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Abstract

We present two sequences of ensembles of non-systemadguliar repeat-accumulate codes which asymptotically (as
their block length tends to infinity) achieve capacity on Hieary erasure channel withounded complexitper information
bit. This is in contrast to all previous constructions of @eipy-achieving sequences of ensembles whose complesatysgat
least like the log of the inverse of the gap (in rate) to capadihe new bounded complexity result is achieved by puiragur
bits, and allowing in this way a sufficient number of state emé¢h the Tanner graph representing the codes. We derive an
information-theoretic lower bound on the decoding comipyeaf randomly punctured codes on graphs. The bound holds fo
every memoryless binary-input output-symmetric chanmel ia refined for the binary erasure channel.

Index Terms

Binary erasure channel (BEC), codes on graphs, degredbdistn (d.d.), density evolution (DE), irregular repeat-
accumulate (IRA) codes, low-density parity-check (LDPGJes, memoryless binary-input output-symmetric (MBIO&rmel,
message-passing iterative (MPI) decoding, punctured $tigge nodes, Tanner graph.

. INTRODUCTION

During the last decade, there have been many exciting davelots in the construction of low-complexity
error-correction codes which closely approach the capa€itnany standard communication channels with feasible
complexity. These codes are understood to be codes definedpmsgtogether with the associated iterative decoding
algorithms. By now, there is a large collection of these satti@t approach the channel capacity quite closely with
moderate complexity.

The first capacity-achieving sequences of ensembles of lowityeparity-check (LDPC) codes for the binary
erasure channel (BEC) were found by Luby et al. [7], [8] and Sbitddni [17]. Following these pioneering works,
Oswald and Shokrollahi presented in [9] a systematic studgapfacity-achieving degree distributions (d.d.) for
sequences of ensembles of LDPC codes whose transmissiomptake®ver the BEC. Capacity-achieving ensembles
of irregular repeat-accumulate (IRA) codes for the BEC weteduced and analyzed in [4], [16], and also capacity-
achieving ensembles for erasure channels with memory wesigied and analyzed in [10], [11].

In [5], [6], Khandekar and McEliece discussed the decodingmexity of capacity-approaching ensembles of
irregular LDPC and IRA codes for the BEC and more general chanfigley conjectured that if the achievable
rate under message-passing iterative (MPI) decoding isciidral — ¢ of the channel capacity with vanishing bit
error (or erasure) probability, then for a wide class of c¢tes, the decoding complexity scales Iil?éeéng. This
conjecture is based on the assumption that the number o édgeinformation bit) in the associated bipartite graph
scales Iikelné, and the required number of iterations under MPI decodin¢esdike % There is one exception
for capacity-achieving and low-complexity ensembles adeon the BEC, where the decoding complexity under
the MPI algorithm behaves Iikm% (see [7], [15], [16], [17]). This is true since the absolutéatglity provided
by the BEC allows every edge in the graph to be used only ondagliP| decoding.
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In [15], Sason and Urbanke considered the question of howsepzan parity-check matrices of binary linear
codes be, as a function of their gap (in rate) to capacity (alieis gap depends on the channel and the decoding
algorithm). If the code is represented by a standard Tanregshgwithout state nodes, the decoding complexity
per iteration under MPI decoding is strongly linked to the signof the corresponding parity-check matrix (i.e.,
the number of edges in the graph per information bit). Inipaldr, they considered an arbitrary sequence of
binary linear codes which achieves a fractibn ¢ of the capacity of a memoryless binary-input output-syrimet
(MBIOS) channel with vanishing bit error probability. By orfnation-theoretic tools, they proved that for every
such sequence of codes and every sequence of parity-chetdblersaNhich represent these codes, the asymptotic

density of the parity-check matrices grows at least I@ﬁi where K; and K, are constants which were
given explicitly as a function of the channel statisticse(§&5, Theorem 2.1]). It is important to mention that
this bound is valid under ML decoding, and hence, it also $idld every sub-optimal decoding algorithm. The
tightness of the lower bound for MPI decoding on the BEC was detnated in [15, Theorem 2.3] by analyzing
the capacity-achieving sequence of check-regular LDPC-eadembles introduced by Shokrollahi [17]. Based on
the discussion in [15], it follows that for every iterativeabder which is based on the standard Tanner graph,
there exists a fundamental tradeoff between performandecamplexity, and the complexity (per information bit)
becomesinboundedvhen the gap between the achievable rate and the channeltyaganishes. Therefore, it was
suggested in [15] to study if better performance versus dexitp tradeoffs can be achieved by allowing more
complicated graphical models (e.g., graphs which alsolwevetate nodes).

In this paper, we present sequences of capacity-achieviagnebles for the BEC with bounded encoding and
decoding complexity per information bit. Our frameworkriere yields practical encoding and decoding algorithms
that require linear time, where the constant factor whichmglied by the linear time is independent of(and is
in fact quite small). The new ensembles are non-systematicd®tles with properly chosen d.d. (for background
on IRA codes, see [4] and Section II). The new bounded complezgults under MPI decoding improve on the
results in [16], and demonstrate the superiority of prgpeesigned non-systematic IRA codes over systematic
IRA codes (since with probability 1, the complexity of anygaence of ensembles of systematic IRA codes grows
at least likeln % and hence, it becomemboundedinder MPI decoding when the gap between the achievable rate
and the capacity vanishes (see [16, Theorem 1])). The new leducomplexity result is achieved by allowing a
sufficient number of state nodes in the Tanner graph repliagethte codes. Hence, it answers in the affirmative a
fundamental question which was posed in [15] regardingriiqgact of state nodes in the graph on the performance
versus complexity tradeoff under MPI decoding. We suggestriacplar sequence of capacity-achieving ensembles
of non-systematic IRA codes where the degree of the pahigck nodes i$, so the complexity per information
bit under MPI decoding is equal t?i—p when the gap (in rate) to capacity vanishpsdésignates the bit erasure
probability of the BEC). We note that our method of truncatthg check d.d. is similar to the bi-regular check
d.d. introduced in [19] for non-systematic IRA codes.

Simulations results which are presented in this paper talatdithe claims of our theorems, compare our new
ensembles with another previously known ensemble. This &nin® give the reader some sense of their relative
performance. We note that for fixed complexity, the new codesteially (for n large enough) outperform any
code proposed to date. On the other hand,dbrevergence spedd the ultimate performance limit is expected to
be quite slow, so that for moderate lengths, the new codesdrexpected to be record breaking. It is important
to note that we do not claim optimality of our ensembles, Iat thain point here is showing for the first time
the existence of IRA codes in which their encoding and dewpdomplexity per information bit remain bounded
as the code threshold approaches the channel capacity.s&/@adive in this paper an information-theoretic lower
bound on the decoding complexity of randomly punctured soale graphs. The bound holds for every MBIOS
channel with a refinement for the particular case of a BEC.

The structure of the paper is as follows: Section Il providediminary material on ensembles of IRA codes,
Section Il presents our main results which are proved in 8ecli. Analytical and numerical results for the
considered degree distributions and their asymptotic iehare discussed in Section V. Practical considerations
and simulation results for our ensembles of IRA codes arsemted in Section VI. We conclude our discussion in
Section VII. Three appendices also present important mattieahdetails which are related to Sections IV and V.



Il. IRA CODES

We consider here ensembles of non-systematic IRA codes.sélaree that all information bits are punctured.
The Tanner graph of these codes is shown in Fig. 1. These coddseceiewed as serially concatenated codes
where the encoding process is done as follows: the outer iscalenixture of repetition codes of varying order, the
bits at the output of the outer code are interleaved, and plagtitioned into disjoint sets (whose size is not fixed
in general). The parity of each set of bits is computed, and these bits are accumulated (so the inner code is a
differential encoder).

DE informatior
bits
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random permutation |
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code bits

Fig. 1. The Tanner graph of IRA codes.

Using standard notation, an ensemble of IRA codes is claraet by its block lengtm and its d.d. pair
Mz) = Y2, Mat and p(z) = Y02, pir~1. Here, \; (or p;, respectively) designates the probability that a
randomly chosen edge, among the edges that connect theatfon nodes and the parity-check nodes, is connected
to an information bit node (or to a parity-check node) of @éegr As is shown in Fig. 1, every parity-check node
is also connected to two code bits; this is a consequenceedlitferential encoder which is the inner code of these
serially concatenated and interleaved codes. Ret) = > 5°, R; z° be a power series where the coefficight
denotes the fraction of parity-check nodes that are coedeati information nodes. Then it is easy to show that

pi = o equivalently R; = _&
' 2;11 JR; ' Z?’;l pjj
which yields that the polynomialR(-) and p(-) are related by the equation
R(z) = M‘ Q)
[y p(t) dt

We assume that the permutation in Fig. 1 is chosen uniformisaatiom from the set of all permutations. The
transmission of a randomly selected code from this ensetakés place over a BEC with erasure probabityrhe
asymptotic performance of the MPI decoder (as the block ketagids to infinity) can be analyzed by tracking the
average fraction of erasure messages which are passeddreipte of Fig. 1 during thé" iteration. This technique
was introduced in [13] and is known as density evolution (DiE}he asymptotic case where the block length tends
to infinity, the messages which are passed through the edgibe dfanner graph are statistically independent, so
the cycle-free condition does indeed hold for IRA codes.

A single iteration first includes the update of the messagetheénTanner graph from the code nodes to the
parity-check nodes, then the update of the messages fromaitikgy-check nodes to the information nodes, and
vice versa. Using the same notation as in [4],:1]& be the probability of erasure for a message from information
nodes to parity-check nodesgl) be the probability of erasure from parity-check nodes toecnddes,rg) be the
probability of erasure from code nodes to parity-check spdad finally, Iet:c:(,f) be the probability of erasure for
messages from parity-check nodes to information nodesHiged). From the Tanner graph of IRA codes in Fig. 1,
an outgoing message from a parity-check node to a code nodet ian erasure if and only if all the incoming
messages at the same iteration from the information nodéisetqarity-check nodes are not erasures, and also
the incoming message through the other edge which connemtsi@a node to the same parity-check node is not
an erasure either. Since a fractiéfy of the parity-check nodes are of degre¢excluding the two edges which
connect every parity-check node to two code nodes), theratbeage probability that at th& iteration, all the
incoming messages through the edges from the informaticlesto an arbitrary parity-check node in the graph
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are not erasures is equal ¥0,°, R;(1 — x((f))i = R(1— :cg)). Following the cycle-free concept which is valid for
the asymptotic case where the block length tends to infinigy,obtain that

1-2{) =1 -8y ra - 2).

It is also clear from Fig. 1 that the outgoing message from dypaheck node to an information node is not
an erasure if and only if the incoming messages through ther @dges which connect this parity-check node to
information nodes in the graph are not erasures, and alsintdmening messages through the two edges which
connect this parity-check node to code nodes are not esasitteer. The number of bits involved in short cycles
become negligible aa gets large. DE assumes all messages are statisticallyandept in the asymptotic case,
and the concentration theorem justifies this assumption.ceéjefor an arbitrary edge which is connected to a
parity-check node, the average probability that all theiming messages through the other edges connecting this
parity-check node are not erasures is equal to

e D\i— l
3 o1 -2y = p1 — 2 ).
=1

The probability that the two incoming messages passed attidgar/ from two consecutive code nodes to the
parity-check node which is connected to them are both nstueea is equal td1 — xg”)2, SO we obtain that

1—ay) = (1 -2 p(1 —a).

For variable nodes in the Tanner graph, the outgoing messdgbe an erasure if and only if all the incoming
messages through the other edges connecting this node eares and also the information we get about this
node from the BEC is an erasure too. The update rule of the mességhe information nodes in Fig. 1 therefore
implies thatmél) = )\(mg)), and this follows since we assume here that all the infolwnatiodes are punctured
(hence, there is no information about the values of the imédion bits which comes directly from the BEC). Since
all the code bits in the Tanner graph of Fig. 1 are transmitiest the BEC, then the update rule of the messages
at the code bits implies thatg) = pxglfl).

We now assume that we are at a fixed point of the MPI decodingitiiggrand solve forry. From the last four

equalities, we obtain the following equations:

x1=1—(1—z2) R(1 — x9) (2)
Ty = pay (3)
3 =1—(1—x2)% p(1 — x0) 4
zo = A(z3). (5)

The only difference between (2)—(5) and the parallel equatio [4] is the absence of a factpiin the RHS of (5).
This modification stems from the fact that all information kt® punctured in the ensemble considered. Solving
this set of equations for a fixed point of iterative decodingvptes the equation

B 2
o= A (1 - [1_]31]%(1])_:1%)} p(1 — x0)> . (6)

If Eg. (6) has no solution in the intervél, 1], then according to the DE analysis of MPI decoding, the biswe
probability must converge to zero. Therefore, the condithuat

A1 Lt Va € (0,1 7
—[1_]?]%(1_3:)] p(l—z)| <z, Vze(0,1] (7)

implies that MPI decoding obtains a vanishing bit erasurdogidity as the block length tends to infinity.
The design rate of the ensemble of non-systematic IRA codebeaomputed by matching edges in the Tanner
graph shown in Fig. 1. In particular, the number of edges inpisenutation must be equal to both the number of



information bits times the average information bit degree the number of code bits times the average parity-check
degree. This implies that the design rate of non-systemBt#icdnsembles is equal to

RRA _ Jo Mz) da ‘
fol p(z) dz
Furthermore, we will see later th&R* = 1 —p for any pair of d.d.()\, p) which satisfies Eq. (6) for altq € [0, 1]
(see Lemma 1 in Section V).

