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Abstract

A message independence property and some new performapeehgunds are derived in this work for erasure,
list and decision-feedback schemes with linear block codesmitted over memoryless symmetric channels. Similar
to the classical work of Forney, this work is focused on thevdéon of some Gallager-type bounds on the achievable
tradeoffs for these coding schemes, where the main nowltigd suitability of the bounds for both random and
structured linear block codes (or code ensembles). The dmare applicable to finite-length codes and to the
asymptotic case of infinite block length, and they are appigelow-density parity-check code ensembles.

Index Terms

Automatic repeat request (ARQ), erasures, error expondeatssion feedback, linear codes, list decoding, low-
density parity-check (LDPC) codes.

. INTRODUCTION

Exponential error bounds were derived and studied by Fofb®ly referring to the following two situations:

1) A decoder is allowed not to make a decision on a receivenb§i@r rejecting all estimates; this output is
called anerasure. When a decision is made, the event where the decoder dedssiacorrect is called an
undetected error.

2) A decoder is allowed to make more than one estimate of tbeiwed signal. The output of this decoder
forms a list of codewords, and the event where the transinittessage is not on the list is calledist error
event.

Throughout this paper, decoding rules for these two situatiare calledeneralized decoding rules since they
apply to the general setting where the decoder does not serdgsneed to make a single decision about the
codeword which was sent. As explained in [15], erasure astddptions may be useful when the transmitted
data contains some redundancy, when a feedback channehilabd®, or when several stages of coding (e.g.,
concatenation) are used. The size of the decoded list inifl8]lowed to vary according to the received signal.
This decoding rule differs from [14] and [36] where the siZdle list is predetermined and fixed.

By allowing a decoder to increase the probability of erasunethe first case, the undetected error probability
can be reduced. In the second case, by increasing the desidéne list error probability can be reduced. The
optimum decoding rules with respect to these tradeoffs vpeowided in [15] and they were analyzed via the
derivation of exponential bounds for random codes. Someogtimal decoding rules are analyzed in [20] and
[21] for random codes via a similar bounding technique, d&drandom coding error exponents under optimal and

This research was supported by the Israel Science Foundafiant no. 1070/07), and by the European Commission inrdmadwork of
the FP7 Network of Excellence in Wireless CommunicationE\WWCOM++).
Igal Sason is the corresponding author (E-mail: sason@amion.ac.il).



2 TO APPEAR IN THE IEEE TRANSACTIONS ON INFORMATION THEORY, AGUST 2010.

sub-optimal decoding rules are compared. It is noted tleattnsidered decoding rules are studied with respect to
a given code, and finding the optimal codes for these scenegimains an open problem.

Much of the current literature on the performance analy$isadles is focused on maximume-likelihood (ML)
decoding (see, e.g., [26] and references therein). Lowend® on the error exponents for fully-random block
codes under generalized decoding rules are derived in 18], [25], and [33]. Achievable error exponents are
provided in [30] and [31] for random codes with constant cosifion under some suboptimal decoding rules. An
upper bound on the error exponent under fixed-size listdiagas provided in [28]. The error performance under
fixed-size list-decoding is studied for specific codes in [4] and [24] where the communication is assumed to
take place over an AWGN channel. Additional (suboptimaBaténg rules with erasures are analyzed in [10] and
[11].

The analysis of error probabilities under generalized dewprules with erasures, enables the study of coded
communications with a noiseless decision feedback. Spaltyfiit is assumed that decoding erasures are followed
by a repeat request over a noiseless and immediate feedbackel. Such schemes are often referred to as hybrid
automatic repeat request (ARQ) systems. Unlike channe&aifypfor discrete memoryless channels, which is not
affected by feedback (see for example [7, p. 216]), a sigmfidmprovement is demonstrated in [15] for the
achievable error exponents. In this respect, the readdsasreferred to [19] where the error exponents of hybrid
ARQ schemes with limited retransmissions are studied. Tfeeteof feedback was also considered in [6], and it
was shown to significantly reduce the block error probapftitr discrete memoryless channels.

In this paper, upper bounds on the error probabilities umgereralized decoding rules are provided for linear
block codes over memoryless symmetric channels. Both aptand suboptimal decoding rules are considered.
When variable-size list-decoding is considered, uppembeuwon the expected size of the decoded list and the
associated error probability under list decoding are Ipidierived. In addition, upper bounds on the list error
probability are introduced for linear block codes when time ©f the list is fixed. The bounds derived in this
work are applicable to the performance analysis of spedifites, and code ensembles, via their (average) distance
spectra. The bounds are suitable for finite block lengthsadsml for the asymptotic case of an infinite block length.
The provided results are exemplified for two coding scherRaly-random linear block codes, and regular, binary
and non-binary, low-density parity-check (LDPC) code emsies with finite block lengths. An application to coded
hybrid-ARQ schemes is also exemplified.

This paper is structured as follows: The definitions of cllrsymmetry, generalized decoding rules, and some
of their basic properties, are provided in Section Il. Neyepbounds under the generalized decoding rules in [15]
are derived in Section lll. Error performance of suboptirdatoding rules are provided in Sections IV and V.
Some technical details are relegated to the appendices.

Il. CHANNEL SYMMETRY, GENERALIZED DECODING, AND MESSAGEINDEPENDENCE

In this section we introduce some definitions, examples, stattments related to channel symmetry, Forney’s
generalized decoding rule [15], and sub-optimal versi¢2k dnd [15]), as well as list decoding rules ([14] and
[36]). A message independence property is stated for thesedihg rules, which is used for the simplification of
the analysis.

Let X = {zo,x1,...,24-1} be a given alphabet with a cardinaligy We assume an addition operation)(over
the alphabett for which {X’, +} forms an Abelian group. Let, = 0 be the additive identity of this group. In
addition, let) be a given discrete (or continuous) alphabet. We assume eomnjless channel, and denote the
channel transition probability (or probability densitgspectively) function by(y|z), wherez € X andy € ).

Definition 1 (Channel symmetry). A memoryless channel which is characterized by a transjiibability p, an
input-alphabett’ and a discrete output alphalgtis symmetric if there exists a functiory : ) x X — ) which
satisfies the following properties:

1) For everyz € &, the function7 (-, z) : Y — Y is bijective.

2) For everyz;,z2 € X andy € ), the following equality holds:

p(ylz1) = p(T (y, x2 — x1)|32). 1)



E. HOFET AL.: PERFORMANCE BOUNDS FOR ERASURE, LIST AND FEEDBACK SCHEME®TH LINEAR BLOCK CODES 3

Remark 1. For channels whose output alphabet is continuous, an additrequirement on the mappingis that
its Jacobian is equal to 1In this case, the condition in (1) implies that

/Mmewz/fw@aa—mmwdy

Example 1 (Memoryless binary-input output symmetric channels). Consider a memoryless binary-input output-
symmetric (MBIOS) channel. Setting
T ={ ", 12}

-y x=1

then Definition 1 coincides with the standard definition of @& channels.

LetC = {xm}f;:l be a linear block code whose generator matrix #san full-rank matrix with entries over
X. The decoding rules studied in this paper are specified mgt@f decision regiond,,, 1 < m < ¢*, which are
all subsets ofy™. The conditional error probability of the:-th message is given by

Py = Y p(y|%m) 2

YEAS,

whereA,,, forms the decision region for the-th codeword, and the superscript ‘c’ stands for the complemary
set. The decision region of the-th codeword under ML decoding gets the form

A ={y : p(y[xm) > p(ylxm), ¥V m' #m} 3)

where ties are resolved randomly with equal probabilitysxeing equal a-priori probabilities for the transmitted
messages, the ML decoding rule minimizes the error proihabiven in (2). A well-known result for binary linear
block codes operating over MBIOS channels is that theirrggrobability under ML decoding is independent of
the transmitted codeword. This enables a great simplifiodti the analysis by assuming that the all-zero codeword
is transmitted. This result is generalized in [22] for nanavy linear block codes whose transmission takes place
over memoryless symmetric channels with discrete inputatpt.

When generalized decoding rules are considered, the deaisgionsA,, are not necessarily disjoint nor they
include all the possible received vectors. The former caseesponds to decoding rules with a possitdyiable
list-size, and the latter case corresponds to decoding evelsures. A list is produced by the decoder where the
received vector may possibly belong to more than one decigigion. An erasure event is declared by the decoder
when the received vector does not belong to any decisioromedihese concepts were first introduced in [15].
When generalized decoding rules are allowed, the conditibfock error probability?,, in (2) stands for the
probability of either an undetected error or an erasure. Wne decision regions are disjoint, the conditional
undetected error probability is given by

Pgm= Y >, plylxm). 4)
m'#myeN,

In addition, letF,,, denote the conditional probability of an erasure eventrgivetx,, is transmitted. Then

PX|m = Lgm — Pue|m

In the case where list decoding is considered, the deciggioms are not disjoint, anft,q,,, as given in (4) is

no longer a probability. However the RHS of (4) equals theditiomal expectation of the number of incorrect
codewords in the list (the same notatidR,y,,, is used in both cases to simplify the statement of the foligw
results). The optimum decoding rule with respect to theeoéfdbetween the error and the undetected error event
is derived in [15].

It is possible to use a generalized definition for both digcend continuous output alphabets using the notion of mynftanctions, as
done for example in [35, Section IlI-A].
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Definition 2 (Forney’s generalized decoding).Consider a block code over an alphabétand let{x,,} denote
its codebook. The generalized decoding rule is defined bydlteving decision regions:

A, = {y ey Pr(Y>Xm) ) > enT} (5)

Zm’;ém Pr(Y? Xm/

wherem is the index of the codeword; € R is a parametePr(y, x,,) denotes the joint probability that,, is
the transmitted codeword andis the received vector, and the summation is over all codgsvercept fork,,.

