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Abstract

The moderate complexity of low-density parity-check (LDRGdes under iterative decoding is attributed to the
sparseness of their parity-check matrices. It is theredbriaterest to consider how sparse parity-check matrices of
binary linear block codes can be as a function of the gap latileeir achievable rates and the channel capacity. This
issue was addressed by Sason and Urbanke, and it is revisiteid paper. The remarkable performance of LDPC
codes under practical and sub-optimal decoding algorithmovates one to assess the inherent loss in performance
which is attributed to the structure of the code or ensemblget maximum-likelihood (ML) decoding, and the
additional loss which is imposed by the sub-optimality of thecoder. These issues are addressed by obtaining
upper bounds on the achievable rates of binary linear blockes, and lower bounds on the asymptotic density of
their parity-check matrices as a function of the gap betwtbeir achievable rates and the channel capacity; these
bounds are valid under ML decoding, and hence, they are f@alidny sub-optimal decoding algorithm. The new
bounds improve on previously reported results by Burshétial. and by Sason and Urbanke, and they hold for
the case where the transmission takes place over an ayhitemoryless binary-input output-symmetric (MBIOS)
channel. The significance of these information-theoretigrials is in assessing the tradeoff between the asymptotic
performance of LDPC codes and their decoding complexity tjeeation) under message-passing decoding. They
are also helpful in studying the potential achievable rafesnsembles of LDPC codes under optimal decoding; by
comparing these thresholds with those calculated by thsityeevolution technique, one obtains a measure for the
asymptotic sub-optimality of iterative decoding algomith

Index Terms

Block codes, iterative decoding, linear codes, low-dgnpirity-check (LDPC) codes, maximum-likelihood
(ML) decoding, thresholds.

. INTRODUCTION

Error-correcting codes which employ iterative decodingoatgms are now considered state of the art in the
field of low-complexity coding techniques.

In [5], Khandekar and McEliece suggested to study the engodimd decoding complexity for ensembles of
codes defined on graphs where the complexity is expressednis tef the gap between the achievable rates of
these ensembles and the channel capacity. They conjectuaédf tthe achievable rate under message-passing
iterative (MPI) decoding is a fractioh— ¢ of the channel capacity, then for a wide class of channetsetttoding
complexity scales Iikén% and the decoding complexity scales Iigén % The only exception is the binary erasure
channel (BEC) where the decoding complexity behaveslﬁlée(same as encoding complexity) due to the absolute
reliability of the messages passed through the edges ofrmhdhence, every edge can be used only once during
the process of the iterative decoding).

Low-density parity-check (LDPC) codes have remarkable perémce under practical iterative decoding algo-
rithms, and they are efficiently encoded and decoded due tspiweseness of their parity-check matrices. Consider
the number of ones in a parity-check matrix which represantsnary linear block code, and normalize it per
information bit (i.e., with respect to the dimension of thede). This quantity (which will be later defined as the
densityof the parity-check matrix) is equal to the normalized numbtkeleft to right (or right to left) messages
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per information bit which are passed in the correspondingaiite graph during a single iteration of the MPI
decoder. In [14], Sason and Urbanke considered how sparigg-glaeck matrices of binary linear block codes can
be, as a function of their gap to capacity (where this gap migpén general on the channel and on the decoding
algorithm). An information-theoretic lower bound on theymptotic density of parity-check matrices was derived
in [14, Theorem 2.1] where this bound holds for every sequerickinary linear block codes transmitted over
an arbitrary memoryless binary-input output-symmetridB{fS) channel, and achieving a fractian— ¢ of the
channel capacity with vanishing bit error probability. bltis for an arbitrary representation of these codes by

full-rank parity-check matrices, and is of the forﬁd%lné where K, and K, are constants which only depend
on the channel. Though the logarithmic behavior of this loleund is in essence correct (due to a logarithmic
behavior of the upper bound on the asymptotic parity-chesisity in [14, Theorem 2.2]), the lower bound in [14,
Theorem 2.1] imottight (with the exception of the BEC, as demonstrated in [14&0dram 2.3], and possibly also
the BSC).

In his thesis [3], Gallager proved that right-regular LDPC endi.e., LDPC codes with a constant degreg)(
of the parity-check nodes) cannot achieve the channel dgpat a binary symmetric channel (BSC), even under
maximum-likelihood (ML) decoding. This inherent gap to capats well approximated by an expression which
decreases to zero exponentially fastain. Richardson et al. [12] have extended this result, and prdkat the
same conclusion holds ify designates thenaximal right degreeSason and Urbanke later observed in [14] that the
result still holds when considering ttaerage right degreeGallager’s bound [3, Theorem 3.3] provides an upper
bound on the rate of right-regular LDPC codes which achieviabiel communications over the BSC. Burshtein
et al. have generalized Gallager's bound for general enesndd LDPC codes transmitted over MBIOS channels
[1]; to this end, they applied a two-level quantization te tlog-likelihood ratio (LLR) of these channels which
essentially turns them into a BSC. The derivation of the boumdsis paper was motivated by the desire to improve
the results in [1, Theorems 1 and 2] and [14, Theorem 2.1] whiehbased on a two-level quantization of the
LLR.

In [7], Measson et al. derived an upper bound on the threshatdier ML decoding of LDPC ensembles trans-
mitted over the BEC. Their general approach relies on EXIT shéwving a surprising and deep connection with
the maximum a posteriori (MAP) threshold due to the area tvador the BEC. Generalized extrinsic information
transfer (GEXIT) charts were recently introduced by Measdoal.€[6]; GEXIT charts form a generalization of
the concept of EXIT charts, and they satisfy the area theomnar arbitrary MBIOS channel (see [13, Section
3.4.10]). This conservation law enables one to get upper down the thresholds of turbo-like ensembles under
bit-MAP decoding. The bound was shown to be tight for the BEC §n[d is conjectured to be tight in general for
MBIOS channels [6].

A new method for analyzing LDPC codes and low-density generatirix (LDGM) codes under bit-MAP
decoding is introduced by Montanari in [8]. The method is dasa a rigorous approach to spin glasses, and
allows a construction of lower bounds on the entropy of th@gmitted message conditioned on the received one.
The calculation of this bound is rather complicated, andat®glexity grows exponentially with the maximal right
and left degrees (see [8, Egs. (6.2) and (6.3)]); this impasemsiderable difficulty on its calculation (especially, fo
continuous-output channels). Since the bounds in [7], [8]dmrived for ensembles of codes, they are probabilistic
in their nature; based on concentration arguments, they asymptotically in probability 1 as the block length
goes to infinity. Based on heuristic statistical mechanidsutations, it was conjectured that the bounds in [8],
which hold for general LDPC and LDGM ensembles over MBIOS chemrage tight.

The new bounds introduced in this paper provide upper bound$h@ achievable rates of LDPC codes under
ML decoding, and lower bounds on their asymptotic paritgath density. These information-theoretic bounds
are exemplified in this paper in the context of providing somsight on the tradeoff between the asymptotic
performance of LDPC codes and their decoding complexity (@eation) under message-passing decoding. They
are also used in this paper for studying the potential aabievrates of ensembles of LDPC codes under optimal
decoding; by comparing these thresholds with the valueshware calculated by the density evolution technique,
one obtains a measure for the sub-optimality of iterativeodeng algorithms in the limit where we let the block
length tend to infinity. We note that the information-thearétounds in [1], [14] and this paper are valid fevery
sequence of binary linear block codes, in contrast to higibaibility results. As examples for the latter category of
probabilistic bounds which apply to ensembles, the reagleeferred to the recent bounds of Montanari [8] under



MAP decoding, the bound of Measson et al. for the BEC under MABoding [7], and the previously derived
bound of Shokrollahi, relying on density evolution analyfsisthe BEC [17]. Shokrollahi proved in [17] that when
the codes are communicated over a BEC, the growth rate of #xage right degree (i.e., the average degree of
the parity-check nodes in a bipartite Tanner graph) is aitléagarithmic in terms of the gap to capacity. The
statement in [17] is a high probability result which assuraesib-optimal (iterative) decoding algorithm, whereas
the statements in [1], [14] and this paper are valid even uile decoding. As mentioned above, the bounds in
[71, [8] refer to MAP decoding, but they form high probabyjlitesults as the block length gets large.