In order to find a capacity-achieving ensemble of IRA codesgemerally start by finding a d.d. pdii, p) with
non-negative power series expansions which satisfies Eqof@&lifzo € [0, 1]. Next, we slightly modifyA(-) or
p(+) so that Eq. (7) is satisfied and the new design rate in Eq. (8) ialequl —¢)(1 — p) for an arbitrarily small
e > 0. Since the capacity of the BEC is— p, this gives an ensemble which has vanishing bit erasureapitity
under MPI decoding at rates which are arbitrarily close tcacép.

(8)

Ill. M AIN RESULTS

Definition 1: [Capacity-Approaching Codes] Let {C,,} be a sequence of binary linear codes of r&lg, and
assume that for eveny:,, the codewords of the codg, are transmitted with equal probability over a channel whose
capacity isC. This sequence is said tchieve a fractionl — ¢ of the channel capacity with vanishing bit error
probability if lim,, .., R, > (1 —¢)C, and there exists a decoding algorithm under which the geebét error
probability of the codeZ,,, tends to zero in the limit where: tends to infinity!

Definition 2: [Encoding and Decoding Complexity] Let C be an ensemble of IRA codes with a d.d. p&fr)
and p(-). Suppose the transmission takes place over a BEC, and the lelesachieves a fraction — ¢ of the
channel capacity with vanishing bit erasure probabilitye €hcoding and the decoding complexe measured in
operations per information bit, and under MPI decoding, they defined as the number of edges per information
bit in the Tanner graph. We denote the asymptotic encodingdaeoding complexity by z(e,C) and xp(e,C),
respectively (note that as the block length of the codesstémdnfinity, the complexity of a typical code from this
ensemble concentrates around the average complexity).

Theorem 1:[Capacity-Achieving Bit-Regular Ensembles for the BEC with Bounded Complexity] Consider
the ensemble of bit-regular non-systematic IRA cofesvhere the d.d. of the information bits is given by

Aa) =211 ¢>3 (9)

which implies that each information bit is repeatgtimes. Assume that the transmission takes place over a BEC
with erasure probability, and let the d.d. of the parity-check noddzse

1—(1-z)

ll—p(l—qx—i—(q—l) 1—(1—x)q"1Dr

Let p, be the coefficient oft”~! in the power series expansion pfz) and, for an arbitrary € (0, 1), define
M (e) to be the smallest positive intedet/ such that

plx) = (10)

M 3
n>1——-7". 11
;p q(1—p) -
The e-truncated d.d. of the parity-check nodes is given by
M(e) M(e)
ps(x) =|1- Z Pn | + Z pnxn_l . (12)
n=2 n=2

1We refer to vanishing bit erasure probability for the particular case oE&.B

2The d.d. of the parity-check nodes refers only to the connection ofah/heck nodes with the information nodes. Every parity-check
node is also connected tao code bitysee Fig. 1), but this is not included p{x).

3The existence of\ () for ¢ € (0,1) follows from the fact thap, = O(n=/~Y) and > , p, = 1. This implies thaty" ", p,, can
be made arbitrarily close to 1 by increasing. It can be shown thad/(e) = O (7).



Forg = 3 andp € (0, 73], the polynomialp.(-) has only non-negative coefficients, and the d.d. paip.) achieves
a fraction1 — ¢ of the channel capacity with vanishing bit erasure prolighiinder MPI decoding. Moreover, the

complexity (per information bit) of encoding and decodiragisfies
2z
1-pL-e)

In the limit wheree tends to zero, the capacity is achieved witbaindedcomplexity of ¢ + 1%
Theorem 2:[Capacity-Achieving Check-Regular Ensembles for the BEC with Bounded Complexity] Con-
sider the ensemble of check-regular non-systematic IRAs6dwhere the d.d. of the parity-check nodes is given

by

xe(e,C) = xp(e,C) < q+ (13)

plz) = 2°. (14)

Assume that the transmission takes place over a BEC with rer@sababilityp, and let the d.d. of the information

bit nodes bé
2p(1 — x)?sin (é arcsin ( —W) )
: (15)

11—z 3 %
\/g (1 - p)4 <_p((1_p))3 >

Let A\, be the coefficient of:"~! in the power series expansion afz) and, for an arbitrary € (0, 1), define
M (e) to be the smallest positive integet/ such that

AMz) =1+

M
Z?Jl_p)g(l_e). (16)
n=2

This infinite bit d.d. is truncated by treating all informatibits with degree greater thal/ (¢) as pilot bits (i.e.,
these information bits are set to zero). Letz) be thee-truncated d.d. of the bit nodes. Then, for @k [0, 0.95],
the polynomial).(-) has only non-negative coefficients, and the modified d.d. (@airp) achieves a fraction — ¢

of the channel capacity with vanishing bit erasure prolitghiinder MP1 decoding. Moreover, the complexity (per
information bit) of encoding and decoding imundedand satisfies

)

XE(E,C) XD(E,C) < (1 —p)(l — 6).
In the limit ase tends to zero, the capacity is achieved witbandedcomplexity ofl%.

The following two conjectures extend Theorems 1 and 2 to a wialgge of parameters. Both of these conjectures
can be proved by showing that the power series expansioh&r9fandp(x) are non-negative for this wider range.
Currently, we can show that the power series expansiong:of and p(z) are non-negative over this wider range
only for small to moderate values af (using numerical methods) and very large values:diusing asymptotic
expansions). We note that if these conjectures hold, theoréhel is extended to the rangec [0, 1—33] (asq — o),
and Theorem 2 is extended to the entire rapge|0, 1).

Conjecture 1:The result of Theorem 1 also holds fer> 4 if

(17)

B 2
6-Tg+2" g
6 — 13¢ + 8¢2
P=Y 101704 602 (18)
479 >9

12— 37¢+26¢2 1
We note that the form of Eq. (18) is implied by the analysis irp@pdix A.

Conjecture 2:The result of Theorem 2 is also valid fpre (0.95,1).

“For real numbers, one can simplify the expression\@f) in (15). However, since we consider latsf-) as a function of a complex
argument, we prefer to leave it in the form of (15).

*The existence of/ (<) for ¢ € (0, 1) follows from the fact that, = O(n~3/2) and Y0, 2= = =2 This implies thaty_, 2= can
be made arbitrarily close tég—’7 by increasingM. It can be shown thad/(¢) = O <52% .



In continuation to Theorem 2 and Conjecture 2, it is worth mgptihat Appendix C suggests a conceptual proof
which in general could enable one to verify the non-negatiof the d.d. coefficient§\,,} for p € [0,1—¢], where

e > 0 can be made arbitrarily small. This proof requires thougheufy the positivity of a fixed number of the
d.d. coefficients, where this number grows considerably &nds to zero. We chose to verify it for all € N
andp € [0,0.95]. We note that a direct numerical calculation{o¥, } for small to moderate values of, and the
asymptotic behavior of\,, (which is derived in Appendix B) strongly supports Conjeet@.

Theorem 3:[An Information-Theoretic Bound on the Complexity of Punctured Codes over the BEC] Let
{C!,} be a sequence of binary linear block codes, and{ts}} be a sequence of codes which is constructed
by randomly puncturing information bits from the codes{i,}.° Let P, designate the puncturing rate of the
information bits, and suppose that the communication ofptlvectured codes takes place over a BEC with erasure
probabilityp, and that the sequengé,,,} achieves a fractiom—e of the channel capacity with vanishing bit erasure
probability. Then with probability 1 w.r.t. the random pumghg patterns, and for an arbitrary representation of the
sequence of codef’/, } by Tanner graphs, the asymptotic decoding complexity uMfer decoding satisfies

In (Let
liminf x p(Cp,) > P n( £ ) + lmin (19)
m— 00 1-— P\ 1n (1_;&)
where
Peffél_(l_Ppct)(l_p) (20)

andl.;, designates the minimum number of edges which connect ayqdmiick node with the nodes of the parity
bits.” Hence, a necessary condition for a sequence of randomlytymedccodes{C,,} to achieve the capacity
of the BEC with bounded complexitys that the puncturing rate of the information bits satisfies tondition
Ppct =1- O(E)

Theorem 4 suggests an extension of Theorem 3, though as wilbkiged later, the lower bound in Theorem 3
is at least twice larger than the lower bound in Theorem 4 whpgtied to the BEC.

Theorem 4:[An Information-Theoretic Bound on the Complexity of Punctured Codes. General Case] Let
{C!,} be a sequence of binary linear block codes, and{dg}} be a sequence of codes which is constructed
by randomly puncturing information bits from the codes{if,}. Let Py designate the puncturing rate of the
information bits, and suppose that the communication takese over an MBIOS channel whose capacity is equal
to C' bits per channel use. Assume that the sequence of punctodss {C,,} achieves a fractiol — ¢ of the
channel capacity with vanishing bit error probability. Theith probability 1 w.r.t. the random puncturing patterns,
and for an arbitrary representation of the sequence of cédgg by Tanner graphs, the asymptotic decoding
complexity per iteration under MPI decoding satisfies

1 1-(1=Pyet)C
1-C ln(g 2CTn2 )

liminf xp(Cp,) > (21)
m—00 2
¢ ((17Ppct1)(172w))
where | oo
w = 2/ min (f(y), f(—y)) dy (22)

and f(y) = p(y|r = 1) designates the conditionptf of the channel, given the input is= 1. Hence, a necessary
condition for a sequence of randomly punctured cofts} to achieve the capacity of an MBIOS channel with
bounded complexity per iteratiomnder MPI decoding is that the puncturing rate of the inforomabits satisfies
PpCt =1- O(E)

Remark 1 (Deterministic Puncturing)t is worth noting that Theorems 3 and 4 both depend on the gstsnm
that the set of information bits to be punctured is chosemdaerly. It is an interesting open problem to derive

®Since we do not require that the sequence of original c¢dés is represented in a systematic form, then by saying ‘information bits’,
we just refer to any set of bits in the codé, whose size is equal to the dimension of the code and whose corresgaralimmns in
the parity-check matrix are linearly independent. If the sequence ofrthmal codes{C,,} is systematic (e.g., turbo or IRA codes before
puncturing), then it is natural to define the information bits as the systemgdioftthe code.

"The fact that the value df.;, can be changed according to the choice of the information bits is a carsegof the bounding technique.



information-theoretic bounds that applydwery puncturing patterfincluding the best carefully designed puncturing

pattern for a particular code). We also note that for anyrdatéstic puncturing pattern which causes each parity-
check to involve at least one punctured bit, the boundingriggie which is used in the proofs of Theorems 3 and
4 becomes trivial and does not provide a meaningful lowemboan the complexity in terms of the gap (in rate)

to capacity.

IV. PROOF OF THEMAIN THEOREMS

In this section, we prove our main theorems. The first two thaerare similar and both prove that under MPI
decoding, specific sequences of ensembles of non-systeiR#licodes achieve the capacity of the BEC with
bounded complexity (per information bit). The last two thezos provide an information-theoretic lower bound on
the decoding complexity of randomly punctured codes onhlggaphe bound holds for every MBIOS channel and
is refined for a BEC.

The approach used in the first two theorems was pioneered imffcan be broken into roughly three steps.
The first step is to find a (possibly parameterized) d.d. paip) which satisfies the DE equation (6). The second
step involves constructing an infinite set of parameterized.( truncated or perturbed) d.d. pairs which satisfy
inequality (7). The third step is to verify that all of coeffiots of the d.d. pai(\, p) are non-negative and sum to
one for the parameter values of interest. Finally, if the glesate of the ensemble approachesyp for some limit
point of the parameter set, then the ensemble achieves #mnehcapacity with vanishing bit erasure probability.
The following lemma simplifies the proof of Theorems 1 and 2. isop is based on the analysis of capacity-
achieving sequences for the BEC in [17], and the extensiomasuee channels with memory in [10], [11].

Lemma 1:Any pair of d.d. functiong\, p) which satisfyA(0) = 0, A(1) = 1, and satisfy the DE equation (6)
for all zy € [0,1] also have a design rate (8) &f— p (i.e., it achieves the capacity of a BEC whose erasure
probability is p).

Proof: We start with Eq. (6) and proceed by substituting = 1 — =, applying A~!(-) to both sides, and
moving things around to get

-1 . 1—p 2 "
1= = () ) (23)

Integrating both sides from = 0 to z = 1 gives

/01 (1-A"'1-2)) do = /01 (1_1};%)2,)(9;) dz.

Since \(+) is positive, monotonic increasing and0) = 0, A(1) = 1, we can use the identity

1 1
/ Az) da:+/ AMlz)de =1 (24)
0 0

/01 A(z) dz = /01 (%)Qp(x) dz.

Taking the derivative of both sides of Eq. (1) shows that

1
pla) = [ @) do- R

to show that

and then it follows easily that

/01 AMz)dz = /01 p(x) dx - /01 (%)2 R'(z)dx
e [ ()
= 1-p) [ oty

where the fact thaR(0) = 0 and R(1) = 1 is implied by Eq. (1). Dividing both sides by the integral gf) and
using Eqg. (8) shows that the design rdt&A =1 — p. [




A. Proof of Theorem 1

1) Finding the D.D. Pair: Consider a bit-regular ensemble of non-systematic IRA sodeose d.d. pait), p)
satisfies the DE equation (6). We approach the problem of finitiegl.d. pair by solving Eq. (6) fgs(-) in terms
of A(-) and the progression is actually similar to the proof of Lemmextept that the limits of integration change.