Remark 2. The decision region in (5) can be expressed equivalentlipénform

enT

Note that forT" = 0, this decision region includes all the vectgrs V" for which Pr(x,,|y) > % The a-posteriori
probability ofx,,, given thaty € A,, is received, is therefore larger than the a-posteriori @bdhy for any other
codeword. Hence, if a codeword is selected according to #wedkr with the decision regions in (6) with= 0,
then the same decision is made by a MAP decoder (as no othewood can get an a-posteriori probability larger
than %). This implies that the undetected error exponent for theder in (6) with7 = 0 cannot be smaller than
the error exponent of an ML decoder with equally-likely codeds. Interestingly, as will be shown later, we get
the same lower bound on the error exponents for both decodergover, it is shown that fof” = 0 the bounds
for the undetected error event and erasures coincides.

Remark 3. The threshold parametér in (5) controls the tradeoff between erasures and undetesmt®rs (or
average list size and decoding error). Setting- 0 guarantees that the decision regiadngs are disjoint.

Proposition 1 (Forney’s generalized decoding [15]) Assume that the decoding of a block code is carried according
to the generalized decoding rule in Definition 2. Then, therao other decoding rule that simultaneously gives
a lower error probability and a lower undetected error pbilig (or an average number of incorrect codewords
when list decoding is considered).

Remark 4 (On optimal generalized decoding of convolutional codgs Optimal generalized decoding of convo-

lutional codes, whose transmission takes place over mdessryhannels, is provided in [23]. This algorithm is
based on the decision regions in (5). Specifically, the &lgoris based on a modification of the standard Viterbi
algorithm, where the denominator in (5) is evaluated recels The optimality of the algorithm in [23] is based

on the optimality in Proposition 1.

The following proposition generalizes the message indégece property for the case of generalized decoding:

Proposition 2 (Message independence property for optimal generalized deding). Let C be a linear block
code whose transmission takes place over a memoryless amdedyic channel. Then, the block error probability
and the undetected error probability, under the genedhliigroding rule in Definition 2, are independent of the
transmitted codeword.

Proof: See Appendix A. [ |

Remark 5. In the case where list decoding is considered (i.e., thesitetiegions are not disjoint), then Proposi-
tion 2 holds when we refer to the conditional expectationhef htumber of incorrect messages in the list produced
by the generalized decoding rule, instead of the undetesrt@d probability.

The following suboptimal decoding rule is suggested in [fB]the case of decoding with erasures:

Definition 3 (Likelihood Ratio (LR) Decoding). Consider a block code over the alphaBgtand let{x,,} denote
its codebook. The LR decoding rule is defined by the followitegision regions:

ARy ey, D) o )
Pr(y, xm,)
where m is a codeword index]” > 0 is a parameterPr(y, x,,) denotes the joint probability that,, is the

transmitted codeword angl is the received vector, ants = mo(y) denotes the second most probable codeword
for each received vectgy.
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Remark 6. It is observed in [15] that the LR decoding rule may be a gogut@amation to the optimal regions in
(5), since the second most likely codeword is usually muchenpoobable than the rest of the codewords (excluding
the most probable codeword). It is also noted in [15] thad thiboptimal decoding rule is of practical utility.

Example 2 (Suboptimal generalized decoding).Consider the transmission of a binary linear block code aver
BSC. Given a received vectgr € {0,1}", the decoded codeword isif and only if

dH(x/a y) — dy (X7 y) > 21n (8)

for all codewordsx’ # x, wheredy(x,y) denoted the Hamming distance betweenandy, andr > 0 is an
arbitrary parameter. Otherwise, an erasure is declarasl.gasily verified that this rule is a particular case of (7).
The error exponents for this setting are studied in [2].

The following proposition obtains a message independermgepty for the suboptimal decoding rule in Defini-
tion 3:

Proposition 3 (Message independence property for (suboptimal) LR decodg). Let C be a linear block code
whose transmission takes place over a memoryless and syimmigannel. Then, the block error probability and
the undetected error probability, under the suboptimabdieg rule in (7), are independent of the transmitted
codeword.

Proof: See Appendix B. [ |

The following definition considers list decoding with a fixeide. Such a decoding rule is based on a fixed size
of the list (instead of a variable list size which charaatesi the decoding rule in Definition 2 with < 0).

Definition 4 (Fixed-size list-decoding).Consider a block code over an alphal¥®t and let{x,,} denote its
codebook. Given a fixed list sizk, the list-decoder is a mapping from the set of all possibéeixed vectors)™
to the set of all possible lists af codewords. This mapping produces the list whose likelilsoak the highest
among all other codewords. That is, given a received vegtar codewordk,,, is in the list if p(y|x..) > p(¥|%Xm)
for all m’ # m except for at mosi — 1 other possible codewords.

Assuming that the codewosd,, is transmitted, a block error event is occurred by the fixed-kst-decoding rule
in Definition 4, if the list produced by the decoder does nalude the transmitted codewotd,,. The following
proposition is analogous to the message independencerfyrapd’ropositions 2 and 3:

Proposition 4 (Message independence property for fixed-size list-decodiin Let C be a linear block code whose
transmission takes place over a memoryless and symmetaicneh Then, the block error probability, under the
fixed-size list-decoding is independent of the transmittedeword.

Proof: See Appendix C. [ |

I1l. UPPERBOUNDS UNDER OPTIMAL GENERALIZED DECODING

The transmission of block codes (not necessarily lineafiyss considered. In addition, throughout the paper, all
codewords are assumed to have a uniform a-priori probgbilit

Proposition 5. Consider the transmission of a codewith a block lengthn and M codewords, and lep(y|x)
designate the transition probability of the channel where C is the transmitted codeword ande )" is the
received vector. Then, the conditional block error proligbi Fy,,,) and the average undetected error probability
(P,e) under the generalized decoding rule in (5) satisfy

Pe\m < eHSTDB(maGZL737p) (9)

M
or 1 m
Pue S en(s I)TM Z DB(mv Gn 73710) (10)
m=1
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where(0 < s < p <1 are real-valued parameters;’ is an arbitrary non-negative function oV which possibly
depends on the codewosd,,, 1 <m < M, and

1—p
Dg(m, G, s, (ZG’” !xm)>
A\ P
(Z S plylxn) G y) 1 (M) . (11)

25 Py [Xm)
Proof: See Appendix D. |

Remark 7. Bounds (9) and (10) in Proposition 5 may be considered as argkzation of the DS2 bound ([9],
[27], [26]). In fact, settingl’ = 0 in (9) reproduces the DS2 bound under ML decoding. Note hew#vat for

T = 0, the decision regions in (5) do not coincide with those undérdecoding (e.g., in the former case there
are erasures).

The following corollary is a particularization of Propasit 5 for fully random block codes whose transmission
takes place over memoryless channels. The corollary repesdthe exponential upper bounds as in [15, Th. 2].

Corollary 1 (Random coding error exponents under optimum generalized deoding). Consider the transmission
of block codes over a memoryless communication channel withansition probability lawp. Then, under the
notation in Proposition 5, there exists a block code whichufianeously satisfies

P, < e "Bi(RT) (12)
Pe< e—nEg(R,T) (13)
where R = In M /n is the code rate (in nats per channel use),
A — oR—
Ei (R, T) = Ogsg/l)%})l(, o (Eo(s,p, qax) — pR ST) (14)

Ey(R,T) 2 E1(R,T)+T

Eo(s,p,qx) £ —In Z{(qu p(ylz)! S) <qu ply|z)> )p} (15)

yey TEX TEX
andqx is a probability distribution ove#t’.

Proof: See Appendix E. [ |

The bounds in Corollary 1 are derived in [15] without relyiag tilting measures. The current derivation relies
on the DS2 bound which makes use of tilting measures and Jenisequality. It is noted in [15] that setting
T = 0 in Corollary 1, provides the random coding error exponenGaflager [17]. Hence, as is mentioned in
[15], the random coding error exponent is attainable noy amder ML decoding, but also under the generalized
decoding rule in (5) witHl" = 0. The following proposition is a particularization of Prcgimon 5 for linear block
codes.

Proposition 6. Consider ar(n, k) linear block code& whose transmission takes place over a memoryless symmetric
channel. Assume that the channel input and output alphabets and), respectively, and let be the transition
probability of the channel. Then, the block error probapil. and the undetected error probabiliBje under the
generalized decoding rule in (5), satisfy

P < e”STD(g, 8, p) (16)
Pue é e_n(l_S)TD(g> S, p) (17)

whereg : Y — R is an arbitrary non-negative real-valued functiorg s < p < 1 are arbitrary parameters, and

A < 1—% p(y‘xm’,i) °
D(g,s,p) = (Zg(y)p(y())) (Z 11> 9w *pylo) <7p(y|0) > ) : (18)

yey m'#£0i=1ycY
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Proof: See Appendix F. |

Remark 8. When the decision regions are not disjoint (i.e., a list decds considered)P,e in (17) does not
denote a probability but the expected number of incorredeemrds in the decoded list. The block error probability
P, in (16) refers, in this case, to the list decoding error pholiig

Remark 9. The parameters andp in Proposition 6 may be chosen separately for the bounds@h gad (17).
However, the optimized choice of the two parameters is idahtn both bounds (since they only differ in the
multiplicative terme—"7).

The mathematical structure of the bound provided in theovatg corollary is similar to the Shulman-Feder
bound (SFB) in [29]. Because of this reason, this bound magdnsidered as a generalization of the SFB for the
generalized decoding rule in (5). To simplify the notatitine corollary is provided for the case of a binary linear
block code whose transmission takes place over an MBIOSnedthe generalization of the bounds to non-binary
linear block codes is performed similarly to the approacthim proof of [22, Theorem 2]).

