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Abstract

Since the error performance of coded communication systems rarely admits exact ex-

pressions, one resorts to tight analytical upper and lower bounds as useful theoretical

and engineering tools for assessing performance and gaining insight into the main

system parameters. Since specific good codes are hard to identify, the average per-

formance of ensembles of codes is usually assessed. The reason in this direction was

stimulated in the last decade, due to the introduction of capacity-achieving codes, like

turbo codes and low-density parity-check codes. Clearly, such bounds should not be

subject to the union bounds limitations, as the aforementioned families of codes per-

form reliably at rates exceeding the cut-off rate of the channel. Furthermore, as the

explicit characterization of the Voronoi regions for linear codes is usually unknown,

useful bounds should depend solely on the distance spectrum or the input-output

weight-enumerating function of the code, which can be found analytically for many

codes or ensembles. Although turbo-like codes which closely approach the Shannon

capacity limit are decoded using practical and sub-optimal decoding algorithms, the

derivation of upper bounds on the maximum-likelihood error probability is of inter-

est. It provides an indication on the ultimate achievable performance of the system

under optimal decoding. Tight bounds on the maximum likelihood (ML) decoding

error probability also provide an indication on the inherent gap which exists between

optimal ML decoding and sub-optimal (e.g., iterative) decoding algorithms.

In addressing some improved versions of the tangential-sphere bound, we focus

on the error exponents associated with these bounds. We show that asymptotically,

these bounds provide the same error exponent as the tangential-sphere bound of

Poltyrev. In the random coding setting, the error exponent of the tangential-sphere

bound fails to reproduce the random coding exponent. This motivates us to explore

other bounding techniques which may improve the tangential-sphere bound, especially

g



for high code rates, where the weakness of the tangential-sphere bound is especially

pronounced.

In this work, we derive tightened upper bounds on the decoding error probability

of binary linear block codes (and ensembles), under maximum-likelihood decoding,

where the transmission takes place over an arbitrary binary-input output-symmetric

(MBIOS) channel. These bounds are shown to be at least as tight as the Shulman and

Feder bound, and are easier to compute than the generalized version of the Duman

and Salehi bounds. Hence these bounds reproduce the random coding error exponent

and are also suitable for various ensembles of linear codes (e.g., turbo-like codes). For

binary linear block codes, we also examine the effect of expurgation of the distance

spectrum on the tightness of the new bounds, as well as previously reported bound.

The effectiveness of the new bounds is exemplified for various ensembles of turbo-

like codes over the AWGN channel; for ensembles of high-rate linear codes, the new

bounds appear to be tighter than the tangential-sphere bound.

The good results obtained from the upper bounds which are derived in this thesis,

make these bounding techniques applicable to the design and analysis of efficient

turbo-like codes. Finally, topics which deserve further research are addressed at the

end of this thesis.
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List of notation and abbreviations

AHP :Added-Hyper-Plane

AWGN :Additive White Gaussian Noise

BER :Bit error rate

BPSK :Binary phase shift keying

CPM :Continuous phase modulation

DS2 :The second version of Duman and Salehi bound

i.i.d. :independent identically distributed

ITSB :Improved tangential-sphere bound

IOWEF :Input-Output Weight Enumeration Function

LDPC :Low-Density Parity-Check

MBIOS :Memoryless, Binary-Input and Output-Symmetric

ML :Maximum-Likelihood

PHN :Phase noise

RA :Repeat and Accumulate

SFB :Shulman and Feder bound

TSB :Tangential-sphere bound
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Eb

N0
:Energy per bit to spectral noise density

Es :Energy per symbol

dmin :minimum distance of a block code

h2(·) :The binary entropy function

K :The dimension of a linear block code

N :The length of a block code

N0 :The one-sided spectral power density of the additive white Gaussian noise

Pr(A) :The probability of event A

Pb(C) :The bit error probability of the code C
Pe(C) :The block error probability of the code C
Q(·) :The Q-function

R :Code rate

R0 :The cuttoff rate of a channel

Γ(·) :The complete Gamma function

γ(·, ·) :The incomplete Gamma function
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Chapter 1

Introduction

Since the advent of information theory, the search for efficient coding systems has

motivated the introduction of efficient bounding techniques tailored to specific codes

or some carefully chosen ensembles of codes. The incentive for introducing and apply-

ing such bounds has strengthened with the introduction of various families of codes

defined on graphs which closely approach the channel capacity with feasible com-

plexity (e.g., turbo codes, repeat-accumulate codes [13], and low-density parity-check

(LDPC) [19, 27] codes). Moreover, a lot of applications for turbo-like codes were sug-

gested for a variety of digital communication systems, such as Digital Video Broad-

casting (DVB-S2), deep space communications and the third generation of CDMA

(WCDMA). Their broad applications and the existence of efficient algorithms imple-

mented in custom VLSI circuits (e.g., [26], [52], [53]) enable to apply these iterative

decoding schemes to a variety of digital communication systems. Clearly, the desired

bounds must not be subject to the union bound limitation, since for long blocks

these ensembles of turbo-like codes perform reliably at rates which considerably ex-

ceeds the cutoff rate (R0) of the channel (recalling that for long codes, union bounds

are not informative at the portion of the rate region exceeding the cut-off rate of

the channel, where the performance of these capacity-approaching codes is most ap-

pealing). Although maximum-likelihood (ML) decoding is in general prohibitively

complex for long codes, the derivation of bounds on the ML decoding error probabil-

ity is of interest, providing an ultimate indication of the system performance. Further,

the structure of efficient codes is usually not available, necessitating efficient bounds

on performance to solely rely on basic features, such as the distance spectrum and
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input-output weight enumeration function (IOWEF) of the examined code (for the

evaluation of the block and bit error probabilities, respectively, of a specific code or

ensemble).

A basic concept which lies in the base of many previously reported upper bounds

was introduced by Fano [16] in 1960. It relies on the following inequality:

Pr(word error | c) ≤ Pr(word error,y ∈ R | c) + Pr(y /∈ R | c) (1.1)

where y denotes the received vector at the output of the channel, R is an arbitrary

geometrical region which can be interpreted as a subset of the observation space, and

c is an arbitrary transmitted codeword. The idea of this bounding technique is to use

the union bound only for the joint event where the decoder fails to decode correctly,

and in addition, the received signal vector falls inside the region R (i.e., the union

bound is used to upper bound the first term in the RHS of (1.1)). On the other hand,

the second term in the RHS of (1.1) represents the probability of the event where the

received vector y falls outside the region R; this event, which is likely to happen in

the low SNR regime, is calculated only one time. If we choose the region R to be

the whole observation space, then (1.1) provides the union bound. However, since

the upper bound (1.1) is valid for an arbitrary choice of R, many improved upper

bounds can be derived by an appropriate selection of this region. Upper bounds

from this category differ in the chosen region. For instance, the tangential bound

of Berlekamp [6] used the basic inequality in (1.1), where the volume R is a the n-

dimensional Euclidian space separated by a plane. For the derivation of the sphere

bound [21], Herzberg and Poltyrev have chosen the region R to be a sphere around

the transmitted signal vector, and then optimized the radius of the sphere in order to

get the tightest upper bound within this form. The region R in Divsalar’s bound [11]

was chosen to be a hyper-sphere with an additional degree of freedom with respect

to the location of its center. It should be noted, however, that the final form of

Divsalar’s bound was obtained by applying the Chernoff bounds on the encountered

probabilities, which results in a simple bound where nor integration or numerical

optimizations are needed. Finally, the tangential-sphere bound (TSB) which was

proposed for binary linear block codes by Poltyrev, and for M-ary phase-shift keying

(PSK) block coded-modulation schemes by Herzberg and Poltyrev [22] incorporate R
as a circular cone of half-angle θ, whose central axis passes through the transmitted
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signal vector and the origin. The TSB is one of the tightest upper bounds known

to-date for linear block codes whose transmission takes place over the AWGN channel

(see [32, 33]). In [45] , Yousefi and Khandani show that the conical region of the TSB

is the optimal region among all regions which have azimuthal symmetry w.r.t. the

line which passes through the transmitted signal and the origin. This justifies the

tightness of the TSB, based on its geometrical interpretation.

All the aforementioned upper bounds are obtained by applying the union bound

on the first term in the RHS of (1.1). In [46], Yousefi and Khandani suggest to use

the Hunter bound [23] (an upper bound which belongs to the family of second-order

Bonferroni-type inequalities [17]) instead of the union bound, in order to get an upper

bound on the joint probability in the RHS of (1.1). This modification should result

in a tighter upper bound. They refer to the resulting upper bound as the added-

hyper-plane (AHP) bound. Yousefi and Mehrabian also apply the Hunter bound, but

implement it in a quite different way to obtain an upper bound which is called the

improved tangential-sphere bound (ITSB). The tightness of the AHP is demonstrated

for some short BCH codes [46] where it is shown to slightly outperform the TSB at the

low SNR range. In [47], a comparison between the ITSB and the TSB for few short

codes also slightly outperform the TSB, but in parallel, the computational complexity

of these bounds as compared to the TSB is significantly larger. An important question

which is not addressed analytically in [46, 47] is whether the new upper bounds

(namely, the AHP bound and the ITSB) provide an improved lower bound on the error

exponent as compared to the error exponent of the TSB. In this thesis, we address

this question, and prove that the error exponents of these improved tangential-sphere

bounds coincide with the error exponent of the TSB [44]. We note however that the

TSB fails to reproduce the random coding error exponent, especially for high-rate

linear block codes [21].

Another approach for the derivation of improved upper bounds is based on the

Gallager bounding technique which provides a conditional upper bound on the ML

decoding error probability given an arbitrary transmitted (length-N) codeword cm

(Pe|m). The conditional decoding error probability is upper bounded by

Pe|m ≤
( ∑

m′ 6=m

∑
y

pN(y|cm)
1
ρ ψm

N (y)1− 1
ρ

(
pN(y|cm′)

pN(y|cm)

)λ
)ρ

(1.2)
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where 0 ≤ ρ ≤ 1 and λ ≥ 0 (see [15, 35]). Here, ψm
N (y) is an arbitrary probability

tilting measure (which may depend on the transmitted codeword cm), and pN(y|c)
designates the transition probability measure of the channel. Connections between

these two seemingly different bounding techniques in (1.1) and (1.2) were demon-

strated in [38], showing that many previously reported bounds (or their Chernoff

versions) whose original derivation relies on the concept shown in inequality (1.1) can

in fact be re-produced as particular cases of the bounding technique used in (1.2). To

this end, one simply needs to choose the suitable probability tilting measure ψm
N which

serves as the ”kernel” for reproducing various previously reported bounds. The ob-

servations in [38] relied on some fundamental results which were reported by Divsalar

[11].

The tangential-sphere bound (TSB) of Poltyrev often happens to be the tightest

upper bound on the ML decoding error probability of block codes whose transmission

takes place over a binary-input AWGN channel. However, in the random coding

setting, it fails to reproduce the random coding exponent [20] while the second version

of the Duman and Salehi (DS2) bound does (see [38]). In fact, also the Shulman-

Feder bound (SFB) [37] which is a special case of the latter bound achieves capacity

for the ensemble of fully random block codes. Though the SFB is informative for

some structured linear block codes with good Hamming properties, it appears to

be rather loose when considering sequences of linear block codes whose minimum

distance grows sub-linearly with the block length, as is the case with most capacity-

approaching ensembles of LDPC and turbo codes. However, the tightness of this

bounding technique is significantly improved by combining the SFB with the union

bound; this approach was exemplified for some structured ensembles of LDPC codes

(see e.g., [28] and the proof of [36, Theorem 2.2]).

In this thesis, we introduce improved upper bounds on the ML decoding error

probability of binary linear block codes, which are tightened versions of the SFB.

These bounds on the block and bit error probabilities depend on the distance spec-

trum of the code (or the average distance spectrum of the ensemble) and the input-

output weight enumeration function, respectively. The effect of an expurgation of

the distance spectrum on the tightness of the resulting bounds is also considered.

By applying the new bounds to ensembles of turbo-like codes over the binary-input

AWGN channel, we demonstrate the usefulness of these new bounds, especially for

6



some coding structures of high rates.

The thesis is organized as follows: we present some improved versions of the TSB

in Chapter 2, and derive their error exponents. In Chapter 3, we introduce an upper

bound on the block error probability which is in general tighter than the SFB, and

combine the resulting bound with the union bound. Similarly, appropriate upper

bounds on the bit error probability are introduced. Finally, we conclude our work

and propose some future research directions in Chapter 4.

For an extensive tutorial paper on performance bounds of linear codes, the reader

is referred to [35].
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Chapter 2

The Error Exponents of Some

Improved Tangential-Sphere

Bound

Chapter overview: The performance of maximum-likelihood (ML) decoded binary lin-

ear block codes over the AWGN channel is addressed via the tangential-sphere bound

(TSB) and some of its improved variations. This chapter is focused on the derivation

of the error exponents of these bounds. Although it was previously exemplified that

some variations of the TSB suggest an improvement over the TSB for finite-length

codes, it is demonstrated in this chapter that all of these bounds possess the same

error exponent. Their common value is equal to the error exponent of the TSB, where

the latter error exponent was previously derived by Poltyrev and later its expression

was simplified by Divsalar.

This chapter is based on the following papers:

• M. Twitto and I. Sason, “On the Error Exponents of Some Improved Tangential-

Sphere Bounds,” accepted to the IEEE Trans. on Information Theory, August

2006.

• M. Twitto and I. Sason, “On the Error Exponents of Some Improved Tangential-

Sphere Bounds,” submitted to the 24th IEEE Convention of Electrical and

Electronics Engineers in Israel, Eilat, Israel, Nov. 15–17, 2006.
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2.1 Introduction

In recent years, much effort has been put into the derivation of tight performance

bounds on the error probability of linear block codes under soft-decision maximum-

likelihood (ML) decoding. During the last decade, this research was stimulated by

the introduction of various codes defined on graphs and iterative decoding algorithms,

achieving reliable communication at rates close to capacity with feasible complexity.

The remarkable performance of these codes at a portion of the rate region between the

channel capacity and cut-off rate, makes the union bound useless for their performance

evaluation. Hence, tighter performance bounds are required to gain some insight on

the performance of these efficient codes at rates remarkably above the cut-off rate.

Duman and Salehi pioneered this research work by adapting the Gallager bounding

technique in [19] and making it suitable for the performance analysis of ensembles,

based on their average distance spectrum. They have also applied their bound to

ensembles of turbo codes and exemplified its superiority over the union bound [14,

15]. Other performance bounds under ML decoding or ’typical pairs decoding’ are

derived and applied to ensembles of turbo-like codes by Divsalar [11], Divsalar and

Biglieri [12], Jin and McEliece [24, 25], Miller and Burshtein [28], Sason and Shamai

[32, 33, 35] and Viterbi [49, 50].

The tangential-sphere bound of Poltyrev [31] forms one of the tightest performance

bounds for ML decoded linear block codes transmitted over the binary-input additive

white Gaussian noise (BIAWGN) channel. The TSB was modified by Sason and

Shamai [32] for the analysis of the bit error probability of linear block codes, and was

slightly refined by Zangl and Herzog [51]. This bound only depends on the distance

spectrum of the code (or the input-output weight enumerating function (IOWEF) of

the code for the bit-error analysis [32]), and hence, it can be applied to various codes

or ensembles. The TSB falls within the class of upper bounds whose derivation relies

on the basic inequality

Pr(word error | c0) ≤ Pr(word error, y ∈ R | c0) + Pr(y /∈ R | c0) (2.1)

where c0 is the transmitted codeword, y denotes the received vector at the output

of the channel, and R designates an arbitrary geometrical region which can be inter-

preted as a subset of the observation space. The basic idea of this bounding technique

is to reduce the number of overlaps between the decision regions associated with the

9



pairwise error probabilities used for the calculation of union bounds. This is done

by separately bounding the error events for which the noise resides in a region R.

The TSB, for example, uses a circular hyper-cone as the region R. Other important

upper bounds from this family include the simple bound of Divsalar [11], the tangen-

tial bound of Berlekamp [6], and the sphere bound of Herzberg and Poltyrev [21]. In

[45], Yousefi and Khandani prove that among all the volumes R which posses some

symmetry properties, the circular hyper-cone yields the tightest bound. This finding

demonstrates the optimality of the TSB among a family of bounds associated with

geometrical regions which possess some symmetry properties, and which are obtained

by applying the union bound on the first term in the RHS of (2.1). In [46], Yousefi and

Khandani suggest to use the Hunter bound [23] (an upper bound which belongs to the

family of second-order Bonferroni-type inequalities) instead of the union bound. This

modification should result in a tighter upper bound, and they refer to the resulting

upper bound as the added hyper plane (AHP) bound. Yousefi and Mehrabian also

apply the Hunter bound, but implement it in a quite different way in order to obtain

an improved tangential-sphere bound (ITSB) which solely depends on the distance

spectrum of the code. The tightness of the ITSB and the AHP bound is exemplified

in [46, 47] for some short linear block codes, where these bounds slightly outperform

the TSB at the low SNR range.

An issue which is not addressed analytically in [46, 47] is whether the new upper

bounds (namely, the AHP bound and the ITSB) provide an improved lower bound on

the error exponent as compared to the error exponent of the TSB. In this chapter, we

address this question, and prove that the error exponents of these improved tangential-

sphere bounds coincide with the error exponent of the TSB. We note however that

the TSB fails to reproduce the random coding error exponent, especially for high-rate

linear block codes [31].

This chapter is organized as follows: The TSB ([31], [32]), the AHP bound [46]

and the ITSB [47] are presented as a preliminary material in Section 2.2. In Section

2.3, we derive the error exponents of the ITSB and the AHP, respectively and state

our main result. We conclude our discussion in Section 2.4. An Appendix provides

supplementary details related to the proof of our main result.

10



2.2 Preliminaries

We introduce in this section some preliminary material which serves as a prepara-

tory step towards the presentation of the material in the following section. We also

present notation from [11] which is useful for our analysis. The reader is referred to

[35, 48] which introduce material covered in this section. However, in the following

presentation, we consider boundary effects which were not taken into account in the

original derivation of the two improved versions of the TSB in [46]–[48]). Though

these boundary effects do not have any implication in the asymptotic case where we

let the block length tend to infinity, they are addressed in this section for finite block

lengths.

2.2.1 Assumption

Throughout this chapter, we assume a binary-input additive white Gaussian noise

(AWGN) channel with double-sided spectral power density of N0

2
. The modulation

of the transmitted signals is antipodal, and the modulated signals are coherently

detected and ML decoded (with soft decision).

2.2.2 Tangential-Sphere Bound (TSB)

The TSB forms an upper bound on the decoding error probability of ML decoding of

linear block code whose transmission takes place over a binary-input AWGN channel

[31, 32]. Consider an (N, K) linear block code C of rate R , K
N

bits per channel

use. Let us designate the codewords of C by {ci}, where i = 0, 1, . . . , 2K − 1. As-

sume a BPSK modulation and let si ∈ {+
√

Es,−
√

Es}N designate the corresponding

equi-energy, modulated vectors, where Es designates the transmitted symbol energy.

