codewords
in the subcode C’ deviates from the binomial distribution which characterizes the

average distance spectrum of the ensemble of fully random block codes of length N
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and rate R. By straightforward algebra, we obtain that

Pyo(C') < alC'y (M)N - ( : ) N

| LZG; (% <A(p;44(rp39(p)>l <A(p;94(rpf)9(p))]v_l

— ()’ (M) e

p

2

p

N Alp)  \'(_ Bl "
= SFB(p) - ( )( ) , 0<p< 1.
w12 )3+ 50)) \ao) + 509
(3.26)
The second equality follows from (3.19) and (3.8), and since
A 1 a1 O Rt
Eo(p) & —logy > |5pWl0)™ + Sp(y[1) ™
y
A B
— _log, ( (P)‘g (p)) _ (3.27)
This concludes the proof of the theorem. |

Discussion: The improvement of the bound introduced in Theorem 3.1 over the
standard combination of the SFB and the union bound [28, 36] stems from the intro-
duction of the factor which multiplies SFB(p) in the RHS of (3.16); this multiplicative

term cannot exceed 1 since

’GZ“ (7) (A@ﬁp;%(p))l (A(pipg(p))]v_l

3 () () ()=

This multiplicative factor which appears in the new bound is useful for finite-length
codes with small to moderate block lengths. The upper bound (3.16) on Py o(C’) is
clearly at least as tight as the corresponding conditional SFB. We refer to the upper
bound (3.16) as the modified SFB (MSFB). The conditional block error probability

of the subcode C”, given that the all-zero codeword is transmitted, can be bounded
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by a union bound or any improved upper bound conditioned on the transmission of
the all-zero codeword (note that the subcode C” is in general a non-linear code). In
general, one is looking for an appropriate balance between the two upper bounds on
Pe(&)) and Pe(ﬁ)) (see Algorithm 1). The improvement that is achieved by using the
MSFB instead of the corresponding SFB is exemplified in Section 3.5 for ensembles

of uniformly interleaved turbo-Hamming codes.

3.3.2 Upper Bounds on Bit Error Probability

Let C be a binary linear block code whose transmission takes place over an arbi-
trary MBIOS channel, and let B, designate the bit error probability of C under ML
decoding. In [34, Appendix A], Sason and Shamai derived an upper bound on the
bit error probability of systematic, binary linear block codes which are transmitted
over fully interleaved fading channels with perfect channel state information at the
receiver. Here we generalize the result of [34] for arbitrary MBIOS channels. In order
to derive the desired upper bound we use the following lemma due to Divsalar [11],

and provide a simplified proof to this lemma:

Lemma 3.2 [11, Section III.C] Let C be a binary block code of dimension K whose
transmission takes place over an MBIOS channel. Let C(w) designate a sub-code of
C which includes the all-zero codeword and all the codewords of C which are encoded
by information bits whose Hamming weight is w. Then the conditional bit error
probability of C under ML decoding, given that the all-zero codeword is transmitted,
is upper bounded by

p

K
_ w
Poo <D pn (103 () D eyl p o A>0, 0 p< 1 (3.28)
y w=1 ceC(w)

c#0

We introduce here a somewhat simpler proof than in [11].

Proof: The conditional bit error probability under ML decoding admits the form

Ppo=Y (%) pu(y]0) (3.29)

y

where wy(y) € {0,1,..., K} designates the weight of the information bits in the de-

coded codeword, given the all-zero codeword is transmitted and the received vector
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is y. In particular, if the received vector y is included in the decision region of the

all-zero codeword, then wy(y) = 0. The following inequalities hold:

wo(y) < (wo(}’)
K - K

P
>, 0<p<l1

c € C(wo(y)
c#0
P
& & bl ([ |
c#0

Inequality (a) holds since the received vector y falls in the decision region of a code-
word € which is encoded by information bits of total Hamming weight wy(y); hence,
the quotient % is larger than 1 while the other terms in the sum are simply
non-negative. The third inequality holds because of adding non-negative terms to

the sum. The lemma follows by substituting (3.30) into the RHS of (3.29). ]

Theorem 3.3 (The SFB Version on the BER) Let C be a binary linear block
code of length N and dimension K, and assume that the transmission of the code
takes place over an MBIOS channel. Let A, ; designate the number of codewords
in C which are encoded by information bits whose Hamming weight is w and their
Hamming weight after encoding is [. Then, the bit error probability of C under ML
decoding is upper bounded by

B, < 2~ NE(RHEEHE) (3.31)
where R = % is the code rate of C, and

Aj K w
A l ra —
ab«n"&g?ﬁz—Nu—M(yy A g;(g<)A”*
Proof: Due to the linearity of the code C and the symmetry of the channel, the
conditional bit error probability of the code is independent on the transmitted code-

word; hence, without any loss of generality, it is assumed that the all-zero codeword
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is transmitted. From (3.28), the following upper bound on the bit error probability
of C follows:

p

Po=Py < 3 pu(yl0) Z( )Y eyl p . A0, 0<p<
w=1

y c € C(w)
c#0
p
K A
_ 1 pn(yle)
= LU 0 2 (F );w[p]v(ym)] 332
c#0

where 1, is an arbitrary probability tilting measure. By invoking Jensen inequality
in the RHS of (3.32) and replacing ¢%(y) with the un-normalized tilting measure
G%(y) which appears in the RHS of (3.4), the upper bound in (3.32) transforms to

Pyjo < (ZG ) PN y!0)>

p

i( 1> > e I0)G () [pN(ymr Ershant

= py(y10)
c#0

(3.33)

We consider an un-normalized tilting measure G%/(y) which is expressible in the
product form (3.10). Since the communication channel is MBIOS and C is a binary

linear block code, one obtains the following upper bound on the bit error probability:

N(1-p)
By < (Zg y|0> 0<p<1,A>0

N

Z (%) > Auy <Zp(y!0)g(y)li> (Zp y| 1) p(y]0) g (y)'~ )

= (Z 9(y) p(y|0) >N(1p)

ZA; (Zp(ym)g(y)l_;) (Zp(yll)Ap(yIO)lAg(y)l‘i)

p



N(1—p) Al g
A ) oN@A-R)
< (Zg(y) p(y|0)> (J?fiwz NG- R)(z)> 2 p

Y

Np
<Zp Y1) p(yl0)' Pg(y)'~ Ner y[1)*p(y[0)' Pg(y)'~ ) (3.34)

By setting ¢g(y) as in (3.13), we obtain an upper bound which is the same as the
original SFB, except that the distance spectrum {A;} is replaced by {A;}. This
provides the bound introduced in (3.31), and concludes the proof of the theorem. m