Corollary 2. Consider arin, k) binary linear block cod€ whose transmission takes place over an MBIOS channel
with a transition probability lawp. Then, the block error probability’. and the undetected error probabilifye
under the generalized decoding rule in (5) satisfy

P, < e " (E0RO-£) (19)
Prc < e—n(E(p,R,CH%J) (20)

where0 < p < 1 is an arbitrary real-valued parameté¥,= (%) -In 2 is the code rate (in nats per channel use),

In(a(C

E(p,R,C) £ Eo(p) —p<R+ %) (21)

1 1 1 1 I+p
Bal) & - (50007 + o™ ) 22
a(C) & max _ Gl (23)

1<i<n 2-(n=k) (%)
and|C;| denotes the number of codewords whose Hamming weight is
Proof: Settings = ﬁ, and

1 a1 2\’ _ e
9(y) = { 5pWI0) ™ +5p(y[L) T | p(y|0) T+ (24)
in the bounds of Proposition 6, the proof follows in the sanayas in [26, Ch. 4.4.1]. |

Remark 10. In the case where the performance of an ensemble of lineak ldlodes is of interest, repeating the
derivation of Corollary 2 leads to the same upper bounds g49) and (20), where the cardinalitg;| in (23)

is replaced with its statistical expectation over the codesgd ensemble, and the codebooks of this ensemble are
chosen uniformly at random.

Example 3 (Error exponents of fully random binary linear block codes). Consider the transmission of fully
random binary lineafn, k) block codes over a memoryless symmetric channel. For thiscpkar case, the term
a(C) in (23) equals 1. As a result, it follows from Corollary 2 ththe exponent of the block error probability
(including erasures and undetected errors), denoteBbpatisfies

ol
> _ _ =
Be> uax (Eo<p> oR 1—|—p> (25)

whereEy(p) is defined in (22)R is the code rate (in nats per channel use), Anslthe parameter of the generalized
decoding rule in Definition 2. Setting = 0 in (25) reproduces the (non-expurgated) random coding exponent
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of Gallager [17]. This observation was first made by Fornaytli@ ensemble of fully random block codes [15].
The undetected error exponent, denotedHyy, satisfies

Ewe>T + 0123%(1 (Eo(/)) — pR — m) .

The lower bounds on the two error exponents are shown in Figr fhe case of transmission over a binary-input
AWGN channel withEs/ Ny = —2.8 dB (this ratio refers to the capacity limit for a rate of oraftbits per channel
use). The bounds are sketched as a function of the code mat&i§ per channel use). The lower bounds on the
error exponents for the case of decoding with erasufes ()) are provided in Fig. 1(a) fof’ = 0,0.025,0.05,0.1

and 0.15. For the case of decoding with a variable list-size<(0), the lower bounds on the error exponents are
provided in Fig. 1(b) forT" = 0, —0.05, and —0.1. In addition, lower bounds on the expondnt; = —(In N)/n,
where N is the expected humber of incorrect codewords in the dectistedire also provided for this case. Note
that the exponenk'y is negative above some rate. Only the region for which the@egpt £ is non-negative is
presented; the negative part Bfy, for which an upper bound on the size of the decoded list grexponentially
with the block length, is removed.

Definition 5 (Composition of a vector). Let ¢ be a vector whose components are symbols in an alphaloétsize
g. Let us assume without loss of generality tiéat= {0,...,q — 1}. The composition ok, denoted byt = t(c),
is a vectort = (to,t1,...,t,—1) Wheret, (for z € X) denotes the number of symbols drthat are equal ta:.

Definition 6 (Complete composition spectrum).Let C be a linear block code of lengthover an alphabet’. The
complete composition spectrum is the sequefiCe|} where|C¢| is the number of codewords whose composition
is t, andt ranges over the sét of all possible compositions over™.

Corollary 3. Consider an ensembéeof (n, k) linear block codes whose transmission takes place over sonyéss
symmetric channel. LeP(l) denote the probability that a vector whose Hamming weigtit ferms a codeword
in a randomly selected codebook frofn Assume that the average composition spectrum over all toles?,
uniformly selected at random froi satisfies

E [|ct|] = P(n —to) (:) (26)

Then, under the notation in Proposition 6, the block errabpbility P, and the undetected error probabiliBe,
satisfy

P. < et - Do(p,C) (27)
Pue < et Ds(p,C) (28)
where0 < p <1, and
p
_ n e
Di(p€) 2 Aoy | Y P)(})Blorteto) (29)
1<i<n

1 ) 1+p
A(p) & (5 > p(y\x)m> (30)
1 e
(5 Zp(y\x)m> (5 Zp(y\x)ﬁ> (31)

C(p) = qA(p) — B(p). (32)

Proof: Settings = ﬁ and choosing the tilting measugein (24), the proof follows from Proposition 6 in
the same way as in [22, Theorem 3]. [ |
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(a) Generalized decoding with erasures
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(b) Generalized decoding with a variable-size list

Fig. 1: Lower bounds on the error exponents and list-size exporfentthe ensemble of fully-random binary linear block codesose
transmission takes place over a binary-input AWGN chanrigi Wis/No = —2.8 dB. The lower bounds in Corollary 2 are sketched in
plots (a) and (b), for the generalized decoding rule in (Bhwrasures (i.eq” > 0) and with a variable list-size (i.€Z < 0), respectively.

Remark 11. For an ensemble dfinary linear block codes, the condition in (26) is not mandatorgp&ating the
derivation results in the same bounds as in Corollary 3 WtimfeermP(l)(T;) in (29) is replaced with the expected
complete composition spectrum of the ensemble.

Remark 12. The bounds in Corollary 3 are tighter than those in CorolaryHence, for a finite block length, the
bounds in Corollary 3 are more attractive even though thel the appealing exponential structure of the bounds
in Corollary 2.

Remark 13. As a particular case of Remark 7, settiiig= 0 in (27) reproduces the upper bound on the decoding
error probability of non-binary linear block codes under Mécoding in [22, Theorem 3].

The following comments concerns the numerical results shiomthe examples throughout paper:
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1) Expurgation of codebooks: The examples presented in this paper consider the perfaenaf some expurgated
ensembles of regular LDPC codes under generalized decadleg. Specifically, an expurgation of the
codebooks whose minimum Hamming distance is not larger @ahspecific valueD,, is assumed. As a result,
the expected complete composition spectiaffCy| |dmin > D,,] of a codebook which is chosen uniformly
at random from the expurgated ensemble, satisfies the follpwpper bound:

E[‘Ct’ ’dmin > Dn] S M (33)

— €

whereE[|Ct|] is the expected composition spectrum of the original (nqmuegated) ensemble, and

S Efel <en (34)

t: TL—tQSDn

The fraction of the removed codebooks is upper bounded,byn the following examples, the value of
€, IS negligible. For the (6,12) regular binary ensemble withck lengths ofn = 504 and 2004 bits,
€n = 3.6002 - 1075, and5.5058 - 108, for D,, = 40 and 160 bits, respectively. For the (8,16) regular octal
alphabet ensemble with a block lengthief= 1008 symbols andD,, = 80 symbols,e,, is around10~4.

2) Performance over the ANGN channel: For the AWGN channel, the results in this paper are providsd
function of the signal-to-noise rati% where E; is the energy per transmitted coded symbols, %qdis
the two-sided power spectral density of the additive whibés@. This comment concerns both binary and
non-binary codes.

Example 4 (Error performance of binary regular LDPC code ensembles uner generalized decoding with
erasures). Consider an expurgation of the binary and regular (6,12) Clw®de ensemble of Gallager [16] with
a block length ofn = 2004 bits. In this expurgated ensemble, all the codebooks whasemm distance is
not larger thanD,, = 160 are removed. Upper bounds on the block error probability gnmedundetected error
probability, under Forney’s generalized decoding withsaras, are studied based on Corollary 3. The composition
spectrum is upper bounded via (33) and (34), where the catipospectrum of the original (non-expurgated)
regular LDPC code ensemble is evaluated using the methaddebin [5], [32]). The bounds are provided for
several non-negative values dfin Fig. 2, assuming that the transmission takes place ovemnarybinput AWGN
channel. Note that if” = 0, the resulting bounds on the block error probability anduhdetected error probability
coincide, and they also provide an upper bound on the ML dagoetror probability. The results indicate that by
allowing an error probability that may be slightly higheaththe upper bound on the error probability under ML
decoding, significant improvement is guaranteed for thestewted error probability.

Example 5 (Error performance of binary regular LDPC code ensembles uner generalized decoding with

a variable-size list). The performance of the same expurgated ensemble as in Bxainpl studied here under
Forney’s generalized decoding with a variable list-sizepél bounds on the block error probability and the expected
number of incorrect codewords in the list, are evaluate@das the bounds in Corollary 3 for several non-positive
values ofT". These bounds are provided in Fig. 3, assuming a transmissier a binary-input AWGN channels.

It is evident that only a slight improvement in the error penfiance is possible by using the generalized decoding
rule.

Consider an expurgation of Gallager's ensemble of (8,1¢)lee LDPC codes [16] with an octal alphabet, and a
block length of 1008 symbols. Consider the case where thargaped ensemble excludes all the codebooks whose
minimum distance is not larger than,, = 80. The upper bounds on the error probabilities,

Example 6 (Hybrid-ARQ schemes over ANGN channels with non-binary LDPCcodes).Coded communication
systems with one-bit noiseless feedback are consideretevehgeneralized decoding rule with erasures is applied
at the receiver. Each decoding erasure is communicatedh@igeedback to the transmitter, which then retransmits
its message. It is assumed that each transmitted block e&lddseparately. Such a hybrid-ARQ system is described
and studied in [15], where the error exponents for randoningpdre provided. For the case where deadlines are
assumed, the error exponents for random coding are prowdg®]. For the sake of completeness, the specific
details regarding the numerical results presented in tkignples are surveyed in Appendix G. In this example,
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Fig. 2: Upper bounds on the block error and undetected block erabatilities under the generalized decoding rule in (5) withsures
(T > 0). The transmission is assumed to take place over a bingt-IAWGN channel. An expurgation of the binary and reguladZp
LDPC code ensemble of Gallager is considered, where thé& bmgth is 2004 bits, and the paramefey, which refers to the expurgation
is set to 160 (see Example 4).
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Fig. 3: Upper bounds on the block error probability and expected sizincorrect codewords in the decoded list, under the géimed
decoding rule in (5) with variable-size lisT'(< 0). The transmission is assumed to take place over a binapt-IAWGN channel. An
expurgation of the binary and regular (6,12) LDPC code ehderof Gallager is considered, where the block length is 208, and the
parameterD,, which refers to the expurgation is set to 160 (see Example 4).

the performance of hybrid-ARQ scheme based on octal-agtHabPC code ensemble is studied assuming that the
transmission takes place over the AWGN channel with 8-PSKlutation. Gallager's ensemble of (8,16) regular
LDPC codes [16] with an octal alphabet, and a block lengthQff8lsymbols is assumed. In addition, is it assumed
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that the expurgated ensemble excludes all the codebooksenmimimum distance is not larger thdn, = 80.
Lower bounds on the expected rate and upper bounds on theidgoerror probability are shown in Figs. 4(a)
and 4(b), respectively. Schemes with and without deadbmesonsidered. The results show that the lower bounds
on the expected rates drop considerably, beloyiN, = 3.6 dB. However, above this SNR, the introduction of a
single-bit, noiseless and immediate feedback allows toesetremarkable improvements in the error performance.
Take for example the case whefz/N, = 3.62 dB where the upper bound on the error probability under ML
decoding without feedback (see the curve for= 0 and Q = 1) is around10~2. For the same channel, if no
deadlines are assumed, the upper bounds on the error pitybake around2 - 1075, When deadlines of) = 2

and 4 total retransmissions (including the first transroigsare assumed, the upper bounds on the error probability
for the same channel aée10~* and3-10~9, respectively. For all considered schemes, the expectediederiorates

at this point by no more than 4%.