The structure of the paper is the following: Preliminary mialeis presented in Section Il, and the theorems
are introduced and proved in Sections Il and IV. The derivatié the bounds in Section Il was motivated by
the desire to generalize the results in [1, Theorems 1 and @] Bh Theorem 2.1]. A two-level quantization of
the log-likelihood ratio (LLR), in essence replacing the aery MBIOS channel by a physically degraded BSC,
is modified in Section Il to a quantized channel which bettéleots the statistics of the original channel (though
the quantized channel is still physically degraded whg. driginal channel). The number of quantization levels of
the LLR for the new channel is an arbitrary integer power of 2] #re calculation of these bounds is subject to
an optimization of the quantization levels, as to obtain tightest bounds within their form. In Section IV, the
analysis relies on the conditional pdf of the LLR at the outputh@ considered MBIOS channel, and operates
on an equivalent channel without quantizing the LLR. This sdcapproach leads in Section 1V to bounds which
are uniformly tighter than the bounds derived in Section Hbare easier to calculate. The significance of the
guantized and un-quantized bounds in Sections Il and N\peetively, stems from a comparison between these
bounds which gives insight on the effect of the number of ¢j@ation levels of the LLR (even if they are optimally
determined) on the achievable rates, as compared to theciasawhere no quantization is done. Numerical results
are exemplified in Section V. Finally, in Section VI, we summaral present interesting issues which deserve
further research. Appendices provide further technictitbereferring to the proofs in Sections Il and IV.

We note that the statements in this paper refer to the caseewhe parity-check matrices are full rank. At
first glance, this requirement poses a problem when consglermsembles of LDPC codes; a parity-check matrix,
referring to a randomly chosen bipartite graph with a givair pf degree distributions, may not be full rank (even
asymptotically, as we let the block length tend to infintyAs explained in Section V, the statements in this paper
still hold for ensembles of LDPC codes when we replace the catiewith the design rate.

II. PRELIMINARIES

We introduce here some definitions and theorems from [1], {dl%ifh serve as preliminary material for the rest
of the paper. Definitions 2.1 and 2.2 are taken from [14, Se@jon

Definition 2.1: (Capacity-Approaching Codes) Léf,,} be a sequence of codes, and denote the rate of the code
Cmn by R,,. Assume that for everyn, the codewords of the codg, are transmitted with equal probability over
a channel whose capacity . This sequence is said tchieve a fractionl — ¢ of the channel capacity with
vanishing bit error probabilityif lim,, ., R,, = (1 —¢)C, and there exists a decoding algorithm under which the
average bit error probability of the codg, tends to zero in the limit wherg, — cc.

Definition 2.2: (Parity-Check Density) Le€ be a binary linear code of rat® and block lengthn, which is
represented by a parity-check matfik We define thelensityof H, call it A = A(H), as the normalized number
of ones inH per information bit The total number of ones i is therefore equal ta RA.

Definition 2.3: (Log-Likelihood Ratio (LLR)) Let us consider an MBIOS channel waaonditional pdf iy x
where X andY designate the channel input and output, respectively. Tédikelihood ratio (LLR) at the output

of the channel is
Py|x (y10) >

LLR(y) £ In <
py|x(yll) ) .
Throughout the paper, we assume that all the codewords ofamybiimear block code are equally likely to be

transmitted. Also, the functioh, designates the binary entropy function to base 2,higfy) = —z logy(z) — (1 —
x)logy(1 — ).

'0One can construct LDPC ensembles where the design rate is strictly lesththasymptotic rate as the block length goes to infinity,
e.g., by simply repeating a non-vanishing fraction of the rows of thaypeneck matrix.



Theorem 2.1:(An Upper Bound on the Achievable Rates
for Reliable Communication over MBIOS Channels) [1, Theor&mConsider a sequendg,,,} of binary linear
block codes of rate?,,,, and assume that their block length tends to infinityras— cc. Let H,, be a full-rank
parity-check matrix of the codé€,,, and assume thdty, ,, designates the fraction of the parity-check equations
involving & variables. Let
Iy £ lim Tk, RZE lim Ry, (1)

m—0o0 m—00

where these limits are assumed to exist. Suppose that thartission of these codes takes place over an MBIOS
channel with capacity’ bits per channel use, and let

we 5 [ min(f). 1-0) dy @

where f(y) = py|x(y|0) designates the conditional pdf of the output of the MBIOSncied when zero is
transmitted. Then, a necessary condition for vanishingko&rcor probability asn — oo is

R<1 1-C

S ()

Theorem 2.2:(Lower Bounds on the Asymptotic Parity-Check Density withoHaevel Quantization) [14, The-
orem 2.1]: Let{C,,} be a sequence of binary linear block codes achieving a dradti-  of the capacity of an
MBIOS channel with vanishing bit error probability. Denalg,, as the density of a full-rank parity-check matrix
of the codeC,,. Then, the asymptotic density satisfies

K{+ Kolni
liminf A, > %zns 3)
where
1-C) In (555 =€ 1-C
Klz( ) (21n2 C ) , K2_ (4)

2C In (ﬁ) B 2C In (ﬁ)
andw is defined in (2). For a BEC with erasure probabilitythe coefficientsk; and K in (4) are improved to

pIn ()
Ky = p Ky = p

; (5)
(1-p) n () (1-p) In (%

The bounds in Theorems 2.1 and 2.2 are applied in [1] and [1dheatively, to ensembles of LDPC codes. In
general, LDPC codes are linear block codes which are repegbépta sparse parity-check matik This matrix
can be represented in an equivalent form by a bipartite géapinose variable nodes (appearing on the lefGdf
represent the code bits, and whose parity-check nodesddpgen the right o) represent the linear constraints
defined byH. In such a bipartite graph, an edge connects a variable natieavparity-check node if and only if
the corresponding code bit is involved in the parity-cheglation; the degree of a node is defined as the number
of edges which are adjacent to it.

Following standard notation, let; and p; denote the fraction oédgesattached to variable and parity-check
nodes of degreg, respectively. In a similar manner, l&t andT’; denote the fraction of variable and parity-check
nodes of degree, respectively. The LDPC ensemble is characterized by a tripleX, p) wheren designates the
block length of the codes, and the polynomials

Aw) 2 ™ pla) 2 piat
i=1 i=1

represent, respectively, the left and right degree digiobs (d.d.) from theedgeperspective. Equivalently, this
ensemble can be also characterized by the triplef\, I") where the polynomials

Az) & iAx I(z) 2 if‘x
=1 =1




represent, respectively, the left and right d.d. fromrtbdeperspective. We denote by LDPE A, p) (or LDPC(n, A, T"))
the ensemble of codes whose bipartite graphs are constracteording to the corresponding pairs of degree
distributions. One can switch between degree distribstiwm.t. to the nodes and edges of a bipartite graph, using
the following equations [13]:

= T = T (6)
/0 Au)du /0 p(u)du
_ N(x) _ (=)

An important characteristic of an ensemble of LPDC codes iddtsgn rate For an LDPC ensemble whose codes
are represented by parity-check matrices of dimension, the design rate is defined to g = 1 — ~. This serves
as a lower bound on the actual rate of any code from this ernsemntd is equal to the actual rate if the parity-check
matrix of a code idull rank (i.e., if the linear constraints which define this code aredity independent). For an
ensemble of LDPC codes, the design rate is given in terms of egeed distributions (either w.r.t. the edges or
nodes of a graph), and it can be expressed in two equivalemisfo

(8)

A sufficient condition for the asymptotic convergence of tagerof a code, chosen uniformly at random from
an LDPC ensemble, to its design rate was stated in [7, Lemma 7].

Lemma 2.1:(A sufficient condition for the equality between the desigte rand asymptotic rate for ensembles
of LDPC codes) [7, Lemma 7]: Lef be a code which is chosen uniformly at random from the ensembl
LDPC(n, A,T), let R be the rate of’, and let R4 be the design rate of this ensemble. Consider the function

14 wv }
(1+u)(1+40v)

1+u
A;l
+Z OgQ[ 1+u)]

> 1-ov\’
T log, |1
+rf(1) ; P08y |1 <1—|—v>

—1 .
> i > )\iuz_l
Ué<zl+ui> (;Mrui)'

i=1

T 2 —N(1)log [

where

Assume that the functio® , ) achieves its global maximum in the ranges [0, 00) atu = 1. Then, there exists
a constantB > 0 such that for any > 0 andn > ny(&, A, T)

Pr{|R — Ry > £} < e P7¢.
Moreover, there exists a constafit> 0 such that forn > ng(§, A, T")
Clnn

E {‘R Rd’} <
In Section V, we rely on this lemma in order to verify thatnheyraptotlc rates of codes randomly chosen (with

uniform distribution) from various ensembles of LDPC codesdtén probability 1 to the design rates of these
ensembles.