Similarly to the derivation of the combined upper bound on the block error prob-
ability in Theorem 3.1, we suggest to partition the code into two subcodes in order to
get improved upper bounds on the bit error probability; however, since we consider
the bit error probability instead of block error probability, the threshold in Algo-
rithm 1 is typically modified to a value which is slightly above 1 (instead of 1). Since
the code is linear and the channel is MBIOS, the conditional decoding error probabil-
ity is independent of the transmitted codeword (so, we assume again that the all-zero

codeword is transmitted). By the union bound
P, = Byjo < Byo(C') + Popo(C”) (3.35)

where Pyo(C") and B, o(C") denote the conditional ML decoding bit error probabilities
of two disjoint subcodes C’ and C” which partition the block code C (except that these
two subcodes have the all-zero vector in common), given that the all-zero codeword
is transmitted. The construction of the subcodes C’ and C” is characterized later.
Upper bound on Py,o(C'): Let A,,; designate the number of codewords of Hamming
weight [ which are encoded by a sequence of information bits of Hamming weight w.
Similarly to the discussion on the block error probability, we use the bit-error version
of the SFB (see Eq. (3.31)) as an upper bound on P, o(C’). From Theorem 3.3, it
follows that the conditional bit error probability of the subcode C’, given that the

all-zero codeword is transmitted is upper bounded by

/
2_NEr<R+logaj\]?(C ))

Byo(C') < (3.36)

AC) e 2 { Yot (W) Awe ifleU (3.37)

otherwise
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and the set U in (3.37) stands for an arbitrary subset of {1,..., N}.

Upper bound on Pyo(C"): We may bound the conditional bit error probability of
the subcode C”, F,o(C"), by an improved upper bound. For the binary-input AWGN,
the modified version of the TSB, as shown in [33] is an appropriate bound. This bound
is the same as the original TSB in (2.19), except that the distance spectrum {4;} is
replaced by {A;'(C")} where

NR
w
N Ay, ifleur
A/ (C") £ ;<NR> 41 (3.38)
0 otherwise

and U° stands for an complementary set of U in (3.37), i.e., U = {1,..., N} \U. For
the binary-input AWGN channel, the TSB on the conditional bit error probability
admits the following final form (see [33]):

=3 2_,2
9 reony (Tz1 1 o~ (N=2 Tz —%
o0 dzl _2212 Zl:%lgal {Al (C ) Bi(z1) e 2077y 5 T 952 dZQ

Pb|0(cl/) S / e 2271'0'
- Vi s (35 )

(3.39)
where the incomplete Gamma function 7 is introduced in (2.12). As the simplest
alternative to obtain an upper bound on the conditional bit error probability of the

subcode C’ given that the all-zero codeword is transmitted, one may use the union
bound (UB) for the binary-input AWGN channel

NR
Pyo(C") < Z(%)ZAW,ZQ< 2@?)

w=1 leue

= YA (\/ 2%?) (3.40)

where FE, is the energy per information bit and % is the two-sided spectral power

density of the additive noise.

In order to tighten the upper bound (3.36), we obtain the bit-error version of
the MSFB (see Eq. (3.16)), by following the steps of the proof of Theorem 3.1. In
a similar manner to the transition from (3.6) to (3.31), we just need to replace the
terms A;(C’) in (3.16) with Aj(C’) to get the conditional modified SFB (MSFB) on the
bit error probability of C’, given the all-zero codeword is transmitted. The resulting

upper bound is expressed in the following theorem:
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Theorem 3.4 (Modified SFB on the Bit Error Probability) Let C be a binary
linear block code of length N and rate R, and let A,,; be the number of codewords
of C which are encoded by information bits whose Hamming weight is w and their
Hamming weight after encoding is [ (where 0 < w < NR and 0 <[ < N). Let the
code C be partitioned into two subcodes, C’ and C”, where C’ contains all codewords
of C with Hamming weight | € 4 C {1,2,,..., N} and the all-zero codeword, and C"
contains the all-zero codeword and all the other codewords of C which are not in C’.
Assume that the communication takes place over an MBIOS channel. Then, the bit

error probability of C under ML decoding is upper bounded by

B < Pb‘()(C/) + Pb|0(C“)

where
Puo(C) e e ) > (Y Ap) N[ B N\
= 2\ 1) \Ap)+ B(p)) \Alp) + B(p) ’
0<p<1 (3.41)
A NE L w
n A l 1A _
(€)= max R ™y A wzl (NR) Au

and the functions A, B, Fy are introduced in (3.17), (3.18) and (3.8), respectively. An
upper bound on the conditional bit error probability for the subcode C”, P,o(C"), can
be either a union bound (3.40), the TSB (3.39) or any other improved bound.

Discussion: Note that o, (C') < «(C’), therefore the bound on the bit error prob-
ability in (3.41) is always smaller than the bound on the block error probability in
(3.16), as one could expect.

In the derivation of the MSFB on the conditional block and bit error probabilities
(see Egs. (3.16) and (3.41), respectively), we obtain simplified expressions by taking

B, B,
(3.20) and (3.34). This simplification was also done in [38] for the derivation of
the SFB as a particular case of the DS2 bound. When considering the case of an

out the maximum of {M} and {w} from the corresponding summations in

upper bound on the block error probability, this simplification is reasonable because
Ai(C)

we consider the terms {Tz} which vary slowly over a large range of the Hamming
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weights [ (see Fig. 77(a) when referring to ensembles of turbo-like codes whose average

distance spectrum resembles the binomial distribution). However, by considering the
terms {%f/)} whose values change considerably with [ and almost grow linearly with
[ (see Fig. ??(b)), such simplification previously done for the block error analysis (i.e.,
Al

B
reduce the tightness of the bound on the bit error probability. Thus, the modification

) from the summation) is expected to significantly

taking out the maximal value of

which results in (3.41) does not seem to yield a good upper bound.? In order to get a

tighter upper bound on the bit error probability we introduce the following theorem:

Theorem 3.5 (Simplified DS2 Bound) Let C be a binary linear block code of
length N and rate R, and let A, ; designate the number of codewords which are
encoded by information bits whose Hamming weight is w and their Hamming weight
after encoding is [ (where 0 < w < NRand 0 <[ < N). Let the code C be partitioned
into two subcodes, C" and C”, where C’ contains all the codewords in C with Hamming
weight l € U C {1,2,,..., N} and the all-zero codeword, and C” contains all the other

codewords of C and the all-zero codeword. Let

NR w .
Az/(C')é{Z (V) Aws i €U

w=1 \NR
0 otherwise

Assume that the communication takes place over an MBIOS channel. Then, under

ML decoding, the bit error probability of C, is upper bounded by
B < Pb‘()(C/) + Pb|0(C“)

where

PyolC) < 27N(Eo(p)*/J<R+1°g@15(6’)))7 0<p<1 (3.42)

(€)= g{% (]j) (A(pfipg(p)y (A(pﬂp;(p)y_l} - 34)

A(p), B(p) and Ej are defined in (3.17), (3.18) and (3.8), respectively. As before, an
upper bound on the conditional bit error probability for the subcode C”, P, o(C"), can

be either a union bound or any other improved bound.