IV. UPPERBOUNDS UNDER SUBOPTIMAL DECODING WITH ERASURES
In this section, upper bounds on decoding error probadslitire derived for the suboptimal decoding rule in (7).

Proposition 7. Consider the transmission of a block ca€lef block lengthn and M codewords, and let(y|x)
designate the transition probability of the channel where C is the transmitted codeword ande )™ is the
received vector. Then, the conditional block error proligbi%,,,, and the conditional undetected error probability
Fyugm, under the suboptimal decoding rule in (7) satisfy

Pe\m SenSTDB(maG:Ln7sap)a OSSSPS 1 (35)

Pygm < €T Dg(m, G} s,p), 0<s<p<1 (36)
where Dg(m, G, s, p) is defined in (11), and>}" is an arbitrary non-negative function ovgf" which possibly
depends on the codewosd,, 1 < m < M.

Proof: See Appendix H. [ |

Remark 14. The upper bound on the block error probability in (35) cailes with the upper bound on the total
error probability provided in (9) under the optimal gened decoding rule. On the other hand, the upper bounds
on the undetected error probabilities under the optimalsadmbptimal decoding rules in (10) and (36), respectively,
are different.

The following corollary is a particularization of Propaeit 7 for the ensemble of fully random block codes of
lengthn and rateR whose transmission takes place over memoryless channels:

Corollary 4. Consider the transmission of block codes over a memorylessmunication channel. Then, there
exists a block code satisfying

Pe < e—?’LEl (R,T)

Pyo < e ME(RT)

whereR £ M is the code rate (in nats per channel ugg)(R, T') is defined in (14),

n

* Ay _
E3(R,T) = oc A (Eo(s, p,ax) — pR+ 8T>

Ey is as defined in (15), angly is an arbitrary probability distribution ovet.
Proof: The proof follows the same arguments as the proof of Coxollar |

The following bound is provided for the case of binary linbéwck codes whose transmission takes place over
an MBIOS channel (the generalization of the bound to nomdyitinear block codes, as provided in [22], is direct):
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(b) Upper bounds on the error probability

Fig. 4: Performance bounds of hybrid-ARQ schemes based on an etpdrgctal-alphabet and regular (8,16) LDPC code ensewittie
a block length ofn = 1008 symbols. The transmission is assumed to take place over a@Mdhannel with 8-PSK modulation. In plot (a),
lower bounds on the expected rates for memoryless hybri@ ABhemes with and without deadlines (see (77), and (75)ectsely) are
shown forT = 0.01 (and possible deadlines 6§ = 2 and 4 transmissions). In plot (b) upper bounds on the ermialility are provided
for the considered schemes.

Corollary 5. Consider arin, k) binary linear block cod€ whose transmission takes place over an MBIOS channel
with a transition probability lawp. Then the block error probability., and the undetected error probabiliie,
under the generalized decoding rule in (7) satisfy

—n(E(PvR’C)_lpTTp), 0<p<1 o

P.<e <
—n(E(p,R,C)—i—lpTTp)

Pe<e ,0<p<1 (38)

whereR is the code rate (in nats per channel use), &g, R,C) is defined in (21).



14 TO APPEAR IN THE IEEE TRANSACTIONS ON INFORMATION THEORY, AGUST 2010.

Proof: The proof follows from Proposition 7, and its derivation imsar to the way where Corollary 2 is
derived from Proposition 6. [ |

Remark 15. As in Corollary 2, the bounds of Corollary 5 resemble to th&S&nd they may therefore be considered
as a generalization of the SFB for the case at hand.

Remark 16. For all rates below some (finite) rate thresholds, the boimdorollary 5 on the decoding error for
linear block codes under the suboptimal LR rule in Definit&yncoincide with those under the optimal decoding
rule in Definition 2. To see this, observe first that the uppeurus in (19) and (37) are identical. It is left to
consider the upper bounds in (20) and (38) on the undetected robability. Note first thaty(p) — pR (Eo IS
defined in (22)) is a concave function 0f< p < 1, and it is optimized for rates below(1) atp =1 (see, e.g.,

[34, p. 135]). Moreover,l%p iS @ monotonic increasing function 6f < p < 1. This implies that if% < Ey(1),
then at all rates belowr)(1) — W — % the error exponents of the upper bounds in (20) and (38) aite b
maximized atp = 1, and they therefore coincide. A similar observation is pied in [21, p. 82] for the ensemble
of fully random block codes. Specifically, it is observed 21] that up to some rate threshold, the upper bounds
under the suboptimal LR decoding rule for the ensemble dy-fiaindom block codes coincide exponentially with

those provided by Forney in [15].

Example 7 (Error exponents of fully random binary linear block codes). Fully random binary and lineam, k)
block codes are considered where, as mentioned in ExampiéC3,= 1 (see (23)). For the particular case of
transmission over a BSC, the error exponents for the coresidensemble are studied in [2] and [3]. The lower
bounds on the block error exponents and the undetectedexponents from [2] and [3] are compared in Fig. 5(a),
and 5(b), respectively, to the bounds provided in Corolryrhe bounds are derived for a BSC with a crossover
probability of p = 0.07 and a decoding parameter= 0.03 (see (8) where these are the same parameters studied in
[2, Fig. 1]). The error exponent provided by Gallager for tlase of ML decoding is also provided for comparison,
in addition to the undetected error exponent under the @ptageneralized decoding rule. Apart from low rates,
where the bounds in [2] and [3] outperform those provided amallary 5, the latter bounds on the error exponents
lie in between the two previously reported bounds from [2] §] (see Fig. 5). Moreover, in the rate region beyond
the critical rate, where the bound in [2] outperform the abim[3], the derived bounds perform in close proximity
to the tightest known bound. The superiority of the undet&rror exponent under the optimal decoding rule is
clearly pronounced. As observed in Remark 16, it is evideat tor low to moderate code rates, the bounds under
optimal and suboptimal generalized decoding rules comcitbwever, as the coding rates approach the channel
capacity, the lower bounds on the undetected block errooreemquts under the suboptimal generalized-decoding, are
considerably loosened in comparison to the lower bound wtideoptimal generalized decoding.

Corollary 6. Under the assumptions and notation in Corollary 3, the bkreér probability P, and the undetected
error probability P, under the suboptimal decoding rule in (7), satisfy

Pe< e Dy(p,C), 0<p<1 (39)
Re<e i - Dy(p,C), 0<p<1 (40)
where Dg(p, C) is defined in (29).
Proof: Setting s = ?pp’ G"(y) = Ili=, 9(yi) where g is as defined in (24), the proof follows from
Proposition 7 in the same way as the proof in [22, Theorem 3]. [ |

Consider the particular case of binary linear block codessghtransmission takes place over the binary-input
AWGN channel with BPSK modulation. The bound of Divsalare($8] and [26, Sec. 3.2.4]) provides a closed-
form expression for an upper bound on the block error prditabinder ML decoding. The following proposition
provides a similar bound under the LR decoding rule in Dedinit3:

Proposition 8. Consider the transmission of a binary linear block code dikier AWGN channel with BPSK
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Fig. 5: Lower bounds on the block error exponents of fully-randomaby linear block codes whose transmission takes place @88C
with a crossover probability of = 0.07, under the suboptimal decoding rule in (8) with= 0.03. The lower bounds on the undetected
block error exponents in [2, Theorem 2], [3] (see also [2,0Fben 1]), and Corollary 5 (see (38)) are provided in plot tajjether with
Gallager’s random-coding error exponent under ML decodirif], and the lower bound on the undetected error expone@airollary 2
(see (20)) under the optimal generalized decoding rule. [dlver bounds on the error exponents in [2, Theorem 2], [3#l @orollary 5
(see (37)) are provided in plot (b) (the lower bound of Gadfafipr the random-coding error exponent under ML decodinglss provided
for comparison).

modulation, then the error and undetected error probesilitnder the LR decoding in (7) satisfy

n
. d FEg 2Fd nT
P < Z min ¢ exp (—nEe <E’ FO)) ,|Cal @ No S 2k (41)
d:dmin NO
n
. d Es 2Fd nT
Pe< dzd: min ¢ exp (—nEue <E’ m)) ,|Cal @ Ny + S 2k (42)
—0min N()
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whered,,;, is the minimum Hamming distance of the codeis the block length of the cod;;| is the number of
codewords whose Hamming weight equalg” is the decoding parameter in (7 is the energy per transmitted
(coded) symboI,NT0 is the two-sided power spectral density of the white Ganssi@se, and

Es A ES T§
Ee <57 N()> _ED <57 NO> 2 ’