I11. APPROACHI: BOUNDS BASED ON QUANTIZATION OF THE LOG-LIKELIHOOD RATIO

In this section, we introduce bounds on the achievable eidghe asymptotic parity-check density of sequences
of binary linear block codes. The bounds generalize prelyaeported results in [1] and [14] which were based on
a symmetric two-level quantization of the LLR. This is achietgdextending the quantization to a number of levels
which is equal to an arbitrary natural power of 2. In SectidrAll we particularize the results and their proofs for
a four-level quantization. In Section IlI-B, the results adended to a symmetric quantization with a number of
levels which is an arbitrary natural power of 2. This order mdggntation was chosen since many concepts which
are helpful for the generalization in Section I11-B are viitin a simplified notation for the four-level quantization,
along with all the relevant lemmas for the general case whrehalready introduced in the derivation of the bound
with four-level quantization. This also shortens considsrahe proof for the general quantization in Section 111-B.

A. Bounds for Four-Levels of Quantization

As a preparatory step towards developing bounds on theygarédck density and the rate of binary linear block
codes, we present a lower bound on the conditional entrogytainsmitted codeword given the received sequence
at the output of an arbitrary MBIOS channel.

Proposition 3.1:Let C be a binary linear block code of lengthand rateR, and assume that its transmission
takes place over an MBIOS channel whose conditional pdf\iergbypy‘X. Let X = (Xy,...,X,) andY =
(Y1,...,Y,) designate the transmitted codeword and received sequessmectively. For an arbitrary positive
I € R, let us define the probabilities), p1, p2, p3 as follows:

po = Pr{LLR(Y) > 1| X = 0}
p1 = Pr{LLR(Y) € (0,]] | X =0}
1
+5 Pr{LLR(Y) =0 X =0}
p2 = Pr{LLR(Y) € [-1,0) | X = 0}
1
+§ Pr{LLR(Y)=0]| X =0}
p3 = Pr{LLR(Y) < —1 | X =0}. 9)

For an arbitrary full-rank parity-check matrix of the co@glet I';, designate the fraction of parity-check equations
involving k variables. Then, the conditional entropy of the transmittedeword, given the received sequence,
satisfies

H(i!Y) S1-C—(1-R)
k
: Z{Fk Z <IZ> (p1 +p2)"(po +p3)* "
k t=0
. _2ps \btrq  2p3 \k—t
. h2<1 (1 P1£P2 )2 (1 Pof—ps) ) . (10)

Remark 3.1:Note that the input vectoX is chosen uniformly from the codewords of a binary linearckloode.
Each input bitX; therefore either gets the valuésr 1 with probability% or is set to zero (due to the linearity of
the code). In the following proof, we assume that all the ceglmbols get the valugsor 1 with equal probability.

By slightly modifying the proof, it is simple to show that theund also holds for the other case where some of
the code bits are set to zero. Without mentioning explicithe same assumption will be taken in the proofs of
Propositions 3.2 and 4.1.

Proof: Considering an MBIOS channel whose conditional pdf is givgmy|x, we introduce a new physically

degraded channel. It is a binary-input, quaternary-ougymtmetric channel (see Fig. 1). To this end,/let R™

be an arbitrary positive number, and tetoe a primitive element of the Galois field G#) (soa? = 1 +a). The

set of elements of this field i§0, 1, o, 1 + «}. Let X; andY; designate the random variables referring to the input
and output of the original channel at timdwherei = 1,2, ...,n). We define the degraded channel as a channel
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Fig. 1. The channel model in the upper plot is a physically degradednehaised for the derivation of the bound with four levels of
quantization. The elemeni denotes a primitive element in GE). This channel model is equivalent to a channel with an additive noise
in GF(2?) (see lower plot).

with four quantization levels of the LLR. The output of the detgd channel at time¢, Z;, is calculated from the
outputY; of the original channel as follows:

o If LLR(Y;) > [, thenZ; = 0.

e If 0 <LLR(Y;) <1, thenZ; = «.

o If =l <LLR(Y;) <0, thenZ; =1+ a.

o IfLLR(Y;) < —I, thenZ; = 1.

« IFLLR(Y;) =0, thenZ; =a or Z; =1+ a W.p. 3.

From the definition of the degraded channel in Fig. 1, this chanag an additive noise in GE*) and is also
binary-input output-symmetric. It follows that the tratisn probabilities of the degraded channel are

p=Pr(Z=0|X=0)=Pr(Z=1|X=1)

pr=Pr(Z=a|X=0)=Pr(Z=14+a| X =1)
p=Pr(Z=14a|X=0)=Pr(Z=a|X=1)
p3=Pr(Z=1|X=0)=Pr(Z=0|X=1)
wherep; is introduced in (9) for0 < j < 3, and the symmetry in these transition probabilities holdses the
original channel is MBIOS.

SinceC is a binary linear block code of length and rateR, and the codewords are transmitted with equal

probability then
H(X) =nR. (11)

Also, since the channel is memoryless, then
H(Y|X)=nH(Y|X). (12)

We designate the output sequence of the degraded chanekbyZ, . .., Z,). Since the mapping fron; to
the degraded output; (i = 1,2,--- ,n) is memoryless, the! (Z|Y) = nH(Z|Y) and

HY) = H(Z)— H(Z|Y)+ H(Y|Z)
— H(Z) - nH(Z|Y) + H(Y|Z) (13)
HY|Z) < S H(YIZ)
=1

= nH(Y|Z)
= n[H(Y) - H(Z)+H(ZY). (14)



Applying the above towards a lower bound on the conditiomatopy H (X|Y), we get
H(X|Y)=HX)+H(Y|X)—-H(Y)

=nR+nH(Y|X)—- H(Y)

=nR+nH(Y|X)—-H(Z)— H(Y|Z)
+nH(Z|Y)
nR+nH(Y|X)— H(Z)
—nHY)—-H(Z)+ HZ|Y)|+nH(Z|Y)
nR—H(Z)+nH(Z)—n[H(Y)—- H(Y|X)]

=nR—H(Z)+nH(Z)—nl(X;Y)

>nR—H(Z)+nH(Z)—nC (15)
where the second equality relies on (11) and (12), the thipghkty relies on (13), the first inequality relies on
(14), andI(X;Y) < C'is used for the last transition (whe€@ designates the capacity of the original channel).

In order to obtain a lower bound oH (X|Y) from (15), we calculate the entropy of the random variaBle
and derive an upper bound on the entropy of the random vettdihis finally provides the lower bound in (10).
Observing that the degraded channel is additive ove2&3Fwe denote the additive noise by
N; = 0, + Q;a, iE{l,...,n}

where® = (04,...,0,) andQ2 = (4, ...,Q,) are random vectors over GH. Note that® andf2 are statistically
independent of the transmitted codewdXd Since the code is binary, it follows that

v

where®; £ ©, + X;. This gives
H(Z) = H(®,Q)
= H(Q)+ H(®|Q)
= H(Q)+1 (17)
where the last equality follows since the inpkit is equally likely to be zero or one (see Remark 3.1) and the
channel in Fig. 1 is MBIOS; sinc€ is independent ofX, then® is equally likely to be zero or one given the
value of Q2.
We now derive an upper bound on the entrddyZ). Based on (16), it is easy to verify the following chain of
equalities:
H(Z) = H(®,9Q)
=HQ)+H(®|Q)

=nHQ)+H(®|Q) (18)
where® 2 (®4,...,®,), and the last equality follows since the degraded channElgn1 is memoryless. Let us
define the syndrome at the output of the degraded channel as

S2®HT

where H is a full-rank parity-check matrix of the binary linear blocodeC. We note that the calculation of the
syndrome only takes into account tdecomponent of the vectdZ in (16). Also note that sincXKH” = 0 for
every codewordX, thenS = ® H” which is independent of the transmitted codeword. Let us defihas the
index of the vector® in the coset referring to the syndrorSe Since each coset has exac2f? elements which
are equally likely, ther (M) = nR, and
H(®|Q) =H(S,M|Q)
<HM)+H(S|Q)

= nR+ H(S| Q). (19)



Considering a parity-check equation involvikgvariables, let{i;,...,i;} be the set of indices of the variables
involved in this parity-check equation. The relevant comgaurof the syndrom& which refers to this parity-check
equation is equal to zero or one if and only if the Hamming \Weigf the sub-vectof©,,,...,0;, ) is even or
odd respectively. It is clear from Fig. 1 that for an indefor which Q; = 1, ©; is equal to one in probability
Similarly, for an index: for which 2; = 0, then©; is equal to one in probablllt);&

+
" Gplven that the Hamming weight of the vect®; ,...,Q;, ) is ¢, then the probability of an even Hamming
weight of the random vectai©;,, ..., 0;,) is equal to

a1t k) g2(t, k) + (1 — qu(t, k) (1= qa(t, k)

whereq (t, k) designates the probability that among thindices: for which ©; = 1, the random variabl®); is
equal to 1 an even number of times, apdt, k) designates the probability that the same happens fok the
indices: for which }; = 0. Based on the discussion above, it follows that

o= 2{062) G )

7 even
t
2p2
p1t+p2

(-
()62 G
(- s5)”

Po+p3
2

Hence, the probability that the vect®®,,,©;,,...,0
q(t, k) q2(t, k) + ( —qu(t, k) (1 —qa(t, k)

(1_ _2ps ( _ _2ps ) k=t
P1+Dp2 Po+p3
We conclude that given a vectare {0, 1}* of Hammmg weightt
H(S; | (Qy,..., ) =w)

14+ (1— 2p2 t 1— 2p3 h—t
( P1+p2 Po+ps )
= hy .