The transmitted vectors {si} are obtained from the codewords {ci} by applying the

mapping si = (2ci−1)
√

Es, so their energy is NEs. Since the channel is memoryless,

the received vector y = (y1, y2, . . . , yN), given that si is transmitted, can be expressed

as

yj = si,j + zj , j = 1, 2, . . . , N (2.2)

11



where si,j is the jth component of the transmitted vector si, and z = (z1, z2, . . . , zN)

designates an N -dimensional Gaussian noise vector which corresponds to N orthog-

onal projections of the AWGN. Since z is a Gaussian vector and all its components

are un-correlated, then the N components of z are i.i.d., and each component has a

zero mean and variance σ2 = N0

2
.

ζ

θ

r
z
1

β
k (z

1 )

δk

2

r

z2

z1

O

si s0

‖ si − s0 ‖= δk

r =
√

NEs

1

Figure 2.1: The geometric interpretation of the TSB.

Let E be the event of deciding erroneously (under ML decoding) on a codeword
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other than the transmitted codeword. The TSB is based on the central inequality

Pr(E|c0) ≤ Pr(E,y ∈ R|c0) + Pr(y /∈ R|c0) (2.3)

where R is an N -dimensional circular cone with a half angle θ and a radius r, whose

vertex is located at the origin and whose main axis passes through the origin and

the point corresponding to the transmitted vector (see Fig. 2.1). The optimization is

carried over r (r and θ are related as shown in Fig. 2.1). Let us designate this circular

cone by CN(θ). Since we deal with linear codes, the conditional error probability

under ML decoding does not depend on the transmitted codeword of the code C,

so without any loss of generality, one can assume that the all-zero codeword, s0, is

transmitted. Let z1 be the radial component of the noise vector z (see Fig. 2.1) so

the other N − 1 components of z are orthogonal to the radial component z1. From

Fig. 2.1, we obtain that

r =
√

NEs tan θ

rz1 =
(√

NEs − z1

)
tan θ

βk(z1) =
(√

NEs − z1

)
tan ζ =

√
NEs − z1√
NEs − δ2

k

4

δk

2
(2.4)

The random variable Y ,
∑N

i=2 z2
i is χ2 distributed with N − 1 degrees of freedom,

so its pdf is given by

fY (y) =
y

N−3
2 e−

y

2σ2 U(y)

2
N−1

2 σN−1Γ
(

N−1
2

) , y ≥ 0 (2.5)

where U designates the unit step function, and the function Γ is the complete Gamma

function

Γ(x) =

∫ ∞

0

tx−1e−tdt, Real(x) > 0. (2.6)

Conditioned on the value of the radial component of the noise, z1, let E(z1)

designate the decoding error event. The conditional error probability satisfies the

inequality

Pr(E(z1) | z1) ≤ Pr (E(z1),y ∈ CN(θ) | z1) + Pr (y /∈ CN(θ) | z1) (2.7)
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The conditional error event E(z1) can be expressed as a union of pairwise error events,

so

Pr(E(z1),y ∈ CN(θ) | z1) = Pr

(
M−1⋃
i=1

E0→i(z1),y ∈ CN(θ) | z1

)
, M , 2K (2.8)

where E0→i(z1) designates the event of error had the only codewords been c0 and ci,

given the value z1 of the radial component noise in Fig. 2.1, and M , 2K denotes

the number of codewords of the code C. We note that for BPSK modulation, the

Euclidean distance between the two signals si and s0 is directly linked to the Hamming

weight of the codeword ci. Let the Hamming weight of ci be h, then the Euclidean

distance between s0 and si is equal to δh = 2
√

hEs. Let {Ah} be the distance spectrum

of the linear code C, and let Eh(z1) be the event of deciding under ML decoding in

favor of other codeword ci whose Hamming weight is h, given the value of z1. By

applying the union bound on the RHS of (2.8), we get

Pr(E(z1),y ∈ CN(θ) | z1) ≤
N∑

h=1

Ah Pr(Eh(z1),y ∈ CN(θ) | z1). (2.9)

Combining (2.7) and (2.9) gives

Pr (E(z1) | z1) ≤
∑

h

{
Ah Pr (Eh(z1),y ∈ CN(θ) | z1)

}
+Pr (y /∈ CN(θ) | z1) . (2.10)

The second term in the RHS of (2.10) is evaluated from (2.5)

Pr(y /∈ CN(θ) | z1) = Pr
(
Y ≥ r2

z1
| z1

)

=

∫ ∞

r2
z1

fY (y)dy

=

∫ ∞

r2
z1

y
N−2

2 e−
y

2σ2 U(y)

2
N−1

2 σN−1Γ
(

N−1
2

)dy. (2.11)

This integral can be expressed in terms of the incomplete Gamma function

γ(a, x) , 1

Γ(a)

∫ x

0

tx−1e−tdt, a > 0, x ≥ 0 (2.12)

and it is transformed to

Pr(y /∈ CN(θ) | z1) = 1− γ

(
N − 1

2
,

r2
z1

2σ2

)
. (2.13)

14



Let z2 designate the tangential component of the noise vector z, which is on the

plane that contains the signals s0, si and the origin of the space, and orthogonal to

z1 (see Fig. 2.1). Referring to the first term in the RHS of (2.10), it follows from the

geometry in Fig. 2.1 that if z1 ≤
√

NEs then

Pr(Eh(z1),y ∈ CN(θ) | z1) = Pr(Eh(z1), Y ≤ r2
z1
| z1)

= Pr
(
βh(z1) ≤ z2 ≤ rz1 , Y ≤ r2

z1
| z1

)
. (2.14)

Let V ,
∑N

i=3 z2
i , then V = Y − z2

2 . If z1 ≤
√

NEs, then we obtain the equality

Pr (Eh(z1),y ∈ CN(θ) | z1) = Pr
(
βh(z1) ≤ z2 ≤ rz1 , V ≤ r2

z1
− z2

2 | z1

)
. (2.15)

The random variable V is χ2 distributed with N − 2 degrees of freedom, so its pdf is

fV (v) =
y

N−4
2 e−

y

2σ2 U(y)

2
N−2

2 σN−2Γ
(

N−2
2

) , v ≥ 0 (2.16)

and since the random variables V and Z2 are statistically independent, then if z1 ≤√
NEs

Pr (Eh(z1),y ∈ CN(θ) | z1) =

∫ rz1

βh(z1)

e−
z2
2

2σ2

√
2πσ

∫ r2
z1
−z2

2

0

fV (v)dv dz2. (2.17)

In order to obtain an upper bound on the decoding error probability, Pr(E), one

should apply the statistical expectation operator on the RHS of (2.10) w.r.t. the

radial noise component z1. Referring to the upper half azimuthal cone depicted in

Fig. 2.1 which corresponds to the case where the radial noise component satisfies the

condition z1 ≤
√

NEs, the inequality βh(z1) < rz1 holds for the values of h for which
δh

2
< αh where

αh , r

√
1− δ2

h

4NEs

. (2.18)

On the other hand, if z1 >
√

NEs, the range of integration for the component noise

z2 is βh(z1) ≤ z2 ≤ −rz1 which is satisfied for all values of h (since for z1 >
√

NEs, we

get from (2.4) that rz1 < 0 and βh(z1) < 0, so the inequality βh(z1) ≤ −rz1 holds in

this case for all values of h). Since Z1 ∼ N(0, σ2) where σ2 = N0

2
, then the probability

that the Gaussian random variable Z1 exceeds
√

NEs is equal to

Q

(√
NEs

σ

)
= Q

(√
2NREb

N0

)
.
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This results in the following upper bound on the decoding error probability under

ML decoding

Pr(E) ≤
∫ +

√
NEs

−∞

e−
z2
2

2σ2

√
2πσ

{ ∑

h:
δh
2

<αh

{
Ah

∫ rz1

βh(z1)

e−
z2
2

2σ2

√
2πσ

∫ r2
z1
−z2

2

0

fV (v)dv dz2

}

+1− γ
(

N−1
2

,
r2
z1

2σ2

)}
dz1 + Q

(√
2NREb

N0

)
.(2.19)

The upper bound (2.19) is valid for all positive values of r. Hence, in order to

achieve the tightest upper bound of the form (2.19) one should set to zero the partial

derivative of the RHS of (2.19) w.r.t. rz1 . After straightforward algebra the following

optimization equation for the optimal value of r is obtained [31]:




∑

h:
δh
2

<αh

Ah

∫ θh

0

sinN−3 φ dφ =

√
π Γ(N−2

2
)

Γ(N−1
2

)

θh = cos−1
(

δh

2αh

) (2.20)

where αh is given in (2.18). A proof for the existence and uniqueness of a solution r

to the optimization equation (2.20) was provided in [33, Appendix B], together with

an efficient algorithm to solve this equation numerically. In order to derive an upper

bound on the bit error probability, let Aw,h designate the corresponding coefficient

in the IOWEF which is the number of codewords which are encoded by information

bits whose number of ones is equal to w (where 0 ≤ w ≤ nR) and whose Hamming

weights (after encoding) are equal to h, and define

A′
h ,

NR∑
w=1

( w

NR

)
Aw,h, h = 0, . . . , N. (2.21)

In [33, Appendix C], Sason and Shamai derive an upper bound on the bit error

probability by replacing the distance spectrum {Ah} in (2.19) and (2.20) with the

sequence {A′
h}, and show some properties on the resulting bound on the bit error

probability.

2.2.3 Improved Tangential-Sphere Bound (ITSB)

In [47], Yousefi and Mehrabian derive a new upper bound on the block error proba-

bility of binary linear block codes whose transmission takes place over a binary-input
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AWGN channel, and which are coherently detected and ML decoded. This upper

bound, which is called improved tangential-sphere bound (ITSB) is based on inequal-

ity (2.3), where the regionR is the same as of the TSB (i.e., an N -dimensional circular

cone). To this end, the ITSB is obtained by applying a Bonferroni-type inequality of

the second order [17, 23] (instead of the union bound) to get an upper bound on the

joint probability of decoding error and the event that the received vector falls within

the corresponding conical region around the transmitted signal vector.

The basic idea in [47] relies on Hunter’s bound which states that if {Ei}M
i=1 desig-

nates a set of M events, and Ec
i designates the complementary event of Ei, then

Pr

(
M⋃
i=1

Ei

)
= Pr(E1) + Pr(E2 ∩ Ec

1) + . . . + Pr(EM ∩ Ec
M−1 . . . ∩ Ec

1)

≤ Pr(E1) +
M∑
i=2

Pr(Ei ∩ Ec
î
). (2.22)

where the indices î ∈ {1, 2, . . . i− 1} are chosen arbitrarily for i ∈ {2, . . . ,M}.
Clearly, the upper bound (2.22) is tighter than the union bound. The LHS of (2.22)

is invariant to the ordering of the events (since it only depends on the union of

these events), while the RHS of (2.22) depends on this ordering. Hence, the tight-

est bound of the form (2.22) is obtained by choosing the optimal indices ordering

i ∈ {1, 2, . . . , M} and î ∈ {1, 2, . . . , i − 1}. Let us designate by Π(1, 2, . . . , M) =

{π1, π2, . . . , πM} an arbitrary permutation among the M ! possible permutations of

the set {1, 2, . . . , M} (i.e., a permutation of the indices of the events E1 to EM),

and let Λ = (λ2, λ3, . . . λM) designate an arbitrary sequence of integers where λi ∈
{π1, π2, . . . πi−1}. Then, the tightest form of of the bound in (2.22) is given by

Pr

(
M⋃
i=1

Ei

)
≤ min

Π,Λ

{
Pr(Eπ1) +

M∑
i=2

Pr(Eπi
∩ Ec

λi
)

}
. (2.23)

Similar to the TSB, the derivation of the ITSB originates from the upper bound

(2.7) on the conditional decoding error probability, given the radial component (z1)

of the noise vector (see Fig. 2.1). In [47], it is proposed to apply the upper bound

(2.23) on the RHS of (2.8) which for an arbitrary permutation {π1, π2, . . . , πM} and
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a corresponding sequence of integers (λ2, λ3, . . . λM−1) as above, gives

Pr

(
M−1⋃
i=1

E0→i,y ∈ CN(θ) | z1

)
≤ min

Π,Λ

{
Pr(E0→π1 ,y ∈ CN(θ) | z1)

+
M−1∑
i=2

Pr(E0→πi
, Ec

0→λi
,y ∈ CN(θ) | z1)

}

(2.24)

where E0→j designates the pairwise error event where the decoder decides on code-

word cj rather than the transmitted codeword c0. As indicated in [45, 47], the opti-

mization problem of (2.24) is prohibitively complex. In order to simplify it, Yousefi

and Mehrabian suggest to choose π1 = λi = imin for all i = 2, . . . , M − 1, where

imin designates the index of a codeword which is closest (in terms of Euclidian dis-

tance) to the transmitted signal vector s0. Since the code is linear and the channel is

memoryless and symmetric, one can assume without any loss of generality that the

all-zero codeword is transmitted. Moreover, since we deal with antipodal modulation,

then wH(cimin
) = dmin where dmin is the minimum distance of the code. Hence, by

this specific choice of π1 and Λ (which in general loosen the tightness of the bound

in (2.24)), the ordering of the indices {π2, . . . , πM} is irrelevant, and one can omit

the optimization over Π and Λ. The above simplification results in the following

inequality:

Pr(E|z1) ≤Pr (E0→imin
,y ∈ CN(θ) | z1)

+
M−1∑
i=2

Pr(E0→i, E
c
0→imin

,y ∈ CN(θ) | z1) + Pr (y /∈ CN(θ) | z1) . (2.25)

Based on Fig. 2.1, the first and the third terms in the RHS of (2.25) can be evaluated

in similarity with the TSB, and we get

Pr (E0→imin
,y ∈ CN(θ) | z1) = Pr(βmin(z1) ≤ z2 ≤ rz1 , V < r2

z1
− z2

2 | z1) (2.26)

Pr(y /∈ CN(θ) | z1) = 1− γ

(
N − 1

2
,

r2
z1

2σ2

)
(2.27)

where

βmin(z1) =
(√

NEs − z1

) √
dmin

N − dmin

, (2.28)
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z2 is the tangential component of the noise vector z, which is on the plane that

contains the signals s0, simin
and the origin (see Fig. 2.1), and the other parameters

are introduced in (2.4).

For expressing the probabilities of the form Pr(E0→i, E
c
0→imin

,y ∈ CN(θ) | z1)

encountered in the RHS of (2.25), we use the three-dimensional geometry in Fig. 2.2-

(a). The BPSK modulated signals s0, si and sj are all on the surface of a hyper-sphere

centered at the origin and with radius
√

NEs. The planes P1 and P2 are constructed

by the points (o, s0, si) and (o, s0, sj), respectively. In the derivation of the ITSB,

Yousefi and Mehrabian choose sj to correspond to codeword cj with Hamming weight

dmin. Let z′3 be the noise component which is orthogonal to z1 and which lies on the

plane P2 (see Fig 2.2-a). Based on the geometry in Fig. 2.2-a (the probability of the

event Ec
0→j is the probability that y falls in the dashed area) we obtain the following

equality if z1 ≤
√

NEs:

Pr(E0→i, E
c
0→imin

,y ∈ CN(θ) | z1)

= Pr
(
βi(z1) ≤ z2 ≤ rz1 , −rz1 ≤ z′3 ≤ βmin(z1), Y < r2

z1
| z1

)
. (2.29)

Furthermore, from the geometry in Fig. 2.2-b, it follows that

z′3 = z3 sin φ + z2 cos φ. (2.30)

where z3 is the noise component which is orthogonal to both z1 and z2, and which

resides in the three-dimensional space that contains the signal vectors s0, si, simin
and

the origin. Plugging (2.30) into the condition −rz1 ≤ z′3 ≤ βmin(z1) in (2.29) yields

the condition −rz1 ≤ z3 ≤ min{l(z1, z2), rz1} where

l(z1, z2) =
βmin(z1)− ρz2√

1− ρ2
(2.31)

and ρ = cos φ is the correlation coefficient between planes P1 and P2. Let W =
N∑

i=4

z2
i ,

then if z1 ≤
√

NEs

Pr(E0→i, E
c
0→imin

,y ∈ CN(θ) | z1)

= Pr
(
βi(z1) ≤ z2 ≤ rz1 , −rz1 ≤ z3 ≤ min{l(z1, z2), rz1}, W < r2

z1
− z2

2 − z2
3 | z1

)
.

(2.32)
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The random variable W is Chi-squared distributed with N − 3 degrees of freedom,

so its pdf is given by

fW (w) =
w

N−5
2 e−

w
2σ2 U(w)

2
N−3

2 σN−3Γ
(

N−3
2

) , w ≥ 0. (2.33)

Since the probabilities of the form Pr(E0→i, E
c
0→imin

,y ∈ CN(θ) | z1) depend on the

correlation coefficients between the planes (o, s0, simin
) and (o, s0, si), the overall upper

bound requires the characterization of the global geometrical properties of the code

and not only the distance spectrum. To circumvent this problem and obtain an upper

bound which is solely depends on the distance spectrum of the code, it is suggested in

[47] to loosen the bound as follows. It is shown [46, Appendix B] that the correlation

coefficient ρ, corresponding to codewords with Hamming weights di and dj satisfies

−min

{√
didj

(N − di)(N − dj)
,

√
(N − di)(N − dj)

didj

}
≤ ρ ≤ min(di, dj)[N −max(di, dj)]√

didj(N − di)(N − dj)
.

(2.34)

Moreover, the RHS of (2.32) is shown to be a monotonic decreasing function of ρ

(see [47, Appendix 1]). Hence, one can omit the dependency in the geometry of the

code (and loosen the upper bound) by replacing the correlation coefficients in (2.32)

with their lower bounds which solely depend on the weights of the codewords. In the

derivation of the ITSB, we consider the correlation coefficients between two planes

which correspond to codewords with Hamming weights di = h, h ≥ N and dj = dmin.

Let

ρh , −min





√
hdmin

(N − h)(N − dmin)
,

√
(N − h)(N − dmin)

hdmin





= −
√

hdmin

(N − h)(N − dmin)
, (2.35)

where the last equality follows directly from the basic property of dmin as the minimum

distance of the code. From (2.25)–(2.26) and averaging w.r.t. Z1, one gets the
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following upper bound on the decoding error probability:

Pr(E) ≤ Pr
(
z1 ≤

√
NEs, βmin(z1) ≤ z2 ≤ rz1 , V ≤ r2

z1
− z2

2

)

+
N∑

h=dmin

Ah Pr
(
z1 ≤

√
NEs, βh(z1) ≤ z2 ≤ rz1 ,

− rz1 ≤ z3 ≤ min{lh(z1, z2), rz1},W ≤ r2
z1
− z2

2 − z2
3

)

+ Pr
(
z1 ≤

√
NEs, Y ≥ r2

z1

)
+ Pr(z1 >

√
NEs) (2.36)

where the parameter lh(z1, z2) is simply l(z1, z2) in (2.31) with ρ replaced by ρh, i.e.,

lh(z1, z2) , βmin(z1)− ρhz2√
1− ρ2

h

. (2.37)

Using the probability density functions of the random variables in the RHS of (2.36),

and since the random variables Z1, Z2, Z3 and W are statistically independent, the

final form of the ITSB is given by

Pe ≤
∫ √

NEs

−∞

[∫ rz1

βmin

fZ2(z2)

∫ r2
z1
−z2

2

0

fV (v)dv · dz2

+
∑

h:βh(z1)<rz1

(
Ah

∫ rz1

βh(z1)

∫ min{lh(z1,z2),rz1}

−rz1

fZ2,Z3(z2, z3)

∫ r2
z1
−z2

2−z2
3

0

fW (w)dw · dz2 · dz3

)

+ 1− γ

(
N − 1

2
,

r2
z1

2σ2

)]
fZ1(z1)dz1 + Q

(√
2NREb

N0

)
. (2.38)

Note that V ,
∑N

i=3 z2
i and W ,

∑N
i=4 z2

i are Chi-squared distributed with (N − 2)

and (N − 3) degrees of freedom, respectively.