Es Y ES T§
Re(s2) 2o (5 22) +

Es)a 1 gy @) 4 PO Es
ED<5,NO>— rn(5)+2ln(ﬂ+(1 B)e )+1—(1—5)5N0
s | Bs 2(1-9) 1—6)2 Es\? 1-0 Es
ﬂJ%é(le%@ﬁ( ") ((”m) _1>_T<1+Fo>
» In|Cyl ad
Tn(é)_Ta 0= —
Tz &
B+(1-p)(1-0)
Proof: See Appendix I. |

Example 8 (Error performance of expurgated binary and regular LDPC code ensembles under suboptimal
generalized decoding with erasures)Consider an expurgation of the binary and regular LDPC codembles in
Example 4 (with block lengths of 504 and 2004 bits). The uggmmd in (40), on the undetected error probability
under the generalized decoding rule with erasures in (7prézided in Fig. 6 assuming that the transmission
takes place over a binary-input AWGN channel. The upper dsumder the optimal generalized decoding rule are
also provided for a comparison, in addition to the upper lbounder the generalized decoding rule with= 0
(which coincides with the upper bound on the error probghbilnder ML decoding). It is evident that the resulting
bounds under the suboptimal generalized decoding ruleoaszhed in comparison to the bounds under the optimal
generalized decoding rule. This result is expected fronptiegious example where the undetected error exponents
are studied for fully-random linear block codes. In Fig 7% thpper bounds on the undetected error probability in
Corollary 6 are compared with those provided in Proposi8orThe provided bounds are for the binary regular
and expurgated LDPC code ensembles in Example 4 (with blegths of 504 and 2004 bits), and for a similar
ensemble with a block length of 10008 bits abg = 800. The parametef’ in (7) is chosen, for this comparison,
to be 0.0198, 0.0050, an@992 - 10~4, respective to the considered block lengths. It is evidbat the simple
bound in (42) is loosened in comparison to the bound in (40),0oly by a relatively small difference.

V. UPPER BOUNDS UNDER FIXEBSIZE LIST DECODING

In this section, upper bounds on the block error probabditg derived for the fixed-size list decoding (see
Definition 4). As mentioned in Section Il, the block error své this case corresponds to the possibility that the
decoded list does not include the transmitted codeword.

Proposition 9. Consider the transmission of a block catlevith A/ codewords of length, and letp(y|x) designate
the transition probability of the channel whetes C is the transmitted codeword agde )" is the received vector.
Consider the case where a fixed-size list decoder is usedewhersize of the list is denoted hy. Then, the
conditional block error probability’,,, given that them-th message is transmitted satisfies

1-p
Py, < (Z G?(y)p(y\xm)>
y
s P
(2 S S plylxa) GR(y) <p<y><m'>>‘)) | (43)

m'#m Yy
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Fig. 6: Upper bounds on the undetected error probabilities of sorpargated ensembles of binary and regular (6,12) LDPC cadédsr

the optimal and sub-optimal generalized decoding rule®)ratd (7), respectively. The upper bound in Corollary 6 ialested assuming
that the transmission takes place over a binary-input AW@&ahaoel. The upper bounds in Corollary 3, studied in Examplesd 5, are
also provided for comparison.
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Fig. 7: A comparison between the upper bounds in (40) and (42), ounbletected error probability under the LR generalized diecp
rule in (7). The comparison is provided for binary expurdasad regular (6,12) LDPC code ensembles of Gallager withkblengths of
504, 2004 and 10008 bits whose transmissions take placebovary-input AWGN channels with BPSK modulation.

where( < s < p < 1 are real-valued parameters, a6q' is an arbitrary non-negative function ovgf which
possibly depends on the codewotgl, for 1 <m < M.

Proof: See Appendix J. |
The following corollary is a particularization of Propasit 9 for the ensemble of fully-random block codes,
with fixed block length and rate, whose transmission takasgbver a memoryless channel:

Corollary 7. Consider the transmission of a block cadlever a memoryless communication channel. Then, under
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the notation in Proposition 9, there exists a block code whioeck error probabilityP, under fixed-size list
decoding satisfies

P, < e—nEr(R—%lnL) (44)
where R £ 12 js the code rate (in nats per channel use),
a _
E(R) = _max (Eo(p, qx) pR) (45)
1+p
Eo(pgx) = —In | Y (Z ax (z)p(y|z) 1“)
yeY \zeX

andqx is a probability distribution over the input alphab®t

Proof: Fix a probability distributionyx over X', and consider the ensemble of random block codes where each
codeword is chosen independently accordingidx) = ], ¢x(z;). First, we apply the bound in (43) for a
specific realization of a codebook, with= p and

s\ P
am(y) 2 (qu<x> (%) )

The proof follows by a random coding argument, and by chap#ie optimal probability distributior . [ |

Remark 17 (On comparison of the error exponent in Corollary 7 with previously known results). The upper
bound in Corollary 7 is compared to three previously knowsuhes:

1) The sphere-packing bound:The sphere-packing lower bound in [28, eq. 1.6] providesxqorential lower
bound on the error probability for fixed-size list-decodmigblock codes. The bound in Corollary 7 and the
sphere-packing bound exponentially coincide for all ratlesve the critical rate (where the maximization of
the random coding error exponent is achieved(fet p < 1).

2) Asymptotic upper bound: Consider the case where the size of the decoded list growmenrgially with the
blocklength, and denote the exponential growth rate of #@oded list by (i.e., L = ¢™ for somel > 0).
The following asymptotic upper bound is provided in [8, p618x. 27] for the case at hand:

lim sup — - lnP < —-E(R-1). (46)
It is easily verified that the bound in Corollary 7 asymptaliig coincides with the bound in (46).
3) A variation on the Gallager bound: The following exponential upper bound on the error probgbik
provided in [18, p. 538, ex. 5.20] for given block length aisl size (the same assumptions and notation as

in Corollary 7 are considered):
Py < e "Br(RL)

where

E(R,L) = 0</I)I<1%qu (Eo(p, ax) — pR). 47

The error exponents in (44) and (47) differ in the followingpacts:

a) For a fixed list-sizd., the error exponent in (44) depends on the block lemgtthile the error exponent
in (47) does not.

b) The maximization of in (44) is carried over the intervél, 1] while in (47) it is [0, L].

c) The bound in (44) includes an explicit rate reduction tewhich depends on the list size.

d) The derivation of the bound in (44) is based on a partizdtion of the DS2 bound in Proposition 9
for fully-random block codes. On the other hand, the deiiwvabf the bound in (47) is based on a
modification of the random coding bound [17] for the case aidha

The two bounds in (44) and (47) are compared in Figure 8. Tingssson of fully- random block codes over
a BSC with a crossover gf = 0.11 are considered, where equiprobable(z) = 5 T € X, is assumed.
The error exponenk; (R, L) in (47) is plotted for a list size of. = 16 codewords. In addition, the exponent
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Fig. 8: A comparison between the upper bounds in Corollary 7 and §1838, ex. 5.20]. Transmission of a fully-random binarydilo
codes (with independent equiprobable selection of codes) biver a BSC with a cross over probability pf= 0.11 is assumed. The
exponent term&, (R, L) in(47) is plotted for a list size of. = 16 codewords. The expone, (R — %ln L) in (44) is plotted for the same
list-size and blocklengths of 128, 256 and 1024 bits.

E(R—211InL) is provided for the same list size and block lengths of 128, @5d 1024 bits. It is observed

that for low rates the bound in (47) outperforms the bound4i).(For moderate rates, the bound in (44)
outperforms the bound in (47). The gap between the plottgsbreants is negligible as the block length
increases (even for a moderate block length of 1024 bits).

The following bound is provided for the case of binary linbéwck codes whose transmission takes place over
an MBIOS channel:

Corollary 8. Consider ar{n, k) binary linear block cod€ whose transmission takes place over an MBIOS channel.
Then, the block error probability’. under fixed-size list-decoding, satisfies

—nF( R+t 1n(a<c))

P.<e (48)

where
E(R) £ max (Eo(p) - pR)

andR is the code rate (in nats per channel udejs the list size, andZy(p) and«(C) are defined in (22) and (23),
respectively.

Proof: According to Proposition 4, it is necessary to analyze ohly ¢onditional error event assuming that
the all-zero codeword is transmitted. Setti@{(y) = [[\-, g(v:) in (43), it follows that

n(1—p)
< g(w)pylo)
yey
n—i i\ P
Z\cr (Z %p<y\o>> (Zg(y)l-%p@mkp(yroﬂ*) (49)
yey yey

where|C;| denotes the number of codewords whose Hamming distarice is i < n. The proof follows from (49)
by setting\ = —— whereg is as defined in (24) (see similar derivation in [26, SectiohH). ]
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Remark 18. For the particular case of fully-random linear block codls,bound in (48) coincides with the bound
in Corollary 7 for fully-random block codes.

Remark 19. The bound in Corollary 8 resembles to the SFB [29], and tloeeefmay be considered as a general-
ization of the SFB for the case at hand.

Remark 20. The bound in (49) can be generalized to non-binary lineackblcodes using a similar derivation
as in [22]. Note, however, that in [22], non-binary codes sttedied under ML decoding and not list-decoding.
Nevertheless, the similarity of the bound in (43) to the uppeunds derived in [22] allows to use the same
arguments for the case at hand (see Appendix J).

Corollary 9. Under the assumptions and notation in Corollary 3, the bkrcér probability probabilityP. under
fixed-size list-decoding wher®é denotes the size of the list, satisfies

P
1 n
n(l— n—I l
P < A(p)"09 (L > () Bor-co) ) (50
1<i<n
where A(p), B(p), andC(p) are defined in (30)—(32).
Proof: Setting s = %p and G'(y) = [1i.,9(vi) where g is defined in (24), the proof follows from
Proposition 9 in the same way as the proof in [22, Theorem 3]. [ |

Remark 21. In the derivation of the bound in (48), a sum is upper bounded product of the maximal summand
with the number of summands. This operation is avoided indérévation of the bound in (50). Hence, the bound
in Corollary 9 is tighter than the one in Corollary 8.