2Note that for an ensemble of fully random block codes, all the terms %ﬁ are equal to %; hence,
the simplification above does not reduce the tightness of the bound at all when considering this

ensemble.
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Proof: Starting from the first equality in (3.34), and using the definition for A(p), B(p)
in (3.17) and (3.18) we get

e (032 v {f it (o))
e
_ 2—N<Eo<p>—pm.{§4;g><7> (2 )N—z (A >l}
(3.44)
where

Blé2‘N(1‘R)(];[), l=0,...,N

designates the distance spectrum of fully random block codes of length N and rate
R. Using the definition for ,(C’) in (3.43) we get the upper bound (3.42). ]

Evidently, the upper bound (3.42) is tighter than the bit-error version of the SFB in
(3.36), because a,(C’") which is the expected value of l(l ) is not larger than ay,(C')
which is the maximal value of %(l’ﬂ). We note that the upper bound (3.42) is just the
DS2 bound [15], with the un-normalized tilting measure (3.13). This tilting measure
is optimal only for the ensemble of fully random block codes, and is sub-optimal for
other codes. We refer to the upper bound (3.42) as the simplified DS2. From the
discussion above, we conclude that the simplified DS2 bound (which is also valid
as an upper bound on the conditional block error probability if we replace Aj(C’) in
(3.44) by A;(C")) is advantageous over the MSFB when A] (or A, for the case of block
error probability) changes dramatically over the Hamming weight range of interest.
This is demonstrates for the block error probability of the ensemble of multiple turbo-
Hamming codes where there is no noticeable improvement if we use the simplified DS2
to bound Pyo(C’) instead of the MSFB, where for the case of bit-error probability we
get tighter upper bound when using the simplified DS2 to upper bound P, o(C’) rather
than the MSFB.
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3.4 Expurgation

In this section we consider a possible expurgation of the distance spectrum which
yields in general tighter upper bounds on the ML decoding error probability when
transmission takes place over a binary-input AWGN (BIAWGN) channel. To this
end, we rely on some properties of the Voronoi regions of binary linear block codes,
as presented in [1, 2, 3].

Let C be a binary linear block code of length N and rate R. Without any loss
of generality, let us assume that the all-zero codeword, ¢y, was transmitted over the
BIAWGN channel. For any received vector y, an ML decoder checks whether it falls
within the decision region of the all zero vector. This decision region (which is also
called the Voronoi region of cg) is defined as the set V, of vectors in RY that are

closest (in terms of Euclidian distance) to the all-zero codeword, i.e.,
Vo = {x e RV : d(x,¢p) < d(x,c), VceCl}. (3.45)

Not all of the 2V® inequalities in (3.45) are necessarily required to define the Voronoi
region. The minimal set of codewords that determine the Voronoi region of ¢, forms
the set of Voronoi neighbors of ¢q (to be designated by Nj). So the region (3.45) can
be defined by

Vo = {x € RV : d(x,¢p) < d(x,c), VYce€N}. (3.46)

It is clear that the block error probability of C is equal to the conditional block error
probability of the expurgated subcode C**, assuming the all-zero codeword is trans-
mitted, where C** designates the subcode of C which contains the all-zero codeword
and all its (Voronoi) neighbors. Hence, any upper bound that solely depends on
the code distance spectrum of the code can be tightened by replacing the original
distance spectrum with the distance spectrum of the expurgated code. It should be
noted, however, that the argument above cannot be applied to the bit error proba-
bility. This stems from the fact that while the block error event is solely defined by
the Voronoi region of the transmitted codeword, the bit error event also depends on
the Hamming weight of the information bits of each decoded codeword; hence, the
above expurgation cannot be applied to the analysis of the bit error probability. The
distance spectrum of the Voronoi neighbors of an arbitrary codeword of some popular

linear block codes (e.g., Hamming, BCH and Golay codes) is given in [1]. A simple

25



way to find a subcode of C which contains the subcode C* is given in the following

theorem from [2]:

Theorem 3.6 (On the Voronoi Regions of Binary Linear Block Codes [2])
For any binary linear block code C with rate R and length N

M;{CEClSWH(C)SQdmIH—l}

and
M C{ceC:1<Wy(c) < N(1—-R)+1}

where dy,i, is the minimal Hamming weight of the codewords in C.

Note that according to the theorem above, one should expect the expurgation to have
maximal impact on the tightness of an upper bound for high rate codes, where most of
the codewords can be expurgated. We should also observe that the expurgated code-
words have large distances from the all-zero codeword (all the expurgated codewords
have a Hamming weight larger than 2d.,;, — 1). Thus, the improvement due to the
expurgation process is especially substantial at low SNRs. One can use this theorem
to achieve an immediate improvement of an arbitrary upper bound by expurgating
all the codewords whose Hamming weight is greater than N (1 — R) + 1. We refer to
this kind of expurgation as the trivial expurgation. The trivial expurgation, though
very simple to apply, does not produce satisfactory results in many cases, because
in many cases, the portion of the distance spectrum which corresponds to Hamming
weights above N (1 — R)+ 1 has a negligible effect on the overall bound. In [2], Agrell
introduces a method (called C rule) in order to determine whether a codeword c is a
zero-neighbor.

3 no other nonzero

C rule: A codeword is a O-neighbor if and only if it covers
codeword.

In [3] , Ashikmin and Barg used this rule to derive explicit formulas for the weight
spectrums of zero-neighbors for various codes. This includes the families of Hamming
codes and second-order Reed-Muller codes.

In order to upper bound the block error probability using the bounding tech-

nique introduced in this chpater, we split the subcode Cex into two subcodes, C.,

3A binary codeword c; is said to cover another codeword, cs, if co has zeros in all the positions
where ¢y has a zero.
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and C,

{1,2,..,N(1 — R) + 1}, and C/, contains the all-zero codeword and all the other
codewords. The following upper bound holds:

where C., contains all the codewords of Cex with Hamming weight | € U C

P.(C) = Puo(Cex) < Peo(Cly) + Peo(CL) (3.47)

were Fqo(C.,) and Po(Cl,) are the conditional block error probabilities of the sub-

codes C., and C.

ex’

respectively, given that the all-zero codeword was transmitted.
We can upper bound Py|o(CL,) by the union bound or the TSB, and we upper bound
Peo(C.y) by the MSFB (3.16). The partitioning of the subcode Cey into two subcodes

Cl. and C!_is done following the adaptive algorithm introduced in Section 3.3.

3.5 Applications

This section demonstrates some numerical results of the improved upper bounds on
the ML decoding error probability of linear block codes. We apply the bounds intro-
duced in Sections 3.3 and 3.4 to various ensembles of parallel and serially concatenated
codes. Throughout this section, it is assumed that the encoded bits are BPSK mod-
ulated, transmitted over an AWGN channel, and coherently detected. The effect of
an expurgation of the distance spectrum on the tightness of some upper bounds on
the decoding error probability is exemplified as well.