Starting with Eq. (23) and integrating both sides fram= 0 to = ¢ gives
t
/ (1-X1'1-2) dz
0
_ / " 1-p Y
) 1—pR(x
- t —p 2 R/ .fC
N 0 1 —pR( R/ 1
_(1-p)
R(1) 1 —pR( )

plz

(25)

where the substitutiop(z) = R'(x)/R’(1) follows from Eg. (1). The free parameté' (1) can be determined by
requiring that the d.dR(-) satisfy R(1) = 1. Solving Eq. (25) forR/(1) with ¢ = 1 and R(1) = 1 shows that

l-p
fol (1-X1(1—-2)) dz
Solving Eq. (25) forR(¢) and substituting fo?’(1) gives

JLA=A" (1=a)) da
Jo (1=2"1(1-=)) dz

R'(1) =

R(t) = ;
Jo(A=A""(1-=)) dz
L=p+r o) @
For simplicity, we now define
Qx) & Jo(=x"11—1) dt

substitutex for ¢, and get

Q(x)
RBle) =12 p+pQ(x)
It follows from Egs. (1) and (28) that
_ R(z)

1-p)Q(x) (1-p+pR(1)?

(1-p+pQx)* (1-pQ(1)
1 Q' (x)
(1—p+pQ(x))* Q'(1)
1-211—-2)
(1—p+pQ(z))?

and
1-2"40)

"= )

(26)

(27)

(28)

(29)

(30)

The important part of this result is that there is no need todate the power series pf-) to forcep(1) = 1. This

appears to be an important element of ensembles with bourmagdlexity.

Now, consider the bit-regular case where every informatiidiis repeated; > 3 times (i.e., \(x) = z¢~1). From

Eq. (27), it can be verified with some algebra that

Q) =qz—(¢—1) [1-(1—a)

(31)
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Substituting this into Eq. (29) gives the result in Eq. (10).

Finally, we show that the power series expansion of Eq. (10) eefinproper probability distribution. First, we
note thatp € (0, ] by hypothesis, and that Appendix A establishes the nontivitgeof the d.d. coefficient{p,, }
under this same condition. Sinpél) = 1, these coefficients must sum to one if the power series exgansinverges
at z = 1. This follows from the asymptotic expansion, given later @), which implies thap, = O(n~%/(a~1),
Therefore, the functiop(z) defines a proper d.d.

2) Truncating the D.D.:Starting with the d.d. pairX;p) implied by Eq. (29) (which yields that Eq. (6) holds),
we apply Lemma 1 to show that the design ratd is p. The next step is to slightly modify the check d.d. so
that the inequality (7) is satisfied instead. In particulare @an modify thep(x) from (29) so that the resulting
ensemble of bit-regular non-systematic IRA codes is equal tractionl — ¢ of the BEC capacity.

Let us defineM (¢) to be the smallest positive integéf such that the condition in (11) is satisfied. Such an
M exists for anye € (0,1) becausep,, = O(n~%/(2=1)). We define the=-truncation ofp(-) to be the new check
degree polynomial in (12), which is also equal to

M(e)
p=(x) = (p1+ Z >+Zm (32)

i=M(e)+1

and satisfiegp.(1) = p(1) = 1. Based on Egs. (11) and (32), and since the power series éapaoisy(-) is
non-negative for small enough valuespo{see Appendix A), then for these valuesof

[r@ar < [omws ¥ 0

i=M(e)+1
1 €
< x) dx +
/op() q(1 —p)
_ 1+4¢
q(1-p)"

Applying Eqg. (8) to the last equation, shows that the desige of the new ensemblé), p.) of bit-regular,
non-systematic IRA codes is given by

1
1 1-—
RRA _ fo _ > P
fo pe( de’ QIO pe(z)de 1+e
Using the fact thatllﬁ > 1—¢, for e > 0, we get the final lower bound

RPA S (1—p)(1—e). (33)

This shows that the design rate of the new ensemble of codegi@ at least to a fractioh — ¢ of the capacity of
the BEC. Now, we need to show that the new ensemble satisfieadhaadlity (7), which is required for successful

decoding, given by
1—p 2
A (1_ [1—pR€(l—iﬁ)] pg(l—x)> <z, Vxe(0,1] (34)

where R.(-) can be computed fromp.(-) via Eq. (1). Since the truncation g@f(z) only moves edges from high
degree checks (i.ez’ terms withj > M) to degree one checks (i.e. th& term), it follows that

pe(x) > plz) , ¥z € [0,1). (35)

We will also show that
Lemma 2:
R.(z) > R(x), VYx € (0,1). (36)
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Proof: We rely on Egs. (1), (10) and (32) to show that for an arbitrary 0
PL+ D ()41 Pi
S M(e) p; "
p1+ Ei:M(s)Jrl pit iy 5
YA

M(e) p;
PLH e P iy G

3 Ra (37)
i=1

R.(z) =

_|_

lI>

and
P1

M(e) p;
PL+ e T i

£ Y Rl (38)

It is easy to verify that the coefficients in the power serigsamsions of?.(-) and R(-) in (37) and (38), respectively,
are all non-negative and each of them sum to one. By compé#nmdgwo, it follows easily that

R® <R, Vi>2

Since"%, R, = Y, R = 1, then
R > Ry.

Let
2R —RY i=12...

thend; = — >, 0; (since by definition) "2, 0; = > 00 Ri — > ooy Rf) = 0), andg; > 0 for every integer
i > 2. It therefore follows that for: € (0,1)

R(z) — R.(x) = 61z + Z(Zmi < o0+ Z 0;x =0
=2 =2
which proves the inequality in (36))
The validity of the condition in (34) follows immediately frothe two inequalities in (35) and (36), and the fact
that the d.d. paif\, p) satisfies the equality in (6) for alty € [0, 1].

B. Proof of Theorem 2

1) Finding the D.D. Pair: Like in the proof of Theorem 1, we start the analysis by solviggation (6), but
this time we calculate\(-) for a particular choice of(-). Let us choose(z) = x2, so R(z) = x3, and we obtain
from the equivalent equation in (23) that the inverse fuorcof A(-) is equal to

_ 1-p 2
Mla)=1- ——— 1—2)2. 39
@=1-(1ortyps) G- (39)

Inserting (39) into (15) shows that the expressiom\of in (15) is the inverse function to (39) far € [0, 1], so
(15) gives us a closed form expressionXdf) in the interval[0, 1]. As we noted already, for real numbers, one can
simplify the expression ol(-) in (15), but since we consider it later as a function of a cax@rgument, then
we prefer to leave it in the form of (15).
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In the following, we show how (15) was derived. Note that sinee already verified the correctness of (15),
then in the following derivation we do not need to worry ab@sues of convergence. Set

1 —
y=A"'a), z=Y"Y u-1-u
L-p
With this notation and for € [0, 1], (39) can be written in the form
2p(u) = u

whereg(u) = 1 —pu3. We now use the Lagrange inversion formula (see, e.g., [1id8e212]) to obtain the power
series expansion af = u(z) aroundz = 0, i.e., we write

e e}
k=0

If z=0 thenu =0, souy = u(0) = 0. The Lagrange inversion formula states that

we= 7 W M), k=12, (40)
where[u*~1] ¢*(u) is the coefficient ofu*~! in the power series expansion ¢f(u). From the definition ofp(-),
the binomial formula gives

k
k 3\k 3
u) = (1 —pu’)® = 17 | u 41
o = (- pit)t = Y {0 ()} (@1)

§=0
so from (40) and (41)

0 otherwise

u(z) = Z {H]f (lj;:l)pks]zk:}

k: %EN

-5 [k Bl
uk{ (L) ps, ifE=1,4,710,...

We conclude that

whereN designates the set of non-negative integer numbers. Siﬁcéllg_;’, then we get

_ (D5 (kY T
=2 { i () y’}

k: 21eN
andz = 1 —u = \(y) (sincey = A\~!(z)). Finally, we obtain a power series expansion f¢r) from the last two

equalities - k-1

k: 21eN 3

(V1B

MBS

By substitutingk = 31 + 1 wherel € N, the latter equation can be written as

ANz)=1-— \;]3 i {él—i)i <3l ;r 1) t3l+1}

=0

wheret £ (%) V1 — z. Fortunately, the final sum can be expressed in closed fornlemuts to the expression
of A(+) in (15). Plots of the function\(-) as a function of € (0,1) are depicted in Fig. 2.

Finally, we show that the power series expansion of Eq. (15) eefa proper probability distribution. Three
different representations of the d.d. coefficiefits,} are presented in Section V-B.1 and derived in Appendix B.
They are also used in Appendix C to prove the non-negativitthefd.d. forp € [0,0.95]. Since (1) = 1, these
coefficients must also sum to one if the power series expansioverges at: = 1. The fact that\,, = O(n=%/2)
follows from a later discussion (in Section V-B.2) and es&dt#s the power series convergence at 1. Therefore,
the function\(z) gives a well-defined d.d.
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09 A(x) for p=0.01, 0.02, 0.05, 0.10, 0.30, 0.50, 0.90

Fig. 2. The function\(-) in (15), as a function of the erasure probabilityf the BEC.

2) Truncating the D.D.:Now, we must truncaté\(-) in such a way that inequality (7), which is a necessary
condition for successful iterative decoding, is satisfieck o this by treating all information bits with degree
greater than some threshold as pilot bits. In practice, igsins that the encoder uses a fixed value for each of
these bits (usually zero) and the decoder has prior knowledghese fixed values. This truncation works well
because a large number of edges in the decoding graph aedizei by each pilot bit. Since bits chosen to be
pilots no longer carry information, the cost of this appto@s a reduction in code rate. The rate after truncation
is given by

RIRA _

K' KK _K( K-K
N NK N ( K >
whereN is the block lengthK is number of information bits before truncation, alidis the number of information
bits after truncation. Applying Lemma 1 to the d.d. pairs) shows that the design rate is given Ry N = 1 —p.
Therefore, the rate can be rewritten @8 = (1—p)(1— &) whered £ (K — K')/K is the fraction of information
bits that are used as pilot bits.

For an arbitrarye € (0,1), we defineM (¢) to be the smallest positive integéf which satisfies Eq. (16). Next,
we choose all information bit nodes with degree greater th&s) to be pilot bits. This implies that the fraction
of information bit nodes used as pilot bits is given Hy= Zj’;M(E)H L,, where the fraction of information bit
nodes with degree is given by

An/n

Ly = —— .
Zn:2 )‘n/n

(42)

Based on Egs. (8) and (14), we have

i /:”Tn = /01 A\z) dz = R™A /1 p(z) de = 1;71) (43)
n=2

0

Therefore, we can use Eqgs. (16), (42) and (43) to show that

5= > L
n=M(g)+1
Zzon(s)H An/n

ZZO:Q An/n
ZZO:M(E)H An/n
1-p

3
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Let us define the effective-modified d.d. to be
M(e)

Ae(x) = Z Az L
n=2

Although this is not a d.d. in the strict sense (because itomgér sums to one), it is the correktfunction for
the DE equation. This is because all information bits withrdeggreater thai/ () are known at the receiver and
therefore have zero erasure probability. Since the d.d.(pai) satisfies the equality in (6) ank.(z) < A(z) for

€ (0, 1], then it follows that the inequality required for successfecoding (7) is satisfied.

As explained in Section I, the encoding and decoding comigie the BEC are both equal to the number of
edges, per information bit, in the Tanner graph. The degrethefparity-check nodes is fixed ® (three edges
attached to information bits and two edges attached to cadg bnd this implies that the complexity is given by

x£e(e,C) = xp(e,C) = Ri{A < (1 p)5(1 *5)'

Therefore, the complexity iboundedand equalsl_ip as the gap to capacity vanishes.

C. Proof of Theorem 3

Proof: Under MPI decoding, the decoding complexity of the sequeriacmdes{C,,} is equal to the number
of edges in the Tanner graph of the original codés,} normalized per information bit (since for the BEC, one
can modify the MPI decoder so that every edge in the Tannethggpnly used once). This normalized number
of edges is directly linked to the average degree of theypalhieck nodes in the Tanner graphs of the sequence
of codes{C],} (up to a scaling factor which depends on the rate of the cafe)will first derive an information-
theoretic bound on the average degree of the parity-chedésfor the sequende’;, }, sayar(C,,), which will be
valid for every decoding algorithm. From this bound, we willedtly obtain a bound on the decoding complexity
of punctured codes on graphs, when we assume that an MPI degcalgdjorithm is used.