Remark 22. For the particular case of binary linear block codes, theraginy condition in (26) is not mandatory
and the bound in Corollary 9 follows by replacing the teﬁ(‘l)(?) with the distance spectrum of the considered
code (ensemble).

Example 9 (Error performance of an expurgated ensemble of regular LDPCcodes under fixed-size list
decoding). Consider the expurgation of Gallager's ensemble of binad/ragular (6,12) LDPC codes with a block
length of 2004 bits (see Example 4). Upper bounds on the @oak probability under fixed-size list-decoding are
shown in Fig. 9 assuming that the transmission takes plaee @binary-input AWGN channel. The upper bound
in Corollary 9 is evaluated for list sizes d@f = 1, 16, and 128 codewords. Note that the upper bound.fef 1
corresponds to ML decoding. The bounds on the error prababiow some marginal improvement by increasing
the considered list size fromh = 1 to 128. Similar conclusions can be observed for non-binary ensesnb

VI. SUMMARY AND CONCLUSIONS

This paper considers performance bounds for several demeetalecoding rules over memoryless symmetric
channels. Three types of generalized decoding rules argidared:

1) The optimal generalized decoding rule in [15] with erasuand variable list sizes.

2) The suboptimal likelihood-ratio (LR) decoding rule wiiasures (see [2] and [15]).

3) A fixed-size list decoding rule (see [14] and [36]) where tlecoder outputs a list which includes thenost
probable codewords (where the valuelofs set a-priori).

The independence of the error performance on the transimitbeleword is proved in Propositions 2-4 for the
considered decoding rules.

Upper bounds on the decoding error probability are providetese bounds are suitable for the analysis of
structured and random codes (or code ensembles) over mis®symmetric channels. Both binary and non-binary
code ensembles are studied in this paper under generakaxdithg rules. When binary codes are considered, the
bounds are based on the distance spectra of the codes, andnahédinary ensembles are studied, the complete
composition spectra are required under the symmetry adsamip (26). For the case of LR decoding of binary
linear block codes, a derivation of a closed-form expres&@rovided via a similar derivation to [9] which applies
to ML decoding.
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error probability

107 ‘
-2.6 -24 -2.2 -2 -1.8 -1.6
Es /N[J

Fig. 9: Upper bounds on the error probability for an expurgation afl&@er's ensemble of binary and regular (6,12) LDPC coditis &
block length of 2004 bits (see Example 4). A list decoder suased where the size of the list is setfioThe upper bound in Corollary 9
is provided for some values di, where the transmission takes place over a binary-input AWBannel.

Several particular cases of the provided bounds are studieel random coding error exponents in [15] are
reproduced. In addition, error exponents under the sulmaptLR decoding rule with erasures are also derived.
These error exponents are derived by applying the new botanfidly random block codes. Next, a derivation of
the error exponents of fully random linear block codes urmfgimal and suboptimal (LR) generalized decoding
is provided. The resulting error exponents under the sumaptLR decoding rule are compared with a recent
improvement in [2], where the ensemble of binary fully ramdiinear block codes over binary symmetric channels
(BSC) is studied. This comparison shows good match with towiged error exponents with the results in [2].
In addition, it is shown that the error exponents for theyfuindom linear block codes under the suboptimal LR
decoding rule, coincide for low rates with the correspogdinror exponents under the optimal decoding rule. This
is similar to an observation in [21], where the ensemble 8§ ftandom block codes is considered. A lower bound
on the error exponent under fixed-size list-decoding is sigdied as an application. This bound is compared to the
sphere-packing lower bound on the error probability [281] &wvo additional upper bounds on the error probability,
provided in [8] and [18].

Applications of the bounds for the performance analysismifcsured code ensembles are further exemplified for
some expurgated ensembles of (binary and non-binary) ae¢pi-density parity-check (LDPC) codes. The error
performance under some generalized decoding rules foe thB®C code ensembles is studied assuming that the
transmission takes place over memoryless symmetric clieaniiee application of the provided bounds for the study
of hybrid automatic-repeat request (ARQ) schemes is alsnodstrated. The possibility of further investigating
and optimizing the trade-offs between undetected erroreandures is suggested for further study in the context
of linear block codes, based on the derived bounds.

APPENDIXA
PROOF OFPROPOSITION2

The following proof holds for memoryless symmetric chasnelth discrete-output alphabets, and the general-
ization to continuous-output alphabets is direct. We dfiese the following technical lemma:

Lemma 1. let x1, x9, z3 be arbitrary symbols int’, and letp be a transition probability law of a memoryless
symmetric channel. Then,

p(T(T(y,xl),x2)|x3> =p(T (y, z1 + z2)|23)

where7 is a mapping which satisfies the properties in Definition 1.
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Proof: the reader is referred to [22, Appendix A]. |
Assuming that all the codewords are sent with equal proinghihe decision regions in (5) satisfy

NRCD (L=
Zm/;émp(y|xm/)

®) [Ti1 p(yil©m ) .
=3y 7 >e
{ Zm/;ém Hi:l p(yi|$m’,i)

© ) [T p(T (yi, —m,)|0) T
- {y' Zm’;«ém [Ty (T (yis —2mr,3)|0) 2 e } (51)

where (a) follows from (5) and the equal a-priori messagédaldity assumption, (b) holds since the channel is
memoryless, and (c) follows from the symmetry of the charfseé (1)). Letz = (z1,..., z,) be defined as

2 =T (yi,—wmi), 1<i<n (52)

wherem is the index of the transmitted codeword. From Lemma 1, ibfes thaty € A,, if and only if z € A,,

where
- 7?_ . 0)
{ zm’;f'ﬁm Hi:l p(7 (zi, Tm,i — xﬂ%i)’o)

Using the linearity of the code, it follows that

A n Hﬂzlp(ziyo) nT
Ay = : oL > .
{Z“’ >0 LIy P(T (1, 0)]0) — © }

Since the sef\m is independent of the index, then

Ay =AMy forall 1 <m <. (53)
As a result, the conditional block error probability of theth message in (2) satisfies

P = Y, p(2/0)

ZEAE,L
W'S™ p(]0)
zEAS

where (a) follows from (53). This concludes the proof of thessage independence property for the block error
event.

We continue in proving the message independence propertyhéo undetected error event (or the expected
number of incorrect codewords when list decoding is comsidle Assuming a memoryless symmetric channel, it

follows from (1) and (4) that
ue|m - Z Z ’Xm

m/'#myeN,
Z Z Hp yw —Tmyi |0) (54)
m'#Fmy€eN,, i=1
where from (51)
Hn—l (7 (yi, —Tm i)|0) T
Ay =1y: = : > 5.
{ Zm”;ﬁm’ Hi:l p(T(yl7 _xm//7i)’0)

Let z be a vector defined as in (52), then from Lemma 1

p(T(y,-, —xm/ﬂ-)\O) = p(T(zi,wmvi — wm/,i\O), t=1,...,n.
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Hence, given thak,, is the transmitted codeword, thenc A,,,, for somem’ # m if and only if z € T, ,,,, where

Fm,m’ AL {Z e yn . Z H?:l p(T(ziyxm,i _xm’,i)|0) )’0) 2 enT} ) (55)

m”;ﬁm’ H?:l p(T(Z“ xm’i — xm”,i
From (52), the conditional undetected error probability54) is rewritten in the form

Pgm= >, Y. plz/0). (56)

m'#m z€l',, ./

Using the linearity of the code, then,, ; — Ty ;i = (Tm,i — T i) + (T i — T i) = @1, + 24, for some indices
I, andly which correspond to non-zero codewords. ket x;, andx = x,,, then the conditional undetected error
probability in (56) is expressed equivalently in the form

Pue|m = Z Z p(Z|0)

x€C z€l'(x)
x#£0
where, based on (55),

a " [Ty p(T (2, 2:)|0) nT
oo = qze Yt Sxee I, (T v+ 2010~ ©

This proves the independence property for the undetected event, and it concludes the proof of Proposition 2.

APPENDIX B
PROOF OFPROPOSITION3

Similarly to Appendix A, also the following proof considareemoryless symmetric channels with discrete-output
alphabets, where the generalization to continuous outjpitabets is direct. Lep be the transition probability
function of the considered channélbe an(n, k) linear block code over an alphabet whose cardinality, isnd7”
be a mapping as specified in Definition 1. It is assumed thahaltodewords of are sent with equal probability.
For an arbitrary sef C Y™ and a codeworc,, € C, let

Zn(A) 2 {z ey (T(Zl,xm’l),T(ZQ,(L'mz), ... ,T(zn,xm,n)) € A}. (57)

In addition, we use the notatiohR(x,,,) for the decision regiom'R in (7) of the codewordk,,. Note that for the
concerned decoding rule withi > 0, the decision regions are disjoint. The following techhleenma is introduced:

Lemma 2. Let Z,, be the mapping defined in (57), andR be the decision region in (7). Then,

Zm (A';E) = AR(xp —xp), Ym,m' e{1,...,¢"}. (58)
Proof: Let us choose € Z,, (AL}), and lety = (y1,...,y,) be defined via the equality
Yi = T(ziyxm,i)> = 17"'7”' (59)
From (7) and (57)
p(y‘xm;) B

wherex,, andx,,, are the most probable codewords, in a descending ordey, &sr a received vector. Using the
symmetry of the channel, it follows from (1) that

P(y|xm) = p(2[Xm — Xpm).