For the binary-input additive white Gaussian noise (BIAWGN) channel with
BPSK modulation, the conditional probability density function (pdf) for a single

letter input is:

pol0) = = e { = (v + VEL) /o .

i) = <A e { = (v - VE) /%o

where Eg designates the energy of the symbol, and % is the two-sided spectral power

(3.48)

density of the channel. In order to calculate the SFB on P,o(C’), we first calculate
the terms A(p) and B(p), as defined in (3.17) and (3.18), respectively. Clearly, for a
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continuous-output channel, the sums in (3.17) and (3.18) are replaced by integrals.

o 2 |1 a1 I
B) = [ o) [l + Jpwinre] g

o0 1 P oyt VER)? 1 \%5 CwvE)? ] (vt
= / e No(1+p)< ) —e No(I+p) 4 —e No(i+p) dy
\/7TNO \/’/TNO 2 2
R R S LS RS L
= _— _ 0 - o(p — o(1+p — o(1+p
exp NO . \/7]__]\706 € 26 26 Y

Eq _2X\/2Bs/Ny 2F,/No X
= exp <_F) E|e . coshp_l<#>
0

1+p
where E denotes the statistical expectation, and X ~ N(0,1). We also obtain that

—00

(3.49)

o a1 a1 i
A0 = [ Bl 300107 + pinTe|ay
2B NoX
= exp (_%) E COShp_l ¢
No I+p

Ap) + Blp) = 2exp (—%) E

0

(3.50)

and

cosh'*? (M)] (3.51)

I+p

Plugging (3.49) — (3.51) into (3.16), and (3.41) and minimizing over the interval
0 < p < 1 will give us the desired bounds for Py o(C') and Pyo(C’), respectively.

3.5.1 Ensemble of Serially Concatenated Codes

The scheme in Fig. 3.2 depicts the encoder of an ensemble of serially concatenated
codes where the outer code is a (127, 99, 29) Reed-Solomon (RS) code, and the inner
code is chosen uniformly at random from the ensemble of (8, 7) binary linear block
codes. Thus, the inner code extends every symbol of 7 bits from the Galois field
GF(27) to a sequence of 8 bits. The decoding is assumed to be performed in two
stages: the inner (8, 7) binary linear block code is soft-decision ML decoded, and
then a hard decision ML decoding is used for the outer (129, 99, 29) RS code. Due to
the hard-decision ML decoding of the (127, 99, 29) RS code, its decoder can correct

up to t = L%J = 14 erroneous symbols. Hence, an upper bound on the average
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block error probability of the considered serially concatenated ensemble is given by

Ry () - (3.52)
o i=t+1 ’ i S ‘

where pg is the average symbol error probability of the inner code under soft-decision
ML decoding. The symbol error probability ps of the inner code is either upper
bounded by the ubiquitous union bound or the TSB, and this upper bound is sub-
stituted in the RHS of (3.52). Since the rate of the inner code is rather high (it is
equal to g bits per channel use), an expurgation of the distance spectrum seems to
be attractive in order to tighten the upper bound on the overall performance of the
concatenated ensemble. Ashikmin and Barg [3] show that the average expurgated
distance spectrum of the ensemble of random linear block codes of length N and
dimension K is given by

-2

(N2~ W=R ] (1 — 27 V=R 1=0,1,...,N-K+1

E[A)] = (3.53)

Il
o

0 otherwise.

We rely on the expurgated distance spectrum in (3.53) in order to get a tighter version
of the union bound or the T'SB on the symbol error probability ps of the inner code
(where N = 8 and K = 7)%. The expurgated union bound in Fig. 3.3 provides a gain
of 0.1 dB over the union bound or TSB at block error probability of 107, and the
improvement in the tightness of the bound due to the distance spectrum expurgation
is especially prominent at low values of SNR. Clearly, we take 1 as the trivial bound
on ps (as otherwise, for low values of SNR, the union bound on ps may exceed 1,
which gives in turn a useless upper bound on the decoding error probability of the

ensemble).

3.5.2 Turbo-Hamming Codes

Let us consider an ensemble of uniformly interleaved parallel concatenated turbo-
Hamming codes. The encoder consists of two identical (2™ —1,2™ —m — 1) Hamming

codes as component codes, and a uniform interleaver operating on the 2™ —m — 1

4In order to calculate the average distance spectrum of the ensemble of random binary linear
block codes, see Appendix D.
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information bits. The comparison here refers to the case where m = 10, so the two

component codes are (1023, 1013) Hamming codes, and the overall rate of the en-

2Mm—m—1
2m4m—1

bit to one-sided spectral noise density (%) which corresponds to this coding tare is

semble is R = = 0.9806 bits per channel use. The value of the energy per
5.34 dB, assuming that communication takes place over a binary-input AWGN chan-
nel. In order to obtain performance bounds for the ensemble of uniformly interleaved
turbo-Hamming codes, we rely on an algorithm for the calculation of the average
input-output weight enumerator function (IOWEF) of this ensemble, as provided in
[32, Section 5.2]. As noted in [32], the average distance spectrum of this ensemble is
very close to the binomial distribution for a rather large range of Hamming weights
(see Fig. ??(a)). Hence, one can expect that the upper bound introduced in Theo-
rem 3.1 provides a tight bounding technique on the average block error probability
of this ensemble. For this coding scheme, we note that regarding P,, there is no sub-
stantial improvement in the tightness of the overall upper bound if we upper bound
Po(C") by the TSB instead of the simple union bound (see Fig. 3.5). Among the
bounds introduced in Section 3.3, the upper bound which combines the TSB and the
MSFB is the tightest bound, especially for the low SNR range (see Fig. 3.5); referring
to the bound in Theorem 3.1, the partitioning of codes in the considered ensemble
relies on Algorithm 1 (see Section 3.3). In Fig. 3.6, we provide a comparison between
various upper bound on the bit error probability of this turbo-like ensemble. The
tightest bound for the bit error analysis is the one provided in Theorem 3.5, com-
bining the simplified DS2 bound with the union bound. It is shown in Fig. 3.6 that
the simplified DS2 provides gains of 0.16 dB and 0.05 dB over the MSFB at bit error
probabilities of 10! and 1072, respectively. The simplified DS2 also provides gain of
0.08 dB over the TSB at bit error probability of 10~!. Unfortunately, a trivial ex-
purgation of the average distance spectrum of uniformly interleaved turbo codes with
two identical (2™ — 1,2™ —m — 1) Hamming codes as components (i.e., by nullifying
the average distance spectrum at Hamming weights above 2m + 1) has no impact on

tightening the performance bounds of this ensemble.
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3.5.3 Multiple Turbo-Hamming Codes

Multiple turbo codes are known to yield better performance, and hence, it is inter-
esting to apply the new bounding techniques in Section 3.3 to these ensembles. The
encoder of a multiple turbo-Hamming code is depicted in Fig. 3.7.