Let u}, = (uy,us,...,u,,) be a codeword of a binary linear block codf, and assume that a subset of the
information bits of the cod€/, are punctured (see footnote no. 6 in Section Ill). Let us repthe punctured bits of
u/,, by question marks, and let us call the new veatgr. The bits ofu,,, (those which were not replaced by question
marks) are the coordinates of the codewords of the punctodd(,,. Let us assume that,, is transmitted over
a BEC whose erasure probability is equalptoThe question marks in the received vectoy = (vi,va,...,vp,,)
remain in all the places where they existediin (due to puncturing of a subset of the information bitaxf), and
in addition, the other bits ofi,,, which are transmitted over the BEC are received as questioksmath probability
p or remain in their original values with probabilify—p (due to the erasures of the BEC). Since by our assumption,
the sequence of punctured codes, } achieves a fraction — ¢ of the channel capacity with vanishing bit erasure
probability, then there exists a decoding algorithm (eW)., decoding) so that the average bit erasure probability
of the codeC,, goes to zero as we let tend to infinity, andlim,,, ... Ry, > (1 —¢)(1 — p). Here,R,,, and R},
designate the rates (in bits per channel use) of the punttodeC,, and the original cod€,,, respectively. The
rate of the punctured codg,,) is greater than the rate of the original co@®,), i.e., R, < R,,. Let Pél) (m)
designate the bit erasure probability of the digjtat the end of the decoding process of the punctured ¢gde
Without loss of generality, one can assume thatithgr,, first bits of the vecton/, refer to the information bits
of the codeC!,, and the othen,,(1 — R},) last bits ofu/,, are the parity bits of,, andC],. Let

n, R,
1

Pb(m)én 7 Z Pk()i)(m)
mEm =1

be the average bit erasure probability of the c@ge(whose codewords are transmitted with equal probability),
based on the observation of the random veetgrat the output of the BEC. By knowing the linear block code
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C;,, then we get that
Hw,ve) _  H{uw} " vim)
Nom Nm
H({u}rm v {udb ™)
+ mnm

Nm

(b) S (Vo e tts 1)
Nm

C n R

O s Hwlva)

- Nm

@) s rmRn (PO
D s n(A m)

- Nm

—
INe

R, h(Py(m))

where equality (a) is valid since thg,, R/, information bits of the linear block cod&,, determine the,,(1— R],)
parity bits of its codewords, equality (b) is based on theirchale for the entropy, inequality (c) follows since
conditioning reduces the entropy, inequality (d) followsnfi Fano’s inequality and since the cadg is binary, and
inequality (e) is based on Jensen’s inequality and the sdtyoaf the binary entropy functioh(z) = —z log,(z) —

(1 —x)logy(1 —z) for z € (0,1). Based on our assumption that there exists a decoding #igoso that thebit
erasure probabilityof the sequence of coddg,,} vanishes (asn — o0), then it follows that

/
L H (V)

m— oo N,

—0. (44)

For the sake of notational simplicity, we will replaeg,, v,,, andn,, by U’, V, andn, respectively. In the
following derivation, letK and E designate the random vectors which indicate the positidrhie known and
punctured/erased digits in the received vec¥}, (respectively (note that knowing one of these two randootors
implies the knowledge of the other vector). The random vedigr denotes the sub-vector & with the known
digits of the received vector (i.e., those digits which aoé punctured by the encoder and not erased by the BEC).
Note that there is ane-to-onecorrespondence between the received vevt@nd the pair of vector§Vk, E). We
designate byU%, and U the sub-vectors of the original codewdd of the codeC;,,, such that they correspond to
digits of U’ in the punctured/erased and known positions of the recaieetbr, respectively (so thaf, = V).
Finally, let Hi, denote the matrix of those columns Bf (a parity-check matrix representing the block catje)
whose variables are indexed B, and|e| denotes the number of elements of a veetolhen, we get

H(U'V) = H(U'|Vk,E)
H(Ug, Uk |Vk, E)
H(Ug|Vk, E)
YvieP(Vie) H(Ug|Vk = vi, E = )
Yo PV, e) (le| —rank(y))
Sep(e) (Je| — rank H.))
= 2ep(e) el = > . p(e) rank H) .
and by normalizing both sides of the equality w.r.t. the blt&ngth (n), then
w1 Z ) lel = — Zp ) rank(H.) . (45)

n
Note that the rank of a parity-check matix, of the block codeC!, is upper bounded by the number of non-zero
rows of H. which is equal to the number of parity-check nodes which lve’g@unctured or erased bits (the sum

Y o p(e)-rank H)) is therefore upper bounded by the average number of parégicsets which involve punctured
or erased bits).



16

Now, we will bound the two sums in the RHS of (45): IBt, and P,, be the number of information bits and
parity bits in the original cod€;,. Thenn,, = I,, + P,, is the block length of the cod&,,, and the block length
of the codeC,, (i.e., the block length after puncturing a fractidh., of the information bits inC;,) is equal to

Im(1 — Pyet) + P, Since the dimension of punctured codes may decrease as kitpahe original codes, then
I

we get the following upper bound on the rate of the punctumted?,,, < TP TP Its asymptotic value (as
m — o0) is by assumption at leagt —¢)(1 —p), i.e.,

1—e)(1—p) < lim Ry, < li m :

( 6)( p)_mg’noo m_mg)noo Im(l_Ppct)+Pm

We obtain from the last inequality that

i I (190 )
m—oo Pp, eff+5(1_Peff)

where P.g was introduced in (20), so the asymptotic rate of the sequefcodes{C,,} satisfies

I

. / o . m

A R =i
(1=5)1-p)

(46)

(1—e)(1—p)+ Pegg +e(1 — Pegr)

The number of elements of a vecieiindicates the number of bits in the codeword<’Hf which are punctured
by the encoder or erased by the BEC. Its average value is therefual to

S p(e) lel = I Pt + (In(1 = Pow) + P )

e

Imp
= ImPpCt—i—RLm

so sinceR,, < 1 — p, then we obtain from (46) and the last equality that

1
lim —
Jim o= gp(e) e

(1-e)(1-p) P
= (1—e)(1—=p)+ Pegg +e(1 — Pegr) (PpCt * —P> 47

If a parity-check node of the Tanner graph of the cdfeis connected to information nodes kyedges, then
based on the assumption that the information bits of the cad€gC;,} are randomly punctured at raf@,.,
then the probability that a parity-check node involves asteone punctured or erased information bit is equal to
1 — (1 — Pg)*. This expression is valid with probability 1 (w.r.t. the ramaly chosen puncturing pattern) when
the block length tends to infinity (or in the limit where — o). We note thatP.¢ is introduced in (20), and it
stands for the effective erasure probability of informathots in the code€’/, when we take into account the effects
of the random puncturing of the information bits at the emrp@nd the random erasures which are introduced
by the BEC. The average number of the parity-check nodes wiietefore involve at least one punctured or
erased information bit is equal t,,(1 — R},,) > di.m (1 - (1- Peff)k) where d;, ,,, designates the fraction of
parity-check nodes in the Tanner graph()f which are connected to information nodes bgdges. Therefore

1
o~ ze:p(e) rank H.) < (1 — R.,) (1 — zk: dipm (1 — Peﬁ)'f> :
From Jensen’s inequality, we obtain that

D dim(1 = Pe)® > (1 = Pogg) ()
k



17

wherebg (Cl,) = >, kdx is the average number of edges which connect a parity-ched& with information
nodes in the Tanner graph of the cade. By definition, it follows immediately thaty (C.,,) > br(C},) + lmin,
and therefore we get

1 ;
=" p(e) rank Hy) < (1— R},) (1= (1= Pog)or () ~hoie) (48)
Nm, -
From Egs. (45)—(48), we obtain that
/
L H (V)
m—o0 N,
— lim S ple) fe] - lim —— 3" p(e) rank(HL)
M—00 Ty, S Mm—00 Ty, S €

(1-¢)(1-p) p
= (1—¢e)(1—p)+ Peg +e(1 — Pog) (PpCt * 1—p>

i (1-9)(1-p) )
(L—e)(1 —p) + Pegg + (1 — Fegt)
-(1 (- Peﬁ)an—lmin>

wherear £ liminf,, .., ar(C},). The limit of the normalized conditional entropy in (44) isuadjto zero, so its
lower bound in the last inequality cannot be positive. Thidds the inequality

(L=p)(I—&)Fpet + (1 —c)p —

(Peﬁ +e(l— Peﬁ)) (1 (- Peﬁ)aR—lrmn) <0. (49)
From (20), then(1 — p) Pyt +p — Peg = 0, so simplification of the LHS in (49) gives

Pefy (1 = Pogr)™tmin

< (1= p) B+ 2p + (1 = Pur) (1= (1 = Por) ™)

<e(l —p)Ppct+ep+e(l — Peg)

= ¢&.
This yields the following information-theoretic bound theymptotic degree of the parity-check nodeg(C;,))
In (Q)

£

liminf ag(C},) > — N
In ( 1—Pese )

which is valid with probability 1 w.r.t. the puncturing peaths. The proof until now is valid under any decoding

algorithm (even the optimal MAP decoding algorithm), andhe continuation, we link our result to MPI decoding.
From the information-theoretic bound in (50), it follows theth probability 1 w.r.t. the puncturing patterns, the

asymptotic decoding complexity of the sequence of pundtedes{C,,} satisfies under MPI decoding

liminf xp(Cp) = <1;%R> liminf ar (C),)

+ lmin (50)

m—0o0

where R is the asymptotic rate of the sequen@g,,}. The scaling by% is due to the fact that the complexity
is (by definition) normalized per information bit, and the mage degree of the check nodes is normalized per
parity-check node). As said before, the last equality ie since the MPI decoder can be modified for a BEC so
that every edge in the Tanner graph is only used once; therdfte number of operations which are performed for
MPI decoding of the punctured codg, is equal to the number of edges in the Tanner graph of thenaligiode
C!.. SinceR < 1 — p, then we obtain from (50) that under MPI decoding, the asytigptiecoding complexity
satisfies (19) with probability 1 w.r.t. the puncturing patte
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If Poet = 1—0(e), then it follows from (20) that alsé.¢ = 1-O(¢). Therefore, the RHS of (19) remains bounded
when the gap (in rate) to capacity vanishes (i.e., in thetlimtierec — 0). We conclude that with probability 1
w.r.t. the puncturing patterns of the information bits, @essary condition that the sequence of punctured codes
achieves the capacity of the BEC wilounded complexitunder MPI decoding is that the puncturing rate of the
information bits satisfies the conditiaf,.; = 1 — O(e). Otherwise, the complexity grows like (In (1)). O

Discussion:Note that a-fortiori the same statement in Theorem 3 holdsefrequire that the block erasure
probability tends asymptotically to zero. At the beginniofgour work, we considered the natural generalization of
the lower bound on complexity derived in [16, Theorem 1]. Themeyalization relies on the DE equation (6) for
ensembles of non-systematic IRA ensembles whose infosmaiis are punctured uniformly at random. However,
it results in a slightly looser bound than the bound in TheoBrso we omit its derivation. It is also important to
note that the lower bound on complexity which was originaérived from the DE equation (6) is not as general
as the statement in Theorem 3, because the latter statemeaadtdidor every sequencef codes (and not just for
IRA ensembles). The lower bound on decoding complexity ofacap-achieving codes on the BEC is especially
interesting due to two constructions of capacity-achigyiRA ensembles on the BEC with bounded complexity
that were introduced in the first two theorems of our paper. \Bfe that for ensembles of IRA codes where the
inner code is a differential encoder, together with the chaf puncturing systematic bits of the IRA codes and
the natural selection of the information bits as the systentts, thenl,,;, = 2 (since every parity-check node
is connected to exactly two parity bits). For punctured IR#les, the lower bound in (19) is also a lower bound
on the encoding complexity (since the encoding complexityR#\ codes is equal to the number of edges in the
Tanner graph per information bit, so under MPI decoding, tiheding and the decoding complexity of IRA codes
on the BEC are the same).

The lower bound on the asymptotic degree of the parity-chedes in (50) is valid under ML decoding (and
hence, it is also valid under any sub-optimal decoding #lgor, such as MPI decoding). Finally, the link between
the degree of the parity-check nodes in the Tanner graphlendeicoding complexity is valid under MPI decoding.

D. Proof of Theorem 4

Proof: The proof relies on the proofs of [2, Theorem 1] and [15, Theorgnarid it suggests a generalization
to the case where a fraction of the information bits are punect before the code is transmitted over an MBIOS
channel.

Under MPI decoding, the decoding complexity per iteratiothef sequence of cod€s,,, } is equal to the number
of edges in the Tanner graph of the original cod€§,} normalized per information bit. Similarly to the proof
for the BEC, we will first derive an information-theoretic bauon the average degree of the parity-check nodes
for the sequencéC;,}, sayar(C),), which will be valid for every decoding algorithm. From thisund, we will
directly obtain a bound on the decoding complexity per tteraof punctured codes on graphs, when we assume
that an MPI decoding algorithm is performed.

It suffices to prove the first bound (which refers to the limit lo¢ taverage degree of the parity-check nodes for
the sequencgC/,}) w.r.t. MAP decoding. This is because the MAP algorithm miazies the bit error probability
and therefore achieves at least the same fraction of cgpaeiany suboptimal decoding algorithm. According to
our assumption about random puncturing of the informatias &t rate P, then it follows that the equivalent
MBIOS channel for the information bits is given by

q(ylz = 1) = Pyet do(y) + (1 = Ppet) p(ylz = 1) (51)

which is physically degraded w.r.t. the original commutima channel whose conditionplf (given thatx = 1 is
the input to the channel) j5y|x = 1). On the other hand, since we assume that only informatienalé punctured,
then the original MBIOS channel over which the communicatiakes place is also the equivalent channel for the
parity bits.

By assumption, the sequence of punctured cddgs} achieves a fraction — ¢ of the channel capacity. Ldt,
and P,,, designate the number of information bits and parity bitsh@ ¢odeC;, (before puncturing), respectively.
Since the dimension of the punctured cdllg is upper bounded by the dimension of the original céfjg then
the rate ofC,, satisfies the inequality ;

R, < .
"= (1= Poet) I + P
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According to the assumption in the theorem, we hhwe,, .., R,, > (1 — )C, which implies that
I (1-¢)C

lim =%~ > . 52
Moo Py = 1— (1= €)(1 — Pogt)C (52)

The asymptotic rate of the original sequence of cofi&s} (before puncturing) therefore satisfies
lim R = lim —m > (1=e)C (53)

m—o0 m—oo I, + Py, — 1+ (1 — s)PpctC

Similarly to the information-theoretic proof for the BEC, tliows exactly via the same chain of inequalities
that ,

m— o0 N,

=0 (54)

whereu,,, andv,, designate a codeword of the original catje, and the received vector at the output of the channel
(after puncturing information bits fromu), and transmitting the punctured codeword over the commtioita
channel), respectively. The parametgy designates the block length of the original catje.
Let g(y|x = 1) be an arbitrary conditiongldf at the output of an MBIOS channel, given that= 1 is the input

to this channel, and let us define the operator

1t

w(g) £ 2/ min(g(ylz = 1), g(ylx = 0)) dy.