2.2.4 Added-Hyper-Plane (AHP) Bound

In [46], Yousefi and Khandani introduce a new upper bound on the ML decoding block

error probability, called the added hyper plane (AHP) bound. In similarity with the

ITSB, the AHP bound is based on using the Hunter bound (2.22) as an upper bound

on the LHS of (2.9), which results in the inequality (2.24). The complex optimization

problem in (2.24), however, is treated differently. Let us denote by Iw the set of the

indices of the codewords of C with Hamming weight w. For i ∈ {1, 2, . . . , M} \ Iw,
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let {ji} be a sequence of integers chosen from the set Iw. Then the following upper

bound holds

Pr (E(z1),y ∈ CN(θ) | z1)

≤ min
w,Jw



Pr

( ⋃
j∈Iw

{
E0→j

}
,y ∈ CN(θ) | z1

)
+

∑

i∈{1,...,M−1}\Iw

Pr
(
E0→i, E

c
0→ji

,y ∈ CN(θ) | z1

)


 .

(2.39)

The probabilities inside the summation in the RHS of (2.39) are evaluated in a similar

manner to the probabilities in the LHS of (2.29). From the analysis in Section 2.2.3

and the geometry in Fig. 2.2-(b), it is clear that the aforementioned probabilities

depend on the correlation coefficients between the planes (o, s0, si) and (o, s0, sji
).

Hence, in order to compute the upper bound (2.39), one has to know the geometrical

characterization of the Voronoi regions of the codewords. To obtain an upper bound

requiring only the distance spectrum of the code, Yousefi and Khandani suggest to

extend the codebook by adding all the
(

N
w

) − Aw N -tuples with Hamming weight w

(i.e., the extended code contains all the binary vectors of length N and Hamming

weight w). Let us designate the new code by Cw and denote its codewords by

cw
i , i ∈

{
0, 1, . . . , M +

(
N

w

)
− Aw − 1

}
.

The new codebook is not necessarily linear, and all possible correlation coefficients

between two codewords with Hamming weight i, where i ∈ {dmin, . . . dmax}, and w are

available. Thus, for each layer of the codebook, one can choose the largest available

correlation1 ρ with respect to any possible N -tuple binary vector of Hamming weight

w. Now one may find the optimum layer at which the codebook extension is done, i.e.,

finding the optimum w ∈ {1, 2, . . . n} which yields the tightest upper bound within

this form. We note that the resulting upper bound is not proved to be uniformly

tighter than the TSB, due to the extension of the code. The maximum correlation

coefficient between two codewords of Hamming weight di and dj is introduced in the

RHS of (2.34) (see [46]). Let us designate the maximal possible correlation coefficient

between two N -tuples with Hamming weights w and h by ρw,h , i.e.,

ρw,h =
min(h,w)[N −max(h,w)]√

hw(N − h)(N − w)
, w 6= h. (2.40)

1The RHS of (2.39) is a monotonically decreasing function of ρ, as noted in [47].
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By using the same bounding technique of the ITSB, and replacing the correlation

coefficients with their respective upper bounds, ρw,h, (2.39) gets the form

Pr (E(z1),y ∈ CN(θ) | z1) ≤min
w

{
Pr


 ⋃

j:wH(cw
j )=w

{E0→j},y ∈ CN(θ) | z1




+
∑

h6=w

Ah Pr
(
Y ≤ r2

z1
, βh(z1) ≤ z2, z3 ≤ lw,h(z1, z2) | z1

)
}

(2.41)

where

lw,h(z1, z2) =
βw(z1)− ρw,hz2√

1− ρ2
w,h

. (2.42)

Now, applying Hunter bound on the first term in the RHS of (2.41) yields

Pr


 ⋃

j:wH(cw
j )=w

E0→j, y ∈ CN(θ) | z1




≤ Pr(E0→l0 ,y ∈ CN(θ) | z1) +

(N
w)−1∑
i=1

Pr(E0→li , E
c
0→l̂i

y ∈ CN(θ) | z1) (2.43)

where {li}, i ∈ {
0, 1, . . . ,

(
N
w

) − 1
}

is a sequence which designates the indices of

the codewords of Cw with Hamming weight w with an arbitrary order, and l̂i ∈
(l0, l1, . . . , li−1). In order to obtain the tightest bound on the LHS of (2.43) in this

approach, one has to order the error events such that the correlation coefficients

which correspond to codewords cli and cl̂i
get their maximum available value, which

is 1− N
w(N−w)

[46, Appendix D]. Let us designate this value by ρw,w ,i.e.,

ρw,w = 1− N

w(N − w)
, w /∈ {0, N}.

Hence, based on the geometry in Fig. 2.2, if z1 ≤
√

NEs, we can rewrite (2.43) as

Pr


 ⋃

j:wH(cw
j )=w

E0→j ,y ∈ CN (θ) | z1




≤ Pr
(
βw(z1) ≤ z2 ≤ rz1 , V ≤ r2

z1
− z2

2 | z1

)

+
[(

N

w

)
− 1

]
Pr

(
βw(z1) ≤ z2 ≤ rz1 ,−rz1 ≤ z3 ≤ min{lw,w(z1, z2), rz1},W ≤ r2

z1
− z2

2 − z2
3 | z1

)

(2.44)
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where

lw,w(z1, z2) =
βw(z1)− ρw,wz2√

1− ρ2
w,w

. (2.45)

By replacing the first term in the RHS of (2.41) with the RHS of (2.44), plugging the

result in (2.7) and averaging w.r.t. Z1 finally gives the following upper bound on the

block error probability:

Pr(E) ≤ min
w

{
Pr

(
z1 ≤

√
NEs, βw(z1) ≤ z2 ≤ rz1 , V ≤ r2

z1
− z2

2

)

+

(
N

w

)
Pr

(
z1 ≤

√
NEs, βw(z1) ≤ z2 ≤ rz1 ,

−rz1 ≤ z3 ≤ min{lw,w(z1, z2), rz1},W ≤ r2
z1
− z2

2 − z2
3

)

+
∑

h6=w

Ah Pr
(
z1 ≤

√
NEs, βh(z1) ≤ z2 ≤ rz1 ,

−rz1 ≤ z3 ≤ min{lw,h(z1, z2), rz1},W ≤ r2
z1
− z2

2 − z2
3

) }

+ Pr
(
z1 ≤

√
NEs, Y ≥ r2

z1

) }
+ Pr

(
z1 >

√
NEs

)
. (2.46)

Rewriting the RHS of (2.46) in terms of probability density functions, the AHP bound

gets the form

Pe ≤ min
w

{ ∫ √
NEs

−∞

[∫ rz1

βw(z1)

fZ2(z2)

∫ r2
z1
−z2

2

0

fV (v)dv · dz2

+

(
N

w

) ∫ rz1

βw(z1)

∫ min{lw,w(z1,z2),rz1}

−rz1

fZ2,Z3(z2, z3)

∫ r2
z1
−z2

2−z2
3

0

fW (w)dw · dz2 · dz3

+
∑

h : βh(z1) < rz1

h 6= w

(
Ah

∫ rz1

βh(z1)

∫ min{lw,h(z1,z2),rz1}

−rz1

fZ2,Z3(z2, z3)

∫ r2
z1
−z2

2−z2
3

0

fW (w)dw · dz2 · dz3

)

+ 1− γ

(
N − 1

2
,

r2
z1

2σ2

)]
fZ1(z1)dz1

}
+ Q

(√
2NREb

N0

)
(2.47)

where V and W are introduced at the end of Section 2.2.3 (after Eq. (2.38)), and the

last term in (2.47) follows from (2.13).
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2.3 The Error Exponents of the ITSB and AHP

Bounds

The ITSB and the AHP bound were originally derived in [46, 47] as upper bounds

on the ML decoding error probability of specific binary linear block codes. In the

following, we discuss the tightness of the new upper bounds for ensemble of codes, as

compared to the TSB. The following lemma is also noted in [47].

Lemma 2.1 Let C be a binary linear block code, and let us denote by ITSB(C) and

TSB(C) the ITSB and TSB, respectively, on the decoding error probability of C. Then

ITSB(C) ≤ TSB(C).

Proof: Since Pr(A,B) ≤ Pr(A) for arbitrary events A and B, the lemma follows

immediately by comparing the bounds in the RHS of (2.10) and (2.25), reffering to

the TSB and the ITSB, respectively.

Corollary 1 The ITSB can not exceed the value of the TSB referring to the average

error probability of an arbitrary ensemble of binary linear block codes.

Lemma 2.2 The AHP bound is asymptotically (as we let the block length tend to

infinity) at least as tight as the TSB.

Proof: To show this, we refer to (2.46), where we choose the layer w at which the

extension of the code is done to be N . Hence, the extended code contains at most

one codeword with Hamming weight N more than the original code, which has no

impact on the error probability for infinitely long codes. The resulting upper bound

is evidently not tighter than the AHP (which carries an optimization over w), and it

is at least as tight as the TSB (since the joint probability of two events cannot exceed

the probabilities of these individual events).

The extension of Lemma 2.2 to ensembles of codes is straightforward (by taking the

expectation over the codes in an ensemble, the same conclusion in Lemma 2.2 holds

also for ensembles). From the above, it is evident that the error exponents of both

the AHP bound and the ITSB cannot be below the error exponent of the TSB. In

the following, we introduce a lower bound on both the ITSB and the AHP bound. It

serves as an intermediate stage to get our main result.
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Lemma 2.3 Let C designate an ensemble of linear codes of length N , whose trans-

mission takes place over an AWGN channel. Let Ah be the number of codewords of

Hamming weight h, and let EC designate the statistical expectation over the code-

books of an ensemble C. Then both the ITSB and AHP upper bounds on the average

ML decoding error probability of C are lower bounded by the function ψ(C) where

ψ(C) , min
w

{
EC

[
Pr

(
z1 ≤

√
NEs, βw(z1) ≤ z2 ≤ rz1 , V ≤ r2

z1
− z2

2

)

+
∑

h

{
Ah Pr

(
z1 ≤

√
NEs, βh(z1) ≤ z2 ≤ rz1 ,

− rz1 ≤ z3 ≤ min{lw,h(z1, z2), rz1},W ≤ r2
z1
− z2

2 − z2
3

)}

+ Pr
(
z1 ≤

√
NEs, Y ≥ r2

z1

)] }
(2.48)

and lw,h(z1, z2) is defined in (2.42).

Proof: By comparing (2.46) with (2.48), it is easily verified that the RHS of (2.48)

is not larger than the RHS of (2.46) (actually, the RHS of (2.48) is just the AHP

without any extension of the code). Referring to the ITSB, we get

ITSB(C) = EC
[
Pr

(
z1 ≤

√
NEs, βmin(z1) ≤ z2 ≤ rz1 , V ≤ r2

z1
− z2

2

)

+
∑

h

{
Ah Pr

(
z1 ≤

√
NEs, βh(z1) ≤ z2 ≤ rz1 ,

− rz1 ≤ z3 ≤ min{lh(z1, z2), rz1}, W ≤ r2
z1
− z2

2 − z2
3

)}

+ Pr
(
z1 ≤

√
NEs, Y ≥ r2

z1

)]
+ Pr

(
z1 >

√
NEs

)
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≥ min
w

{
EC

[
Pr

(
z1 ≤

√
NEs, βw(z1) ≤ z2 ≤ rz1 , V ≤ r2

z1
− z2

2

)

+
∑

h

{
Ah Pr

(
z1 ≤

√
NEs, βh(z1) ≤ z2 ≤ rz1 ,

− rz1 ≤ z3 ≤ min{lw,h(z1, z2), rz1},W ≤ r2
z1
− z2

2 − z2
3

)}

+ Pr
(
z1 ≤

√
NEs, Y ≥ r2

z1

)] }
+ Pr

(
z1 >

√
NEs

)

> ψ(C). (2.49)

The first inequality holds since the ITSB is a monotonically decreasing function w.r.t.

the correlation coefficients (see Appendix C). The equality in (2.49) is due to the lin-

earity of the function in (2.49) w.r.t. the distance spectrum, on which the expectation

operator is applied, and the last transition follows directly from (2.48).

In [46] and [47], the RHS of (2.46) and (2.36), respectively, were evaluated by

integrals, which results in the upper bounds (2.47) and (2.38). In [11, Section D], Di-

vsalar introduced an alternative way to obtain a simple, yet asymptotically identical,

version of the TSB by using the Chernoff bounding technique. Using this technique

we obtain the exponential version of ψ(C). In the following, We use the following

notation [11]:

c , Es

N0

, δ , h

N
, ∆ ,

√
δ

1− δ
, r(δ) , ln(Ah)

N

where for the sake of clear writing we denote the average spectrum of the ensemble

by Ah. We now state the main result of this chapter.

Theorem 2.4 (The error exponent of the AHP and the ITSB bounds coin-

cide with the error exponent of the TSB) The upper bounds ITSB, AHP and

the TSB have the same error exponent, which is

E(c) = min
0<δ≤1

{
1

2
ln

(
1− γ + γe−2r(δ)

)
+

γ∆2c

1 + γ∆2

}
(2.50)

where

γ = γ(δ) , 1− δ

δ

[√
c

c0(δ)
+ (1 + c)2 − 1− (1 + c)

]
(2.51)
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and

c0(δ) ,
(
1− e−2r(δ)

) 1− δ

2δ
. (2.52)

Proof: The exponential version of ψ(C) in (2.48) is identical to the exponential

version of the TSB (see Appendices A and B). Since ψ(C) does not exceed the AHP

and the ITSB, this implies that the error exponents of the AHP and the ITSB are

not larger than the error exponent of the TSB. On the other hand, from Lemmas 2.1

and 2.2 it follows that asymptotically, both the AHP and the ITSB are at least as

tight as the TSB, so their error exponents are at least as large as the error exponent

of the TSB. Combining these results we obtain that the error exponent of the ITSB,

AHP and the TSB are all identical. In [11], Divsalar shows that the error exponent

of the TSB is determined by (2.50)–(2.52), which concludes the proof of the theorem.

Remark 1 The bound on the bit error probability in [33] is exactly the same as the

TSB on the block error probability by Poltyrev [31], except that the average distance

spectrum {Ah} of the ensemble is now replaced by the sequence {A′
h} where

A′
h =

NR∑
w=0

( w

NR

)
Aw,h , h ∈ {0, . . . , N}

and Aw,h denotes the average number of codewords encoded by information bits of

Hamming weight w and having a Hamming weight (after encoding) which is equal to

h. Since Ah =
∑NR

w=0 Aw,h, then

Ah

NR
≤ A′

h ≤ Ah , h ∈ {0, . . . , N}.

The last inequality therefore implies that the replacement of the distance spectrum

{Ah} by {A′
h} (for the analysis of the bit error probability) does not affect the asymp-

totic growth rate of r(δ) where δ , h
N

, and hence, the error exponents of the TSB on

the block and bit error probabilities coincide.

Remark 2 In [51], Zangl and Herzog suggest a modification of the TSB on the bit

error probability. Their basic idea is tightening the bound on the bit error probability

when the received vector y falls outside the cone R in the RHS of (2.3) (see Fig. 2.1).

In the derivation of the version of the TSB on the bit error probability, as suggested
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by Sason and Shamai [33], the conditional bit error probability in this case was upper

bounded by 1, where Zangl and Herzog [51] refine the bound and provide a tighter

bound on the conditional bit error probability when the vector y falls in the bad region

(i.e., when it is outside the cone in Fig. 2.1). Though this modification tightens the

bound on the bit error probability at low SNR (as exemplified in [51] for some short

linear block codes), it has no effect on the error exponent. The reason is simply

because the conditional bit error probability in this case cannot be below 1
NR

(i.e.,

one over the dimension of the code), so the bound should still possess the same error

exponent. This shows that the error exponent of the TSB versions on the bit error

probability, as suggested in [33] and [51], coincide.

Corollary 2 The error exponents of the TSB on the bit error probability coincides

with the error exponent of the TSB on the block error probability. Moreover, the

error exponents of the TSB on the bit error probability, as suggested by Sason and

Shamai [33] and refined by Zangl and Herzog [51], coincide. The common value of

these error exponents is explicitly given in Theorem 2.4.
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2.4 Summary and Conclusions

The tangential-sphere bound (TSB) of Poltyrev [31] often happens to be the tightest

upper bound on the ML decoding error probability of block codes whose transmission

takes place over a binary-input AWGN channel. However, in the random coding

setting, it fails to reproduce the random coding error exponent [20] while the second

version of the Duman and Salehi (DS2) bound does [15, 35]. The larger the code

rate is, the more significant becomes the gap between the error exponent of the TSB

and the random coding error exponent of Gallager [20] (see Fig. 2.3, and the plots in

[?, Figs. 2–4]). In this respect, we note that the expression for the error exponent of

the TSB, as derived by Divsalar [11], is significantly easier for numerical calculations

than the original expression of this error exponent which was provided by Poltyrev

[?, Theorem 2]. Moreover, the analysis made by Divsalar is more general in the sense

that it applies to an arbitrary ensemble, and not only to the ensemble of fully random

block codes.

In this chapter, we consider some recently introduced performance bounds which

suggest an improvement over the TSB. These bounds rely solely on the distance

spectrum of the code (or their input-output weight enumerators for the analysis of

the bit error probability). We study the error exponents of these recently introduced

bounding techniques. This work forms a direct continuation to the derivation of these

bounds by Yousefi et al. [46, 47, 48] who also exemplified their superiority over the

TSB for short binary linear block codes.

Putting the results reported by Divsalar [11] with the main result in this chapter

(see Theorem 2.4), we conclude that the error exponents of the simple bound of

Divsalar [11], the first version of Duman and Salehi bounds [14], the TSB [31] and its

improved versions by Yousefi et al. [45, 46, 47] all coincide. This conclusion holds for

any ensemble of binary linear block codes (e.g., turbo codes, LDPC codes etc.) where

we let the block lengths tend to infinity, so it does not only hold for the ensemble

of fully random block codes (whose distance spectrum is binomially distributed).

Moreover, the error exponents of the TSB versions for the bit error probability, as

provided in [33, 51], coincide and are equal to the error exponent of the TSB for

the block error probability. The explicit expression of this error exponent is given in

Theorem 2.4, and is identical to the expression derived by Divsalar [11] for his simple
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bound. Based on Theorem 2.4, it follows that for any value of SNR, the same value of

the normalized Hamming weight dominates the exponential behavior of the TSB and

its two improved versions. In the asymptotic case where we let the block length tend

to infinity, the dominating normalized Hamming weight can be explicitly calculated

in terms of the SNR; this calculation is based on finding the value of the normalized

Hamming weight δ which achieves the minimum in the RHS of (2.50), where this

value clearly depends on the asymptotic growth rate of the distance spectrum of

the ensemble under consideration. A similar calculation of this critical weight as a

function of the SNR was done in [18], referring to the ensemble of fully random block

codes and the simple union bound.