Consider the ensemble of uniformly and independently interleaved multiple-turbo
codes, where the components codes are identical systematic binary linear block codes
of length N. Let S, 5, denote the number of codewords of the ™" component code
with weight of the systematic bits equal to w and the weight of the parity bits equal
to h;. The average number of codewords of the ensemble of multiple-turbo codes,

with systematic-bits weight of w and overall weight [ is given by

Sw,hy Sw,hy Sw,h
Ay = Z 1 (N); Y (3.54)
hl, hg, hg s.t. Y
w+h1+h2+h3:l

From (3.54) and the algorithm to calculate the input-output weight enumerators
of Hamming codes (see [32, Appendix A]), it is possible to verify that the average
distance spectrum of the ensemble of multiple turbo-Hamming codes with two inde-
pendent uniform interleavers is very close to the binomial distribution for a relatively
large range of Hamming weights (similarly to the plot in Fig. ??(a)). Hence, the
improved bounds provided in Section 3.3 are expected to yield good upper bounds
on the decoding error probability. The comparison here refers to the case of m = 10,

so the three component codes are (1023, 1013) Hamming codes. The overall rate of

the ensemble is 2271:2—’;;’_11 = 0.9712 bits per channel use, and the channel capacity
for this coding rate corresponds to % = 5 dB. All the improved bounds that are

evaluated here, incorporate the union bound as an upper bound on P.(C”) (or B,(C")
for bit error probabilities). The numerical results of various upper bounds are shown
in Fig. 3.8 for the block and bit error probabilities. As expected, the improvements
that were obtained by the improved bounds (Theorems 3.1-3.5) are more pronounced
here than for the ensemble of turbo-Hamming code. For example, at bit error rate
of 1071, the simplified DS2 bound yields a gain of 0.12 dB over the TSB. A modest

improvement of 0.05 dB was obtained at bit error rate of 1072,
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3.5.4 Random Turbo-Block Codes with Systematic Binary

Linear Block Codes as Components

Finally, we evaluate improved upper bound for the ensemble of uniformly interleaved
parallel concatenated (turbo) codes, having two identical component codes chosen
uniformly at random and independently from the ensemble of systematic binary linear

block codes. We assume that the parameters of the overall code are (N, K), so the

parameters of its component codes are (& ;“K ,K). In addition, the length of the
uniform interleaver is K.
According to the analysis in [40], the input-output weight enumeration of the

considered ensemble is given by

SW,2)=> " 8,W"Z’
w,j

K N-K 2 N-K
()5 (e ()
w=1 w §=0 J j=0 J

where Sy, ; denotes the number of codewords whose information sub-words have Ham-
ming weight of w and the parity sub-word has Hamming weight j. We apply the im-
proved bounds introduced in Section 3.3 to this ensemble where the parameters are
set to (IV, K) = (1144,1000) (hence, the rate of the parallel concatenated ensemble
is R = 0.8741 bits per channel use). The plots of various upper bounds on the block
and bit error probabilities are shown in Fig. 3.9. The improved bounds yield the best
reported upper bound on the block and bit error probabilities. For the block error
probability, the upper bound which combines the MSFB with the union bound is the
tightest bound; it achieve a gain of 0.1 dB over the TSB, referring to a block error
probability of 107%. A similar gain of 0.11 dB is obtained for the bit error probability,
referring to a BER of 107#, referring to the bound which combined the union bound
with the simplified DS2 bound (see Theorem 3.5).

3.6 Conclusions

We derive in this chpater tightened versions of the Shulman and Feder bound. The
new bounds apply to the bit and block error probabilities of binary linear block codes

62



under ML decoding. The effectiveness of these bounds is exemplified for various
ensembles of turbo-like codes over the AWGN channel. An expurgation of the distance
spectrum of binary linear block codes further tightens in some cases the resulting

upper bounds.
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Figure 3.1: Plots of %ﬁ and %f as a function of the normalized Hamming weight (%),
on a logarithmic scale. The plots refer to ensembles of random turbo-block codes
with two identical systematic binary linear block codes as components; (a) A plot of
% with NV = 1000 and R = 0.72 bits/Symbol, referring to the analysis of the block

error probability, (b) A plot of %f with N = 100 and R = 0.72 bits/Symbol, referring
to the analysis of the bit error probability.
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Figure 3.2: A scheme for an ensemble of serially concatenated codes where the
outer code is a (127, 99, 29) Reed-Solomon (RS) code, and the inner code is chosen
uniformly at random from the ensemble of (8,7) binary linear block codes.
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Figure 3.3: Various upper bounds on the block error probability of the ensemble
of serially concatenated codes depicted in Fig. 3.2. The compared bounds are the
tangential-sphere bound (TSB) and the union bound with and without expurgation
of the distance spectrum; this expurgation refers to the ensemble of inner codes,
chosen uniformly at random from the ensemble of (8,7) binary linear block codes.
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Figure 3.4: A comparison between the upper bound which combines the UB with
the SFB bound in it original form (Eq. (3.6)) and the upper bound which combines
the UB with the MSFB bound in (3.16). The comparison refers to the ensemble
of uniformly interleaved turbo-Hamming codes where the two component codes are
(1023, 1013) Hamming codes. The overall rate of the code is 0.973 bits per channel
use.
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Figure 3.5: Comparison between various upper bounds on the ML decoding block
error probability where the comparison refers to the ensemble of uniformly interleaved
turbo-Hamming codes whose two component codes are (1023, 1013) Hamming codes.
The compared bounds are the union bound (UB), the tangential-sphere bound (TSB),
and two instances of the improved upper bound from Theorem 3.1: the UB+MSFB
combines the MSFB with the union bound, and the TSB4+MSFB is the upper bound
which combines the MSFB with the tangential-sphere bound.
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Figure 3.6: Comparison between various upper bounds on the ML decoding bit
error probability of the ensemble of (1033,1013) uniformly interleaved turbo-Hamming
code. The compared bounds are the union bound (UB), the tangential-sphere bound
(TSB), the upper bound from Theorem 3.4 which combines the union bound with
the MSFB (UB+MSFB), and the upper bound from Theorem 3.5 which combines
the union bound with the simplified DS2 bound (UB-+simplified DS2).
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Figure 3.7: A multiple turbo-Hamming encoder. The encoder consists of parallel con-
catenated Hamming codes with two uniform, statistically independent interleavers.
The code length is 2™ + 2m — 1 and the code rate is R =

use.
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Figure 3.8: Comparison between various upper bounds on the ML decoding er-
ror probability, referring to the ensemble of uniformly interleaved multiple turbo-
Hamming codes where the three component codes are (1023, 1013) Hamming codes
(see Fig. 3.7). The upper plot refers to upper bounds on the block error probability,
and the compared bounds are the union bound (UB), the tangential-sphere bound
(TSB), and the upper bound of Theorem 3.1 which combines the union bound with the
MSFB (UB+modified SFB). The lower plot refers to upper bounds on the bit error
probability, and the compared bounds are the union bound (UB), the tangential-
sphere bound (TSB), the upper bound gfj Theorem 3.4 which combines the union
bound with the MSFB, and the upper bound of Theorem 3.5 which combines the
union bound with the simplified DS2 bound (UB+simplified DS2).
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Figure 3.9: Comparison between upper bounds on the block and bit error probabilities
for an ensemble of uniformly interleaved turbo codes whose two component codes are
chosen uniformly at random from the ensemble of (1072, 1000) binary systematic
linear block codes; its overall code rate is 0.8741 bits per channel use. The compared
bounds under ML decoding are the tangential-sphere bound (TSB), and the bounds
in Theorems 3.1 and 3.5. The upper and lower plots provide upper bounds on the
block and bit error probabilities, respectively.
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Chapter 4