1+

1 even

QZ(ta k) = Z
1+

i) is of even Hamming weight is

2
This yields that if the calculation of a compone#it (wherei = 1,...,n(1 — R)) in the syndromeS relies on a
parity-check equation involving variables, then
H(S; | )

:H(51’92177Qlk)
= Z Pr((Qha?QZk) :g)

we{0,1}F
(S | ( il?"‘7Qik) :Q)

k
=> ( > p1+p2)'(po + p3)* "
t=0
t k—t
_ _2ps _ _2ps
h <1+ (1 p1+p2> (1 po"!‘;?a) >
s 12

2
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k
=> ( > p1+p2) (po +p3)*
t=0
t k—t
2pa 2p:
h <1_(1_P1+P2> (1_Po+;73> >
LY

2

where the third equality turns to averaging over the Hammwegght of (Q2;,,...,€;,) (note that each component
is Bernoulli distributed withPr(€2; = 0) = po + p3), and the last equality follows from the symmetry of the Ipjna
entropy function (wheréiz(x) = ho(1 — ) for = € [0, 1]). Let ', designate the fraction of parity-check equations
in the full-rank parity-check matrix which involvk variables, so their total numberig1 — R)T';, and

H(S | ®)

n(1—R)

< Z (S; | @)
=n(l— Z{UZ( ) 1+ p2)'(po + p3)* "
. _2ps \btrq  2p3 \k—t
-h2<1 U= 5t) 0~ i) )} (20)

2

By combining (18)—(20), an upper bound on the entropy of Hrelom vectoiZ follows:
H(Z) <nR+nH()+n(l—-R)

Z{HZ( ) p1 +p2) (Do +ps)**
(L ) (1 pfizg)“>}. @)

2

The substitution of (17) and (21) in (15) finally provides thevéw bound on the conditional entrogy(X|Y) in
(20). [ |

The following theorem tightens the lower bound on the pathgek density of an arbitrary sequence of binary
linear block codes given in [14, Theorem 2.1]. It is based oonwa-fevel quantization of the LLR at the output of
an MBIOS channel (as opposed to the two-level quantizatiothe LLR used in [14]).

Theorem 3.1:(“Four-Level Quantization” Lower Bound on the Asymptotic PaiCheck Density of Binary
Linear Block Codes) Le{C,,} be a sequence of binary linear block codes achieving a émadti— ¢ of the
capacity of an MBIOS channel with vanishing bit error probigh Let H,, be an arbitrarnyfull-rank parity-check
matrix of the code’,,,, and denote its density hsx,,,. Then, the asymptotic density satisfies

Ki+ Kylni
liminf A, > LT H20E (22)
m—oo 1—¢
where
1 1-C
Ko =Kz hl(m c) )
1 _
Kz =- (p1—p )20 (Po—ps)? (23)
c ln( p1t+p2 + Po+p3 )

andpo, p1, p2, p3 are defined in (9) in terms dfc R*. The optimal value of is given implicitly as a solution to
the equation
pite'pi _pite'ng (24)
(p1+p2)*  (po+ps3)?
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where such a solution always exists.
Proof: We first prove the lower bound in (22) and (23), and then, th@opation equation (24).
Derivation of the lower bound i22) and (23):
Lemma 3.1:Let C be a binary linear block code of lengthand rateR. Let P, designate the average bit error
probability of the code& which is associated with an arbitrary decoding algorithrd ehannel, and leK andY
designate the transmitted codeword and received sequessgctively. Then

HX|Y
HX|Y) < R ha(Pp). (25)
Proof: The lemma is proved in AppendixnI-A. ]
Lemma 3.2:hy(z) <1— % (3 —2)*for0 <z < 1.

Proof: The lemma is proved in [14, Lemma 3.1]; this inequality actufdkms a particular case of Eq. (100)
whose derivation is based on truncating the power serieansipn of the binary entropy function arouéd [ |
Referring to an arbitrary sequence of binary linear bloces)C,,} which achieves a fractioth — ¢ of capacity
with vanishing bit error probability, then according to Déion 2.1, there exists a decoding algorithm (e.g.,
ML decoding) so that the average bit error probability of tdweleC,, tends to zero as» goes to infinity, and
lim, 00 Ry = (1—¢)C. From Lemma 3.1, we get théin,, . HXn[Ym) _ whereX,,, andY,, designate the
transmitted codeword of the codg, and the received sequence, ré"spectively, apddesignates the block length
of the codeC,,. From Proposition 3.1, we obtain

H(Xn|Ym)

Nm

>1-C—(1—Rm)

k
: Z{Fk,m Z (i) (p1 +1p2)'(po + p3)*

k t=0

2 3 k—
h (1_(1_p12£[)2)t(1_p02£p3> t>}
]

2

wherel’;, ,,, designates the fraction of parity-check equations in ayaheck matrixH,,, which involvek variables.
The upper bound on the binary entropy functionin Lemma 3.2 gives

H(Xon[Yom)

Nm

>1-C—-(1-Rp) (26)

k
: Z{ka Z(IZ) (p1 +p2)" (po +p3)*

k t=0

1 2t 2(k—t)
= (p1—p2) <p0—p3>
2In2 \p1 + p2 Po + p3
Sincepg + p1 + p2 + p3 = 1 (i.e., the transition probabilities of the degraded chaiméig. 1 sum to 1), then

" [k
Z{Fk,m Z(t) (p1 +p2)'(po + p3)*
k =0

] 2t 2(k—1)
N <pl_P2) (Po—p3>
2In2 \p1 + p2 po + p3
’

“E{r i 5 (0 (555

t=0

2|t was observed numerically that the solutibof the optimization equation (24) is unique when considering the binaryt-iApGN
channel. We conjecture that the uniqueness of such a solution is a tgragech holds for MBIOS channels under some mild conditions.



.
(o))

“1- s T (1) (252)
()

~1- 515 Zk: {Fk’m <(];11+1§2)2 ! (p;“g)k}

1 <(p1 —p2)?  (po— p3)? > ar(m)
= +
2In2 P1+ P2 po + p3

whereag(m) = >, kI'y,,, designates the average right degree of the bipartite grapthwefers to the parity-
check matrixH,,, and the last transition follows from Jensen’s inequaBybstituting (27) into the RHS of (26)
and lettingm tend to infinity gives the inequality

0>1-C—(1-(1-¢)0)
1 )2 _ )2 ar(o0)
1— ((m p2) + (po — p3) ) (28)
2In2 \ p1+p2 po+ps3
where ar(co) £ liminf,, .. ar(m). Note that the base of the exponent in the RHS of this inetyudties not
exceed unity, i.e.,

(27)

_ 2 o 2 2 2
(p1 —p2) +(po D3) < (p1 + p2) +(P0+P3)

D1+ D2 Pbo+p3 p1+p2 Do + D3
= po+p1+p2+p3
= 1.
Therefore, the inequality in (28) yields the following lowleound on the asymptotic average right degree:
1
ar(oc0) > K + Kjyln <> (29)
g
where
1 1-C
K| = - In (535°)
(p1—p2)? (po—ps)2\ ’
In < P1+p2 T P0+;3 )
1
Kz g (@mp2)? | o—pe)? (30)
P1—p2 Po—ps3
In ( P1+p2 + Po+Dps )