In a the next chapter, new upper bounds on the block and bit error probabilities

of linear block codes are derived. These bounds improve the tightness of the Shulman

and Feder bound [37] and therefore also reproduce the random coding error exponent.
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z1

P1

si

z2

θ

φ = arccos(ρ)

sj

z′
3βi(z1)

P2

s0
δi

2

δj

2

βj(z1)

rz1

(a)

z2

z3

z′

3

rz1
βi(z1)

βj(z1)l(z1, z2)
φ

(b)

1

Figure 2.2: (a): s0 is the transmitted vector, z1 is the radial noise component, z2 and
z′3 are two (not necessarily orthogonal) noise components, which are perpendicular
to z1, and lie on planes P1 and P2, respectively. The doted and dashed areas are the
regions where Ei and Ec

j occur, respectively. (b): A cross-section of the geometry in
(a).
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Figure 2.3: Comparison between the error exponents for random block codes which are
based on the union bound (UB), the tangential-sphere bound (TSB) of Poltyrev [31]
(which according to Theorem 2.4 is identical to the error exponents of the ITSB and
the AHP bounds), and the random coding bound (RCE) of Gallager [19]. The upper
and lower plots refer to code rates of 0.5 and 0.9 bits per channel use, respectively.
The error exponents are plotted versus the reciprocal of the energy per bit to the
one-sided spectral noise density. 33



Chapter 3

Tightened Upper Bounds on the

ML Decoding Error Probability of

Binary Linear Block Codes

Short overview: The performance of maximum-likelihood (ML) decoded binary linear

block codes is addressed via the derivation of tightened upper bounds on their decod-

ing error probability. The upper bounds on the block and bit error probabilities are

valid for any memoryless, binary-input and output-symmetric communication chan-

nel, and their effectiveness is exemplified for various ensembles of turbo-like codes

over the AWGN channel. An expurgation of the distance spectrum of binary linear

block codes further tightens the resulting upper bounds.

This chapter is based on the following papers:

• M. Twitto, I. Sason and S. Shamai, “Tightened upper bounds on the ML de-

coding error probability of binary linear block codes,” submitted to the IEEE

Trans. on Information Theory, February 2006.

• M. Twitto, I. Sason and S. Shamai, “Tightened upper bounds on the ML de-

coding error probability of binary linear codes,” Proceedings 2006 IEEE Inter-

national Symposium on Information Theory, Seattle, USA, July 9–14, 2006.
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3.1 Introduction

In this chapter we focus on the upper bounds which emerge from the second version of

Duman and Salehi (DS2) bounding technique. The DS2 bound provides a conditional

upper bound on the ML decoding error probability given an arbitrary transmitted

(length-N) codeword cm (Pe|m). The conditional decoding error probability is upper

bounded by

Pe|m ≤
( ∑

m′ 6=m

∑
y

pN(y|cm)
1
ρ ψm

N (y)1− 1
ρ

(
pN(y|cm′)

pN(y|cm)

)λ
)ρ

(3.1)

where 0 ≤ ρ ≤ 1 and λ ≥ 0 (see [15, 35]; in order to make the presentation self-

contained, it will be introduced shortly in the next section as part of the preliminary

material). Here, ψm
N (y) is an arbitrary probability tilting measure (which may depend

on the transmitted codeword cm), and pN(y|c) designates the transition probability

measure of the channel.

The tangential-sphere bound (TSB) of Poltyrev often happens to be the tightest

upper bound on the ML decoding error probability of block codes whose transmission

takes place over a binary-input AWGN channel. However, in the random coding

setting, it fails to reproduce the random coding exponent [20] while the second version

of the Duman and Salehi (DS2) bound, to be reviewed in the next section, does (see

[38]). The Shulman-Feder bound (SFB) can be derived as a particular case of the DS2

bound (see [38]), and it achieves the random coding error exponent. Though the SFB

is informative for some structured linear block codes with good Hamming properties,

it appears to be rather loose when considering sequences of linear block codes whose

minimum distance grows sub-linearly with the block length, as is the case with most

capacity-approaching ensembles of LDPC and turbo codes. However, the tightness

of this bounding technique is significantly improved by combining the SFB with the

union bound; this approach was exemplified for some structured ensembles of LDPC

codes (see e.g., [28] and the proof of [36, Theorem 2.2]).

In this chapter, we introduce improved upper bounds on both the bit and block

error probabilities. Section 3.2 presents some preliminary material. In Section 3.3, we

introduce an upper bound on the block error probability which is in general tighter

than the SFB, and combine the resulting bound with the union bound. Similarly,

an appropriate upper bound on the bit error probability is introduced. The effect of
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an expurgation of the distance spectrum on the tightness of the resulting bounds is

considered in Section 3.4. By applying the new bounds to ensembles of turbo-like

codes over the binary-input AWGN channel, we demonstrate the usefulness of the

new bounds in Section 3.5, especially for some coding structures of high rates. We

conclude the chapter in Section 3.6.

3.2 Preliminaries

We introduce in this section some preliminary material which serves as a preparatory

step towards the presentation of the material in the following sections.

3.2.1 The DS2 Bound

The bounding technique of Duman and Salehi [14, 15] originates from the 1965 Gal-

lager bound. Let ψm
N (y) designate an arbitrary probability measure (which may also

depend on the transmitted codeword xm). The Gallager bound [20] can then be put

in the form (see [38])

Pe|m ≤
∑
y

ψm
N (y) ψm

N (y)−1 pN(y|cm)

( ∑

m′ 6=m

(
pN(y|cm′)

pN(y|cm)

)λ
)ρ

=
∑
y

ψm
N (y)

(
ψm

N (y)−
1
ρ pN(y|cm)

1
ρ

∑

m′ 6=m

(
pN(y|cm′)

pN(y|cm)

)λ
)ρ

, ∀ λ, ρ ≥ 0.

(3.2)

By invoking the Jensen inequality in (3.2) for 0 ≤ ρ ≤ 1, the DS2 bound results

Pe|m ≤
( ∑

m′ 6=m

∑
y

pN(y|cm)
1
ρ ψm

N (y)1− 1
ρ

(
pN(y|cm′)

pN(y|cm)

)λ
)ρ

, 0 ≤ ρ ≤ 1, λ ≥ 0.

(3.3)

Let Gm
N(y) be an arbitrary non-negative function of y, and let the probability density

function ψm
N (y) be

ψm
N (y) =

Gm
N(y) pN(y|cm)∑

y Gm
N(y) pN(y|cm)

(3.4)

The functions Gm
N(y) and ψm

N (y) are referred to as the un-normalized and normalized

tilting measures, respectively. The substitution of (3.4) into (3.3) yields the following
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upper bound on the conditional ML decoding error probability

Pe|m ≤
(∑

y

Gm
N(y) pN(y|cm)

)1−ρ

·
( ∑

m′ 6=m

∑
y

pN(y|cm) Gm
N(y)1− 1

ρ

(
pN(y|cm′)

pN(y|cm)

)λ
)ρ

, 0 ≤ ρ ≤ 1, λ ≥ 0.

(3.5)

The upper bound (3.5) was also derived in [11, Eq. (62)].

For the case of memoryless channels, and for the choice of ψm
N (y) as ψm

N (y) =
N∏

i=1

ψm(yi) (recalling that the function ψm
N may depend on the transmitted codeword

xm), the upper bound (3.3) is relatively easily evaluated (similarly to the standard

union bounds) for linear block codes. In that case, (3.3) is calculable in terms of the

distance spectrum of the code, not requiring the fine details of the code structure.

Moreover, (3.3) is also amenable to some generalizations, such as for the class of

discrete memoryless channels with arbitrary input and output alphabets.

3.2.2 The Shulman and Feder bound

We consider here the transmission of a binary linear block code C where the com-

munication takes place over a memoryless binary-input output-symmetric (MBIOS)

channel. The analysis refers to the decoding error probability under soft-decision ML

decoding.

The Shulman and Feder bound (SFB) [37] on the block error probability of an

(N, K) binary linear block code C, transmitted over a memoryless channel is given by

Pe ≤ 2−NEr(R+
log α(C)

N
) (3.6)

where

Er(R) = max
0≤ρ≤1

(E0(ρ)− ρR) (3.7)

E0(ρ) , − log2

{∑
y

[
1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]1+ρ
}

. (3.8)
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Er is the random coding error exponent [20], R , K
N

designates the code rate in bits

per channel use, and

α(C) , max
1≤l≤N

Al

2−N(1−R)
(

N
l

) . (3.9)

In the RHS of (3.9), {Al} denotes the distance spectrum of the code. Hence, for

fully random block codes, α(C) is equal to 1, and the Shulman-Feder bound (SFB)

particularizes to the random coding bound [20]. In general, the parameter α(C) in

the SFB (3.6) measures the maximal ratio of the distance spectrum of a code (or

ensemble) and the average distance spectrum which corresponds to fully random

block codes of the same block length and rate.

The original proof of the SFB is quite involved. In [38], a simpler proof of the SFB

is derived, and by doing so, the simplified proof reproduces the SFB as a particular

case of the DS2 bound (see Eq. (3.3)). In light of the significance of the proof concept

to the continuation of this chapter, we outline this proof briefly.

Since we deal with linear block codes and the communication channel is memory-

less, binary-input output-symmetric channel (MBIOS), one can assume without any

loss of generality that the all zero codeword c0 is the transmitted vector. In order to

facilitate the expression of the upper bound (3.5) in terms of distance spectrum of

the block code C, we consider here the case where the un-normalized tilting measure

G0
N(y) can be expressed in the following product form:

G0
N(y) =

N∏
i=1

g(yi) (3.10)

where g is an arbitrary non-negative scalar function, and the channel is by assumption

MBIOS, so that the transition probability measure is expanded in the product form

pN(y|cm′) =
N∏

i=1

p(yi|cm′,i) (3.11)
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where cm′ = (cm′,1, . . . , cm′,N). Hence, the upper bound on the conditional ML de-

coding error probability given in (3.5) can be rewritten as

Pe = Pe|0

≤
(∑

y

g(y) p(y|0)

)N(1−ρ)

·




N∑

l=1

Al

(∑
y

g(y)1− 1
ρ p(y|0)

)N−l (∑
y

g(y)1− 1
ρ p(y|0)1−λp(y|1)λ

)l




ρ

λ ≥ 0,

0 ≤ ρ ≤ 1

≤
(

max
0<l≤N

Al

2−N(1−R)
(

N
l

)
)ρ (∑

y

g(y) p(y|0)

)N(1−ρ)

2−N(1−R)ρ

·
{∑

y

g(y)1− 1
ρ p(y|0) +

∑
y

g(y)1− 1
ρ p(y|0)1−λp(y|1)λ

}Nρ

. (3.12)

By setting

g(y) =

[
1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ

p(y|0)−
ρ

1+ρ , λ =
1

1 + ρ
(3.13)

and using the symmetry of the channel (where p(y|0) = p(−y|1)), the SFB follows

readily.

3.3 Improved Upper Bounds

3.3.1 Upper Bound on the Block Error Probability

It is well known that at rates below the channel capacity, the block error probability

of the ensemble of fully random block codes vanishes exponentially with the block

length. In the random coding setting, the TSB [31] fails to reproduce the random

coding exponent, while the SFB [37] particularizes to the 1965 Gallager bound for

random codes, and hence, the SFB reproduces the random coding exponent. The

SFB is therefore advantageous over the TSB in the random coding setting when we

let the block length be sufficiently large. Equations (3.6) and (3.9) imply that for

specific linear codes (or ensembles), the tightness of the SFB depends on the maximal

ratio between the distance spectrum of the code (or the average distance spectrum of
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the ensemble) and the average distance spectrum of fully random block codes of the

same length and rate which has a binomial distribution.

In order to tighten the SFB bound for linear block codes, Miller and Burshtein

[28] suggested to partition the original linear code C into two subcodes, namely C ′
and C ′′; the subcode C ′ contains the all-zero codeword and all the codewords with

Hamming weights of l ∈ U ⊆ {1, 2, ..., N}, while C ′′ contains the other codewords

which have Hamming weights of l ∈ U c = {1, 2, ..., N} \ U and the all-zero codeword.

From the symmetry of the channel, the union bound provides the following upper

bound on the ML decoding error probability:

Pe = Pe|0 ≤ Pe|0(C ′) + Pe|0(C ′′) (3.14)

where Pe|0(C ′) and Pe|0(C ′′) designate the conditional ML decoding error probabilities

of C ′ and C ′′, respectively, given that the all zero codeword is transmitted. We note

that although the code C is linear, its two subcodes C ′ and C ′′ are in general non-linear.

One can rely on different upper bounds on the conditional error probabilities Pe|0(C ′)
and Pe|0(C ′′), i.e., we may bound Pe|0(C ′) by the SFB, and rely on an alternative

approach to obtain an upper bound on Pe|0(C ′′). For example, if we consider the

binary-input AWGN channel, then the TSB (or even union bounds) may be used in

order to obtain an upper bound on the conditional error probability Pe|0(C ′′) which

corresponds to the subcode C ′′. In order to obtain the tightest bound in this approach,

one should look for an optimal partitioning of the original code C into two sub-codes,

based on the distance spectrum of C. The solution of the problem is quite tedious,

because in general, if the subset U can be an arbitrary subset of the set of integers

{1, . . . , N}, then one has to compare
∑N

i=0

(
N
i

)
= 2N different possibilities for U .

However, we may use practical optimization schemes to obtain good results which

may improve the tightness of both the SFB and TSB.

An easy way to make an efficient partitioning of a linear block code C is to compare

its distance spectrum (or the average distance spectrum for an ensemble of linear

codes) with the average distance spectrum of the ensemble of fully random block

codes of the same rate and block length. Let us designate the average distance

spectrum of the ensemble of fully random block codes of length N and rate R by

Bl , 2−N(1−R)

(
N

l

)
l = 0, 1, . . . , N. (3.15)
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Then, it is suggested to partition C in a way so that all the codewords with Hamming

weight l for which Al

Bl
is greater than some threshold (which should be larger than 1

but close to it) are associated with C ′′, and the other codewords are associated with

C ′. The following algorithm is suggested for the calculation of the upper bound on

the block error probability under ML decoding:

Algorithm 1

1. Set

U = Φ, U c = {1, 2, ...N}, l = 1

where Φ designates an empty set, and set the initial value of the upper bound

to be 1.

2. Compute the ratio Al

Bl
where {Al} is the distance spectrum of the binary linear

block code (or the average distance of an ensemble of such codes), and {Bl} is

the binomial distribution introduced in (3.15).

3. If this ratio is smaller than some threshold (where the value of the threshold is

typically set to be slightly larger than 1), then the element l is added to the set

U , i.e.,

U := U + {l}, U c := U c \ {l}.

4. Update correspondingly the upper bound in the RHS of (3.14) (we will derive

later the appropriate upper bounds on Pe|0(C ′) and Pe|0(C ′′).

5. Set the bound to be the minimum between the RHS from Step 4 and its previous

value.

6. Set l = l + 1 and go to Step 2.

7. The algorithm terminates when l gets the value N (i.e., the block length of the

code) or actually, the maximal value of l for which Al does not vanish.1

1The number of steps can be reduced by factor of 2 for binary linear codes which contain the
all-ones codeword (hence maintain the property Al = AN−l). For such codes, the update equation
in Step 3 becomes: U := U + {l, N − l}, Uc := Uc − {l, N − l} and the algorithm terminates when
l gets the value dN

2 e.
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Fig. ??(a) shows a plot of the ratio Al

Bl
as a function of δ , l

N
for an ensemble of

uniformly interleaved turbo-random codes. The calculation of the average distance

spectrum of these ensemble relies on the results of Soljanin and Urbanke in [40].

From the discussion above, it is clear that the combination of the SFB with an-

other upper bound has the potential to tighten the overall upper bound on the ML

decoding probability; this improvement is expected to be especially pronounced for

ensembles whose average distance spectrum resembles the binomial distribution of

fully random block codes over a relatively large range of Hamming weights, but devi-

ates significantly from the binomial distribution for relatively low and large Hamming

weights (e.g., ensembles of uniformly interleaved turbo codes possess this property,

as indicated in [33, Section 4]). This bounding technique was successfully applied

by Miller and Burshtein [28] and also by Sason and Urbanke [36] to ensembles of

regular LDPC codes where the SFB was combined with union bounds. If the range of

Hamming weights where the average distance spectrum of an ensemble resembles the

binomial distribution is relatively large, then according to the above algorithm, one

would expect that C ′ typically contains a very large fraction of the overall number

of the codewords of a code from this ensemble. Hence, in order to obtain an upper

bound on Pe|0(C ′′), where C ′′ is expected to contain a rather small fraction of the

codewords in C, we may use a simple bound such as the union bound while expecting

not to pay a significant penalty in the tightness of the overall bound on the decoding

error probability (Pe).

The following bound introduced in Theorem 3.1 is derived as a particular case of

the DS2 bound [15]. The beginning of its derivation is similar to the steps in [38,

Section 4A], but we later deviate from the analysis there in order to modify the SFB.

We finally obtain a tighter version of this bound.

Theorem 3.1 (Modified Shulman and Feder Bound) Let C be a binary linear

block code of length N and rate R, and let {Al} designate its distance spectrum. Let

this code be partitioned into two subcodes, C ′ and C ′′, where C ′ contains the all-zero

codeword and all the other codewords of C whose Hamming weights are in an arbitrary

set U ⊆ {1, 2, , . . . , N}; the second subcode C ′′ contains the all-zero codeword and the

other codewords of C which are not included in C ′. Assume that the communication

takes place over a memoryless binary-input output-symmetric (MBIOS) channel with

transition probability measure p(y|x), x ∈ {0, 1}. Then, the block error probability
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of C under ML decoding is upper bounded by

Pe ≤ Pe|0(C ′) + Pe|0(C ′′)

where

Pe|0(C ′) ≤ SFB(ρ) ·
[∑

l∈U

(
N

l

)(
A(ρ)

A(ρ) + B(ρ)

)l(
B(ρ)

A(ρ) + B(ρ)

)N−l
]ρ

, 0 ≤ ρ ≤ 1

(3.16)

A(ρ) ,
∑

y

{
[p(y|0)p(y|1)]

1
1+ρ

[
1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ−1
}

(3.17)

B(ρ) ,
∑

y

{
p(y|0)

2
1+ρ

[
1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ−1
}

. (3.18)

The multiplicative term, SFB(ρ), in the RHS of (3.16) designates the conditional

Shulman-Feder upper bound of the subcode C ′ given the transmission of the all-zero

codeword, i.e.,

SFB(ρ) = 2−N
(

E0(ρ)−ρ(R+
log(α(C′))

N
)
)

, 0 ≤ ρ ≤ 1 (3.19)

and E0 is introduced in (3.8). An upper bound on the conditional block error proba-

bility for the subcode C ′′, Pe|0(C ′′), can be either a standard union bound or any other

bound.