Summary and Conclusion

4.1 Contribution of the Thesis

The tangential-sphere bound (TSB) of Poltyrev [31] often happens to be the tightest
upper bound on the ML decoding error probability of block codes whose transmission
takes place over a binary-input AWGN channel. However, in the random coding set-
ting, it fails to reproduce the random coding exponent [19] while the second version
of the Duman and Salehi (DS2) bound does [15, 35]. In the first part of this work,
we consider some recently introduced performance bounds which suggest an improve-
ment over the TSB. These bounds rely solely on the distance spectrum of the code (or
their input-output weight enumerators for the analysis of the bit error probability).
In Chapter 2.4, we study the error exponents of these recently introduced bounding
techniques. This forms a direct continuation to the derivation of these bounds by
Yousefi et al. [45, 46, 47] who also exemplified the superiority of their recently intro-
duced bounds over the TSB for short binary linear block codes. We conclude that
all the aforementioned upper bounds posses the same error exponent as the TSB.
Moreover, the error exponents of the TSB versions for the bit error probability, as
provided in [33, 51], coincide and are equal to the error exponent of the TSB for
the block error probability. The explicit expression of this error exponent is given
in Theorem 2.4, and is therefore identical to the error exponent of the TSB as was
first derived by Poltyrev [31] for random codes, and later simplified by Divsalar and
adapted to general ensembles of binary linear block codes [11]. Since the gap between

the error exponent of the TSB and the random coding error exponent of Gallager [19]
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(see Fig. 2.3 in p. 33) becomes larger as the code rate is increased, tightened upper
bounds are especially needed for high-rate linear codes.

In Chapter 3 we derive tightened upper bounds on the decoding error probability
of linear block codes, under ML decoding. The bounds derived in the second part
of the thesis form an improvement over the Shulman and Feder bound [37], and as
particular cases of the generalized of Duman and Salehi bound [15, 35|, are more
simple for calculation. They reproduce the random coding error exponent as a by
product of their superiority over the Shulman and Feder bound. These bounds on the
block and bit error probabilities depend respectively on the distance spectrum and
input-output weight enumeration function of the codes, so one can easily apply them
to various codes and ensembles. The effectiveness of these bounds (which are valid for
arbitrary memoryless, binary-input and output-symmetric channels) is exemplified for
various ensembles of turbo-like codes when transmission takes place over the binary-
input AWGN channel. For some ensembles of turbo-like codes (especially, ensembles
of high-rate codes), they provide a better bounding technique than the TSB. in some
cases, an expurgation of the distance spectrum of binary linear block codes further

tightens the resulting upper bounds.

4.2 Topics for Further Research

In the following, we propose some topics for further research:

e In [46, 47], Yousefi et. al. derive improved versions of tangential-sphere bound,
by using the Hunter bound. One may obtain various upper bounds from the
bounding technique of [46] (i.e., by applying the Hunter bound on the prob-
ability of a union involved in the TSB (see Section 2.2.3)), by means of more
delicate treatment of the correlation coefficients. In Chapter 2, we show that the
ITSB and AHP upper bounds [46, 47] have the same error exponent as the TSB.
In fact, by introducing Lemma 2.3 we prove a stronger argument. Namely, we
show that as long as the complementary events £ . correspond to codewords
with the same Hamming weight, no improvement is achieved over the error ex-
ponent of the TSB. This implies that the potential of using a Bonferroni-type
inequality (of order 2 and more) may not have been fully exploited. Hence,

a possible research may be a search for an upper bound which is based on a
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Bonferroni-type inequality [17], and whose error exponent is at least as large
as the error exponent of the TSB; this bound should also depend solely on the

distance spectrum of the code.

In [22], Herzberg and Poltyrev adapt the TSB to upper bound the decoding
error probability of M-ary phase-shift keying (PSK) block coded modulation,
under coherent ML decoding. However, in practical communication system, the
detection is rarely coherent, due to oscillator instability in the receiver. The
oscillator instability due to noise, which manifest itself as phase noise (PHN), is
one of the primary factors that limit the achievable performance in many com-
munication systems [9], [29]. Hence, finding an upper bound on the decoding
error probability of M-ary PSK block coded modulation under none-coherent
ML decoding is of high importance. The PHN is generally modelled as a wide-
sense stationary Gaussian process or a Weiner process ([29], [10]). For both
types, the PHN obviously does not change the energy of the received vectors
(given the value of the PHN). Hence, the receiving signals still have constant
energy, and one may apply the TSB as an upper bound on the aforementioned

error probability.

The constant envelope of continuous phase modulations (CPM) and their ex-
cellent spectral properties make them attractive in many digital transmission
systems [41]. In [8], Brutel and Boutros consider serial concatenation of outer
convolutional code and a continuous phase modulation as an inner code sep-
arated by a random interleaver. They asses the performance of this ensemble
via union bounds. We propose to apply the tightened upper bounds derived in
Chapter 3 on the decoding error probability of the above ensemble, as well as
other continuous phase modulated turbo-codes. The proposed bounding tech-
niques are expected to provide tighter upper bounds than those introduced in
8].

In [5], Bennatan and Burshtein generalized the Shulman and Feder bound to
arbitrary discreet-memoryless channels (DMC). They also combine the SFB
with the union-Bhattacharrya bound for further tightening the resulting upper

bound. A possible research in this direction is the generalization of the upper
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bounds from Chapter 3 to an arbitrary DMC channel. Likewise, one can ap-
ply the generalized versions of the bounds from Chapter 3 on the ensemble of
modulo-g quantized coset LDPC codes, and compare the results with the upper

bound used by Bennatan and Burshtein in [5].
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Appendix A

The exponent of (C)

In the following, the exponential behavior of the RHS of (2.48) is obtained by using
the Chernoff bounding technique for ¢(C).

Note that the geometrical region of the TSB corresponds to a double sided circular
cone. For the derivation of the bound for the single cone, we have put the further
restriction z; < /NEj, but since 2, ~ N(0, %), then this boundary effect does not
have any implication on the exponential behavior of the function ¢(C) for large values
of N (as also noted in [11, p. 23]). To simplify the analysis, we therefore do not take
into consideration of this boundary effect for large values of N. Let @Z(C) designate
the function which is obtained by removing the event z; < /N E; from the expression
for ¢(C) (see the RHS of (2.48)).