As a resultx,,, —x,, is the most probable codeword4fis the received vector (otherwise, if there exists a coddwor
X # X — X, Which is more probable, then there exists a more probableweod fory which is different from
X). The same argument shows that, — x,, is the second most probable codeword Zpmand

p(z[Xm — Xm) nT
p(z‘xm; - xm) o
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This verifies thatz € A"R(x, — x,,) Which shows thatZ,, (AL}) € A"R(x, — x;,). To show the opposite
inclusion, which then yields that these two sets are eqet £ A'R(x,,, — x,,,). This implies that the codeword
X — Xm 1S the most probable codewordi4fis the received vector, and

p(z[Xm' — Xm) > nT
p(2[xXmy)
wherex,,,; is the second most probable codeword forAgain, using the symmetry of the channel, for a vector
y as in (59), it follows thatx,, is the most probable codeword fgr x,,; + x,, is the second most probable
codeword fory, and
POIw)
Py [Xmy +%m) —

As aresultz € Z,, (A5}), which yields thatA\'R (x,,, — x,,,) € Z,, (ALY). This concludes the proof of (58).m

From (59), the conditional block error probability satisfie

P = Y p(ylxm)

yEALR

zZAR(0)

where (a) follows from (1) and (59), and (b) follows from (5&his proves the message independence property for
the conditional block error probability. Using the sameusingnts, the message independence property is established
for the conditional undetected error probability:

Pugm = Z Z (¥]%m)

miFmyens

= > > »po

m'#m gz, (ALK,

- > Y. p(zo)

m'#m zeAR(x,, — xm)

=ZZ

x € (C zeEAR(x
x#0

where the second equality follows from (59) and since thepimap? is bijective, the third equality follows from
(58), and the last equality follows from the linearity of tbede.

APPENDIXC
PROOF OFPROPOSITION4

Considering ties as error evefitshe conditional block error probability for a list of siZe satisfies

Py = > p(ylxm) (60)
yEAL
where
£ {y ey El{mi}iLzl st.m; Zm, p(y|xXm,) = p(y|xm) V1<i< L} (61)

is the complementary of the decision regionsgf € C under list decoding of fixed-sizé (here {m;}~, is a
sequence of distinct integers), i.e.yifc AL then the codeworet,, is not included in the list for a received vector

2Such a pessimistic assumption is reasonable, see also larsissumption in [34, p. 59].
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y. Using the change of variables in (59), it follows from (6Bt for linear block codes whose transmission takes
place over memoryless symmetric channels

Pym= Y plz]0)

z€Z,,(AL)
where Z,,, (AL) is as defined in (57). The following lemma concludes the pafdProposition 4:

Lemma 3. Let Z,, be a mapping defined in (57), arid;, be the decoding region of,, € C under list decoding
with a fixed sizeL. Then,

for all 1 < m < ¢*, whereAf is the complementary of the decision region of the all-za&xdesvordx; = 0 under
list decoding of sizel..

Proof: Let us choose € Z (Aﬁb) From (57), there existg € AL where
i =T (21, %my), i=1,....,n (62)
and7 is a specified in Definition 1. From (61), there exists a listLoflistinct codewords{xmi}le, for which
p(y[xm,) > p(ylxm), i=1,...,L. (63)
Using the symmetry of the channel, it follows that
p(2|Xm, — Xm) > p(z|0). (64)

This assures that € AL, which shows thaz,, (A%) C A}
Next, in order to show the opposite inclusion, et AIL. Then, there exists a list af non-zero codewords

{Xmi}le. m; # 1, satisfying
p(z[xm,) > p(2]0)

and therefore from the symmetry of the mappihgand the equality in (62), we get
P(Y[%m, +Xm) > p(y[xm)

It assures that € Z,, (AL) which implies thatA? C Z,, (AL). This two inclusions complete the proof of the
lemma. |

APPENDIXD
PROOF OFPROPOSITIONS

Let A,, be the generalized decision region as defined in (5).yF@rA,,, it follows that

1= enTe—nT < enT ( Z ];((};,H);TZL’)) ) (65)

m’'#m

Let s andp satisfy0 < s < p < 1, and recall the following inequality (see [34, p.197]):

doai< (Z *) (66)

which holds ifa; > 0 and0 < X\ < 1. Setting
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it follows from (2), (65) and (66) that the conditional erqmrobability of them-th message satisfies

Py < "™ 3" plylxm) (Z ply ) (67)

YEAS, ’;ﬁm
A\ P
X’ P
SenTs Z p(y|xm) Z <p(Y| m)> )
yer it \P(Y )

Let ¢/ (y) designate an arbitrary probability tilting measure (whiohy depend on the transmitted codeword),
then it follows that

A\ P
Pap < @7 4l ()0 (v) ™ ply ) ( 2 (M) )
y

i \P(Y[Xm)

A\ P
< Y g (y) (wmy)ip(yxm)i ) (W)) .

Next, invoking Jensen’s inequality gives

A\ P
Pe| <enTs (Zwm (yyxm)% Z <I;(yxm/)>p) )

This concludes the proof of (9) by setting

G (y)p(y|xm)
>y Gr(y)p(y|xm)

whereG)'(y) is an arbitrary non-negative function.
An undetected error event occurs if the received vectordiided in the decision region of a codeword which
differs from the transmitted codeword. Consequently, therage undetected error event satisfies

= £35S syl (69)

m=1yeA,, m'#m

n'(y) =

(68)

Note that in the case where list decoding is considered {he.decision regions are not disjoint), the LHS of (69)
is no longer a probability. However, for the latter case #upression equals the expected number of incorrect
codewords in the decoded list. It follows from (69) that fox s < 1, the undetected error probability satisfies

Pa= 3y 3 5 slvla) ) wmp(y"‘m'))S(Em@émpmxm/))l—s

ooyl (¥ |%m) Py [Xm)
M
nT(s—1) 1 p y\xm
< om0 LS S iyl | 3 (70
m=1 Yy ’;ﬁm

where the last inequality holds since forec A, and0 < s <1

1-s
p(Y|Xm) nT(1—s)
> e .
(Zm/;ﬁm p(yyxm’)>

The rest of the proof follows in a similar way to the derivatiof (9) when comparing the bound in (67) with (70).
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APPENDIXE
PROOF OFCOROLLARY 1

Consider the ensemble of fully random block codes of lengymbols where thé/ = " codewords of a
codebook are chosen independently at random accordingtprtbability distributiongx on X™.

Let Dy yn, (m G s,p) denote the functionaDg(m, G}, s, p) in (11) where the dependence on a specific
codebook{x; }, is expressed explicitly. Given a fixed codewotg, for the m-th message, the expectation over
the otherM — 1 codewords on the right-hand side of (9) gives that(fof s < p <1

> (H QX(Xi)) Dy, (m, G s, p)

i\ {xm}

1—p
(oo
AP
m 1—- ; p(y|xm/) °
(Z 2 axloxn) Z Yhem)GR ) (p(YIxm)> )

m/Z£m X!
1—p
(ZGm Y|Xm)>
- plylx) \ 7\
(;qx )2 PR <<y|xm>>> o

where (a) follows from (11) and by invoking Jensen’s ineguaNext, by substituting the non-negative function

S (2522)°)

X

Gr(y) = (

in (71), one obtains that far < s <p<landm=1,...,. M

Z (H QX(Xi)) Dy iy (m, Gy, s,p)

bl \{xm}
s\ P
M =173 plylxm) (Zq ( ;Em))y)

By averagingD,n (m, G}, s, p) over theM codewords, we get that for every index (1 < m < M)

M
> (H qx(xi)> Dy, (m, GiYy s, p)
=1

= Z ax (%m) Z (H qX(Xi)) D{xl}f‘i] (m, Gy, s,p)

{xi}?il\{XM} i#m

x) )7\
M—=1)7> "> gx(%m)p(y1%m) (Zq < ;I!xm)> )

y X’VYL

~ar -0 S { (S axtontont) (Saxemisnr) | 72

Since the right-hand S|de of (72) does not depend on the indethen this bound also applies to the expectation
of the quantltyM Z 1 Dixym (m, G, s, p). Therefore, there exists a block code for which the valuehaf t
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quantity is not larger than the average over the considensdrmble, i.e.,

M
MZ D{x}“ (’I’)’L Gnv 5P )

m=1

< (M Z{(qu plylx)' ) (qu p(ylx')? ),,} (73)

From (9), (10) and (73), it follows that the above block codésfies simultaneously
| M
Pe = M mzz:l Pe|m

M
1
< GHST : M Z D{xm}fil (’I’)’L,GZL,S,,O)
m=1

<e™T(M Z{(qu p(yx)'~ ) (qu p(ylx’) %>”}
< T HeR) Z{(qu p(ylx)* S) (Zq (x')p (yIX)%>p}

x’/

= e_n(EU(svp7QX)—PR—ST)

and

p < el Z{(qu Pyl ) <qu plylx) %)p}

_ o—(Bo(s.pax)—pR—(s-1)T)

where the last two equalities follow from (15), and since ithygut distribution and the channel are assumed to be

memoryless, i.e.,
n
plylx) = Hp vilzi),  ax(x) = [ ax ().
i=1

The proof of Corollary 1 is completed by optimizing the bosmder the parametersands (where0 < s < p < 1)
and the input distributioryx. This gives the exponent8; and F» in (14) for the upper bounds oR. and P,
respectively.

APPENDIXF
PROOF OFPROPOSITIONG

The bounds in Proposition 6 are derived from Proposition follews: setting

p(ylx) = Hp yilw:)

and

Gy) =[] ow)
i=1
in (11), and relying on the useful rule for interchanging samal product sign$ ¢ I fly) =11, > i),
one gets from (9) the RHS of (16) as an upper bound™gin Since the considered block code is linear and the
communication channel is memoryless and symmetric, theddau (16) follows from the message independence
property in Proposition 2. The derivation of the bound in)(i&lies on (10) where it is first proved that for a
linear block code whose transmission takes place over a my#se symmetric channel, the resulting expression
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for Dg(m, G, s, p) is independent ofn. To this end, letZ be a mapping as defined in Definition 1, then for all
1<1<n

> o) Falglon) (M>

p(y‘xm,i)

m'#myey

. 1—% o p(T(yy_mm,iﬂmm’,i_xm,i) %
—m%:m%/g(y) p(7(y, m,Z)|O)< (T (y, ) |0) )
_ =2 oy (P12 ;

=33 u i o) (255

As a result, it follows that for a memoryless and symmetriarotel

M
1
M ZDB(m7Gzla37p) :D(9737p) (74)

m=1

where D(g, s, p) is introduced in (18). The proof of the upper bound Br as given in (17) is completed by
substituting (74) in (17).