According to Definition 2.2, the densityA) of a parity-check matrix is equal to the number of edges in the
corresponding bipartite graph normalized per informatiin while the average right degrdeg) is equal to the
same number of edges normalized per parity-check node. iecparity-check matrixd is full rank, then the
above scalings of the number of edges in a bipartite graplyimp

A= (1;R> ar (31)
whereR is the rate of a binary linear block code. By our assumptiba,asymptotic rate of the sequence of codes

{C} is equal to a fractionl — ¢ of the capacity. Therefore, by combining (29) and (31) with= (1 — ¢)C, we
obtain a lower bound on the asymptotic parity-check densltich gets the form

1
lminfA > K1t Keln(g)

m—00 1—¢
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where _C
K= o -K{Q (32)

and K{Q are introduced in (30) (note that— R > 1 — (). This completes the proof of the lower bound in (22)
with the coefficientsk; o in (23).
Derivation of the optimization equatio(24): The reader is referred to Appendix I-B, where the eristeof
such a solution is also shown. [ |
Discussion:lt is required to show that we achieve an improved lower boandhe parity-check density, as
compared to the one in [14, Theorem 2.1]. To this end, it suffioeshow that

(p1 — p2)° L (po - p3)? S (1 20)? (33)

p1+p2 Po + p3
wherew is introduced in (2). For a proof of (33), the reader is rafdrto Appendix I-C. This therefore proves
that the new lower bound which is based on a four-level gmatitin is tighter than the original bound in [14,
Theorem 2.1] which corresponds to a two-level quantizatiothe LLR. A more general proof which relies on the
information processing inequality is later presented (Seetion 111-B) where it shows that the bound is improved
by adding quantization levels to the existing ones; thisblsato show that the lower bound on the parity-check
density which corresponds & optimized quantization levels (so as to get the tightesndowhere the number
of quantization levels is fixed) is monotonically increasimg.t. d.

Based on Proposition 3.1, we introduce an upper bound on tmepdstic rate of every sequence of binary linear
block codes for which reliable communication is achievalblee bound refers to soft-decision ML decoding, and it
is therefore valid for any suboptimal decoding algorithnenide, the following result also provides an upper bound
on the achievable rates of ensembles of LDPC codes undeivieetigcoding where the transmission takes places
over an MBIOS channel. The following bound improves the baustdted in [1, Theorems 1 and 2J:

Corollary 3.1: (“Four-Level Quantization” Upper Bound on the Asymptotictevable Rates of Sequences of
Binary Linear Block Codes) LefC,,} be a sequence of binary linear block codes whose codewoedsassmitted
with equal probability over an MBIOS channel, and suppos¢ e block length of this sequence of codes tends to
infinity asm — oo. LetIy, ,,, be the fraction of the parity-check nodes of degkela an arbitrary representation of
the codeC,, by a bipartite graph which corresponds to a full-rank paciteck matrix. Then a necessary condition
for this sequence to achieve vanishing bit error probghéigm — oo is that the asymptotic ratR of this sequence
satisfies

l—max{(l—C')

Z,; {Fktzk; (i) (p1 + p2)'(po + p3)""

-1

)

2

2 3 k—
h <1_(1_p12£p2)t(1_p02£p3) t>}]
2

2
(p2 +ps3) k} >R (34)
1= Tk (1= 202+ )
k

wherepg, p1, p2, p3 are introduced in (9), anfl, and R are introduced in (1).

Proof: The first term in the maximization on the LHS of (34) is based on @@l (25); it follows directly
by combining these inequalities, and letting the bit erroobability 7 tend to zero. The second term in the
maximization on the LHS of (34) follows from the proof of [14pfllary 3.1] which is based on the erasure
decomposition Lemma [12]; in the context considered heres 2(p2 + p3) is the erasure probability of the
corresponding BEC (see the upper plot in Fig. 1). [ |

B. Extension of the Bounds 8 Quantization Levels

Following the method introduced in Section IlI-A, we commery deriving a lower bound on the conditional
entropy of a transmitted codeword given the received sempien
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Proposition 3.2:Let C be a binary linear block code of length and rateR. Let X = (Xi,...,X,) and
Y = (Y3,...,Y,) designate the transmitted codeword and received sequespectively, when the communication

takes place over an MBIOS channel with conditional pdfx (-|-). For an arbitraryl > 2 and0 < lpa-1_1 < ... <

l1 < Iy 2 oo, let us define the set of probabiliti€, }> ;' as follows:

Pr{l;;1 <LLR(Y) <I,| X =0}
if s=0,...,2¢"1 -2

Pr{0 < LLR(Y) < lpi-1_1 | X =0}
+3Pr{LLR(Y) = 0| X =0}

if s=20"1_1

Ps £ (35)
Pr{—lyi-1_; <LLR(Y) < 0| X =0}

+3Pr{LLR(Y) =0| X =0}

if §=2d-1

Pr{—lyi_(s11) S LLR(Y) < —lpu_ | X =0}
if s=20"141,...,2¢ -1,

For an arbitrary full-rank parity-check matrix of the code let I'; designate the fraction of the parity-checks
involving k£ variables. Then, the conditional entropy of the transmittedeword given the received sequence
satisfies

H(X[Y)
n
>1-C—-(1-R) (36)
k
i ¥ | )
- { b ko, ..., koa-1_1
2d-1_1
ki
(pi + pai_1-4)
=0
2d-1_1
1 2pga_1— ’“]
cho| =1 — . i S A .
? (2 [ il_% ( i +p2d—1—z‘)

Proof: Following the proof of Proposition 3.1, we introduce a new gbglly degraded channel. It is a
memoryless binary-input?-ary output symmetric channel (see Fig. 1 fioe= 2). To this end, lefye_; < ... <[y
be arbitrary positive numbers, and denaje2 co. The output alphabet of the degraded channel is defined to be
GF(2%) whose elements form the set

d—1
Zaj o i (ag,ay,...,aq-1) € {0,1}¢
§=0

whereq is a primitive element of the Galois field GI).
Fors=0,1,...,2971 — 1, denote thgd — 1)-bit binary representation of by (a§5>, s afi‘i)l), ie.,
d—1 '
s = aéfs) P
j=1
Let X; andY; designate the random variables referring to the input artjubwof the original channeby |y at
time i (wherei = 1,...,n). As a natural generalization of the channel model in Fig. &,imtroduce a physically
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degraded channel with? quantization levels of the LLR. The output of this channel atetimZ;, is calculated
from the outputY; of the original channel as follows:

Z; = ®; + Qov. (37)

The componentd; in (37) depends on the sign of LLK;); it is set to zero or one, if the LLR is positive or
negative, respectively; if LLR;) = 0, then ®; is either zero or one with equal probability. The value(tfis
calculated based on the absolute value of (YR as follows:

o If l441 < |LLR(Y;)| < I, for some0 < s < 2971 — 1, then

d—1 4
Q; = ag»s) o/t (38)
j=1
e If 0L |LLR(}/Z)‘ <lga-1_1, then
d—1
Q=Y ai . (39)
j=1
From (35), the transition probabilities of the degraded cdehiare given by
d—1 ‘
ps = Pr(Z=) dYal| X =0)
7j=1
d—1 ‘
= Pr(Z=1+Y aYal|X =1)
j=1
d—1 '
pracios = Pr(Z=1+) dYal| X =0)
j=1
d—1 '
= Pr(Zz=Y a ol | X =1) (40)
j=1
wheres = 0,1,...,2¢71 — 1. The symmetry in these equalities holds since the channeBEOS.

Equations (11)—(15) hold also for the case26flevel quantization. Thus, we will calculate the entropy loé t
random variableZ, and an upper bound on the entropy of the random ve&tdrhis will finally provide the lower
bound in (36).

Analogously to the proof of Proposition 3.1, the degradechnkébis additive over GR4). We denote the additive
noise by

Ni = @z + QZ’OA (41)

Note that since the code is binary, then®, = 6, + X;, and the value of2; stays the same in (37) and (41). Let
® £ (04,...,0,) andQ 2 (Q4,...,9Q,). Due to the symmetry of the communication channel, it foavat®
and Q2 are statistically independent of the transmitted codevwXrdrhis gives

H(Z)=H(Q)+1 (42)

which follows from the same argument which validates (17).
We now derive an upper bound on the entropy of the random v&ctBrom the same chain of equalities leading
to (18), it follows that
H(Z)=nH(Q)+ H(® | Q) (43)

where® 2 (®4,...,®,). As in the proof of Proposition 3.1, we define the syndrom& & ® H” where H is a
full-rank parity-check matrix of the codé. As before, the calculation of the syndrorSeonly takes into account
the ®-components of the vectd. SinceXH” = 0 and® = X + ©, thenS = ©H” which is independent of
the transmitted codeword. In parallel to (19), we obtain

H(®| Q) <nR+H(S | Q). (44)
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Consider a parity-check equation which involvegariables, and lefi, . . ., ix } be the set of indices of the variables
involved in this parity-check equation. The component ofdjiedromeS which refers to this parity-check equation
is zero if and only if the binary sub-vectd®,,,...,0;,) has an even Hamming weight.