Proof: Since the block code C is linear and the channel is MBIOS, the conditional

block error probability of C is independent of the transmitted codeword. Hence,

the union bound gives the following upper bound on the block error probability:

Pe ≤ Pe|0(C ′) + Pe|0(C ′′).
In order to prove the theorem, we derive an upper bound on Pe|0(C ′). Let {Al(C ′)}

denote the weight spectrum of the subcode C ′, and let GN(y) be an arbitrary non-

negative function of the received vector y = (y1, y2, . . . , yN) where this function is

assumed to be expressible in the product form (3.10). Then, we get from (3.5) and

(3.10) the following upper bound on the conditional ML decoding error probability
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of the subcode C ′:

Pe|0(C′) ≤
(∑

y

g(y) p(y|0)

)N(1−ρ)

·



∑

l

Al(C′)
(∑

y

g(y)1−
1
ρ p(y|0)

)N−l(∑
y

g(y)1−
1
ρ p(y|0)1−λp(y|1)λ

)l




ρ

λ ≥ 0,

0 ≤ ρ ≤ 1

=

(∑
y

g(y) p(y|0)

)N(1−ρ)

2−N(1−R)ρ

·




∑

l∈U

(
Al

2−N(1−R)
(
N
l

)
) (

N

l

) (∑
y

g(y)1−
1
ρ p(y|0)

)N−l

(∑
y

g(y)1−
1
ρ p(y|0)1−λp(y|1)λ

)l




ρ

≤
(

max
l∈U

Al

2−N(1−R)
(
N
l

)
)ρ (∑

y

g(y) p(y|0)

)N(1−ρ)

2−N(1−R)ρ

·




∑

l∈U

(
N

l

)(∑
y

g(y)1−
1
ρ p(y|0)

)N−l (∑
y

g(y)1−
1
ρ p(y|0)1−λp(y|1)λ

)l




ρ

. (3.20)

The transition in the first equality above follows since Al(C ′) ≡ 0 for l /∈ U , and

Al(C ′) coincide with the distance spectrum of the code C for all l ∈ U . Note that

(3.20) is a tighter version of the bound in [38, Eq. (32)]. The difference between the

modified and the original bounds is that in the former, we only sum over the indices

l ∈ U while in the latter, we sum over the whole set of indices, i.e., l ∈ {1, 2, . . . , N}.
By setting the tilting measure in (3.13), the symmetry of the MBIOS channel gives

the equality
∑

y

g(y)p(y|0) =
∑

y

[
1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ+1

(3.21)
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and from (3.17) and (3.18)

∑
y

p(y|0)1−λp(y|1)λg(y)1− 1
ρ

=
∑

y

{
[p(y|0)p(y|1)]

1
1+ρ

[
1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ−1
}

= A(ρ) (3.22)

∑
y

p(y|0)g(y)1− 1
ρ

=
∑

y

{
p(y|0)

2
1+ρ

[
1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ−1
}

= B(ρ). (3.23)

where the RHS of (3.22) and (3.23) are obtained by setting λ = 1
1+ρ

. Finally, based

on (3.13) and the symmetry of the channel, one can verify that

∑
y

g(y)p(y|0) =
A(ρ) + B(ρ)

2
. (3.24)

Substituting (3.21)–(3.24) into (3.20) gives the following conditional upper bound on

the ML decoding error probability of the subcode C ′:

Pe|0(C ′) ≤ α(C2)
ρ

(
A(ρ) + B(ρ)

2

)N(1−ρ)

2−N(1−R)ρ ·
(∑

l∈U

(
N

l

)
Al(ρ)BN−l(ρ)

)ρ

(3.25)

where we use the notation

α(C ′) , max
l∈U

Al

2−N(1−R)
(

N
l

) .

The latter parameter measures by how much the (expected) number of codewords

in the subcode C ′ deviates from the binomial distribution which characterizes the

average distance spectrum of the ensemble of fully random block codes of length N
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and rate R. By straightforward algebra, we obtain that

Pe|0(C ′) ≤ α(C ′)ρ

(
A(ρ) + B(ρ)

2

)N

2−N(1−R)ρ

(
1

2

)−Nρ

·
[∑

l∈U

(
N

l

)(
A(ρ)

A(ρ) + B(ρ)

)l (
B(ρ)

A(ρ) + B(ρ)

)N−l
]ρ

= α(C ′)ρ

(
A(ρ) + B(ρ)

2

)N

2NRρ

[∑

l∈U

(
N

l

)(
A(ρ)

A(ρ) + B(ρ)

)l(
B(ρ)

A(ρ) + B(ρ)

)N−l
]ρ

= SFB(ρ) ·
[∑

l∈U

(
N

l

)(
A(ρ)

A(ρ) + B(ρ)

)l(
B(ρ)

A(ρ) + B(ρ)

)N−l
]ρ

, 0 ≤ ρ ≤ 1.

(3.26)

The second equality follows from (3.19) and (3.8), and since

E0(ρ) , − log2

{∑
y

[
1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]1+ρ
}

= − log2

(
A(ρ) + B(ρ)

2

)
. (3.27)

This concludes the proof of the theorem.

Discussion: The improvement of the bound introduced in Theorem 3.1 over the

standard combination of the SFB and the union bound [28, 36] stems from the intro-

duction of the factor which multiplies SFB(ρ) in the RHS of (3.16); this multiplicative

term cannot exceed 1 since

∑

l∈U

(
N

l

)(
A(ρ)

A(ρ) + B(ρ)

)l (
B(ρ)

A(ρ) + B(ρ)

)N−l

≤
N∑

l=0

(
N

l

)(
A(ρ)

A(ρ) + B(ρ)

)l (
B(ρ)

A(ρ) + B(ρ)

)N−l

= 1.

This multiplicative factor which appears in the new bound is useful for finite-length

codes with small to moderate block lengths. The upper bound (3.16) on Pe|0(C ′) is

clearly at least as tight as the corresponding conditional SFB. We refer to the upper

bound (3.16) as the modified SFB (MSFB). The conditional block error probability

of the subcode C ′′, given that the all-zero codeword is transmitted, can be bounded
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by a union bound or any improved upper bound conditioned on the transmission of

the all-zero codeword (note that the subcode C ′′ is in general a non-linear code). In

general, one is looking for an appropriate balance between the two upper bounds on

P
(1)
e|0 and P

(2)
e|0 (see Algorithm 1). The improvement that is achieved by using the

MSFB instead of the corresponding SFB is exemplified in Section 3.5 for ensembles

of uniformly interleaved turbo-Hamming codes.

3.3.2 Upper Bounds on Bit Error Probability

Let C be a binary linear block code whose transmission takes place over an arbi-

trary MBIOS channel, and let Pb designate the bit error probability of C under ML

decoding. In [34, Appendix A], Sason and Shamai derived an upper bound on the

bit error probability of systematic, binary linear block codes which are transmitted

over fully interleaved fading channels with perfect channel state information at the

receiver. Here we generalize the result of [34] for arbitrary MBIOS channels. In order

to derive the desired upper bound we use the following lemma due to Divsalar [11],

and provide a simplified proof to this lemma:

Lemma 3.2 [11, Section III.C] Let C be a binary block code of dimension K whose

transmission takes place over an MBIOS channel. Let C(w) designate a sub-code of

C which includes the all-zero codeword and all the codewords of C which are encoded

by information bits whose Hamming weight is w. Then the conditional bit error

probability of C under ML decoding, given that the all-zero codeword is transmitted,

is upper bounded by

Pb|0 ≤
∑
y

pN(y|0)1−λρ





K∑
w=1

( w

K

) ∑

c ∈ C(w)

c 6= 0

pN(y|c)λ





ρ

, λ > 0, 0 ≤ ρ ≤ 1. (3.28)

We introduce here a somewhat simpler proof than in [11].

Proof: The conditional bit error probability under ML decoding admits the form

Pb|0 =
∑
y

(
w0(y)

K

)
pN(y|0) (3.29)

where w0(y) ∈ {0, 1, ..., K} designates the weight of the information bits in the de-

coded codeword, given the all-zero codeword is transmitted and the received vector
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is y. In particular, if the received vector y is included in the decision region of the

all-zero codeword, then w0(y) = 0. The following inequalities hold:

w0(y)

K
≤

(
w0(y)

K

)ρ

, 0 ≤ ρ ≤ 1

(a)

≤





(
w0(y)

K

) ∑

c ∈ C(w0(y))

c 6= 0

[
pN(y|c)
pN(y|0)

]λ





ρ

λ ≥ 0

≤





K∑
w=1

( w

K

) ∑

c ∈ C(w)

c 6= 0

[
pN(y|c)
pN(y|0)

]λ





ρ

. (3.30)

Inequality (a) holds since the received vector y falls in the decision region of a code-

word c̃ which is encoded by information bits of total Hamming weight w0(y); hence,

the quotient pN (y|c̃)
pN (y|0)

is larger than 1 while the other terms in the sum are simply

non-negative. The third inequality holds because of adding non-negative terms to

the sum. The lemma follows by substituting (3.30) into the RHS of (3.29).

Theorem 3.3 (The SFB Version on the BER) Let C be a binary linear block

code of length N and dimension K, and assume that the transmission of the code

takes place over an MBIOS channel. Let Aw,l designate the number of codewords

in C which are encoded by information bits whose Hamming weight is w and their

Hamming weight after encoding is l. Then, the bit error probability of C under ML

decoding is upper bounded by

Pb ≤ 2−NEr(R+
log αb(C)

N
) (3.31)

where R = K
N

is the code rate of C, and

αb(C) , max
0<l≤N

A′
l

2−N(1−R)
(

N
l

) , A′
l ,

K∑
w=1

( w

K

)
Aw,l.

Proof: Due to the linearity of the code C and the symmetry of the channel, the

conditional bit error probability of the code is independent on the transmitted code-

word; hence, without any loss of generality, it is assumed that the all-zero codeword
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is transmitted. From (3.28), the following upper bound on the bit error probability

of C follows:

Pb = Pb|0 ≤
∑
y

pN(y|0)1−λρ





K∑
w=1

( w

K

) ∑

c ∈ C(w)

c 6= 0

pN(y|c)λ





ρ

, λ > 0, 0 ≤ ρ ≤ 1

=
∑
y

ψ0
N(y)





ψ0
N(y)−

1
ρ pN(y|0)

1
ρ

K∑
w=1

( w

K

) ∑

c ∈ C(w)

c 6= 0

[
pN(y|c)
pN(y|0)

]λ





ρ

(3.32)

where ψ0
N is an arbitrary probability tilting measure. By invoking Jensen inequality

in the RHS of (3.32) and replacing ψ0
N(y) with the un-normalized tilting measure

G0
N(y) which appears in the RHS of (3.4), the upper bound in (3.32) transforms to

Pb|0 ≤
(∑

y

G0
N(y) pN(y|0)

)1−ρ

·





k∑
w=1

(w

k

)∑

c ∈ C(w)

c 6= 0

∑
y

pN(y|0)G0
N(y)1− 1

ρ

[
pN(y|c)
pN(y|0)

]λ





ρ

, 0 ≤ ρ ≤ 1, λ > 0.

(3.33)

We consider an un-normalized tilting measure G0
N(y) which is expressible in the

product form (3.10). Since the communication channel is MBIOS and C is a binary

linear block code, one obtains the following upper bound on the bit error probability:

Pb|0 ≤
(∑

y

g(y) p(y|0)

)N(1−ρ)

0 ≤ ρ ≤ 1, λ > 0

·




K∑
w=1

( w

K

) N∑

l=0

Aw,l

(∑
y

p(y|0)g(y)1− 1
ρ

)N−l (∑
y

p(y|1)λp(y|0)1−λg(y)1− 1
ρ

)l




ρ

=

(∑
y

g(y) p(y|0)

)N(1−ρ)

·




N∑

l=0

A′
l

(∑
y

p(y|0)g(y)1− 1
ρ

)N−l (∑
y

p(y|1)λp(y|0)1−λg(y)1− 1
ρ

)l




ρ
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≤
(∑

y

g(y) p(y|0)

)N(1−ρ) (
max

0≤l≤N

A′
l

2−N(1−R)
(

n
l

)
)ρ

· 2−N(1−R)ρ

·
(∑

y

p(y|1)λp(y|0)1−λg(y)1− 1
ρ +

∑
y

p(y|1)λp(y|0)1−λg(y)1− 1
ρ

)Nρ

(3.34)

By setting g(y) as in (3.13), we obtain an upper bound which is the same as the

original SFB, except that the distance spectrum {Al} is replaced by {Al
′}. This

provides the bound introduced in (3.31), and concludes the proof of the theorem.

Similarly to the derivation of the combined upper bound on the block error prob-

ability in Theorem 3.1, we suggest to partition the code into two subcodes in order to

get improved upper bounds on the bit error probability; however, since we consider

the bit error probability instead of block error probability, the threshold in Algo-

rithm 1 is typically modified to a value which is slightly above 1
2

(instead of 1). Since

the code is linear and the channel is MBIOS, the conditional decoding error probabil-

ity is independent of the transmitted codeword (so, we assume again that the all-zero

codeword is transmitted). By the union bound

Pb = Pb|0 ≤ Pb|0(C ′) + Pb|0(C ′′) (3.35)

where Pb|0(C ′) and Pb|0(C ′′) denote the conditional ML decoding bit error probabilities

of two disjoint subcodes C ′ and C ′′ which partition the block code C (except that these

two subcodes have the all-zero vector in common), given that the all-zero codeword

is transmitted. The construction of the subcodes C ′ and C ′′ is characterized later.

Upper bound on Pb|0(C ′): Let Aw,l designate the number of codewords of Hamming

weight l which are encoded by a sequence of information bits of Hamming weight w.

Similarly to the discussion on the block error probability, we use the bit-error version

of the SFB (see Eq. (3.31)) as an upper bound on Pb|0(C ′). From Theorem 3.3, it

follows that the conditional bit error probability of the subcode C ′, given that the

all-zero codeword is transmitted is upper bounded by

Pb|0(C ′) ≤ 2
−NEr

(
R+

log αb(C′)
N

)

(3.36)

where

αb(C ′) , max
l∈U

A′
l(C ′)
Bl

, Al
′(C ′) ,

{ ∑NR
w=1

(
w

NR

)
Aw,l if l ∈ U

0 otherwise
(3.37)

50



and the set U in (3.37) stands for an arbitrary subset of {1, . . . , N}.
Upper bound on Pb|0(C ′′): We may bound the conditional bit error probability of

the subcode C ′′, Pb|0(C ′′), by an improved upper bound. For the binary-input AWGN,

the modified version of the TSB, as shown in [33] is an appropriate bound. This bound

is the same as the original TSB in (2.19), except that the distance spectrum {Al} is

replaced by {Al
′(C ′′)} where

Al
′(C ′′) ,





NR∑
w=1

( w

NR

)
Aw,l if l ∈ U c

0 otherwise

(3.38)

and U c stands for an complementary set of U in (3.37), i.e., U c , {1, . . . , N} \U . For

the binary-input AWGN channel, the TSB on the conditional bit error probability

admits the following final form (see [33]):

Pb|0(C′′) ≤
∫ ∞

−∞

dz1√
2πσ

e−
z2
1

2σ2





∑
l:

δl
2
≤αl

{
Al
′(C′′) ∫ rz1

βl(z1)
1√
2πσ

e−
z2
2

2σ2 γ̄
(

N−2
2 ,

rz1
2−z2

2

2σ2

)
dz2

}

+1− γ̄
(

N−1
2 ,

rz1
2

2σ2

)





(3.39)

where the incomplete Gamma function γ̄ is introduced in (2.12). As the simplest

alternative to obtain an upper bound on the conditional bit error probability of the

subcode C ′ given that the all-zero codeword is transmitted, one may use the union

bound (UB) for the binary-input AWGN channel

Pb|0(C ′′) ≤
NR∑
w=1

( w

NR

) ∑

l∈Uc

Aw,l Q

(√
2lREb

N0

)

=
N∑

l=1

A′
l(C ′′) Q

(√
2lREb

N0

)
(3.40)

where Eb is the energy per information bit and N0

2
is the two-sided spectral power

density of the additive noise.

In order to tighten the upper bound (3.36), we obtain the bit-error version of

the MSFB (see Eq. (3.16)), by following the steps of the proof of Theorem 3.1. In

a similar manner to the transition from (3.6) to (3.31), we just need to replace the

terms Al(C ′) in (3.16) with A′
l(C ′) to get the conditional modified SFB (MSFB) on the

bit error probability of C ′, given the all-zero codeword is transmitted. The resulting

upper bound is expressed in the following theorem:
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Theorem 3.4 (Modified SFB on the Bit Error Probability) Let C be a binary

linear block code of length N and rate R, and let Aw,l be the number of codewords

of C which are encoded by information bits whose Hamming weight is w and their

Hamming weight after encoding is l (where 0 ≤ w ≤ NR and 0 ≤ l ≤ N). Let the

code C be partitioned into two subcodes, C ′ and C ′′, where C ′ contains all codewords

of C with Hamming weight l ∈ U ⊆ {1, 2, , . . . , N} and the all-zero codeword, and C ′′
contains the all-zero codeword and all the other codewords of C which are not in C ′.
Assume that the communication takes place over an MBIOS channel. Then, the bit

error probability of C under ML decoding is upper bounded by

Pb ≤ Pb|0(C ′) + Pb|0(C ′′)

where

Pb|0(C ′) ≤2
−N

(
E0(ρ)−ρ(R+

log(αb(C′))
N

)

) [∑

l∈U

(
N

l

)(
A(ρ)

A(ρ) + B(ρ)

)l (
B(ρ)

A(ρ) + B(ρ)

)N−l
]ρ

,

0 ≤ ρ ≤ 1 (3.41)

αb(C ′) , max
l∈U

A′
l

2−N(1−R)
(

N
l

) , A′
l ,

NR∑
w=1

( w

NR

)
Aw,l

and the functions A,B,E0 are introduced in (3.17), (3.18) and (3.8), respectively. An

upper bound on the conditional bit error probability for the subcode C ′′, Pb|0(C ′′), can

be either a union bound (3.40), the TSB (3.39) or any other improved bound.

Discussion: Note that αb (C ′) ≤ α(C ′), therefore the bound on the bit error prob-

ability in (3.41) is always smaller than the bound on the block error probability in

(3.16), as one could expect.

In the derivation of the MSFB on the conditional block and bit error probabilities

(see Eqs. (3.16) and (3.41), respectively), we obtain simplified expressions by taking

out the maximum of
{

Al(C′)
Bl

}
and

{
A′l(C′)

Bl

}
from the corresponding summations in

(3.20) and (3.34). This simplification was also done in [38] for the derivation of

the SFB as a particular case of the DS2 bound. When considering the case of an

upper bound on the block error probability, this simplification is reasonable because

we consider the terms
{

Al(C′)
Bl

}
which vary slowly over a large range of the Hamming
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weights l (see Fig. ??(a) when referring to ensembles of turbo-like codes whose average

distance spectrum resembles the binomial distribution). However, by considering the

terms
{

A′l(C′)
Bl

}
whose values change considerably with l and almost grow linearly with

l (see Fig. ??(b)), such simplification previously done for the block error analysis (i.e.,

taking out the maximal value of
A′l(C′)

Bl
from the summation) is expected to significantly

reduce the tightness of the bound on the bit error probability. Thus, the modification

which results in (3.41) does not seem to yield a good upper bound.2 In order to get a

tighter upper bound on the bit error probability we introduce the following theorem:

Theorem 3.5 (Simplified DS2 Bound) Let C be a binary linear block code of

length N and rate R, and let Aw,l designate the number of codewords which are

encoded by information bits whose Hamming weight is w and their Hamming weight

after encoding is l (where 0 ≤ w ≤ NR and 0 ≤ l ≤ N). Let the code C be partitioned

into two subcodes, C ′ and C ′′, where C ′ contains all the codewords in C with Hamming

weight l ∈ U ⊆ {1, 2, , . . . , N} and the all-zero codeword, and C ′′ contains all the other

codewords of C and the all-zero codeword. Let

Al
′(C ′) ,

{ ∑NR
w=1

(
w

NR

)
Aw,l if l ∈ U

0 otherwise
.