Then, it follows directly thad < w(g) < % andw(p) = w wherew is introduced in (22). For the MBIOS channel
in (51)

Ppct oo
w(q) = N do(y) dy
1-P C Hoo .
5 ! / min (p(ylz = 1), p(ylz = 0)) dy
Py
= %tﬂl—Ppct)w
so, we obtain the equality
1 —2w(q) = (1 —2w)(1 — Ppet)- (55)
Similarly to the proof of [2, Theorem 1], we define a binary randeector Z = (zy,...,z,,) SO that for
l=1,2,...,ny, if w, andv; designate thé-th components ofr, andv,,, respectively, then

Pr(z =1| q(uuy = 1) > g(—vjuy =1)) =1

Pr(z = 0| q(ujlu; = 1) < g(—vjuy =1)) =1

1
5
In particular, in case that; corresponds to an erasure, thanis equal to zero or one with probability Hence,

the channelU’ — Z is equivalent to a BSC with crossover probability which is &oo w(q).
Based on [2, Egs. (4), (5), (11) and (12)], we obtain that

H(uy,[vin)
—m > —I(U V) —
Nim o ( mn m) Nm

PI‘(Z[ = 1| q(vl|ul = 1) = Q(_vl‘ul — 1)) —

H(S],)

m

(56)

whereS!, = H! Z" is the syndrome (we designate @y a parity-check matrix of the cod€/,). From [2,
Eq. (14)], we obtain an upper bound on the normalized entréplyeosyndrome for the case of random puncturing

H(Sy) 1 (1 2u)(q))aR(C;n)>

N, 2

<(1-R,)h ( (57)

where as compared to [2, Eq. (14)], we further loosen the uppend on the entropy of the syndrome by assuming
that all the bits ofC/, face (because of puncturing) the channel in (51). In faés, ithtrue only for the information



20

bits of the codewords of], (since parity bits are not punctured), but since the chamitél the conditionalpdf
q(-]x = 1) is physically degraded w.r.t. to the original MBIOS chanreshd the inequalityv(q) > w follows
directly from (55), then the upper bound in (57) holds.
Let L,, designate the number of digits of the codewords(dy,} (i.e., after puncturing information bits at a
puncturing rateP,), thenL,, = I,,,(1 — Pyet) + Py, and
(U vm) < 22 C. (58)

Nim
From (52), we get

. Ln .. L (1-Py)+1
lim — = lim == Vi
1
< .
- 1+ (1 —5)PpctC’
Based on (54), the LHS of (56) vanishes as wenletend to infinity. In the limit wheren — oo, the combination
of (52)—(59) therefore gives the following inequality:

C
14+ (1 — €)Ppctc

_ (1 - 8 _ggpctc) b <1 —(1 _22w(q))aR> <0

where agr = lim,, . ar(C’,). By invoking the following inequality for the binary entrpfunction (see [15,

Lemma 3.1]) )
h(m)§1—2<aﬁ—1> , 0<z<

we obtain from the last two inequalities that

C
1 + (1 — E)Ppctc

(- gne) (- <o

We note that the last inequality extends the inequality 5 Hg. (32)] to the case where we allow random puncturing
of the information bits at an arbitrary puncturing rate (iéte is no puncturing, theR,.; = 0 andw(q) = w from
(55), so [15, Eq. (32)] follows directly as a particular cagepm the last inequality and (55), we obtain that with
probability 1 w.r.t. the puncturing patterns, the follogrimformation-theoretic bound on the asymptotic degree of
the parity-check nodes is satisfied
In (1 1—(1—Ppe)C
> (5 2C'In2 )

liminf ag(C),) > .
S 2In ((1—Ppct1)(1—2w))

The proof until now is valid under an arbitrary decoding aitjon (i.e., under MAP decoding, and hence, under
any other decoding algorithm). In order to proceed, we r&deMPIl decoding, where the asymptotic decoding
complexity per iteration of the punctured codés is equal to% times ag where R £ lim,, .o R, iS the
asymptotic rate of the sequence of punctured cddgs}. By assumption? > (1 — ¢)C, so we obtain from (60)
the lower bound on the decoding complexity per iteration whgiured codes which is given in (21). This lower
bound drives us to the interesting conclusion that if theguning rate of the information bits is strictly less than
1, then the decoding complexity per iteration must grow astdikeln (%) On the other hand, iP,cs = 1 —0O(e),
then the numerator and denominator of the RHS in (21) are inothe order ofln (1), and therefore the lower
bound on the decoding complexity per iteration stays bodradethe gap (in rate) to capacity vanishas.
Discussion:Like Theorem 3, the lower bound on the decoding complexity inofém 4 also clearly holds if we
require vanishing block error probability. For a BEC with sree probabilityp, the parametew in (22) is equal to

(59)

1—

N =

1—

(60)
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w = £, and the capacity is equal © = 1—p. From (20), this implies that for the BEC| —2w)(1—Pyct) = 1— Peg.

It therefore follows that the lower bound in Theorem 3 is astawice larger than the lower bound for the BEC
which we get from the general bound in Theorem 4. The derivatiomheorems 3 and 4 are also different, so
because of these two reasons, we derive the stronger versibie bound for the BEC in addition to the general
bound for MBIOS channels. The comparison between the two d®ior punctured codes on graphs is consistent
with the parallel comparison in [15, Theorem 1] for non-pumetl codes. The bounds in Theorems 3 and 4 refer
both torandom puncturingso these two theorems are valid with probability 1 w.re puncturing patterns, if we
let the block length of the codes go to infinity. Since these dsurecome trivial for some deterministic puncturing
patterns, it remains an interesting open problem to denfemnation-theoretic bounds that can be appliegvery
puncturing pattern

V. ANALYTICAL PROPERTIES ANDEFFICIENT COMPUTATION OF THED.D.

In this section, we tackle the problem of computing the dagfficients for both the bit-regular and check-regular
ensembles. While doing this, we also lay some of the grounklwexjuired to prove that these coefficients are non-
negative. Asymptotic expressions for the coefficients cao &k computed rather easily in the process. We start
with bit-regular ensemble because the analysis is somesitmgier.

A. The Bit-Regular Ensemble

1) A Recursion for the D.D. Coefficienfg,, }: We present here an efficient way for the calculation of the d.d.
coefficients{p,, }, referring to the ensemble of bit-regular IRA codes in Theote To this end, we derive a very
simple recursion for coefficients of the power series exmarssiof R(x) and p(z). We start with Eq. (28) and
rearrange things to get

R(@) = 1= Qo) ~ T2 R@)Q@).

L—p
Next, we substitute the power series expansionsifar) and Q(x) to get
nz::QRnx" HZQ,@" ZRQZ ZQJ.T]

n—2
_ 1 __b A A
Using Eg. (27), we can write
— 1)1/
Q($) —_ fU )
Jo (1= (1= 1/ a=D)as

f[] zk l 1)k+1( )tkdt

- )k+1
— q—
qz ( ) k+1
which implies that
0, = V(7 > 2 (62)
o e-1)
Sincep(z) = R'(x)/R/(1), this gives
(z) (z)/R(1) R R

TRE) T q(-p)
where the last equality follows from Egs. (9) and (26), ddis calculated from (61) and (62).
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2) Asymptotic Behavior of,: In this section, we consider the asymptotic behavior of tbeffecients in the
power series expansion of Eq. (10). The resulting expressioviges important information about the decay rate
of the coefficients. It also shows that always becomes positive for large enouglnd therefore lends support to
Conjecture 1. We approach the problem by first writii{ig) as a power series ifl —x)l/(q—l) and then analyzing
the asymptotic behavior of each term. This approach is ntetivand justified by the results of [3].

We start by rewriting (10) in terms af = (1 — z)*/(¢=1 and then expanding the result into a power series in
u to get

oz) = s
(1 —p(qui=t — (¢ - 1)U"))2
= ) Y0 0 (g (g D)’
=0

= 1—u+2pqui™t —2p(2¢ — Du? + 2p(q — 1)u?™*
+3p2q2u2q—2 +0 (u2q—1> )

Now, we can convert this into an asymptotic estimatey,pby using the fact (from [3]) that

n-lmo ala
I{(1-2)%) = fm <1+ ( +1)+0(n—2)>

a) 2n

where [z¥] A(x) is the coefficient ofz* in the power series expansion df(z). We note that the termg?—' and
u?4=2 are actually polynomials in: and do not contribute to the asymptotic behavior. Combirtreg remaining
terms with the equality,,+1 = [z"]p(z) shows that

q

n_+ q _ 2pq(2¢—1)
(¢— (=) <1 -0 (g Dn

4p(g + DI(EF) Lo (n_2)> .

D()nits

Pn+1 =

S

(63)

B. The Check-Regular Ensemble

1) Three Representations for the D.D. CoefficiefXs}: We present here three different useful expressions for
the computation of the d.d. coefficients,, }, referring to the ensemble of check-regular IRA codes in Témo2.
The first expression is based on the Lagrange inversion formak €.9., [1, Section 2.2]). The second expression
follows by applying the Cauchy residue theorem in order tiaiotthe power series expansion)af) in (15), and the
third expression provides a simple recursion which folldvesn the previous expression. These three expressions
are proved in Appendix B, and provide efficient numerical rodthto calculate the d.d. of the information bits
(from the edge perspective).

The first expression of the d.d. coefficierts, } is the following:

M= ), =23, (64)

where
A X

o(x) = .
1— (1_;(%@)2 (1— )2

This representation of the sequerice, } follows directly from the Lagrange inversion formula by wid y¢(x) = «
wherey = A7 (z).
A second expression for the d.d. coefficiefis,} is given by

IR RO N N
M= Im{/o (1+c<p>rez)“d} )

(65)
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wheren =2,3,..., .
c(p) = <4(1—p)3>3 , 0<p<l1 (67)
and the complex functiop(-) is
sin <% arcsin(r% + zw))

g(r) = lim : , r>0. (68)

w—0+ ra

Finally, we present an expression for the d.d. coeffici¢ntss which suggests an efficient way for their numerical
calculation. For all integers > 1, the following equality holds:

2(n—1)

)\n—i-l (p) (1 + 2]? 2n 1 Z a p (69)

) 21 . : .
where for an integen > 2, the calculation of the sequenr{a ) - relies on the following recursive equation:
_ 3 — (m) _ o (m)

L)) _ (2m —3i—1) (az 2a172>
E 2(m+1)
: (m)
20m—31—1) a;
(20m — 3¢ )%-17 m=1,....,n—1 (70)
2(m+1)

with the initial valuea(()l) = 1. We defineagk) as zero fori <0 ori > 2(k — 1) (wherek = 1,2,...). Based on
Egs. (69) and (70), it follows that

1—p
2= 50y
(1 —p)(1 + 16p + 10p?)
)\‘ =
3(p) S0 T 27
(1 —p)(1 + 12p + 168p? + 164p> + 60p*)
A(p) =

16(1 4 2p)>

and so on. Egs. (69) and (70) provide a simple way to calcuteeséquencég),,} without the need to calculate
numerically complicated improper integrals or to obtaia gower series expansion of a complicated function; this
algorithm involves only the four elementary operations] &ence it can be implemented very easily.

An alternative way to express Egs. (69) and (70) is

(1=p)- Pa(p)
(1+ 27

where {P,(z)},~, iS a sequence of polynomials of degrgé@ — 1) which can be calculated with the recursive
equation B

)\n+1(p) = =1,2,... (71)

[(14 — 4n)z® + (20n — 4)z + 2n — 1] Py(z)
2(n+1)
3z(1 + x — 222) L%}(m)

— =1,2,... 72
2(n+1) Y n = ( )

Pn+1(x) =

and the initial polynomialP; (x) = 5.
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2) Asymptotic Behavior of,,: We show in Appendix B that for a fixed value pf the asymptotic behavior of
the d.d.{\,} is given by

n % 3\/5 —(n—=2%) . 1
il = e |14 X2 2 — =
At NG ) { 5 ap sin ((n 2)(%)]

3 25 1
'[”&ﬁmsn?*()(m)] (73)

, 0, =arg [1 + e%c(p)} (74)

where _
ap = ‘1 +esc(p)

and ¢(p) is given in (67). Unles®p is close to one, it can be verified that the asymptotic exppasgir the
coefficients{)\,,} also provides a tight approximation for these coefficientsaaly for moderate values af For
example, ifp = 0.5, then the asymptotic expression in (73) is tight foi> 20 (Ao is equal t00.0100 while the
asymptotic expression in (73) is equal@®107). If p = 0.8, the asymptotic expression for the coefficiefits, }
in (73) is tight only forn > 120 (the approximation fot\;5 is equal t00.0020, and its exact value i8.0021). In
general, by increasing the value @fwhich is less than unity), the asymptotic expression in) &comes a good
approximation for the coefficients,, starting from a higher value of (see Fig. 3).

10° , : 10°

approximation

107F N 1 10t
exact N\
NS

~._approximation

107%F p=0.2

10°F

107°F

10 10 10 10 10° 10 10 10

Fig. 3. The exact and approximated values\pf 1 (n = 1,...,1000) for the check-regular IRA ensemble in Theorem 2. The approximation
is based on the asymptotic expression in (73). The plots refer to a BEGewdrasure probability is = 0.2 (upper plot) andp = 0.8
(lower plot).