Lemma 3.3:Given that(Q;,,...,Q;, ) hask, elements equal t(z;tll a§8) o™l (s = 0,...,2¢71 — 1), the

probability that the corresponding component of the symdrd; is equal to 1 is given by

1 2(1—171 2 ks-
d
Zol1 = H (1 _ 172—1—5> )
2 =0 Ps +DP2d_1-s
Proof: From the probabilities which are associated with the quedtizalues of the LLR in (40), it follows

that for0 < s < 24-1 — 1
d—1
Pr <@i =1|Q; = Za;s)ajfl) _ Pl
j=1

Ps + D21
Since there aré, indicesi in the set{iy,...,i.} for which Q; = Z?;i a§s) /=1, the lemma follows from [3,
Lemma 4.1]. ]
Based on Lemma 3.3 and the discussion above, it follows thaarfig vectorw = (wi,...,wy) which hasks
elements equal tQj;l;} a§.s) /=1 (wheres =0,...,2¢71 —1)

H(SH (O, 00) = )

= hy 1 [1 _ Qdﬁl (1 _ 2]92‘“1—5)]{} (45)
2 0 Ps + P2i1-s
For a component; (1 < i < n(1 — R)) of the syndromeS which refers to a parity-check equation involvikg
variables

H(S;| )

= > { (ko, y ) 241_1[_1(195 + pai_1-s)™

ko,...,k2d71_1 ey ]{32(1—171 =0
> k=k
24-1_1
1 2p9a_1_ ks
-y P_ I[(1_1@15:>}
2 i Ps +D2a—1-s
where the last equality follows since there 6(5%...,19];71,1) vectorsw which havek, elements of the type
Z;lj ags) o/~ for s € {0,...,2971 —1}, and it also follows from the statistical independence ef tomponents

of the vector€2, and from Egs. (40) and (45). The number of parity-check egoatinvolving k& variables is
n(l — R)I'x, hence

H(S|Q)

n(l—R)
= Z H(S;|€)

=1
Ry (46)

k
PRI ( )
k { ko,..oskod—1_4 kO?'-',k2d—171
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20711

H (Ps + P2i—1-5)"

s=0

1 ! 2pga_1 ks
ho| =1 — 1———22les )R
2<2[ 3,130 ( ps+p2d_1—s) D}
By combining (43)—(46), an upper bound on the entropy of drelom vectoiZ follows:

H(Z)
<nR+nH(Q)+n(l—R) 47)
k
5, ke=h
24-1_1
H (ps + p2i—1-4)"
s=0

P 2 5
d__1__ s
- hy [1_ || (1_M) ] )
2 =0 DPs + P2a—1—5

The substitution of (42) and (47) in (15) finally provides theés bound on the conditional entrogy(X | Y) in
(36). [ |
Discussion In the proof of Proposition 3.2, the upper bound on the entmipthe outputZ is of the form
n(1—R)
H(Z) <nH(Q)+nR+ Y H(SQ)
=1
which follows directly from (43), (44) and (46). Herg, is defined according to the conditions stated in (38) and
(39), ands; is thei™ component of the syndronfe. Substituting (42) and the above inequality in (15) yields
n(1—R)
>1-C—— ;
>1-C—— ; H(5:[92)
and the lower bound in (36) is in fact an explicit expression the above inequality. The calculation of the
lower bound in the RHS of (36) becomes more complex as theevafud is increased. However, when the

H(X]Y)

n

guantization level$,, ..., ly«-1_; are set to maximize the lower bound in the RHS of (36), we st the bound
is monotonically increasing with.
To this end, letd > 2 be an arbitrary intege(,l@, ey lg‘f),l_l) with their symmetric values around zero be the

optimal choice of2¢ quantization levels, and denote the random varigblier this setting byQ(? (see (38) and
(39)). Consider any set @f+! quantization Ievelsélgd“), ceey léffj)) with their symmetric values around zero such
that lé‘fﬂ) = lgd) for i =1,...,2971 — 1. Denote the random variable for this choice of quantization levels by
QU@+1) Clearly, since the former set a@f quantization levels is a subset of the latter sep®of' levels, then2(?)
can be calculated fror(@+D) . Let @®) 2 (™ . M) for k = d andd + 1. By the information processing
inequality
1 n(l—R) W
1-C-- ; H(S;|QW)
1" (d+1)
<1-C-- ; H(S;|Qd+1)y,

Therefore, the (possibly sub-optimal) set2df! quantization Ievelsélgdﬂ), e léﬁffll)) with their symmetric values

around zero provides a tighter lower bound than ¢péimal choice of2¢ quantization levels. Hence, this proves
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that the lower bound is monotonically increasing with thenber of quantization levels when these levels are set
optimally.

Theorem 3.2:(“2%-Level Quantization” Lower Bound on the Asymptotic ParityeCk Density of Binary Linear
Block Codes) Let{C,,,} be a sequence of binary linear block codes achieving a émadti- ¢ of the capacity of
an MBIOS channel with vanishing bit error probability. L&, be an arbitraryfull-rank parity-check matrix of
the codeC,,, and denote its density bsx,,,. Then, the asymptotic density satisfies

K+ Kylnl
lim inf A,,, > % (48)
m—00 1—=¢
where
1 1-C
Ki=XKzIn <21n2 C ) ’
1-C
Ky = — P N (49)
(Pi — p2a_1-4)
C In —_—
( ZZ; Di +Paa_1-;
Here,d > 2 is an arbitrary integer and the probabilitigs;} are introduced in (35) interms &f > ... > loa-1_1 €
R*. The optimal vector of quantization level, ..., l,.1_;) is given implicitly by solving the set o2?~! — 1
equations

Pa_y_;+e lp} B P3a_;+e il
(pi+p2a1-4)%  (pim1 +poay)?
where such a solution always exiéts.
Proof: For an arbitrary sequence of binary linear block cofts} which achieves a fractioh— ¢ to capacity
with vanishing bit error probability, we get from Lemma 3.%&th
HX,|Y
lim HXom | Yom)
m— o0 Nom
whereX,, andY,, designate the transmitted codeword in the cGgeand the received sequence, respectively,
andn,, designates the block length of the caglg. From Proposition 3.2, we obtain
H(Xn|Yom)
Nim

>1-C—(1—Rm)

k
Z{Pk,m ko Z (ko,...,k2d1_1>

k‘ ,...7k‘2d_171
¥, k=k
2411

H (Ps + p2a_1-s)"

s=0

1 r 2poa_1_5 \k=
P2 (2 [1 B H <1 B Ds +p2d7173> }

s=0

i=1,...,2¢71 1 (50)

=0

3See the footnote to Theorem 3.1 on p. 10.
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wherel';, ,,, designates the fraction of parity-check equations in ayaheck matrixH,,, which involvek variables.
The upper bound on the binary entropy functionin Lemma 3.2 gives

H(X|Ym)
Nm
>1-C—(1-Rp) (51)
k
; {Fk7m k07mg11 <k0, ceey k2d1_1>
2 ke=k
24-1_1
H (ps + poa_1-)"
s=0

1 2{1—171 2kg
- d_1—
1= H <ps P2a—1 s> '
2In2 1 \ps+pai1—s
Since , Tk = 1 and 3251 p, = 1, we get

1 k
T 2In2 %:{ka > <k0k21>

ko,..ikya—1_4
> ks=k
2d 1_ k)q
. — P2d_1—s 2) )
— 0 bs +p2'i 1—s
1 241 1 )2 F
DP2d_1—s
—1- I,
2In2 . o ; Ps +P2a_1-5
2(1—171 aR(m)
o 1 (ps - p2d—1—5)2 (52)
N 2In2 | = ps+pre_is

wherear(m) £ ", kL'\.,,, designates the average right degree of the bipartite grégthwefers to the parity-check
matrix H,,, and the last transition follows from Jensen’s inequality.
Substituting (52) into the RHS of (51) and letting tend to infinity gives the inequality

0>1-C—-(1-(1-¢)C)

Qd—l_l aR(oo)
1 (ps — paa_1-5)?
'[1_21n2< ZO (®3)

Ps +Poa_1-s

whereag(co) £ liminf,, .o ar(m). Note that the validity of (53) follows since the base of th@anent in this
inequality does not exceed unity, i.e.,

2411

Z (ps - p2d—1—5)

iy Ps +Poa_1-s
2d—1_

1
< Z (ps + p2a_1-5)?

i Ps + P2d_1-s

= (ps +p2a_1_s) = 1.