Let us designate the normalized Gaussian noise vector by v, i.e., (vy,...,vy) =

Nlo(zl, ..., 2n), and define n £ tan? . The Gaussian random vector has N orthogo-
nal components which are therefore statistically independent. From (2.4) and (2.42),

the following equalities hold for BPSK modulated signals:

Ty, = 77<V2NC—V1>
h
Bh(l/l):( 2NC—I/1) N——h
(V1) — P V
lw7h(l/1,l/2): ﬁ ( 1) p h 2‘ (Al)
1_p121),h
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Hence, we obtain from (2.48) and the above discussion

At this point, we upper bound the RHS of (A.2) by the Chernoff bounds, namely,
for three random variables V, W and Z

Pr(V>0)<E[], p>0 (A.3)
Pr(W<0,V>0)<E[e"], ¢<0,u>0 (A4)
Pr(W<0,V>0,2>0)<E[e"VVH] 1<0,5>0,k>0. (A5)

The Chernoff versions of the first and last terms in the RHS of (A.2) are introduced
in [11, Eqgs.(134)—(137)], and are given by

N
1—2p
P Z 252 | « —nE1(c,pn) >0 A6
N 1—2q 1
Pr V2 <12 > By(n) | < yf———e MERleawm < <0 (AT
(iQZ_Vl 2_5(1)>_ 1+ 2qn 277_61_ (A7)

where

2pnc 1
—1In(1 — 2p). A8
g+ 5 n(l - 2p) (A8)

2qn + (1 = 29)4/ 7% 1
Es(¢,q,0,m) =c ; + 3 In(1 — 2q). (A.9)

Next, by invoking the Chernoff bound (A.5), we get an exponential upper bound on
the second term in the RHS of (2.48). Using the notation

El(c7p7 77) =

and

w(N — h)

Cwh = h(N —w) (A.10)
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we get (see Appendix B for details)

Ap Pr (ZV < ryl, vy > Br(v1),vs > —lyn(va, 1/2))

=2

<4/ L2 e~9(etksmhN) _1 <t<0,k>0,5s>0 (A.11)
1+ 2tn 2n

2
. k(w h 2 kc’w,h
4tnnc + 2v2Nc (3 m) Ap — A ( —— )

pw,h
2(1+ 2tn)

where

g(C,t,k,S,’f],h,N) -

2
kpw h
S —_— —
( vV 1_p12u,h> k’2

N h
T ooy ooy o2 ey
(A.12)
and
2
A
A2y

The next step is to find optimal values for K and s in order to maximize the function
g. If K* =0 then the exponent of ¥(C) is identical to that of the TSB. In order to
find the optimal K > 0 and s > 0 which maximize g, we consider the aforementioned
probabilities by discussing separately the three cases where h < w, h > w and h = w.

Case 1: h = w. In this case ¢y, = Cuww = 1, and we get

N
1—2¢
Ay, (Z v; < rul, vy > Buw(vh),v3 > —lyw(v1, V2)> < o—9(ctksmw,N)
1=2

1+ 2tn

—%gtgo,kzo,szo

n
(A.13)
where
2
VoON _ A2 (e &k
dtnnc + 2v2Ne (s m) A, — A (s m)
g<c7 t? k? 87 ,r]?w7 N) =
2(1 4+ 2tn)
()
1=p% w k2 N
— — —In(1 —2t) —In(A,).(A.14
2(1 — 2t) s —2p T B 20~ In(Ay).(A14)
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Let us define the parameters

E=5— 1+% (A.15)
rs e —f’jﬂgﬂaw. (A.16)

From (A.15) and (A.16), we get
k=—(& -1 (A.17)

where

1 w,w
a2 [ E P (A.18)
1 _pw,w

Hence, the Chernoff bounding technique gives

N
[1—2t
Pr <Z Vi2 < r;%la Vo 2 ﬁw(yl)7 vy > —lw,w(Vb V2)> < meigl(c’t’g’T’n’w’NzA.19)

i=2
2n —

where

dtnne + 22N €A, — A2 2
2(1 4+ 2tn)
72 (E—7)%a®* N
- Ao saoa 5 In(1—20). (A.20)

gl(c7t7€77—7777 h7 N) =

Maximizing the RHS of (A.19) w.r.t. 7 yields

dg1 T (E—1)o”
or T 1-2t ' 1-2 0
0426*
= . A21
=T [T a2 ( )

Notice that %27921 < 0, hence plugging 7* in (A.20) maximizes g;. Substituting 7* into
(A.20) gives

92(c7ta€7777w7N) £ gl(cﬂt7€aT*an7w7N)

dtnne+ 2V2NeA & — A2 15262 N
nne + 2v2N el € wé rra?$ + —1In(1—2¢). (A.22)
2(1 + 2tn) 2(1—2t) 2
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A differentiation of g, w.r.t. £ and an introduction of the new parameter ¢ = o®

1+a?
gives
dga \/QNCAU,—A?US_ e _0
o 1+ 2tn 1—2t
V2NcA, (1 —2t
I cAu(l=3t) (A.23)
AZ (1 —2t) + €(1 + 2tn)
Again, %2%2 < 0, so & maximizes go. From (A.21), & — 7% > 0. Since « is non-

negative, we get that K* in (A.17) is not-positive. But since from (A.11), K > 0,
this yields that the optimal value of K is equal to zero. From the Chernoff bound
in (A.5), an optimality of K when it is set to zero implies that asymptotically, as
N — o0

N N
Pr (Z vi <rlve > Bu(n),vs > _lw,w(VhVQ)) =Pr (Z vi <l > ﬁw(V1)> . (A24)

=2

w(N—h)

Case 2: h > w. In this case, from (2.40) it is obvious that p,, = iEmE

Hence, for this case, we get that p,, = (yn. From (A.12)

2
kGuw,n A2 _ _kCuwn
4dtnne 4+ 2v/2N¢ (s 1Ci,h) Ap — A7 <s 1(3”1)

g(cﬂt7k7s7n7h7N) = 2(1+2t’l7)

2
s — kCuw,h ,
- ( 2(ﬁ) - 2(1k 2) + gln(l —2t) — nr(%). (A.25)

In the following, we introduce the parameters

¢ & 5o Fwh (A.26)

V1= Con

T 2 k (A.27)

Optimization over 7 yields 7 = 0, so K* = 0, and asymptotically (as we let N
tend to infinity), one gets the following equality in terms of the exponential behaviors:

N N
PI' (ZVE S TI%I)VQ Z B}L(V1)7V3 2 _l’w,h(l/17y2)> = Pr (Z ViZ S T'317I/2 Z Bh(yl)> . (A28)

=2 =2
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Case 3: h < w. From (2.40), the values of h approve that p,, , = ANZw) 6 we

w(N—h)’
get from (A.10) that py,p < (un. Define

kGuw
cag  Mun (A.29)
I Pi,h
kpuw
rhg o fPwh (A.30)
- P?U,h
From (A.29) and (A.30)
k=—(&—71)d (A.31)
where
L= pin
S A.32
(w,h — Pw,h ( )

Since in this case pyp < Cwp, then o/ > 0. Similarly to the arguments in case 1, we
get again that the optimal value for K is K* = 0, which implies (A.28) in the limit
where the block length tends to infinity.
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Appendix B

Derivation of the Chernoff Bound
in (A.11) with the Function ¢ in
(A.12)