3) Some Properties of the Power Series Expansiol(oj in Eq. (15). The values ofP,(-) at the endpoints of
the interval[0, 1] can be calculated from the recursive equation (72) (theficaaft of the derivative vanishes at
these endpoints). Calculation shows that fiop 1

- () m- ()

Since these values are positive, it follows from (71) that(p)},.>2 are positive for0 < p < 1 if and only if the
polynomialsP,(-) do not have zeros inside the interyal 1] for all n» > 1. We note that if for every, > 1, all the
coefficients of the polynomiaP, (-) were positive, then based on (71), this could suggest a giogdirection to
prove the positivity of{\,(p)}»>2 over the whole intervap € [0,1). Unfortunately, this is only true fon < 6.
The positivity of {\,,(p) },>2 over the intervall0,0.95] is proved in Appendix C, based on their relation to the
polynomialsP,(-). As we already noted, our numerical results strongly supiber conjecture that this is true also
for p € (0.95,1).
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As we will see, the behavior of the functions,(p), in the limit wherep — 1 andn — oo, depends on the
order that the limits are taken. When the valueno fixed, it follows from (71) and (75) that in the limit where
p — 1, then forn =2,3,4,...

P,_1(1 1 1 2n — 2

An(P)%?)QTJ(;:,)(l—P):?)W(n1)(1—10)- (76)
Therefore, for a fixed value of, )\, (p) is linearly proportional td —p whenp — 1. On the other hand, if the value
of pis fixed 0 < p < 1) and we letn tend to infinity, then we obtain from (73) that,(p) is inversely proportional
to 1 —p. Observe from Fig. 3 that the sequence of functidhs(p) }»>2 is monotonically decreasing for all values
of p, and that the tail of this sequence becomes more significatfiteagalue ofp grows. This phenomenon can be
explained by Eqg. (73) since the asymptotic behavior of theisece{\,(p)} is linearly proportional toﬁ; this
makes the tail of this sequence more significant as the valpesofloser to 1. It seems from the plots in Fig. 3 that
the asymptotic expression (73) forms an upper bound on theesee{\,(p)}. From these plots, it follows that
by increasing the value qf, then the approximate and exact values\pfp) start to match well for higher values
of n. We note that the partial subm "% \,,(p) is equal t00.978, 0.970, 0.955 and0.910 for p = 0.2,0.4,0.6 and
0.8, respectively; therefore, if the value of the erasure phodlta (p) of the BEC is increased, then the tail of the
sequence \,(p)} indeed becomes more significant (since the sum of all\h)’s is 1). More specifically, we
use the fact that

- N«
o
ngNn _a—1(1+0(1))’ a>1

and rely on Eqg. (73) in order to show that for a large enoughevaluV, the sumelV:2 An(p) is approximately

equal tol — ﬁ 145 this matches very well with the numerical values comput@dN = 1000 with p = 0.2
and0.8.

VI. PRACTICAL CONSIDERATIONS AND SIMULATION RESULTS

In this section, we present simulation results for both titedgular (Theorem 1) and check-regular (Theorem 2)
ensembles. While these results are provided mainly to atithe claims of the theorems, we do compare them
with another previously known ensemble. This is meant to tieereader some sense of their relative performance.
Note that forfixed complexity, the new codes eventually (farlarge enough) outperform any code proposed to
date. On the other hand, tlwenvergence spedd the ultimate performance limit is expected to be quitevsieo
that for moderate lengths, the new codes are not expected tedord breaking.

A. Construction and Performance of Bit-Regular IRA Codes

The bit-regular plot in Fig. 4 compares systematic IRA coddswgh \(z) = 22 and p(z) = 3¢ (i.e., rate
0.925) with bit-regular non-systematic codes formed byammstruction in Theorem 1 witlh = 3. This comparison
with non-systematic IRA codes was chosen for two reasonst, Fioth codes have good performance in the error
floor region because neither have degree 2 information bitsorfse LDPC codes of such high rate have a large
fraction of degree 2 bits and the resulting comparison sdaat@er unfair. We remind the reader that the bit-regular
ensembles of IRA codes in Theorem 1 are limited to high ratasy(& 3, the rate should be at Iea%s} ~ 0.9231).

The fixed point at: = 1 of the DE equation for the ensemble in Theorem 1 prevents thedde from getting
started without the help of some kind of "doping”. We overeothis problem by using a small number of systematic
bits (100—-200) in the construction. Of course, these badrasiuded in the final rate @¢f.925. Codes of block length
N = 8000, 64000 and500000 were chosen from these ensembles and simulated on the BEC afibegheck d.d.
of each bit-regular code was also truncated to maximum defife All codes were constructed randomly from
their d.d.s while avoiding 4 cycles in the subgraph inducgdekcluding the code bits (i.e., w.r.t. the top half of
Fig. 1).

It is clear that the bit-regular ensemble performs quitel wblen the block length is large. As the block length
is reduced, the fraction of bits required for "doping” (j.&0 get decoding started) increases and the performance
is definitely degraded. In fact, the regular systematic IRAesoeven outperform the bit-regular construction for a
block length of 8000.
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Fig. 4. BER and WER for random rate 0.925 codes from the bit-regRardnsemble in Theorem 1 with= 3 and the regular systematic
IRA ensemble with d.d\(z) = 2® and p(z) = 2*. The curves are shown fa¥ = 8000, 64000, and 500000.

B. Construction and Performance of Check-Regular IRA Codes

The performance of the check-regular construction in Theo2emas also evaluated by simulation. A fixed
rate of 1/2 was chosen and non-systematic IRA codes werergjedewith varying block length and maximum
information-bit degree. For comparison, LDPC codes from theck-regular capacity-achieving ensemble [17]
were constructed in the same manner. This ensemble was cfaysssmparison because it has been shown to be
essentially optimal for LDPC codes in terms of the tradeoffrMeein performance and complexity [9], [17]. The
IRA code ensembles were formed by treating all informatids Hegree greater thah/ = 25,50 as pilot bits.
The LDPC code ensembles were formed by choosing the check dieglbess; = 8,9 and then truncating the bit
d.d. so that\(1) = 1. This approach leads to maximum bit degrees\bf= 61, 126, respectively. Actual codes of
length N = 8192, 65536 and 524288 were chosen from these ensembles, and simulated over the BieQesults
of the simulation are shown in Fig. 5. To simplify the preséota only the best performing curve (in regards to
truncation lengthi/) is shown for each block length.

The code construction starts by quantizing the d.d. to imtegleies according to the block length. Next, it matches
bit edges with check edges in a completely random fashiorceSinis approach usually leads both multiple edges
and 4-cycles, a post-processor is used. One iteration dfgsosessing randomly swaps all edges involved in a
multiple-edge or 4-cycle events. We note that this algorithnly considers 4-cycles in the subgraph induced by
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Fig. 5. BER and WER for random rate/2 codes from the check-regular IRA ensemble in Theorem 2 and the&-chgualar LDPC
ensemble [17] forN = 8192, 65536, and 524288.

excluding the code bits (i.e., the top half of the graph in Rig.This iteration is repeated until there are no more
multiple edges or 4-cycles. For the IRA codes, a single “dythit is used to collect all of the edges originally
destined for bits of degree greater th&wh Since this bit is known to be zero, its column is removed to [iete

the construction. After this removal, the remaining IRA eadd no longer check regular because this “dummy” bit
is allowed to have multiple edges. In fact, it is exactly theak nodes which are reduced to degree 1 that allow
decoding to get started. Finally, both the check-regular B LDPC codes use an extended Hamming code to
protect the information bits. This helps to minimize the effef small weaknesses in the graph and improves the
word erasure rate (WER) quite a bit for a very small cost. The lads associated with this is not considered in
the stated rate of one-half.

C. Stability Conditions

While the condition (7) is both necessary and sufficient farcessful decoding, we can still gain some insight
by studying (7) at its endpoints = 0 andx = 1. The condition that the fixed point at= 0 be stable is commonly
known as the stability condition. Our capacity-achievind. ¢airs actually satisfy (7) far € (0, 1], but focusing
on the pointst = 0 andx = 1 gives rise to just two stability conditions. For decodingfitush, the fixed point at
x = 0 must bestable While, to get decoding started, it helps if the fixed pointzat 1 is unstable
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The stability condition at: = 0 can be found by requiring that the derivative of the LHS of &)eiss than unity
atz = 0. Writing this in terms of\y (where\’'(0) = A2 and A(0) = 0) gives

1

A < =,
R/
2p17](31)7 + /(1)

(77)

We note that the bit-regular IRA ensemble in Theorem 1 satisfie = oo, and since it has no degree 2
information bits, then it meets the stability condition ifi7] with equality. This is similar to the case with other
capacity-achieving ensembles of codes on graphs whosentission takes place over the BEC (see, e.g., [16],
[17]).

The stability condition atz = 1 can be found by requiring that small deviations fram= 1 grow larger.
Essentially, this means that the derivative of the LHS of (Qudth be greater than 1 at = 1. Writing this in

terms of po (assumingp(0) = 0) gives .

P2 = PNy
Since capacity-achieving codes must also satisfy thislgtabondition with equality, we see that the RHS of (78)
must go to zero for capacity-achieving ensembles withogtae 2 parity-check nodes. It is worth noting that the
check-regular ensemble in Theorem 2 (which has no degreei®-pheck nodes) hag’(1) = oo and therefore
meets the stability condition with equality. Furthermoragaan see intuitively how degree 2 parity-checks help
to keep the decoding chain reaction from ending.

In reality, the fixed point at: = 1 is usually made unstable by either allowing degree 1 patigeks or adding
systematic bits (which has a similar effect). Therefore,dbgvative condition is not strictly required. Still, it can
play an important role. Consider what happens if you trum¢lag¢ bit d.d. of the check-regular ensemble and then
add systematic bits to get decoding started. The fixed point-atl remains stable because the truncated bit d.d.
has)\' (1) < co. In fact, the decoding curve in the neighborhoodrof 1 has a shape that requires a large number
of systematic bits get decoding started reliably. This isrttaén reason that we introduced the "pilot bit” truncation
in Theorem 2.

(78)

VIlI. CONCLUSIONS

In this work, we present two sequences of ensembles of nstersatic irregular repeat-accumulate (IRA) codes
which asymptotically (as their block length tends to infipichieve capacity on the binary erasure channel (BEC)
with bounded complexitythroughout this paper, the complexity is normalized pdorimation bit). These are
the first capacity-achieving ensembles with bounded conitplex the BEC to be reported in the literature. All
previously reported capacity-achieving sequences hawenglexity which grows at least like the log of the inverse
of the gap (in rate) to capacity. This includes capacity-egihg ensembles of LDPC codes [7], [8], [17], systematic
IRA codes [4], [6], [16], and Raptor codes [18]. The ensembleson-systematic IRA codes which are considered
in our paper fall in the framework of multi-edge type LDPC coftb4].

We show that under message-passing iterative (MP1) decpidliisghew bounded complexity result is only possible
because we allow a sufficient number of state nodes in the Tayjtaph representing a code ensemble. The state
nodes in the Tanner graph of the examined IRA ensembles aaliced by puncturing all the information bits.
We also derive an information-theoretic lower bound on teeadling complexity of randomly punctured codes
on graphs. The bound refers to MPI decoding, and it is valid foragbitrary memoryless binary-input output-
symmetric channel with a special refinement for the BEC. Sincg hbund holds with probability 1 w.r.t. a
randomly chosen puncturing pattern, it remains an interg@sipen problem to derive information-theoretic bounds
that can be applied tevery puncturing patternUnder MPI decoding and the random puncturing assumption, it
follows from the information-theoretic bound that a neeegscondition to achieve the capacity of the BEC with
bounded complexity or to achieve the capacity of a generahongless binary-input output-symmetric channel with
bounded complexity per iteration is that the puncturing raft the information bits goes to one. This is consistent
with the fact that the capacity-achieving IRA code ensemlidroduced in this paper are non-systematic, where
all the information bits of these codes are punctured.

In Section VI, we use simulation results to compare the perémce of our ensembles to the check-regular
LDPC ensemble introduced by Shokrollahi [17] and to systenR#iccodes. For the cases tested, the performance
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of our check-regular IRA codes is slightly worse than thattted check-regular LDPC codes. It is clear from
these results that the fact that these capacity-achievisgmables have bounded complexity does not imply that
their performance, for small to moderate block lengthsuizesior to other reported capacity-achieving ensembles.
Note that forfixed complexity, the new codes eventually (farlarge enough) outperform any code proposed to
date. On the other hand, tfmmnvergence speet the ultimate performance limit happens to be quite slaw, s
for small to moderate block lengths, the new codes are noessacily record breaking. Further research into
the construction of codes with bounded complexity is likedyproduce codes with better performance for small
to moderate block lengths. In this respect, we refer to antea®rk [12] where Pfister and Sason present new
ensembles of accumulate-repeat-accumulate codes auhitve BEC capacity with bounded complexity; these
codes are systematic and suggest better performance fdrtshooderate block length.