20

Inequality (53) gives the following lower bound on the asyatic average right degree:

ar > K{ + KIn (i) (54)
where
Ky =n <211121_CC> K,
Ké o = (psl— P2d_1 5)2 '
ln( Z Ds + P2a—1—s )

s=0

By combining (31) and (54) with the asymptotic rae= (1 — £)C', we obtain a lower bound on the asymptotic
parity-check density which is of the form

Ki+ Ksln (%)

liminf A,, >
m—o00 1—¢
where | _C
K1,2 = T ) K{,2-

This completes the proof of the lower bound in (48) and (49). déevation of the set of optimization equations
in (50) follows along the lines of the derivation of (24). Inetgeneral case & quantization levels, it follows

from (49) that we need to maximize
2d-1-1

Z (ps — p2d—1—s)2

‘o PstDPa-1-s

To this end, we set to zero all the partial derivatives wig.twheres = 1,...,2%~1 — 1. Since from (35) onlyp,,
Ds—1, Pai_s andpoa_g_q depend orl, then

0 { (Ps—1 — paa_s)” n (ps — pzdsl)z} _0
Ds—1 + Doa—s Ds T P2d_s—1

Ol s

We express now the probabilities, ps_1, psa_s andpsa_,_; as integrals of the conditional pdfof the LLR, and
rely on the symmetry property which states thét) = e‘a(—1) for I € R. In a similar manner to the derivation of
(24), this gives the set of equations in (50). Their solutioovjgles the quantization levels, ..., ls«-1_1 (Where
according to Proposition 1lI-B, the oth@f~! — 1 levels are set to be symmetric w.r.t. zero). ]
Based on the proof of Theorem 3.2, we derive an upper boundeasymptotic rate of every sequence of binary
linear codes for which reliable communication is achiegafilhe bound refers of soft-decision ML decoding, and
it is therefore valid for any sub-optimal decoding algamith

Corollary 3.2: (“2?-Level Quantization” Upper Bound on the Asymptotic AchiekalRates of Sequences of
Binary Linear Block Codes) LefC,,} be a sequence of binary linear block codes whose codewoedsassmitted
with equal probability over an MBIOS channel, and suppos¢ ttie block length of this sequence of codes tends to
infinity asm — oc. LetI';, ,,, be the fraction of the parity-check nodes of degkaa an arbitrary representation of
the codeC,, by a bipartite graph which corresponds to a full-rank patitgck matrix. Then a necessary condition
for this sequence to achieve vanishing bit error probaghéigm — oo is that the asymptotic ratR of this sequence
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satisfies

k
1 —max< (1-C I
lo-olzn s (5
3
24-11

H (pi + p2o—1-)"
2d—1_1 k. —1
1 2pga_14 '
W |
(2 1_‘!) Di+D2a1-

§=2d-1 . } > R (55)
k

whered > 2 is an integer, the probabilitie§p;} are introduced in (35), anfl;, and R are introduced in (1).

Proof: The concept of the proof here is the same as the one of Cordldryexcept that the first term
in the maximization on the RHS of (55) relies on (36). The sdctamm in this maximization follows from [14,
Corollary 3.1], relying on the erasure decomposition lemifran (35), the erasure probability of the corresponding
BEC is equal top = 23251, pi. m

IV. APPROACHII: BOUNDS WITHOUT QUANTIZATION OF THE LLR

Similarly to the previous section, we derive bounds on themgdgtic achievable rate and the asymptotic parity-
check density of an arbitrary sequence of binary, lineaclbloodes transmitted over an MBIOS channel. As in
Section I, the derivation of these two bounds is based omaiddound on the conditional entropy of a transmitted
codeword given the received sequence at the output of theneha

Proposition 4.1: Let C be a binary linear block code of lengthand rateR transmitted over an MBIOS channel.
Let X = (X4,...,X,) andY = (Y3,...,Y),,) designate the transmitted codeword and the received seguen
respectively. For an arbitrary representation of the add®y a full-rank parity-check matrix, lef';, designate the
fraction of the parity-check equations of degrigeandI'(z) £ >, I'yz* be the degree distribution of the parity-
check nodes in the corresponding bipartite graph. Then,dhdittonal entropy of the transmitted codeword given
the received sequence satisfies

H(X]Y) 1 < T(g)
n21_c—(r—m<1—2m2§;p@pﬁn> (56)
where ~
ﬁjét/) aa)m.+eﬁtanh%’(é>tﬂ, peN (57)
0

anda denotes the conditional pdf of the LLR given that the channgltris 0.
Proof: We consider a binary linear block codeof lengthn and rateR whose transmission takes place over
an MBIOS channel. For the continuation of the proof, we maweenfthe mapping of the MBIOS chann&l — Y
to the channeX — Y whereY represents the LLR of the channel outptt These channels are equivalent in the
sense thaf{ (X |Y) = H(X|Y). The basic idea for showing the equivalence between thenafighannel and the
one which will be introduced shortly is based on the fact thatLLR forms a sufficient statistics of the channel.
For the characterization of the equivalent channel, letftimetion « designate the conditional pdf of the LLR
given that the channel input is 0. We randomly generate ah sequencgL;};" ; w.r.t. the conditional pdf:, and
define
0 if L,>0
Q =L, ©;,2¢ 1 if L, <0 . (58)
Oorlwp.1 if L;=0
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The output of the equivalent channel is defined to be the sequgne (Y1,...,Y,) where
2:((13“91), i:l,...,n

and®; = ©; + X; where this addition is modulo-2. The output of this equivalgmannel at time is therefore the
pair (®;,9;) where®; € {0,1} and; € R*. This defines the memoryless mapping

XY 2,0

where ® is a binary random variable which is affected iy and() is a non-negative random variable which is
not affected byX. Note that due to the symmetry of the communication chartheljoint distribution of the pair
(®,Q) is equal to the one which corresponds to the pair repregpttim sign and magnitude of LLR(]. Hence,

alw)+a(-w)=(1+e Y aw) fw>0
falw) = { a(0) if w=0 (59)
where we rely on the symmetry property of the jdf
Following the lines which lead to (15), we obtain
H(X|Y)2nR—H( )+ nH(Y) —nC. (60)

In order to get a lower bound of (X|Y), we calculate the entropy af and also obtain an upper bound on the
entropy of Y. The calculation of the first entropy is direct

H(Y) = H(®,9)

= H(Q)+ H(®|Q)
= H(Q)+ E, [H(Q|Q = w)]

= H(Q)+1 (61)

where the last transition is due to the fact that given thelabs value of the LLR, its sign is equally likely to be
positive or negative. The entropy (£2) is not expressed explicitly as it will cancel out later.
We now derive an upper bound dii(Y)

H(Y) = H(®1,Q1,...,8,,Q,)
= H(Qu,...,Q) + H(®1,..., P [ Q1,..., Q)

Define the syndrome vector
S = (®,...,0,)HT

where H is an arbitrary full-rank parity-check matrix of the binaigear block codeC, and letM be the index
of the vector(@l, ..., ®,) in the coset which corresponds $o Since each coset has exac2i/* elements which
are equally likely ther (M) = nR, and we get

H((®1,...,00) [ (Q,..., %))
=H(S,M|(Q1,...,2,))
<HM)+H(S|(,...,Q))
:nR+H(S|(Ql,...,Qn))

<nR+ Z (S (..., Q) (63)

SinceXHT = 0 for any codewordX, then
S=(01,...,0,)H"
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which is independent of the transmitted codeword. Consitler;™ parity-check equation, and assume that it
involves k variables whose indices ateg, . ..,i;. Then, the component; of the syndrome is equal to 1 if and
only if there is an odd number of ones in the random ve¢®, ..., ©0;, ).

Lemma 4.1:If the j-th component of the syndront involves k variables whose indices afg, io, ..., i, then

PI‘( j:1‘(911,-..,Qik):(Oél,-..,ak))
k

- % [1 — I tann (O‘Qm)] . (64)

m=1

Proof: Due to the symmetry of the channel
Pm = Pr(@im =1 | Qim = Oém)
a(—am)
alam) + a(—am)
1
T 1+ et
Substituting this result in [3, Lemma 4.1] gives

PI‘(Sj = 1‘(9“,,51%) = (oq,...,ozk))

1 k
:2[1— [[-2Pn

m=1

1 b O,
=3 ll—ﬁgltanh(Q)], m=1,...,k.