APPENDIX G
ERROR AND RATE PERFORMANCE OMHYBRID-ARQ SCHEMES BASED ON GENERALIZED DECODING WITH
ERASURES

The following discussion is provided in [15] and [19], andsitsurveyed here for the sake of completeness.
Since Forney’s generalized decoding rule (5) with a pasitiglue ofT" is used in the context of erasures, the
resulting decision regions at the receiver are disjoind, #tne erasure probability?; for a single block transmission
is given by
Py = Pe— Pee

where P, and P, are, respectively, the (total) block error probability amttietected error probability for a single
block transmission. The erasure probability is studiedanaupper bound on the error probabili. Assuming

a noiseless and immediate feedback, for the case where rlird=aare considered, the expected rate of the
considered system equals

(1-P)R (75)

where R is the rate of the codebook used (in units of bits per chanse) tor a single block transmission. The
error probability of this scheme is given by
Pue
1- P

Note that the replacement d¥ in (75) and (76) with an upper bound ar, provides a lower bound on the
expected rate and an upper bound on the error probability.

For the case where deadlines are considered)!éf) > 1) be the maximal number of block retransmissions
(including the first transmitted block). Each transmittddch is decoded separately using Forney’s generalized
decoding rule with erasures. Such a scheme is termed messerin [19] (note that the ARQ scheme without
deadlines, studied in [15], is also memoryless in this serigecases wher&) consequent block transmissions
occur, then the generalized decoding rule is replaced ®iakt (0-th) retransmitted block with an ML decoder.
As a result, the expected rate and error probability, dehbjeR(Q) and Pe(Q), respectively, satisfy

B R
R(Q) - gz_ol (Px)k
_RQA-F)
1= (R )

(76)
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and
Q-1
Po(Q) =Y (B)" ' Re+ (B)9 P
k=1
(1= (B9 Pe
- 1— P

where PMt is the block error probability under ML decoding for the ciolesed code (while referring to the
decoding of the last retransmitted block separately). Nl in the limit where) — oo (no deadlines), then (77)
and (78) tend asymptotically to (75) and (76), respectivBigplacingP in (77) and (78) with an upper bound
on the (total) error probability?, results in a lower bound on the expected rate, and an upparbon the error

probability, respectively.

+ (B)“ P (78)

APPENDIXH
PROOF OFPROPOSITION7

Proof of the upper bound on the conditional error probability in (35)
Let ALR designate the decision region in (7), then the conditionalrgorobability is equal to

P = Y pylxm).

yEAR
Fory ¢ ALR, the decision rule in (7) implies that

p(y|xm) nT
p(y[xm,)
wherex,,, is the second most probable codeword, and therefore

onT Z pylxm

(m%:mp Y [Xm) )

and the conditional block error probability satisfies

Pep < "7 " p(ylm) ( Z ply ) (79)

y m;ém

Let s > 0, then fory ¢ ALR

The bound in (35) follows from (79), using the argumentsdwihg (67).

Proof of the upper bound on the conditional undetected error probability in (36)
The conditional undetected error probability is given by
Pugm = ZP(Y|Xm)
yeL
where
LE{y:3m #m, pylxm) = " p(ylxm)}

andx,,, is the second most probable codeword #0y|x). Sincep(y|x,,,) > p(y|xn), then

Ly :3m #m, p(y[xm) > e p(ylxm)}



E. HOFET AL.: PERFORMANCE BOUNDS FOR ERASURE, LIST AND FEEDBACK SCHEME®TH LINEAR BLOCK CODES 31

and therefore

Py [%Xm)
p(y|xm)

—nT Z p y’Xm

yel = 3Im #m, e >

= VsZO,e_"Ts Z% >1
PLY | Xm

m/#m

As a result, the conditional undetected block error prdiiglsatisfies, for alls > 0, the following upper bound:

S

P <7 Y plyln) | 32 5 y’x’”

y m;ém

The rest of the proof of (36) is, again, similar to the deiatfollowing (67).

APPENDIX |
PROOF OFPROPOSITIONS

The derivation of the bounds in Proposition 8 is primarilgndical to the analysis in [9] and [26, Section 3.2.4],
for which the reader is referred for a complete treatmenthefanalysis under ML decoding. We assume a BPSK
modulation over AWGN channel with enerdys per transmitted coded symbol, and a white Gaussian noige wit
two-sided power spectral density éj“— Hence, the received vectgr satisfies

y=9Xx+n (80)
wherey £ 2ES , x €C C{-1,+1}" is the transmitted codeword (with BPSK modulation), anés a normal

random vector Wlth independent coordinates (all with zeemamand unit variance). Setting

p(y[xo0)

where(, is the set of all codewords whose Hamming weight,igndx is the all-zero codeword, it follows from
(7) and the union bound that the conditional decoding errobability is upper bounded by

Pyo < Y Pr(Ee(d)) (81)
d=dmin

whered,,;, denotes the minimal Hamming distancefConsider the following inequality on the probability of
an error event:

Pr(E) <Pr(E,y e R)+Pr(y ¢ R) (82)
where E denotes an error event, € V" is the received vector, ar@ C Y”. From (81) and (82), it follows that
Pyo< Y (Pr(Beld),y € R) + Pr(y ¢ R)). (83)
d=dwmin

Using the union bound, we have

Pr(Ee(d),y € R) < ZPr( o0y o) "TZLYER>

xeCy

(i) Z Pr <<y,x> > <y7X0> - %7 y € R) (84)

xeCy
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where equality (a) follows from (80), antk,y) = >, z;5; denotes the scalar multiplication of the vectars
andy. Similarly to the derivation of bound in [9] (under ML decad), we choose

R = {y sy = myxol® < m“z} (85)
wheren andr are arbitrary parameters which are subject to optimizatioraddition, define
Z = (y,x) — (y,%o)
W £ [ly — nyxo|* — nr?
then it follows from (84) and (85), using the Chernoff bouhdtt
Pr(Eo(d), y € R) + Pr(y € R) < ™ |C4|E [etZ+uW] +E [esw} (86)

forall t >0, v <0, ands > 0. Evaluating the expectations in (86) and setting 3(1 — 2un), we have similarly
to [9] and [26, Section 3.2.4]:

nT(1—run)

Pr(Ee(d), yeR) +Pr(y ¢R) <e = [Cale™™ (f1 (v,u,m)" " (f2 (v, u.m))"
+ e (f1 (,8,m))" (87)

where
a-m2~2a

Ae 1—2a

1(7,0n) = —F//——

hr(vonm) = ——=
_22(-201?)
e 2

1
A

, O, =, < =
falonm = —g=m @ <5
Optimizing the terme™ on the right-hand side of (87), gives

s

u s 1
Pr(Ee(d),y € R) +Pr(y ¢ R) < 2“(F5) 475875, 0<s<3, ug0 (88)

where

AZ (f1(v,8,m)"
nT(1—run)

B2 C (i (v us )" (fo (s m))?

and ho designates the binary entropy function on base 2. Using tlege of variables
A S

p S—Uu

8= p(1—2u)

£ £ p(1—2un)
where0 < p < 1,0 < g <1, and{ > 0, the bound in (88) transforms to

Pr(Ee(d), y € R) + Pr(y ¢ R) < 2P nB(Fs/Nod/n5.p.0)+ 255 (89)

where

g 2 1-p g 1-p

The parameters, 3 and¢ are optimized in [9], [26] such that the error exponglit, 6, 3, p, &) is maximized (note
that the bound fofl” = 0 coincides with the bound which refers to ML decoding), settihe optimal parameters

E(c,5, 8, p, €) é—prn(é)—gln<£> - 1_"111(1_”) +c<1—(1—5)§—2— (1_5)2)

%It is possible to obtain the optimized and ¢ when maximizing the entire exponefi(c, §, 5, p, &) + % To this end,§ needs to be
T

shifted by —5 and the optimalp remains without change. The paramefis required to be numerically optimized over< g < 1.

Nevertheless, the resulting bound gives only a marginai geer the bound which maximizes(c, 4, 3, p, ) without the addition of%.
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yields the first argument in (41). The second term inside ti@mization on the right-hand side of (41) follows
from a union bound on the error probability

- p(y\x) enT
Pes 3 ZPr(my\xO) 21)

where for every codeword € Cy

(G 21) =2 (V7).

The derivation of the upper bound on the undetected errobalitity follows some similar arguments, and is
therefore omitted.

APPENDIX J
PROOF OFPROPOSITION9

The main ingredient for proving the DS2 bound on the blockreprobability under ML decoding (and also the
well known random-coding bound) is that for a received vesgtavhich is not included in the decision regiay,
as given in (3), the following inequality holds:

P
A
1< | Y <ZM> . Ap=0. (90)
i \p(y1xm)
When an error event under fixed-size) (ist decoding is considered, there existslistinct codewords, all different
from the transmitted codeword, whose a-posterior prolmabd larger than the one of the transmitted codeword.
Hence, the sum on the right-hand side of (90) is divided’bySpecifically for a received vectgr that results in

an error event, the following inequality is satisfied:
1< EZCM)A p Ap>0 ©91)
A\ Lz, \p(ylxm) T

Following the derivation of the DS2 bound in [26, p. 96] whéhe right-hand side of (90) is replaced with (91)
leads to the derivation of the bound in Proposition 9. Thigvdéon is repeated for the sake of completeness. For
an arbitrarily chosen probability measufé'(y) it follows that:

\ P
P < D0 () (U7 (3)  (ylxm) (2 3 <M> )

i \ Py )

P
_ AN S p(y|xm’)
- u ( 2(9)) 7 (o) Lﬂ;ﬂ( (yw))
p
m 21 p(ylxm) \*
(mzmz o) ot 7 (B2 )

where the last inequality follows from Jensen’s inequaluggingy(y) as in (68) concludes the proof.
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