Assume that the communication takes place over an MBIOS channel. Then, under

ML decoding, the bit error probability of C, is upper bounded by

Pb ≤ Pb|0(C ′) + Pb|0(C ′′)

where

Pb|0(C ′) ≤ 2
−N

(
E0(ρ)−ρ

(
R+

log ᾱρ(C′)
N

))

, 0 ≤ ρ ≤ 1 (3.42)

ᾱρ(C ′) ,
N∑

l=0

{
A′

l(C ′)
2−N(1−R)

(
N
l

) ·
(

N

l

)(
A(ρ)

A(ρ) + B(ρ)

)l (
B(ρ)

A(ρ) + B(ρ)

)N−l
}

. (3.43)

A(ρ), B(ρ) and E0 are defined in (3.17), (3.18) and (3.8), respectively. As before, an

upper bound on the conditional bit error probability for the subcode C ′′, Pb|0(C ′′), can

be either a union bound or any other improved bound.

2Note that for an ensemble of fully random block codes, all the terms A′l
Bl

are equal to 1
2 ; hence,

the simplification above does not reduce the tightness of the bound at all when considering this
ensemble.
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Proof: Starting from the first equality in (3.34), and using the definition for A(ρ), B(ρ)

in (3.17) and (3.18) we get

Pb|0 ≤
(

A(ρ) + B(ρ)
2

)N

2Nρ ·
{

N∑

l=0

A′l(C′)
(

B(ρ)
A(ρ) + B(ρ)

)N−l ( A(ρ)
A(ρ) + B(ρ)

)l
}ρ

=
(

A(ρ) + B(ρ)
2

)N

2NRρ · 2Nρ(1−R) ·
{

N∑

l=0

A′l(C′)
(

B(ρ)
A(ρ) + B(ρ)

)N−l( A(ρ)
A(ρ) + B(ρ)

)l
}ρ

= 2−N(E0(ρ)−ρR) ·
{

N∑

l=0

A′l(C′)
Bl

(
n

l

)(
B(ρ)

A(ρ) + B(ρ)

)N−l ( A(ρ)
A(ρ) + B(ρ)

)l
}ρ

(3.44)

where

Bl , 2−N(1−R)

(
N

l

)
, l = 0, . . . , N

designates the distance spectrum of fully random block codes of length N and rate

R. Using the definition for ᾱρ(C ′) in (3.43) we get the upper bound (3.42).

Evidently, the upper bound (3.42) is tighter than the bit-error version of the SFB in

(3.36), because ᾱρ(C ′) which is the expected value of
A′l(C′)

Bl
is not larger than αb(C ′)

which is the maximal value of
A′l(C′)

Bl
. We note that the upper bound (3.42) is just the

DS2 bound [15], with the un-normalized tilting measure (3.13). This tilting measure

is optimal only for the ensemble of fully random block codes, and is sub-optimal for

other codes. We refer to the upper bound (3.42) as the simplified DS2. From the

discussion above, we conclude that the simplified DS2 bound (which is also valid

as an upper bound on the conditional block error probability if we replace A′
l(C ′) in

(3.44) by Al(C ′)) is advantageous over the MSFB when A′
l (or Al for the case of block

error probability) changes dramatically over the Hamming weight range of interest.

This is demonstrates for the block error probability of the ensemble of multiple turbo-

Hamming codes where there is no noticeable improvement if we use the simplified DS2

to bound Pe|0(C ′) instead of the MSFB, where for the case of bit-error probability we

get tighter upper bound when using the simplified DS2 to upper bound Pb|0(C ′) rather

than the MSFB.
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3.4 Expurgation

In this section we consider a possible expurgation of the distance spectrum which

yields in general tighter upper bounds on the ML decoding error probability when

transmission takes place over a binary-input AWGN (BIAWGN) channel. To this

end, we rely on some properties of the Voronoi regions of binary linear block codes,

as presented in [1, 2, 3].

Let C be a binary linear block code of length N and rate R. Without any loss

of generality, let us assume that the all-zero codeword, c0, was transmitted over the

BIAWGN channel. For any received vector y, an ML decoder checks whether it falls

within the decision region of the all zero vector. This decision region (which is also

called the Voronoi region of c0) is defined as the set V0 of vectors in RN that are

closest (in terms of Euclidian distance) to the all-zero codeword, i.e.,

V0 =
{
x ∈ RN : d(x, c0) ≤ d(x, c), ∀ c ∈ C} . (3.45)

Not all of the 2NR inequalities in (3.45) are necessarily required to define the Voronoi

region. The minimal set of codewords that determine the Voronoi region of c0, forms

the set of Voronoi neighbors of c0 (to be designated by N0). So the region (3.45) can

be defined by

V0 =
{
x ∈ RN : d(x, c0) ≤ d(x, c), ∀ c ∈ N0

}
. (3.46)

It is clear that the block error probability of C is equal to the conditional block error

probability of the expurgated subcode Cex, assuming the all-zero codeword is trans-

mitted, where Cex designates the subcode of C which contains the all-zero codeword

and all its (Voronoi) neighbors. Hence, any upper bound that solely depends on

the code distance spectrum of the code can be tightened by replacing the original

distance spectrum with the distance spectrum of the expurgated code. It should be

noted, however, that the argument above cannot be applied to the bit error proba-

bility. This stems from the fact that while the block error event is solely defined by

the Voronoi region of the transmitted codeword, the bit error event also depends on

the Hamming weight of the information bits of each decoded codeword; hence, the

above expurgation cannot be applied to the analysis of the bit error probability. The

distance spectrum of the Voronoi neighbors of an arbitrary codeword of some popular

linear block codes (e.g., Hamming, BCH and Golay codes) is given in [1]. A simple
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way to find a subcode of C which contains the subcode Cex is given in the following

theorem from [2]:

Theorem 3.6 (On the Voronoi Regions of Binary Linear Block Codes [2])

For any binary linear block code C with rate R and length N

N0 ⊇ {c ∈ C : 1 ≤ WH(c) ≤ 2dmin − 1}

and

N0 ⊆ {c ∈ C : 1 ≤ WH(c) ≤ N(1−R) + 1}
where dmin is the minimal Hamming weight of the codewords in C.

Note that according to the theorem above, one should expect the expurgation to have

maximal impact on the tightness of an upper bound for high rate codes, where most of

the codewords can be expurgated. We should also observe that the expurgated code-

words have large distances from the all-zero codeword (all the expurgated codewords

have a Hamming weight larger than 2dmin − 1). Thus, the improvement due to the

expurgation process is especially substantial at low SNRs. One can use this theorem

to achieve an immediate improvement of an arbitrary upper bound by expurgating

all the codewords whose Hamming weight is greater than N(1−R) + 1. We refer to

this kind of expurgation as the trivial expurgation. The trivial expurgation, though

very simple to apply, does not produce satisfactory results in many cases, because

in many cases, the portion of the distance spectrum which corresponds to Hamming

weights above N(1−R)+1 has a negligible effect on the overall bound. In [2], Agrell

introduces a method (called C rule) in order to determine whether a codeword c is a

zero-neighbor.

C rule: A codeword is a 0-neighbor if and only if it covers3 no other nonzero

codeword.

In [3] , Ashikmin and Barg used this rule to derive explicit formulas for the weight

spectrums of zero-neighbors for various codes. This includes the families of Hamming

codes and second-order Reed-Muller codes.

In order to upper bound the block error probability using the bounding tech-

nique introduced in this chpater, we split the subcode Cex into two subcodes, C ′ex
3A binary codeword c1 is said to cover another codeword, c2, if c2 has zeros in all the positions

where c1 has a zero.

56



and C ′′ex, where C ′ex contains all the codewords of Cex with Hamming weight l ∈ U ⊆
{1, 2, ..., N(1 − R) + 1}, and C ′′ex contains the all-zero codeword and all the other

codewords. The following upper bound holds:

Pe(C) = Pe|0(Cex) ≤ Pe|0(C ′ex) + Pe|0(C ′′ex) (3.47)

were Pe|0(C ′ex) and Pe|0(C ′′ex) are the conditional block error probabilities of the sub-

codes C ′ex and C ′′ex, respectively, given that the all-zero codeword was transmitted.

We can upper bound Pe|0(C ′′ex) by the union bound or the TSB, and we upper bound

Pe|0(C ′ex) by the MSFB (3.16). The partitioning of the subcode Cex into two subcodes

C ′ex and C ′′ex is done following the adaptive algorithm introduced in Section 3.3.

3.5 Applications

This section demonstrates some numerical results of the improved upper bounds on

the ML decoding error probability of linear block codes. We apply the bounds intro-

duced in Sections 3.3 and 3.4 to various ensembles of parallel and serially concatenated

codes. Throughout this section, it is assumed that the encoded bits are BPSK mod-

ulated, transmitted over an AWGN channel, and coherently detected. The effect of

an expurgation of the distance spectrum on the tightness of some upper bounds on

the decoding error probability is exemplified as well.

For the binary-input additive white Gaussian noise (BIAWGN) channel with

BPSK modulation, the conditional probability density function (pdf) for a single

letter input is:

p(y|0) =
1√
πN0

exp

{
−

(
y +

√
Es

)2

/N0

}
,

p(y|1) =
1√
πN0

exp

{
−

(
y −

√
Es

)2

/N0

} (3.48)

where Es designates the energy of the symbol, and N0

2
is the two-sided spectral power

density of the channel. In order to calculate the SFB on Pe|0(C ′), we first calculate

the terms A(ρ) and B(ρ), as defined in (3.17) and (3.18), respectively. Clearly, for a
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continuous-output channel, the sums in (3.17) and (3.18) are replaced by integrals.

B(ρ) =

∫ ∞

−∞
p(y|0)

2
ρ+1

[
1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ−1

dy

=

∫ ∞

−∞

(
1√
πN0

) 2
ρ+1

e
− 2(y+

√
Es)

2

N0(1+ρ)

( 1√
πN0

) ρ−1
ρ+1

[
1

2
e
− (y+

√
Es)

2

N0(1+ρ) +
1

2
e
− (y−√Es)

2

N0(1+ρ)

]ρ−1

dy

= exp

(
−Es

N0

) ∫ ∞

−∞

1√
πN0

e
− y2

N0 · e− 4y
√

Es
N0(ρ+1)

[
1

2
e

2y
√

Es
N0(1+ρ) +

1

2
e
− 2y

√
Es

N0(1+ρ)

]ρ−1

dy

= exp

(
−Es

N0

)
E

[
e−

2X
√

2Es/N0
ρ+1 coshρ−1

(√
2Es/N0X

1 + ρ

)]
(3.49)

where E denotes the statistical expectation, and X ∼ N(0, 1). We also obtain that

A(ρ) =

∫ ∞

−∞
[p(y|0)p(y|1)]

1
1+ρ

[
1

2
p(y|0)

1
1+ρ +

1

2
p(y|1)

1
1+ρ

]ρ−1

dy

= exp

(
−Es

N0

)
E

[
coshρ−1

(√
2Es/N0X

1 + ρ

)]
(3.50)

and

A(ρ) + B(ρ) = 2 exp

(
−Es

N0

)
E

[
cosh1+ρ

(√
2Es/N0X

1 + ρ

)]
(3.51)

Plugging (3.49) – (3.51) into (3.16), and (3.41) and minimizing over the interval

0 ≤ ρ ≤ 1 will give us the desired bounds for Pe|0(C ′) and Pb|0(C ′), respectively.

3.5.1 Ensemble of Serially Concatenated Codes

The scheme in Fig. 3.2 depicts the encoder of an ensemble of serially concatenated

codes where the outer code is a (127, 99, 29) Reed-Solomon (RS) code, and the inner

code is chosen uniformly at random from the ensemble of (8, 7) binary linear block

codes. Thus, the inner code extends every symbol of 7 bits from the Galois field

GF(27) to a sequence of 8 bits. The decoding is assumed to be performed in two

stages: the inner (8, 7) binary linear block code is soft-decision ML decoded, and

then a hard decision ML decoding is used for the outer (129, 99, 29) RS code. Due to

the hard-decision ML decoding of the (127, 99, 29) RS code, its decoder can correct

up to t = bdmin−1
2

c = 14 erroneous symbols. Hence, an upper bound on the average
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block error probability of the considered serially concatenated ensemble is given by

Pe ≤
127∑

i=t+1

(
127

i

)
pi

s(1− ps)
127−i (3.52)

where ps is the average symbol error probability of the inner code under soft-decision

ML decoding. The symbol error probability ps of the inner code is either upper

bounded by the ubiquitous union bound or the TSB, and this upper bound is sub-

stituted in the RHS of (3.52). Since the rate of the inner code is rather high (it is

equal to 7
8

bits per channel use), an expurgation of the distance spectrum seems to

be attractive in order to tighten the upper bound on the overall performance of the

concatenated ensemble. Ashikmin and Barg [3] show that the average expurgated

distance spectrum of the ensemble of random linear block codes of length N and

dimension K is given by

E[Al] =





(
N
l

)
2−(N−K)

l−2∏
i=0

(
1− 2−(N−K−i)

)
l = 0, 1, . . . , N −K + 1

0 otherwise.

(3.53)

We rely on the expurgated distance spectrum in (3.53) in order to get a tighter version

of the union bound or the TSB on the symbol error probability ps of the inner code

(where N = 8 and K = 7)4. The expurgated union bound in Fig. 3.3 provides a gain

of 0.1 dB over the union bound or TSB at block error probability of 10−4, and the

improvement in the tightness of the bound due to the distance spectrum expurgation

is especially prominent at low values of SNR. Clearly, we take 1 as the trivial bound

on ps (as otherwise, for low values of SNR, the union bound on ps may exceed 1,

which gives in turn a useless upper bound on the decoding error probability of the

ensemble).

3.5.2 Turbo-Hamming Codes

Let us consider an ensemble of uniformly interleaved parallel concatenated turbo-

Hamming codes. The encoder consists of two identical (2m−1, 2m−m−1) Hamming

codes as component codes, and a uniform interleaver operating on the 2m − m − 1

4In order to calculate the average distance spectrum of the ensemble of random binary linear
block codes, see Appendix D.
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information bits. The comparison here refers to the case where m = 10, so the two

component codes are (1023, 1013) Hamming codes, and the overall rate of the en-

semble is R = 2m−m−1
2m+m−1

= 0.9806 bits per channel use. The value of the energy per

bit to one-sided spectral noise density (Eb

N0
) which corresponds to this coding tare is

5.34 dB, assuming that communication takes place over a binary-input AWGN chan-

nel. In order to obtain performance bounds for the ensemble of uniformly interleaved

turbo-Hamming codes, we rely on an algorithm for the calculation of the average

input-output weight enumerator function (IOWEF) of this ensemble, as provided in

[32, Section 5.2]. As noted in [32], the average distance spectrum of this ensemble is

very close to the binomial distribution for a rather large range of Hamming weights

(see Fig. ??(a)). Hence, one can expect that the upper bound introduced in Theo-

rem 3.1 provides a tight bounding technique on the average block error probability

of this ensemble. For this coding scheme, we note that regarding Pe, there is no sub-

stantial improvement in the tightness of the overall upper bound if we upper bound

Pe|0(C ′′) by the TSB instead of the simple union bound (see Fig. 3.5). Among the

bounds introduced in Section 3.3, the upper bound which combines the TSB and the

MSFB is the tightest bound, especially for the low SNR range (see Fig. 3.5); referring

to the bound in Theorem 3.1, the partitioning of codes in the considered ensemble

relies on Algorithm 1 (see Section 3.3). In Fig. 3.6, we provide a comparison between

various upper bound on the bit error probability of this turbo-like ensemble. The

tightest bound for the bit error analysis is the one provided in Theorem 3.5, com-

bining the simplified DS2 bound with the union bound. It is shown in Fig. 3.6 that

the simplified DS2 provides gains of 0.16 dB and 0.05 dB over the MSFB at bit error

probabilities of 10−1 and 10−2, respectively. The simplified DS2 also provides gain of

0.08 dB over the TSB at bit error probability of 10−1. Unfortunately, a trivial ex-

purgation of the average distance spectrum of uniformly interleaved turbo codes with

two identical (2m − 1, 2m −m− 1) Hamming codes as components (i.e., by nullifying

the average distance spectrum at Hamming weights above 2m + 1) has no impact on

tightening the performance bounds of this ensemble.
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3.5.3 Multiple Turbo-Hamming Codes

Multiple turbo codes are known to yield better performance, and hence, it is inter-

esting to apply the new bounding techniques in Section 3.3 to these ensembles. The

encoder of a multiple turbo-Hamming code is depicted in Fig. 3.7.

Consider the ensemble of uniformly and independently interleaved multiple-turbo

codes, where the components codes are identical systematic binary linear block codes

of length N . Let Sw,hi
denote the number of codewords of the ith component code

with weight of the systematic bits equal to w and the weight of the parity bits equal

to hi. The average number of codewords of the ensemble of multiple-turbo codes,

with systematic-bits weight of w and overall weight l is given by

Aw,l =
∑

h1, h2, h3 s.t.

w + h1 + h2 + h3 = l

Sw,h1Sw,h2Sw,h3(
N
w

)2 . (3.54)

From (3.54) and the algorithm to calculate the input-output weight enumerators

of Hamming codes (see [32, Appendix A]), it is possible to verify that the average

distance spectrum of the ensemble of multiple turbo-Hamming codes with two inde-

pendent uniform interleavers is very close to the binomial distribution for a relatively

large range of Hamming weights (similarly to the plot in Fig. ??(a)). Hence, the

improved bounds provided in Section 3.3 are expected to yield good upper bounds

on the decoding error probability. The comparison here refers to the case of m = 10,

so the three component codes are (1023, 1013) Hamming codes. The overall rate of

the ensemble is 2m−m−1
2m+2m−1

= 0.9712 bits per channel use, and the channel capacity

for this coding rate corresponds to Eb

N0
= 5 dB. All the improved bounds that are

evaluated here, incorporate the union bound as an upper bound on Pe(C ′′) (or Pb(C ′′)
for bit error probabilities). The numerical results of various upper bounds are shown

in Fig. 3.8 for the block and bit error probabilities. As expected, the improvements

that were obtained by the improved bounds (Theorems 3.1–3.5) are more pronounced

here than for the ensemble of turbo-Hamming code. For example, at bit error rate

of 10−1, the simplified DS2 bound yields a gain of 0.12 dB over the TSB. A modest

improvement of 0.05 dB was obtained at bit error rate of 10−2.
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3.5.4 Random Turbo-Block Codes with Systematic Binary

Linear Block Codes as Components

Finally, we evaluate improved upper bound for the ensemble of uniformly interleaved

parallel concatenated (turbo) codes, having two identical component codes chosen

uniformly at random and independently from the ensemble of systematic binary linear

block codes. We assume that the parameters of the overall code are (N,K), so the

parameters of its component codes are (N+K
2

, K). In addition, the length of the

uniform interleaver is K.