Using the Chernoff bound (A.5) and defining

A, = (B.1)

we get

(a)
<

N
=2
E

Yo v2—r2 ) +s(va—Bn (1) +k(vatly n(v1, Vz))] 7 t<0,5>0 k>0

Ay (V2nc—v1)—py, pV
(b) t(Zf\’ o Vi —17(\/2nc—1/1)2)+s(u2—Ah(\/2nc—V1))+k<1/3+ ( \/1 :2) Pw,h 2)
P E e “Pw,h

= E e \/_ pw h \/17p3u,h

/: EA +
tz;vZQ Vf—th%—Qtnnc—f—Qnt\/2ncu1+sug sApV2nct+sApvy+kvs+ kAyVione FowVl Pw,h“2]

kpw h
—tn2 4| 2ntv/2nctsAy, — —FBw |y, 24| s— L] v
nvy ( n h /—1—p2w’h 1 E . 2 ,—l—pﬁ)’h 2

(QE-etZ£\;4yi2:|E e

—2tnnc—sAp\/2nc+ Eowy2ne

E [et"g*k”ﬂ e VI (B.2)
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where inequality (a) follows from the Chernoff bound (A.5), equality (b) follows
from (A.1), and equality (c) follows from the statistical independence of the compo-
nents of the normalized noise vector v. For a zero-mean and unit-variance Gaussian

random variable X, the following equality holds:

b2
e2(1—2a)

V1-—2a’

Evaluating each term in (B.2) with the equality in (B.3), and substituting

) 1
EF“*”}: a< beR (B.3)

Ay

Cw,h = Ah

which follows from (A.10) and (B.1), then gives

, 1 N-3
E|etSian| = [ —— . t<0 B.5
= () s (B.5)

2
kCw,n
2ntV2ne+Ap | s——F——
—tq2+ | 2ntvEnc+s A, — e )y, 1 ( ( ,le;h>)
1 17p2
E e w,h e —— 2(1+2tn) (B6)

kpqy 2
2+ (s Fowh )Vz 1 17’]; h)
lfp2 5
E le w,h — 1_2t€ 2(1—-2t) k>0,3>0 (B?)
E |:6tl/§+k1/3i| — 1 ]- 2t 62(1]67_220, t S 0’ k 2 O (B 8)

From (B.6), straightforward algebra gives

—tnui+ <277t\/%+8AhkAw) vi | —2tnnc—sApy/2nct £ow2ne
(&

/1—0p2 2
1 pw,h 1

7pw,h

E |e

2
kCw, kCw,
. —4tnnc — 2v/2nc (3 — \/ﬁ Ap+ A7 <s — \/ﬁ)
= ———ex
P 2(1 + 2t)

Vv 1+ 2in
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Plugging (B.5) and (B.7)—(B.9) into (B.2) finally gives

N
Ay Pr (Z V2 <02 > Bu), s > —zw,h<u1,u2>>

1=2

2 2
N_1 4t7m02\/2nc(s kayg )AthA%L (s kgw’; ) (s kpw’; )
Ah 1 B lipw,h lipw,h 17pw,h 12
< 2(1+2tn) + +

— VI+2itnp \V1-2t

/1 -2t 1
=\/7 — e*g(c,t,k,s,n,h,N), ~5 <t<0, k>0 s>0 (B.10)
Ui Ui

which proves the Chernoff bound in (A.11) with the function ¢ introduced in (A.12).
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Appendix C

Monotonicity w.r.t. the

Correlation Coefficient

Consider the probabilities Pr(Ey_;, E5_;,y € Cn(0)]21), and denote the Hamming
weights of ¢; and ¢; by d; and dj, respectively. In [47], it is shown that as long as
d; > dj, the probabilities Pr(FEy_;, E5_;, ¥y € Cn(0)|21) are monotonically decreasing
functions of the correlation coefficients p between the planes (o, s, s;) and (0, sg, s;).
Hence, the complex optimization problem in (2.24) is simplified by choosing the first
error event as well as the complementary error events in the RHS of (2.24) to cor-
respond to a codeword with Hamming weight dp.i,, and (2.25) is obtained. Here we
prove, that the aforementioned probabilities are monotonically decreasing functions
of the correlation coefficients for any choice of 4, j. As a consequence, one can obtain
a version of the ITSB by setting in (2.24) 7 = A\; = w where w € {dupin, - - -, dmax },
and choosing the optimal w which minimizes the resulting upper bound. In order to
prove this, we follow the steps in [47, Appendix I] where it is shown that the above
probabilities are monotonically decreasing functions of p if

22

Bi(z1)
Note that the joint event (Fo_;, y € Cn(#)) implies that the noise component zs is

> p. (C.1)

in the range between ;(21) and r,, (see Fig. 2.1 in p. 12), so the minimum value of

the RHS of (C.1) is




Clearly,
d;(N —d;) _ min(d;,d;)[N — max(d;, d;)]
dj(N — d;) Vdid;(N — d;)(N — d;)
but from (2.34), it is evident that the RHS of (C.2) is the maximal value of p, thus,
condition (C.1) is always satisfied referring to the joint event (Ey_;, y € Cn(0)).

(C.2)
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Appendix D

The Average Distance Spectrum of

the Ensemble of Random Linear
Block Codes

In [3, Eq. (2)], Ashikmin and Barg introduce a formula for the average spectrum of
a random linear code. The formula coincides with the well-known average spectrum
of fully random code. Clearly, Eq. (2) there can not be the exact expression for
the average distance spectrum of the ensemble of random linear block codes, since for
linear codes, the all-zero vector is always a codeword which forces E[Ag] = 1. In order
to obtain the exact expression, we follow the arguments in [3], while limiting ourselves
to the case of binary codes (the generalization for g-ary codes is straightforward).
Consider the ensemble C which contains all the (IV, K) linear codes. Let E[A,,] denote
the average number of codewords with Hamming weight w. The probability that the

first row in the parity-check matrix of some code from C satisfies a check equation for

oN-1_1
2N 1

of 1 from both the nominator and denominator of the above expression is that we do

. The reason for the subtraction

a specific codeword of Hamming weight w is

not allow an all-zero row in the parity check matrix (otherwise the code rate will be
below %) The probability that the i*" row satisfies the check equation is % (we

subtract all the rows that are linearly dependent with the first ¢ — 1 rows); therefore,
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the probability that this codeword is contained in a code from C equals

N-K oN-1 _ gi-1 oK _ 1

oN _ 9i—1 _2N_1

=1

Thus

N 2};_1 O<w<n
s - B o< o

N
It can be easily verified that ZE[AU,] = 2% as one could expect. Moreover, for the
asymptotic case where N, K i_go, (D.1) converges to Eq. (2) in [3] (for w # 0). The
problem with Ashikmin and Barg derivation is that they assume that the rows of the
parity check matrix is statistically independent (which is correct for the asymptotic
case). Another way to look at Ashikmin and Barg formula is to consider the %
as the design rate of the code. Anyway, the expression in [3] can be used as an
(asymptotically tight) upper bound on the average distance spectrum of the ensemble

of linear block codes.
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