The central point in this paper is that by allowing state nddebke Tanner graph, one may obtain a significantly
better tradeoff between performance and complexity as #ypetg capacity vanishes. Hence, it answers in the
affirmative a fundamental question which was posed in [15hmigg the impact of state nodes (or in general,
more complicated graphical models than bipartite graphdhe performance versus complexity tradeoff under MPI
decoding. Even the more complex graphical models, employeslybtematic IRA codes, provides no asymptotic
advantage over codes which are presented by bipartite gnapther MPI decoding (see [15, Theorems 1, 2] and
[16, Theorems 1, 2]). Non-systematic IRA codes do provideyawer, this advantage over systematic IRA codes;
this is because the complexity of systematic IRA codes besoumbounded, under MPI decoding, as the gap to

capacity goes to zero.
APPENDICES

Appendix A: Proof of the Non-Negativity of the Power Series Esipanof p(-) in (10)

Based on the relation (1) between the functidt(s) and p(-), we see thap(-) has a non-negative power series
expansion if and only i?(-) has the same property. We find it more convenient to proveRfathas a non-negative
power series expansion. Starting with Eq. (28), we can rewiite) as

e ;1+Qg<)x>
S E{EE) ()

0
_ 1 pQ@) _ (pQ@)Y’ i Qx)\*
pl1l-p 1—p —~ |\ 1-p '
One can verify from Eq. (62) that the power series coefficiehtQ @) are positive. Therefore, the sum

TN

1=0
also has a non-negative power series expansion. Basedrittfallows that theR(-) has a non-negative power

series expansion if the function )
p p
e - (12 ew)

has the same property. This means that the power series @pafid?(-) has non-negative coefficients as long as
2

[2"] 1% Qz) > [2"] (ﬂp Q(:z:)) k=0,1,2,... (A1)
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where[2z*] A(z) is the coefficient ofc* in the power series expansion dfz). SinceQ(-) has a non-negative power
series expansion starting fron?, it follows that Q(-) has a non-negative power series expansion starting from
z*. Therefore, the condition in inequality (A.1) is automallicaatisfied fork < 4. For k = 4, 5, the requirement
in (A.1) leads (after some algebra) to the inequality in (Eamining this condition fory = 3 and in the limit as
q — oo, we find that the value op should not exceeq% and % respectively. While we believe that the power
series expansion ak(-) is indeed positive for alp satisfying (18), we were unable to prove this analyticalyen
if this is true, it follows thatR(-) has a non-negative power series expansion only for rathell salues ofp.

For the particular case af = 3, however, we show that the conditipn< 1—13 is indeed sufficient to ensure that
(A.1) is satisfied for allk > 0.

Proof: In the case where = 3, we find that

Qz)=(-2+2z) 1-V1l-z)+z (A.2)
and
Q(z)? = (8 — 20z + 1227%) (1 — V1 — 1) — 4z + 2* — 42°. (A.3)

Expanding (A.2) in a power series gives

Q) = o + (24 22) i{() (19 ot

j=1

Lol

and matching terms shows that for> 2

1
Q) = 5 (3) 0t

Doing the same thing for (A.3) shows that, for> 4,

O — 20k 12k(k — 1) AN
2] Q(a) (8 k§+(k§)(k§)> (z) o

The maximal value op such that the condition (A.1) is satisfied fbr> 0 is given by

P [2"] Q(x)
l—p = ["Q(x)?
_ w3
o 8 _ 20k 12k(k—1)
= T 6D
2k —5
- 4(k+5) _455565

Since the RHS of this inequality is strictly increasing for> 4, the maximal value op which satisfies (A.1)
is found by substitutingc = 4. This gives the conditiop < % and completes the proof that the power series
expansion ofR(-) is non-negative foy = 3 andp < % O

Appendix B: Proof of Properties of the D.D. Coefficiekss, }

The main part of this appendix proves the three differentesgmtation for the d.d{\,,} which follows from
the power series expansion &f-) in (15). We also consider in this appendix some propertiethefpolynomials
P,(-) which are related to the third representation of the ¢X,}, and which are also useful for the proof in
Appendix C. Finally, we consider the asymptotic behaviorhef d.d.{\, }.

We start this Appendix by proving the first expression for the: ¢\, } in (64)—(65).

Proof: The first representation of the d.€l\,,} in (64) follows directly from the Lagrange inversion formubg
simply writing y¢(z) = = wherey £ A\~!(z) is introduced in (39), and(-) £ %@) is introduced in (65). We
note that)\, is the coefficient of:”~! in the power series expansion of the functidbfx) in (15).]
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The proof of the second expression for the d.4,} in (66)—(68) relies on the Cauchy residue theorem.
Proof: The functionA(:) in (15) is analytic except for three branch cuts shown in FigTke first branch cut
starts at one and continues through the real axis towardstynfirhe remaining two branches are straight lines
which are symmetric w.r.t. the real axis. They are located@lthe lines defined by = 1 + ¢(p)re™ =, where

A

c(p) 2 (4(1*1’)3)2/3 andr > 1. By the Cauchy Theorem we have
27p =

_ 1 Ak
An 75 dz, n>2 (B.1)

211 A

where the contour’ = I'; UT',UT'3 is the closed path which is shown in Fig. 6 and which is compo$éaree parts:

. r

Fig. 6. The branch cuts of the functior{x) in (15), and the contour of integration in Eq. (B.1).

the first part of integratioil';) is parallel to the branch cut at an angle6of, and it starts from the point = 1
on the real axis and goes to infinity along this line, so it capéd@meterized a%l“l cz=14c(p)r es + iw}
where0 < r < R andw — 07 is an arbitrarily small positive number (the straight lifig is parallel but slightly
above the branch cut whose angle6i® with the real axis). We later leR tend to infinity. The second path of
integration (I'y) is along the part of the circle of radiqs + c(p)Res | where we integrate counter-clockwise,

im
3

starting fromz = 1 + ¢(p)Res + iw and ending at = 1 + ¢(p)Re” 3 — iw. The third part of integration is a
straight line which is parallel to the branch cut whose angl# the real axis is—60°, but is slightly below this
branch cut; it starts at the poiat= 1+ ¢(p)Re™ 5 —iw, and ends at the point= 1 on the real axis (so the points
on I's are the complex conjugates of the pointson and the directions of the integrations odér andI'; are
opposite). Overalll' £ T'; UT', UT'3 forms a closed path of integration which does not containttinee branch
cuts of the function\(-) in (15), and it is analytic over the domain which is boundedtloy contourl”. We will
first show that the above integral ovEs vanishes as the radius of the circle tend to infinity, so in tmét lwhere
R — oo, we obtain that the integral ovér is equal to the sum of the two integrals ovér andI's. In order to
see that, we will show that the modulus &fz) — 1 in (15) is bounded over the circle| = R (when R is large),

so it will yield that forn > 2, the integralfF2 A(Qfl dz vanishes af — oo. To this end, we rely on the equality

(1 in(2) 1 ( VI 2)%
1 { — arcsin = — 1z —Z
S 3 arcs z 2%

- (zz +v1-— 22)_3]

S0 |sin (§ arcsin(z))| = O <\z\§) as|z| — oc.
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. . 1—z
By substitutingz’ = % 1(’£1 +p))3, then
o1 . 3v3 p(1— z)% 1 1
sin {3arcs1n ( 5 —11p) O<‘z”3> :O(]z]4>
and from (15),
|A(z) =1

41 —p) sin ! arcsin 27p(1 — 2)°/2
= ————:sl = 1 ——
3pv1—=z 3 4(1 —p)?
=0 (Jo7F |2fF)
= O(1).
From the last equality, it follows that
lim Az) — 1

R—o0 Ty zn

dz=0, ¥Yn>2 (B.2)

Now we will evaluate the integral over the straight life (and similarly overT's). Let

4 1=pP\°
et (LOZPIN s L w0t 20
27 p

then after a little bit of algebra, one can verify that

4\ 3 e sin (% arcsin(r%)>
AMz)—1= () : - (B.3)
b ra
so from the parameterization of, and (B.3), we obtain that
lim M dz
R—o0 T, Ak
4\ o0
. <) c(p) / 94 (B.4)
p 0 (1 +c(p)r e?)

wherec(p) is introduced in (67), and the functiagy(-) is introduced in (68).
Since the points o' are the complex conjugates of the pointsIon and the integrations ovél; andI's are
in opposite directions, then it follows from (B.4) that

lim A=) — 1

R—o0 Iy Ak

) o g

dz
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By combining Egs. (B.1)—(B.5) and (67) [we note tlagp) in (67) is real for0 < p < 1], we obtain that fom > 2

1
2y Jp 2"
1 -1 -1
= — < lim / A) dz 4+ lim )\(L dz)
2711 \ R—o0 I, Al R—o0 Ts Al
_ (4> s c(p) /*"o g (r) "
p 2mi | Jo (1 +c(p) r 67%)

- C o o) dr]
()l gy )
2 (ol ]
= {/m C +fp(>) 5" dr}

which coincides with the representation bf in (66)—(68).[]

The Proof of the third expression for the sequefigg} in (69)—(75) is based on the previous expression which
was proved above, and it enables to calculate the{d\gl} in an efficient way.
Proof. From equation (66), then we obtain that

> Mlp)

k=n+1

4 1_p 2 +o0 & 1
:_(% ) im / o) Y — L dr
P 0 k=n+1 (1 + ¢(p) re?>

_ 41 -pp? e (r)
__gﬁpcij) ‘|m{/0 res (1—ic(p)7”ei§r)n d"”}

) ol ]

where the last transition is based on (67). Therefore, byiphyiltg both sides of the last equality b(;%)% and
differentiating with respect tp, we obtain the equality

2B o)

k=n+1

—Lam{ [TAL 2 (1 et) ) o)

+o0
:ngc.lm / g(r). — 1 or
T op 0 (1+c(p)re%r)
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_ n dc 9mp
where the last transition is based on (66). The functioh introduced in (67) is monotonic decreasing(in 1],

and

0 25 (1—p)(1+2
e 25 ( p)(5+p) 0<p<i
dp 27 ps

so by combining the last equality with the previous one, iofes easily that

{( )Y e }-—na()Am1@) (B.6)

k=n+1

where 1
s 9 Oc_ 25 1+2p 1
4l -p?op 3 1—-p pi

a(p) (B.7)

From (B.6), we get that fon > 2
8 p 3
7 (3) 2 }

S () 2o {0 5 00)

m[n—l () = At (p)]

so, the following recursive equation follows far> 2

11—p 3 p(1-p) |,
(n—1—2 )-An(p) 152 “An(p)

1
( (4n — 3)p + (2n — 3)) An(p) = 3p(1 — P)A, (p)
2(1+4 2p)n

where transition (a) is based on (B.7), and the last two iians involve a little bit of algebra. We rewrite the
recursive equation as

[(4n+ 1)p+ (2n — 1)] Aug1(p) — 3p(1 — p)A, 11 (D)
201+ 2p)(n + 1)

(1 +2 L Based on the recursive equation (B.8) and the valug,6f),

>\n+2(p) = (B8)

for n > 1, and the initial value is\2(p) =
it can be shown that

(1 —p)(1 + 16p + 10p?)

A =
3(p) 8(1 + 2p)?

M(p) = (1 —p)(1 4 12p + 168p? + 164p> + 60p*)
wp)= 16(1 + 2p)?

and so on, which suggests the possible substitutipn (p) = % for a certain sequence of polynomials
{P.(-)},~;- Combining the last substitution with (B.8) gives rathesigathe recursive equation (72), and it
therefore justifies the existence of such polynomiglg:) in (71) which can be calculated recursively from (72)
with the initial polynomial Py () = % (the initial polynomial is determined from the value »f(-)). In general, it

is easy to verify from (72) that forn > 1, P,(-) is a polynomial of degre@(n — 1). Eq. (75) follows easily from
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(72), as if we substitute = 0 or p = 1 in (72), then the coefficient oP/(-) vanishes, so we obtain that for an
integern > 1 ( )
2n —1 9(2n +1
—— P, (0), Po1(1)=——""P,(1
2(n+1) (©0) +1(1) 2(n+1) (1)

where P;(0) = P(1) = 1. The closed form solutions faP,,(0) and P, (1) are given in (75)C]

We will prove now a property of the polynomials,(-) which will be useful for the proof of the positivity of
the power series expansion &f-) (see Appendix C).

Lemma 3:If for somen € N, the polynomialP,(-) has a zero in the intervd, 1], then the polynomiaP, ;1 (-)
has also a zero in the same interval.

Proof: Since from Eq. (75)F,(0) and P, (1) are both positive, then iP,,(-) has a zero ino, 1], then it follows
that the minimal value of,(-) over this interval is obtained at an interior poirt € (0,1). So, P,,(x,) < 0 and
P, (x,) = 0. Since (14 — 4n)x® + (20n — 4)z + (2n — 1) > 0 for n > 1 andz € [0, 1], then from Eq. (72),
Po41(zpn) < 0. From Eq. (75),P,+1(0) and P,,1 (1) are both positive, bub,, ;1 (x,) < 0, so the continuity of the
polynomial P, (+) yields that this polynomial has at least one zero inside titerval [0, 1]. [J

As a direct consequence of Lemma 3 and the equality in (71), bt&irothat if for a certain positive integer,
the value of)\,,(-) is positive in the interval0, 1), then fork = 2,3,...,n — 1, \i(-) should be also positive in
this interval. The above observation points towards onel@ialay of proving the positivity of the sequen¢g,, }:
show thatP,(-) is strictly positive for allx € [0, 1] for n sufficiently large. The following heuristic argument shows
that this should indeed be the case. Unfortunately thougsgems nontrivial to make this argument precise, and
therefore we will use in Appendix C a different route to atlijuprove the positivity of the coefficients.

Pn+1 (0> =

25

n=3, 10, 30, 100, 300, and the asymptotic exponent of Pn(x) where n goes to infinity

Log(Pn(x)/n

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

Fig. 7. Plots of o)) for the polynomialsP, (-) which are introduced in Eq. (72). In the limit where— oo, these curves converge
uniformly on [0, 1] to the functionf(z) = 2In(1 + 2x).