According to the analysis in [40], the input-output weight enumeration of the

considered ensemble is given by

S(W,Z) =
∑
w,j

Sw,jW
wZj

= 1 +
K∑

w=1



Ww


2−(N−K)

((
K

w

)
− 1

)N−K∑
j=0

(
N −K

j

)
Zj + 2−

N−K
2

N−K
2∑

j=0

(
N−K

2

j

)
Z2j








where Sw,j denotes the number of codewords whose information sub-words have Ham-

ming weight of w and the parity sub-word has Hamming weight j. We apply the im-

proved bounds introduced in Section 3.3 to this ensemble where the parameters are

set to (N, K) = (1144, 1000) (hence, the rate of the parallel concatenated ensemble

is R = 0.8741 bits per channel use). The plots of various upper bounds on the block

and bit error probabilities are shown in Fig. 3.9. The improved bounds yield the best

reported upper bound on the block and bit error probabilities. For the block error

probability, the upper bound which combines the MSFB with the union bound is the

tightest bound; it achieve a gain of 0.1 dB over the TSB, referring to a block error

probability of 10−4. A similar gain of 0.11 dB is obtained for the bit error probability,

referring to a BER of 10−4, referring to the bound which combined the union bound

with the simplified DS2 bound (see Theorem 3.5).

3.6 Conclusions

We derive in this chpater tightened versions of the Shulman and Feder bound. The

new bounds apply to the bit and block error probabilities of binary linear block codes
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under ML decoding. The effectiveness of these bounds is exemplified for various

ensembles of turbo-like codes over the AWGN channel. An expurgation of the distance

spectrum of binary linear block codes further tightens in some cases the resulting

upper bounds.
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Figure 3.1: Plots of Al

Bl
and

A′l
Bl

as a function of the normalized Hamming weight
(

l
N

)
,

on a logarithmic scale. The plots refer to ensembles of random turbo-block codes
with two identical systematic binary linear block codes as components; (a) A plot of
Al

Bl
with N = 1000 and R = 0.72 bits/Symbol, referring to the analysis of the block

error probability, (b) A plot of
A′l
Bl

with N = 100 and R = 0.72 bits/Symbol, referring
to the analysis of the bit error probability.
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Figure 3.2: A scheme for an ensemble of serially concatenated codes where the
outer code is a (127, 99, 29) Reed-Solomon (RS) code, and the inner code is chosen
uniformly at random from the ensemble of (8,7) binary linear block codes.
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Figure 3.3: Various upper bounds on the block error probability of the ensemble
of serially concatenated codes depicted in Fig. 3.2. The compared bounds are the
tangential-sphere bound (TSB) and the union bound with and without expurgation
of the distance spectrum; this expurgation refers to the ensemble of inner codes,
chosen uniformly at random from the ensemble of (8,7) binary linear block codes.
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Figure 3.4: A comparison between the upper bound which combines the UB with
the SFB bound in it original form (Eq. (3.6)) and the upper bound which combines
the UB with the MSFB bound in (3.16). The comparison refers to the ensemble
of uniformly interleaved turbo-Hamming codes where the two component codes are
(1023, 1013) Hamming codes. The overall rate of the code is 0.973 bits per channel
use.
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Figure 3.5: Comparison between various upper bounds on the ML decoding block
error probability where the comparison refers to the ensemble of uniformly interleaved
turbo-Hamming codes whose two component codes are (1023, 1013) Hamming codes.
The compared bounds are the union bound (UB), the tangential-sphere bound (TSB),
and two instances of the improved upper bound from Theorem 3.1: the UB+MSFB
combines the MSFB with the union bound, and the TSB+MSFB is the upper bound
which combines the MSFB with the tangential-sphere bound.
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Figure 3.6: Comparison between various upper bounds on the ML decoding bit
error probability of the ensemble of (1033,1013) uniformly interleaved turbo-Hamming
code. The compared bounds are the union bound (UB), the tangential-sphere bound
(TSB), the upper bound from Theorem 3.4 which combines the union bound with
the MSFB (UB+MSFB), and the upper bound from Theorem 3.5 which combines
the union bound with the simplified DS2 bound (UB+simplified DS2).
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Figure 3.8: Comparison between various upper bounds on the ML decoding er-
ror probability, referring to the ensemble of uniformly interleaved multiple turbo-
Hamming codes where the three component codes are (1023, 1013) Hamming codes
(see Fig. 3.7). The upper plot refers to upper bounds on the block error probability,
and the compared bounds are the union bound (UB), the tangential-sphere bound
(TSB), and the upper bound of Theorem 3.1 which combines the union bound with the
MSFB (UB+modified SFB). The lower plot refers to upper bounds on the bit error
probability, and the compared bounds are the union bound (UB), the tangential-
sphere bound (TSB), the upper bound of Theorem 3.4 which combines the union
bound with the MSFB, and the upper bound of Theorem 3.5 which combines the
union bound with the simplified DS2 bound (UB+simplified DS2).
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Figure 3.9: Comparison between upper bounds on the block and bit error probabilities
for an ensemble of uniformly interleaved turbo codes whose two component codes are
chosen uniformly at random from the ensemble of (1072, 1000) binary systematic
linear block codes; its overall code rate is 0.8741 bits per channel use. The compared
bounds under ML decoding are the tangential-sphere bound (TSB), and the bounds
in Theorems 3.1 and 3.5. The upper and lower plots provide upper bounds on the
block and bit error probabilities, respectively.
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Chapter 4

Summary and Conclusion

4.1 Contribution of the Thesis

The tangential-sphere bound (TSB) of Poltyrev [31] often happens to be the tightest

upper bound on the ML decoding error probability of block codes whose transmission

takes place over a binary-input AWGN channel. However, in the random coding set-

ting, it fails to reproduce the random coding exponent [19] while the second version

of the Duman and Salehi (DS2) bound does [15, 35]. In the first part of this work,

we consider some recently introduced performance bounds which suggest an improve-

ment over the TSB. These bounds rely solely on the distance spectrum of the code (or

their input-output weight enumerators for the analysis of the bit error probability).

In Chapter 2.4, we study the error exponents of these recently introduced bounding

techniques. This forms a direct continuation to the derivation of these bounds by

Yousefi et al. [45, 46, 47] who also exemplified the superiority of their recently intro-

duced bounds over the TSB for short binary linear block codes. We conclude that

all the aforementioned upper bounds posses the same error exponent as the TSB.

Moreover, the error exponents of the TSB versions for the bit error probability, as

provided in [33, 51], coincide and are equal to the error exponent of the TSB for

the block error probability. The explicit expression of this error exponent is given

in Theorem 2.4, and is therefore identical to the error exponent of the TSB as was

first derived by Poltyrev [31] for random codes, and later simplified by Divsalar and

adapted to general ensembles of binary linear block codes [11]. Since the gap between

the error exponent of the TSB and the random coding error exponent of Gallager [19]
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(see Fig. 2.3 in p. 33) becomes larger as the code rate is increased, tightened upper

bounds are especially needed for high-rate linear codes.

In Chapter 3 we derive tightened upper bounds on the decoding error probability

of linear block codes, under ML decoding. The bounds derived in the second part

of the thesis form an improvement over the Shulman and Feder bound [37], and as

particular cases of the generalized of Duman and Salehi bound [15, 35], are more

simple for calculation. They reproduce the random coding error exponent as a by

product of their superiority over the Shulman and Feder bound. These bounds on the

block and bit error probabilities depend respectively on the distance spectrum and

input-output weight enumeration function of the codes, so one can easily apply them

to various codes and ensembles. The effectiveness of these bounds (which are valid for

arbitrary memoryless, binary-input and output-symmetric channels) is exemplified for

various ensembles of turbo-like codes when transmission takes place over the binary-

input AWGN channel. For some ensembles of turbo-like codes (especially, ensembles

of high-rate codes), they provide a better bounding technique than the TSB. in some

cases, an expurgation of the distance spectrum of binary linear block codes further

tightens the resulting upper bounds.

4.2 Topics for Further Research

In the following, we propose some topics for further research:

• In [46, 47], Yousefi et. al. derive improved versions of tangential-sphere bound,

by using the Hunter bound. One may obtain various upper bounds from the

bounding technique of [46] (i.e., by applying the Hunter bound on the prob-

ability of a union involved in the TSB (see Section 2.2.3)), by means of more

delicate treatment of the correlation coefficients. In Chapter 2, we show that the

ITSB and AHP upper bounds [46, 47] have the same error exponent as the TSB.

In fact, by introducing Lemma 2.3 we prove a stronger argument. Namely, we

show that as long as the complementary events Ec
0→λi

correspond to codewords

with the same Hamming weight, no improvement is achieved over the error ex-

ponent of the TSB. This implies that the potential of using a Bonferroni-type

inequality (of order 2 and more) may not have been fully exploited. Hence,

a possible research may be a search for an upper bound which is based on a
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Bonferroni-type inequality [17], and whose error exponent is at least as large

as the error exponent of the TSB; this bound should also depend solely on the

distance spectrum of the code.

• In [22], Herzberg and Poltyrev adapt the TSB to upper bound the decoding

error probability of M-ary phase-shift keying (PSK) block coded modulation,

under coherent ML decoding. However, in practical communication system, the

detection is rarely coherent, due to oscillator instability in the receiver. The

oscillator instability due to noise, which manifest itself as phase noise (PHN), is

one of the primary factors that limit the achievable performance in many com-

munication systems [9], [29]. Hence, finding an upper bound on the decoding

error probability of M-ary PSK block coded modulation under none-coherent

ML decoding is of high importance. The PHN is generally modelled as a wide-

sense stationary Gaussian process or a Weiner process ([29], [10]). For both

types, the PHN obviously does not change the energy of the received vectors

(given the value of the PHN). Hence, the receiving signals still have constant

energy, and one may apply the TSB as an upper bound on the aforementioned

error probability.

• The constant envelope of continuous phase modulations (CPM) and their ex-

cellent spectral properties make them attractive in many digital transmission

systems [41]. In [8], Brutel and Boutros consider serial concatenation of outer

convolutional code and a continuous phase modulation as an inner code sep-

arated by a random interleaver. They asses the performance of this ensemble

via union bounds. We propose to apply the tightened upper bounds derived in

Chapter 3 on the decoding error probability of the above ensemble, as well as

other continuous phase modulated turbo-codes. The proposed bounding tech-

niques are expected to provide tighter upper bounds than those introduced in

[8].

• In [5], Bennatan and Burshtein generalized the Shulman and Feder bound to

arbitrary discreet-memoryless channels (DMC). They also combine the SFB

with the union-Bhattacharrya bound for further tightening the resulting upper

bound. A possible research in this direction is the generalization of the upper
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bounds from Chapter 3 to an arbitrary DMC channel. Likewise, one can ap-

ply the generalized versions of the bounds from Chapter 3 on the ensemble of

modulo-q quantized coset LDPC codes, and compare the results with the upper

bound used by Bennatan and Burshtein in [5].
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Appendix A

The exponent of ψ(C)

In the following, the exponential behavior of the RHS of (2.48) is obtained by using

the Chernoff bounding technique for ψ(C).

Note that the geometrical region of the TSB corresponds to a double sided circular

cone. For the derivation of the bound for the single cone, we have put the further

restriction z1 ≤
√

NEs, but since z1 ∼ N(0, N0

2
), then this boundary effect does not

have any implication on the exponential behavior of the function ψ(C) for large values

of N (as also noted in [11, p. 23]). To simplify the analysis, we therefore do not take

into consideration of this boundary effect for large values of N . Let ψ̃(C) designate

the function which is obtained by removing the event z1 ≤
√

NEs from the expression

for ψ(C) (see the RHS of (2.48)).

Let us designate the normalized Gaussian noise vector by ν, i.e., (ν1, . . . , νN) =√
2

N0
(z1, . . . , zN), and define η , tan2 θ. The Gaussian random vector has N orthogo-

nal components which are therefore statistically independent. From (2.4) and (2.42),

the following equalities hold for BPSK modulated signals:

r =
√

2Ncη

rν1 =
√

η
(√

2Nc− ν1

)

βh(ν1) =
(√

2Nc− ν1

) √
h

N − h

lw,h(ν1, ν2) =
βw(ν1)− ρw,h ν2√

1− ρ2
w,h

. (A.1)
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Hence, we obtain from (2.48) and the above discussion

ψ̃(C) = min
w

{
Pr

(
N∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βw(ν1)

)

+
N∑

h=1

Ah Pr

(
N∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βh(ν1), ν3 ≥ −lw,h(ν1, ν2)

)

+ Pr

(
N∑

i=2

ν2
i ≥ r2

ν1

)}
. (A.2)

At this point, we upper bound the RHS of (A.2) by the Chernoff bounds, namely,

for three random variables V, W and Z

Pr (V ≥ 0) ≤ E [
epV

]
, p ≥ 0 (A.3)

Pr (W ≤ 0, V ≥ 0) ≤ E [
eqW+uV

]
, q ≤ 0, u ≥ 0 (A.4)

Pr (W ≤ 0, V ≥ 0, Z ≥ 0) ≤ E [
etW+sV +kZ

]
, t ≤ 0, s ≥ 0, k ≥ 0. (A.5)

The Chernoff versions of the first and last terms in the RHS of (A.2) are introduced

in [11, Eqs.(134)–(137)], and are given by

Pr

(
N∑

i=2

ν2
i ≥ r2

ν1

)
≤

√
1− 2p

1 + 2pη
e−nE1(c,p,η), p ≥ 0 (A.6)

Pr

(
N∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βw(ν1)

)
≤

√
1− 2q

1 + 2qη
e−nE2(c,q, w

N
,η), − 1

2η
≤ q ≤ 0 (A.7)

where

E1(c, p, η) =
2pηc

1 + 2pη
+

1

2
ln(1− 2p). (A.8)

and

E2(c, q, δ, η) = c


 2qη + (1− 2q)

√
δ

1−δ

1 + 2qη + (1− 2q)
√

δ
1−δ


 +

1

2
ln(1− 2q). (A.9)

Next, by invoking the Chernoff bound (A.5), we get an exponential upper bound on

the second term in the RHS of (2.48). Using the notation

ζw,h ,
√

w(N − h)

h(N − w)
(A.10)
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we get (see Appendix B for details)

Ah Pr

(
N∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βh(ν1), ν3 ≥ −lw,h(ν1, ν2)

)

≤
√

1− 2t

1 + 2tη
e−g(c,t,k,s,η,h,N), − 1

2η
≤ t ≤ 0, k ≥ 0, s ≥ 0 (A.11)

where

g(c, t, k, s, η, h,N) ,
4tηnc + 2

√
2Nc

(
s− kζw,h√

1−ρ2
w,h

)
∆h −∆2

h

(
s− kζw,h√

1−ρ2
w,h

)2

2(1 + 2tη)

−

(
s− kρw,h√

1−ρ2
w,h

)2

2(1− 2t)
− k2

2(1− 2t)
+

N

2
ln(1− 2t)− nr(

h

N
)

(A.12)

and

∆h ,
√

h

N − h
.

The next step is to find optimal values for K and s in order to maximize the function

g. If K∗ = 0 then the exponent of ψ(C) is identical to that of the TSB. In order to

find the optimal K ≥ 0 and s ≥ 0 which maximize g, we consider the aforementioned

probabilities by discussing separately the three cases where h < w, h > w and h = w.

Case 1: h = w. In this case ζw,h = ζw,w = 1, and we get

Aw Pr

(
N∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βw(ν1), ν3 ≥ −lw,w(ν1, ν2)

)
≤

√
1− 2t

1 + 2tη
e−g(c,t,k,s,η,w,N)

− 1

2η
≤ t ≤ 0, k ≥ 0, s ≥ 0

(A.13)

where

g(c, t, k, s, η, w, N) =

4tηnc + 2
√

2Nc

(
s− k√

1−ρ2
w,w

)
∆w −∆2

w

(
s− k√

1−ρ2
w,w

)2

2(1 + 2tη)

−

(
s− kρw,w√

1−ρ2
w,w

)2

2(1− 2t)
− k2

2(1− 2t)
+

N

2
ln(1− 2t)− ln(Aw).(A.14)
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Let us define the parameters

ξ = s− k√
1− ρ2

w,w

(A.15)

τ = s− kρw,w√
1− ρ2

w,w

. (A.16)

From (A.15) and (A.16), we get

k = −(ξ − τ)α (A.17)

where

α ,
√

1 + ρw,w

1− ρw,w

. (A.18)

Hence, the Chernoff bounding technique gives

Pr

(
N∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βw(ν1), ν3 ≥ −lw,w(ν1, ν2)

)
≤

√
1− 2t

1 + 2tη
e−g1(c,t,ξ,τ,η,w,N)(A.19)

− 1

2η
≤ t ≤ 0

where

g1(c, t, ξ, τ, η, h, N) =
4tηnc + 2

√
2Ncξ∆w −∆2

wξ2

2(1 + 2tη)

− τ 2

2(1− 2t)
− (ξ − τ)2α2

2(1− 2t)
+

N

2
ln(1− 2t). (A.20)

Maximizing the RHS of (A.19) w.r.t. τ yields

∂g1

∂τ
= − τ

1− 2t
+

(ξ − τ)α2

1− 2t
= 0

⇒ τ ∗ =
α2ξ∗

1 + α2
. (A.21)

Notice that ∂2g1

∂τ2 < 0, hence plugging τ ∗ in (A.20) maximizes g1. Substituting τ ∗ into
(A.20) gives

g2(c, t, ξ, η, w, N) , g1(c, t, ξ, τ∗, η, w, N)

=
4tηnc + 2

√
2Nc∆wξ −∆2

wξ2

2(1 + 2tη)
−

α2

1+α2 ξ2

2(1− 2t)
+

N

2
ln(1− 2t). (A.22)
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A differentiation of g2 w.r.t. ξ and an introduction of the new parameter ε , α2

1+α2

gives

∂g2

∂ξ
=

√
2Nc∆w −∆2

wξ

1 + 2tη
− εξ

1− 2t
= 0

ξ∗ =

√
2Nc∆w(1− 2t)

∆2
w(1− 2t) + ε(1 + 2tη)

. (A.23)

Again, ∂2g2

∂ξ2 < 0, so ξ∗ maximizes g2. From (A.21), ξ∗ − τ ∗ > 0. Since α is non-
negative, we get that K∗ in (A.17) is not-positive. But since from (A.11), K ≥ 0,
this yields that the optimal value of K is equal to zero. From the Chernoff bound
in (A.5), an optimality of K when it is set to zero implies that asymptotically, as
N →∞

Pr

(
N∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βw(ν1), ν3 ≥ −lw,w(ν1, ν2)

)
.= Pr

(
N∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βw(ν1)

)
. (A.24)

Case 2: h > w. In this case, from (2.40) it is obvious that ρw,h =
√

w(N−h)
h(N−w)

.

Hence, for this case, we get that ρw,h = ζw,h. From (A.12)

g(c, t, k, s, η, h, N) =
4tηnc + 2

√
2Nc

(
s− kζw,h√

1−ζ2
w,h

)
∆h −∆2

h

(
s− kζw,h√

1−ζ2
w,h

)2

2(1 + 2tη)

−

(
s− kζw,h√

1−ζ2
w,h

)2

2(1− 2t)
− k2

2(1− 2t)
+

N

2
ln(1− 2t)− nr(

h

N
). (A.25)

In the following, we introduce the parameters

ξ , s− kζw,h√
1− ζ2

w,h

(A.26)

τ , k. (A.27)

Optimization over τ yields τ ∗ = 0, so K∗ = 0, and asymptotically (as we let N
tend to infinity), one gets the following equality in terms of the exponential behaviors:

Pr

(
N∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βh(ν1), ν3 ≥ −lw,h(ν1, ν2)

)
.= Pr

(
N∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βh(ν1)

)
. (A.28)
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Case 3: h < w. From (2.40), the values of h approve that ρw,h =
√

h(N−w)
w(N−h)

, so we

get from (A.10) that ρw,h < ζw,h. Define

ξ , s− kζw,h√
1− ρ2

w,h

(A.29)

τ , s− kρw,h√
1− ρ2

w,h

. (A.30)

From (A.29) and (A.30)

k = −(ξ − τ)α′ (A.31)

where

α′ ,

√
1− ρ2

w,h

ζw,h − ρw,h

. (A.32)

Since in this case ρw,h < ζw,h, then α′ > 0. Similarly to the arguments in case 1, we

get again that the optimal value for K is K∗ = 0, which implies (A.28) in the limit

where the block length tends to infinity.
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Appendix B

Derivation of the Chernoff Bound

in (A.11) with the Function g in

(A.12)

Using the Chernoff bound (A.5) and defining

∆w ,
√

w

N − w
(B.1)

we get

Pr

(
N∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βh(ν1), ν3 ≥ −lw,h(ν1, ν2)

)

(a)

≤ E
[
et(

∑N
i=2 ν2

i −r2
ν1)+s(ν2−βh(ν1))+k(ν3+lw,h(ν1,ν2))

]
, t ≤ 0, s ≥ 0, k ≥ 0

(b)
= E


e

t(
∑N

i=2 ν2
i −η(

√
2nc−ν1)2)+s(ν2−∆h(

√
2nc−ν1))+k

(
ν3+

∆w(
√

2nc−ν1)−ρw,hν2√
1−ρ2

w,h

)


= E

[
e

t
∑N

i=2 ν2
i −tην2

1−2tnηc+2ηt
√

2ncν1+sν2−s∆h

√
2nc+s∆hν1+kν3+ k∆w

√
2nc√

1−ρ2
w,h

− k∆wν1+ρw,hν2√
1−ρ2

w,h

]

(c)
= E

[
et

∑N
i=4 ν2

i

]
E


e

−tην2
1+

(
2ηt
√

2nc+s∆h− k∆w√
1−ρ2

w,h

)
ν1


E


e

tν2
2+

(
s− kρw,h√

1−ρ2
w,h

)
ν2




·E
[
etν2

3+kν3

]
e
−2tnηc−s∆h

√
2nc+ k∆w

√
2nc√

1−ρ2
w,h . (B.2)

81



where inequality (a) follows from the Chernoff bound (A.5), equality (b) follows

from (A.1), and equality (c) follows from the statistical independence of the compo-

nents of the normalized noise vector ν. For a zero-mean and unit-variance Gaussian

random variable X, the following equality holds:

E
[
eaX2+bX

]
=

e
b2

2(1−2a)

√
1− 2a

, a ≤ 1

2
, b ∈ R. (B.3)

Evaluating each term in (B.2) with the equality in (B.3), and substituting

ζw,h =
∆w

∆h

(B.4)

which follows from (A.10) and (B.1), then gives

E
[
et

∑N
i=4 ν2

i

]
=

(
1√

1− 2t

)N−3

, t ≤ 0 (B.5)

E


e

−tην2
1+

(
2ηt
√

2nc+s∆h− k∆w√
1−ρ2

w,h

)
ν1


= 1√

1 + 2tη
e


2ηt

√
2nc+∆h

(
s−

kζw,h√
1−ρ2

w,h

)


2

2(1+2tη) (B.6)

E


e

tν2
2+

(
s− kρw,h√

1−ρ2
w,h

)
ν2


 =

1√
1− 2t

e


s−

kρw,h√
1−ρ2

w,h




2

2(1−2t) , k ≥ 0, s ≥ 0 (B.7)

E
[
etν2

3+kν3

]
=

1√
1− 2t

e
k2

2(1−2t) , t ≤ 0, k ≥ 0. (B.8)

From (B.6), straightforward algebra gives

E


e

−tην2
1+

(
2ηt
√

2nc+s∆h− k∆w√
1−ρ2

w,h

)
ν1


 e

−2tnηc−s∆h

√
2nc+ k∆w

√
2nc√

1−ρ2
w,h

=
1√

1 + 2tη
exp





−4tηnc− 2
√

2nc

(
s− kζw,h√

1−ρ2
w,h

)
∆h + ∆2

h

(
s− kζw,h√

1−ρ2
w,h

)2

2(1 + 2tη)





.

(B.9)
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Plugging (B.5) and (B.7)–(B.9) into (B.2) finally gives

Ah Pr

(
N∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βh(ν1), ν3 ≥ −lw,h(ν1, ν2)

)

≤ Ah√
1 + 2tη

(
1√

1− 2t

)N−1

e

−4tηnc−2
√

2nc


s−

kζw,h√
1−ρ2

w,h


∆h+∆2

h


s−

kζw,h√
1−ρ2

w,h




2

2(1+2tη)
+


s−

kρw,h√
1−ρ2

w,h




2

2(1−2t)
+ k2

2(1−2t)

=

√
1− 2t

1 + 2tη
e−g(c,t,k,s,η,h,N), − 1

2η
< t ≤ 0, k ≥ 0, s ≥ 0 (B.10)

which proves the Chernoff bound in (A.11) with the function g introduced in (A.12).
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Appendix C

Monotonicity w.r.t. the

Correlation Coefficient

Consider the probabilities Pr(E0→i, E
c
0→j,y ∈ CN(θ)|z1), and denote the Hamming

weights of ci and cj by di and dj, respectively. In [47], it is shown that as long as

di > dj, the probabilities Pr(E0→i, E
c
0→j,y ∈ CN(θ)|z1) are monotonically decreasing

functions of the correlation coefficients ρ between the planes (o, s0, si) and (o, s0, sj).

Hence, the complex optimization problem in (2.24) is simplified by choosing the first

error event as well as the complementary error events in the RHS of (2.24) to cor-

respond to a codeword with Hamming weight dmin, and (2.25) is obtained. Here we

prove, that the aforementioned probabilities are monotonically decreasing functions

of the correlation coefficients for any choice of i, j. As a consequence, one can obtain

a version of the ITSB by setting in (2.24) π1 = λi = w where w ∈ {dmin, . . . , dmax},
and choosing the optimal w which minimizes the resulting upper bound. In order to

prove this, we follow the steps in [47, Appendix I] where it is shown that the above

probabilities are monotonically decreasing functions of ρ if

z2

βj(z1)
> ρ. (C.1)

Note that the joint event (E0→i, y ∈ CN(θ)) implies that the noise component z2 is

in the range between βi(z1) and rz1 (see Fig. 2.1 in p. 12), so the minimum value of

the RHS of (C.1) is

βi(z1)

βj(z1)
=

√
di(N − dj)

dj(N − di)
.
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Clearly, √
di(N − dj)

dj(N − di)
>

min(di, dj)[N −max(di, dj)]√
didj(N − di)(N − dj)

(C.2)

but from (2.34), it is evident that the RHS of (C.2) is the maximal value of ρ, thus,

condition (C.1) is always satisfied referring to the joint event (E0→i, y ∈ CN(θ)).
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Appendix D

The Average Distance Spectrum of

the Ensemble of Random Linear

Block Codes

In [3, Eq. (2)], Ashikmin and Barg introduce a formula for the average spectrum of

a random linear code. The formula coincides with the well-known average spectrum

of fully random code. Clearly, Eq. (2) there can not be the exact expression for

the average distance spectrum of the ensemble of random linear block codes, since for

linear codes, the all-zero vector is always a codeword which forces E[A0] = 1. In order

to obtain the exact expression, we follow the arguments in [3], while limiting ourselves

to the case of binary codes (the generalization for q-ary codes is straightforward).

Consider the ensemble C which contains all the (N,K) linear codes. Let E[Aw] denote

the average number of codewords with Hamming weight w. The probability that the

first row in the parity-check matrix of some code from C satisfies a check equation for

a specific codeword of Hamming weight w is 2N−1−1
2N−1

. The reason for the subtraction

of 1 from both the nominator and denominator of the above expression is that we do

not allow an all-zero row in the parity check matrix (otherwise the code rate will be

below K
N

). The probability that the ith row satisfies the check equation is 2N−1−2i−1

2N−2i−1 (we

subtract all the rows that are linearly dependent with the first i− 1 rows); therefore,
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the probability that this codeword is contained in a code from C equals

N−K∏
i=1

2N−1 − 2i−1

2N − 2i−1
=

2K − 1

2N − 1
w 6= 0

Thus

E[Aw] =

{ (
N
w

)
2K−1
2N−1

0 < w ≤ n

1 w = 0
(D.1)

It can be easily verified that
N∑

w=0

E[Aw] = 2K as one could expect. Moreover, for the

asymptotic case where N, K →∞, (D.1) converges to Eq. (2) in [3] (for w 6= 0). The

problem with Ashikmin and Barg derivation is that they assume that the rows of the

parity check matrix is statistically independent (which is correct for the asymptotic

case). Another way to look at Ashikmin and Barg formula is to consider the K
N

as the design rate of the code. Anyway, the expression in [3] can be used as an

(asymptotically tight) upper bound on the average distance spectrum of the ensemble

of linear block codes.
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xivwz

zexazqd xear wiecn iehia lawl ozip `l ,zeccewnd zxeywzd zekxrn aex xear
didi ozipy ick .iyrn il`nihte`-zz geprt e` ziaxin zexiaq geprt zgz d`ibyd
mireviad lr minqga yeniya jxev yi ,el`k zekxrn ly mirevia jixrdl z`f lka
yeniya hlead oexqigd .aygn zeivleniqa ynzydl ,oiteligl e` ,el` zekxrn ly
yexcd xkipd onfd jyn `id ,zkxrn ly mireviad zkxrdl ilkk aygn zeivleniqa
wxta ze`vez zlaw xyt`n minqga yeniyy cera ,dkenp d`iby zexazqd zkxrdl
ilk deedn d`ibyd zexazqd lr mqg deednd ihilp` iehia ,z`fn dxzi .xzeia xvw onf
ixhnxt ly drtydd zcin lr ziqcpd dpaez lawl xyt`ne ,aeyg iqcpde ihxe`iz xfr

.zkxrnd irevia lr zkxrnd
ezehyta oiihvn df mqg .cegi`d mqg epid xzeia mivetpd mipeilrd minqgd cg`
xeary `ed ixwird epexqig .zekxrne mivexr ly agx oeebn xear eze` myiil ozipe daxd
jyna .uexrd ly oerhiwd avwn mideabd miavwa zlrez xqg `ed ,mikex` micew
oexqigd zexnl ,zeniiwd zxeywzd zekxrn aex xear wtqn df mqg did mipy zexyr
-ra micew mr ecar zccewnd zxeywzd zekxrn aexy dheytd daiqdn ,lirl epxkfdy
ipt z` dzpiy xeyrk iptl eaxehd icew zbvd .uexrd ly oerhiwd avwn jenpd avw il
miaexwd miavwa xzeia dkenp d`iby zexazqd lawl mixyt`n el` micew .mixacd
lr zlawzn zeikeaiqa yeninl ozipd ,iyrn iaihxhi` geprt zgz z`fe ,uexrd leaiwl
-xcen zxeywz zekxrna miihxcphq micewl el` micew ektd zexetq mipy jez .zrcd
dcaer .(cere ,zi`zd zxeywzd ly iyilyd xecd ,ipieel e`cie ixeciy oebk) zeax zeip
hxta ,d`ibyd zexazqd lr xzei miwecd minqg gezitl ce`n wfg uixnz dzeeid ef
migpretn epxkfdy eaxehd icew .uexrd ly oerhiwd avwn deabd avw ilra micew xear
gezita oiipr yi ,z`f zexnl .zeil`nihte`-zz zeiyrn zehiy zervn`a llk jxca
zeid ,il`nihte`d ziaxnd zexiaqd gprtn ly d`ibyd zexazqd lr mipeilr minqg
`l ,aexl .zkxrnd ly ziaihnihle`d dbydd zxa zlekid iabl divwicpi` ozep xacde
eidi yeniy-ixa minqg okle ,d`ln dxeva cewd ly dhlgdd ixefi` z` oiit`l ozip

f



ozip eze` ,cewd ly miwgxnd mexhwtq oebk zeiqiqa zepekz lr wxe j` epryiy el`k
mizirl dyw miwgxnd mexhwtq z` mb .micew ly agx oeebn xear zihilp` lawl
-cew ly xiav llk jxca mixicbn ,ef dira lr xabzdl ick .itivtq cew xear aygl
,rvennd miwgxnd mexhwtq z` miaygn df xiav xeare ,ievxd cewd z` likny mi
didi aeh oeilr mqgy ievx ,z`fn d`vezk .zelw xzia zeax mizirl aygl ozip eze`
-xazqd lr wx `le ,micew xiav ly zrvennd d`ibyd zexazqd lr mb dlgdl ozip
,dk cr mirecid xzeia miwecdd mipeilrd minqgd cg` .itivtq cew ly d`ibyd ze
ilra opid ,oept` xg`l ,eizeliny wela cew lkl swz df mqg .ixeck-iwiynd mqgd epid
mqg enk zegtl wecd df mqg .oald iqe`bd uexrd iab lr zexceyn xy`e ,dibxp` dze`
micew xear mb zeiaihnxetpi` ze`vez ozep `ede ,yrxl ze` qgi ly jxr lka cegi`d
mqgd z` aygl ozip ,cegi`d mqgl dneca .uexrd ly oerhiwd avwn deab avw ilra
ly drici zyxcp `le ,cala cewd ly miwgxnd mexhwtq lr qqazda ixeck-iwiynd
mqgd `ed ixeck-iwiynd mqgdy lawzn zeax minrt .cewd ly xzei zeakxen zepekz
ipt lr mixceynd wela icew ly hiale welal d`ibyd zexazqd lr xzeia wecdd recid
ly zexteyn ze`qxb mpidy mipeilr minqg xtqn ebved dpexg`l .oald iqe`bd uexrd
xtqn xear ,ixeck-iwiynd mqgd znerl lw xetiy bved ok enk .ixeck-iwiynd mqgd
oexzi m`d dpid ,dk cr ihilp` dprn dl ozip `ly daeyg dl`y .mixvw wela icew
ikxe` xear hxtae ,lcbe jled welad jxe` xy`k mb xnyp zexteynd ze`qxbd ly df

.miiteqpi` wela
,ixeck-iwiynd mqgd ly zexteyn ze`qxba mipc ep` ef dcear ly oey`xd dwlga
-ehtniq`y mi`xn ep` .el` minqgl mikieynd d`ibyd ihppetqw`a zecwnzd jez
dfl midf l"pd minqgd ly d`ibyd ihppetqw` ,seqpi`l s`ey cewd jxe` xy`k ,zih
-iwiynd mqgde xg`n .zil`ivppetqw` midf minqgd okle ,ixeck-iwiynd mqgd ly
ahen ,mikex` micew xear ik wiqp ,ely zexteynd ze`qxbdn aeyigl xzei heyt ixeck

.meid zereciy ely zexteynd ze`qxba xy`n zixeck-iwiynd mqga ynzydl
qt`l zt`ey mii`xw`d welad icew xiav ly zrvennd d`ibyd zexazqdy reci
z` .uexrd leaiwn ohw micewd avwy cer lk z`fe ,seqpi`l s`ey welad jxe` xy`k
.iteqpi` wela jxe` xear ,wiecn ote`a Gallager `vn df xiav ly d`ibyd hppetqw`
wela icew ly df xiav lr eze` lirtdl ozip ,`edylk mqg ly ezewicd z` oegal icka
.xb`lb ly zi`xw`d dpitvd hppetqw`l lawznd hppetqw`d z` zeeydle ,mii`xw`
zi`xw`d dpitvd hppetqw` z` xfgyn `l ixeck-iwiynd mqgdy raep efk dwican
lcb jk ,lcb cewd avwy lkky ze`xdl ozip ,z`fn dxzi .mii`xw`d micewd xiav xear
licadl .zi`xw`d dpitvd hppetqw`l ixeck-iwiynd mqgd ly hppetqw`d oia xrtd
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dpitvd mqg z` xfgyn ,"xct-onley mqg" iexwd ,xg` mqg ,ixeck-iwiynd mqgdn
,miax mipaen micew xear ,z`f zexnl .mii`xw`d welad icew xiav xear zi`xw`d
zecaer .ixeck-iwiynd mqgdn zegt zewecd ze`vez ozep ,hxtae ,wecd epi` df mqg
didie ,zi`xw`d dpitvd mqg z` xfgyiy oeilr mqg xg` ytgl uixnz zepzep el`
,deab avwa micew xear cgeina ,ixeck-iwiynd mqgdne xct-onley mqgn xzei wecd

.xzeia zhlea ixeck-iwiynd mqgd ly dylegdy okid
d`ibyd zexazqd lr mixteyn mipeilr minqg migztn ep` ,dceard ly ipyd wlga
zeze`dy migipn ep` jk jxevl .ziaxnd zexiaqd geprt zgz ,micew ixav ly zrvennd
-nqgd gezita .d`ivia miixhniqe `eana miix`pia ,oexkif-ixqg mivexr ipt lr excey
s`y ,Duman-Salehi mqg ly zllkend `qxbd ly dniqgd zwipkha mixfrp ep` mi
ep` .mii`xw`d welad icew xiav xear zi`xw`d dpitvd hppetqw` z` dbiyn `id
-eyt mde ,xct-onley mqgn xzei zeaeh ze`vez mipzep miycgd minqgdy mi`xn
migztn ep`y minqgd .Duman-Salehi mqg ly zllkend `qxbdn aeyigl xzei mih
qqazda mze` aygl ozipe ,wela icew ly hiale welal d`ibyd zexazqd xear mpid
,cewd ly (IOWEF) d`ivide dqipkd ilwyn zxitq zivwpete miwgxnd mexhwtq lr
icew ly mixiav xtqn zervn`a l"pd minqgd ly zelirid z` minibcn ep` .dn`zda
-nqgd ,el` micew xear ik lawzn .oald iqe`bd uexra mixceynd ,deab avwa eaxeh
cg` epid ,xen`ky ,ixeck-iwiynd mqgdn xzei zewecd ze`vez mipzep miycgd mi

.dk cr mirecid xzeia miwecdd mipeilrd minqgdn
cewd ly miwgxnd mexhwtq xedih ly drtydd epid ,dxvwa mipc e` ea sqep `yep
mibivn ep` .epgzity miycgd minqgd mllkae ,mipey mipeilr minqg ly mzewicd lr
xtyl ozip cvik minibcne ,zixeh mixyxeyn micew xiav zervn`a xedihd zrtyd z`

.ezervn`a mipeilr minqg
-ed ,ef dceara epgzity mipeilrd minqga yeniyn zelawznd zeaehd ze`vezd
zgz mipey sxb icew irevia zpiga jxevl zeiyeniyl el`d dniqgd zewipkh z` zkt
geprt inzixebl`a yeniyn d`vezk mireviaa cqtdd zkxrde ziaxin zexiaq geprt

.miil`nihte`-zz mpidy miiyrn miiaihxhi`
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