Our heuristic argument goes as follows. Consider Fig. 7 thubwsw for increasing values of.. This
figure suggests th 1 (PZ(I)) converges uniformly over the whole rangec [0, 1] to a smooth limit. In order to
find this limiting function, let us assume that approximately

In(C),
P, (x) = Cpe™@  where lim n(Cn) =0.
n—oo n
Then we obtain that
Poii(z) = Cn+le(n+1)f(r) — Cnﬂenf(x) el (@)

Pi(z) = Cone™@ f/(z).
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By substituting these asymptotic expressions in (72), waiolithe equation
(Cn+1> @) _ (14 — 4n)a? + (20n — 4)z + (2n — 1)

14z —227)f'
3nz(l+a—227) f'(2) . (8.9)
2(n+1)
Let us assume thdim,, .., ngl = 1 (this assumption will be verified later). Then in the limit whet — oo,
(B.9) yields the following differential equation
3
ef@) = 222 1 1004+ 1 — 5ol +a— 222) ' (x). (B.10)

From (B.10), it follows directly thatf(0) = 0 and f(1) = In(9). It can be easily verified that the solution of the
differential equation (B.10) ig(x) = 21In(1 + 2z) which in spite of the approximation suggested above coewid
with the limiting function ofw whenn — co (see Fig. 7). We note that the assumption tﬁg)ﬂ converges
to 1 can be justified from (75) as follows: for sufficiently large /
1
-o(5)

. Pu(l)  Pu(l) 11 (2n
TTenf) T gn 9 4n\ p

so the limit of% is equal to 1 as: tends to infinity. In a neighborhood of = 1, we obtain from the solution

for the asymptotic functiory(-) that

=11
94
We note that after after some straightforward (though teg)i@calculations, it can be shown from (72) that

Pl(1) = 12-9772 (n — 1) <2n>

4n n

Pu(x) (2”) (1+ 202", (B.11)

n

and hence it follows from (75) thaP/ (1) = @ P,(1). However, the approximation in (B.11) gives that
P! (1) ~ % P,(1) which is indeed a very good approximation to the equality ¥h@ get from an accurate analysis
(especially for large values of). We also note that if we fix the value of (for a large enough value of), and
we letp tend to unity (i.e.p — 17), then it follows from (72) and (B.11) that

(1 —p)Pu(p)

Ant1(p) = (Tt 2p)2

%
wl =
Sl=
R
= g
~—
_
|
I

which coincides with (76).
The asymptotic behavior of the df\, }: We will discuss now the asymptotic behavior of the d.4,} which
is given in Section V-B.2. We refer the reader to [3] which tetaan asymptotic expansion of a function around a
dominant singularity with the corresponding asymptotipansion for the Taylor coefficients of the function. The
problem in our case is that in order to get good approximatafrthe power series expansionxif) in (15) around
the dominant singularity (which is at 1), the function caneb@éended analytically beyond the radius of 1 for as
far as possible except for a cone around 1 (see the solid im&%y. 6 which are the branch cuts af-)). The
further one can expand the function around the dominanugnity, the more it is determined by this singularity,
and the Taylor series expansion around this singularity lvél very accurate for determining the behavior)of
starting from moderate values of For the function\(-) in (15), if we increase the value gfand make it closer
to 1, then unfortunately, the two other singularities\¢f) at z = 1 + c(p)e* s , wherec(-) is given in (67), move
towards 1 very quickly (e.g., ib = 0.8, then the other two singularities are located 8065 + 0.0112557). This is
the reason why by increasing the valuepothe asymptotic expansion kicks in for larger valuesidfee Fig. 3).
The proof of the asymptotic behavior of the d{d.,} goes as follows. I — 1, then the functiom\(-) in (15)
is approximately equal td — \{;—pz (since ifu = 0, thensin(u) ~ u andarcsin(u) = u). The coefficient ofz” in
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1

the latter function |s(_11%+1 (2) which is equal tol% 5T F(2"). Therefore, the contribution of the dominant
D n P 2n n

singularity of A(-) to the asymptotic behavior of,; (i.e., the coefficient o™ in the Taylor series expansion of

A(z)) is given by
1 1 i 2n
1—p2n—14"\n

n": 31 25 1 1
=——|[14+=-—-—"+——=+0(—= || B.12
2y/7(1—p) ( Ten st <n3>> ( )
This already gives the first term of the asymptotic behaviok,pin (73); based on our explanation above, it is a
tight approximation of the asymptotic behavior &f,(p) for rather small values of. As was mentioned above,
for larger values op, the other two singularities at » = 1 + c(p)e®s wherec(-) is introduced in (67) are very
close to the dominant singularity at= 1. In order to determine the asymptotic behaviot\gf 1 (p) for these larger

values ofp, we therefore need to take into account the asymptotic estparof the function\(-) around these
two singularities. After some algebra, one can verify theg behavior of the function(-) around its singularity

at z = 27 is like
N A A
Mz)m A() 21+ —— — :
Vp 2v2 1-p
and the behavior of(-) around its second singularity at= z, is like the complex conjugate od(z) (sincez;
and zo form a pair of complex conjugates). The influence of these twgusarities on the asymptotic behavior of

An+1(p) is therefore equal t@ Re{[2"]A(z)}, where[z"] A(z) designates the coefficient ef in the power series
expansion ofA(z). Calculation shows that for > 1

2 Re{[z"]A(2)}

o w1 (1 1))

1 1

31 25 1 1
(142242 2 ~ . B.1
( T30 128 n2+0<n3>) (B.13)

The sum of the two terms in (B.12) and (B.13) finally gives thengstptic behavior of\, 1 (p) in (73).

Appendix C: Proof of the Positivity of the Power Series Expansio)(-) in (15)

The functionA(:) in (15) is analytic except for three branch cuts shown in FigTi&e first branch cut starts
at one and continues towards infinity. The remaining two brasdre symmetric around the real axis. They are

. i _m\3 2/3
located along the line = 1+ c(p)re™ 3 wherec(p) = (%) andr > 1. By the Cauchy Theorem we have

1 A(2)
)\n-l-l - % f o+l dZ,

where the contour can be taken e.g., along a circle of radius< 1, enclosing the origin. Such a circle is shown
as dashed line in Fig. 8. Also shown is a modified contour of natign in which the circle is expanded so that in
the limit the integral wraps around the three branch cuts rjote that the path of integration in Fig. 8 is clearly
different from that one in Fig. 6). Note that the modulus)dt) is bounded so that for large values 8f the
integral around the circle vanishes Bs— oo [in Appendix B, we show that iR — co then|A(z)| < O(1) on the

circle |z| = R, so ’ j(i)l <0 (R,,}H).] Taking advantage of the symmetries in the problem, we ftee a little bit
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Fig. 8. The branch cuts of the functior(x) in (15), the original contour of integration of radiusr < 1, and the modified contour with
radius R tending to infinity.

of calculus that

. 1 [ Nz + €i)
+ el—l>r(§l+ i /1 Cogntl } (C.1)
wherec(p) is introduced in (67) and

sin (é arcsin( r4 el
h(r) £ lim Im

a—0+

(C.2)

1
T4

lim Re{ 1./ M d:z:}

e—0+ 7 Jq antl

— Iim Im { 1 / M dx}
e—0t ™ J1 l‘n+1

— lim |m{1/ )\(x—l—ez)—ldx}
e—0+ T Jq pn+1

— i L Im{A(z + €i) — 1}
_ /1

e—0t T gntl

Since

dx

then forn > 1, we can rewrite (C.1) in the equivalent form

—8(1 — 2 00
)\n+1 =Re 8(9 p) / h(r) A\ n+1 dr
pT 1 (1 + c(p)re%>
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® ImiA ) — 1
+ lim 1 / G tiz) J dx (C.3)
1 xn

and the functiom(-) in (C.2) can be expressed in a simpler way as

V3 <1+ 1—7«—3);— (1—\/ﬁ);]’

h(r) = —
r>1. (C.4)

4

Although we will not make use of this in the sequel, we notéd thahis representation, the function smoothly
interpolates\,, for non-integral values of.

We start by bounding the absolute value of the first term in tHS Rf (C.3). From (C.4), it follows immediately
that h(r) is positive and monotonic increasing infor » > 1, and that it is upper bounded By 5/3 (which is
the limit of h(r) asr — o). We therefore get from the non-negativity @fp) in (67) that

—8(1 —p)? [ h(r)
Re 9p7rp /1 (1 T ﬂ)n—i-l dr

p)re
25 (1 — p)2 /°° ‘ n
_— 1+ c(p)res
W (p)

—(n+1
S dr

IN

2:(1 - p)? /OO 2,2 -t

= —— 1+ + = d

W A (1+c(p)*r® + c(p)r) r

25 (1 — p)?
3\/§p7r

_ 2v3(1+ c(p))_"2 . (C.5)
péﬂ(n -1)

1

/100 (1+ c(p)’r)_% dr

IA

We note that (C.5) decreases by at most a fa when we increase to n + 1. We use this result later in

1+4c¢(p)
(C.12).
Regarding the second integral in the RHS of (C.3), we noteftrar > 1

lim ~ Im{)\(x Vi) — 1}

e—0t T

(C.6)

where

i3 1 i
t(u) £ 1m {e 4 sin (3 arcsin <ue‘4>) } , u=>0. (C.7)

Now, we rely on the inequality (which is verified graphically Fig. 9, see next page)

t(u) > flu) = cu———=u’>, u>0. (C.8)
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Fig. 9. A plot which verifies graphically the inequality in (C.8).
It follows from (C.6), (C.7) and (C.8) that

.1 Im{)\(m—l—ez)—l}
lim /1

e—0t+ T anrl

(wl)i 3p° /%1)3
w<1—p>/1 T R i TR B

_ T(n—3) 315 T(n—}) cs)
T2 —py/al(n+1) 16(1—p)y/al(n+1) .

Equality (C.9) follows from the identity
-1 T(a+1)T'(n-a)

/1 poES dx = T(n+1) ) l<a<n (C.10)
whereI'(-) designates the complete Gamma function [the integral inL.th8 of (C.10) can be calculated by the
substitutionz = ﬁ which transforms it tofol(l —u)"~ 2"y du, and then the latter integral is by definition
equal toB(a+1,n—«) whereB(-,-) deS|gnates the Beta function; this function is related eéoabmplete Gamma
Eténig;)i]hb}[/ the equalityB(m,n) = Fr(znm)+ J]. SinceI'(z + 1) = 2I'(z), andT (3) = /=, then we obtain from

. a

/°° (x-12 T3 I(n—3)
1

antl I'(n+1)
_ Val(n—3)
 2T(n+1)
/°°<x—1>3 e — TG T(—3)
o antt I'(n+1)
_ 105 yaT (n—13)
T 16 T'(n+1)

which confirms the equality in (C.9).
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We note that (C.9) (which forms a lower bound on the second tarthe RHS of (C.3)) decreases by at most a
factor1 — ﬁ uniformly overp when we increase to n + 1 (it can be shown by using the recursive equation
I'(z + 1) = 2T'(x) for the complete Gamma function).

From (C.3), (C.5) and (C.9) and sineg) in (67) is a monotonic decreasing and non-negative funaiar the
interval (0, 1), it now follows that if for a specifiex* € N and for allp € [0, p*]

I'(n*—3) _ 315p°T(n* — D
2(1 = p)ym I'(n* + 1) 16(1 —p)"y/m I(n* + 1)

1

2B+ clp) T
mps (n* — 1)

- 5 > ! (C.12)
2(n*+1) 1+ c(p*)
then \,,(p) > 0 for all n > n* andp € [0, p*].

In the following, we consider the positivity of the sequercg, (p)} for p € [0,0.95]. From the above bounds, it
follows that we can prove the positivity of this sequencedme band € [0, p*] by checking the positivity of only
a finite number of terms in this sequence (we note that this eumgiows dramatically for values @f which are
very close to 1). Assume we pigk = 0.95. By explicitly evaluating (C.11), we see that we need> 7957. From
condition (C.12), we get* > 4144, so a valid choice for the fulfillment of both conditions«#$ = 7957. Based
on (C.11) and (C.12), we conclude thgt(p) > 0 for all n > n* andp € [0,p*]. Forn < n* and allp € [0,1),
we will verify the positivity of the coefficient§\,,(p)} by alternatively showing that for < n*, the polynomials
P,(+) in (72) are positive in the interval, 1]. This equivalence follows from (71). First we can observe fi(@i%)
that sinceP, (0) and P,,(1) are positive for alln € N, then the polynomial$,(-) are positive in the intervdD, 1]
if and only if they have no zeros inside this interval. Henwgsed on Lemma 3 (see Appendix B), one can verify
the positivity of P,,(p) for n < n* andp € [0, 1] by simply verifying the positivity ofP,-(-) in the interval0, 1].
To complete our proof, we proceed as follows. We write

) (C.11)

2(n—1) ‘
Pap)= > " (p—po)’ (C.13)

=0
where for convenience we chogge= 3 (this will be readily clarified). Based on (69) whefg(p) = Z?ﬁ}fl) ag’”‘)pi,

it follows that Q)
b Pu”(po) _ 3 (J) o pi (C.14)

j>i

Therefore, from the recursive equation (70) 1{m§">} and from (C.14), it follows that all coefficientﬁ)l(")} are
rational and can be calculated from the coeﬁicie{ﬁ&”)} which are defined recursively in (70) and are rational
as well. Using an infinite precision package, those coeffisieah be computed exactly. By explicit computation,
we verify that all the coefficientbz(") are strictly positive forn = n* and0 < i < 2(n* — 1), and therefore it
follows from (C.13) thatP,-(-) is positive (and strictly increasing) in the intenjab, 1]. Forp € [0, pg], one can
verify from the conditions in (C.11) and (C.12) that;:(p) and P,(p) are positive forn > 57 andp € [0, po].
Combining these results, we conclude t#at(-) is positive in the intervalo, 1]. This therefore concludes the proof
that \,,(p) is positive for alln € N andp € [0,0.95]. Though not proving the positivity ok,,(-) over the whole
interval [0, 1), we note that the uniform convergence of the plots which @&giaed in Fig. 7 (see Appendix B)
and (71) strongly supports our conjecture about the pdyitof \,(-) over this interval.
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