We therefore obtain from Lemma 4.1 that
H(Sj\(Qil, e Q) = (g, .., ak))
1 b «
i)
and by taking the statistical expectation over theandom variables; ,...,€;, , we get

H(S;|,,...,%,)
(e T )

k
. H fQ(Oém) dOdldOéQ e dak

o0

m=1
1 1
— 1 o
2In2 Zl{p(Qp—l)

: ( /0 “fala) tank® (%) da>k} (65)
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where the equality in the last transition is proved in ApprilB. Hence, sincex(1— R)T', designates the number
of parity-check equations of degrée then

n(1—R)

Z H(S;|Q,...,)

j=1

=n(l—R)[1- ﬁ Zk: {rk; p(2p1_ 5
IS ) o k
: </0 fa(a) tanh*? <§> da> }]
00 k
—n(l-R) 1—21112;{rk;p(£’p_1)}] (66)

where the last equality follows from (57) and (59). By comibin(62), (63) and (66), we get the following upper
bound onH (Y):

H(Y)
<nH(Q)+nR+n(l—R)

= 21112 Z{F’“ip(mgf—l)}]

L k p=1
=nH(Q)+nR+n(l—R)

[ 1 & 1
_1_21n2;{p(2p—1);Fk9§}]
=n n n(l — - N L(gp)
=nH(Q)+nR+n(1 R)(l 21nzpzlp(2p—1)>' (67)

Finally, the equality in (61) and the upper bound &HY) given in (67) are substituted in the RHS of (60).
This provides the lower bound on the conditional entrép¢X|Y) given in (56), and completes the proof of this
proposition. ]

Remark 4.1:For the particular case of a BEC with erasure probabijlitthe capacity isC = 1 — p bits per
cannel use. The conditional pdf of the LLR, given that ¢this transmitted, is equal to

a(l) = pdo(l) + (1 = p)doo(l)

where the functiors, designates the Dirac Delta function at the paini.e., d,(z) = §(z — a). We obtain from
(57) thatg,, =1 —p for all m € N, so (56) gives

1 < I'l1-p)
! 2In2 Z m(2m — 1)]

m=1

AXY) o o _a—-pR

— p-(-R)[1-T(-p) (68)

where the last transition follows from the equality
> 1
———— =1In2.
mz_:l 2m(2m — 1) "
The lower bound on the conditional entropy for the BEC, as give(68), coincides with the result proved in
[14, Egs. (33) and (34)]. The result there was obtained by thead®n of an upper bound on the rank éfg
which is a sub-matrix off whose columns correspond to the variables erased by the BEC.
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Discussion The proof of Proposition 4.1 relies on the analysis of an exjeit channel rather than a degraded
(quantized) channel. We therefore expect the lower bourtdarRHS of (56) to be tighter than the one in the RHS
of (36). By following the derivation in (60)—(63), one gets

n(1—R)
H(X|Y) 1
——>1-C - = H(S;|Q,...,0,
n el C n ]:Zl (S]‘ 1, ’ ) (69)
where the random variable€3,, ..., Q, are defined in (58) and; is the j-th component of the syndrome. The

lower bound in (56) is in fact an explicit expression for thH®oee inequality where the side informatiéhis the
absolute value of the LLR without quantization. From the distrs following Proposition 3.2, the bound in (36)
is of the same form, except that the side information ..., 2, is a quantized versiorf the absolute value of
the LLR. Hence, from the information processing inequalityfollows that indeed (56) is a tighter lower bound
on the conditional entropy than (36) for any number of quamtibn levels.

Theorem 4.1:(*Un-Quantized” Lower Bound on the Asymptotic Parity-CheBknsity of Binary Linear Block
Codes) Let{C,,} be a sequence of binary linear block codes achieving a dradti- ¢ of the capacityC' of an
MBIOS channel with vanishing bit error probability. Léf,, be an arbitraryfull-rank parity-check matrix of the
codeC,,, and denote its density bs,,,. Then, the asymptotic density satisfies

K, + Kylnd
liminf A, > Mitfamg (70)
m—o00 1— 13
where
E(1-0) 1-C 1
K=Ky In|>—~—-2 Koy= — 71
L=t (S0 ) (71)
g1
g1 is introduced in (57), and
1 for a BEC
gé{ —L_ otherwise - (72)
2In2

Proof: From the lower bound ow in Eg. (56) and Lemma 3.1 (see p. 11), we obtain thdCjf,} is
a sequence of binary linear block codes which achieves #drat — ¢ of the channel capacity with vanishing bit
error probability, then

p=1

1-C—(1-(1-¢)0) (1 21112 Zp(gz()gp)n) <0

wherel'(z) £ 37, T'yz* is the asymptotic right degree distribution from the nodespective which corresponds
to the sequence of parity-check matricgd,,}. Since) , kI';, = ar is the average right degree, then from the
convexity of the exponential function, we obtain by invakidensen’s inequality thdt(z) > z8 for all =z > 0,
and therefore

1-C—(1-(1-¢)C) [12;22]9(29;{1)] <0. (73)
1

p:
We derive now two different lower bounds on the infinite sumha RHS of (73), and compare them later. For
the derivation of the lower bound in the first approach, let efing the positive sequence
A 1 1
- 2In2 p(2p—1)°

ayp peN. (74)
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From (99) (see Appendix 1I-A), the substitution of= 0 in both sides of the equality gives thE;il ap =1, s0
the sequencga,,} forms a probability distribution. We therefore obtain that

o0

o Zl p(?fjf?i )

g{% ([ s et (1) )"}
</om e zaptanhpodl)“
(/Oooa(l)(l—l-e_l) o (W)]dl)

(Awaﬂxl+el)b—4m<lid>}ﬂ>@

© can (75)

—
o
g

AVACH

—~
(¢}
=

—~
[=}
=

where equality (a) follows from (57) and (74), inequality (bllows from Jensen’s inequality, equality (c) follows
from (74) and (99), equality (d) follows from the identitynh(z) = em+11 and equality (e) follows from the relation
between the capacity of an MBIOS channel and the pdf of thelatesvalue of the LLR (see [13, Lemma 4.30]).

For a derivation of an alternative lower bound on the infinkgies above, we truncate the infinite sum in the
RHS of (73) and take into account only the first term in thiseseriThis gives

0 a a
1 R R

Ip 91
> 76
2ln2;p(2p—1)_21n2 (76)

which follows from (57) sincey, > 0 for all p € N.
In order to compare the tightness of the two lower bounds %) énd (76), we first compare the bases of their
exponents (i.e.g; andC). To this end, it is easy to verify that

l 1
tanh2 (2> 2 1-— h2 (1_‘_€Z> le [0,00)

with an equality if and only iff = 0 or I — oo. To show this, we start from equality (99), use the inequalit

(1 —2x)% < (1-2z)%forpe Nand0 <z <1, and the equahtyz = In2 to finally get

_
p(2p — 1)
ho(z) >1—(1-22)%, 0<z<l.
Hence, (57) and (75) give; > C with equality if and only if the MBIOS channel is a BEC. Therefpup to the
multiplicative constantﬁ, the lower bound in (76) is tighter than the first one in (75)wdwaer, for the BEC,
(75) is tighter than (76); it provides an improvement by adaof 21n2 ~ 1.386.

We will therefore continue the analysis based on the seconddin (76), and then give the potential improvement
which follows from the first bound in (75) for a BEC. From (73) arid), we obtain that

1—0—(L—u—exm(1—;£z>§o

Sinceg; < 1 (where equality is achieved for a noiseless channel), therasymptotic average right degrés)
satisfies the lower bound
> In (21n2 ( ))

ln(é)
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By dropping the 1 inside the logarithm in the numerator, weainbthat
1
ar > K{ + Ky In <€) (77)

where

In (515 1€
Kl = n(lillrl(zll)c* )’ Kézln(lg}l)’

Finally, since for a full-rank parity-check matrix, the pggsrcheck density and average right degree are directly
linked by the equalityA = (%) ar, one obtains the following lower bound on the asymptoticitpaotheck

density:
liminf A, > W (K{ + K} ln<i>>

K1+K2hl(%)
1—¢

where K » = % K{Q. For the BEC, this lower bound can be improved by using the fosihd in (75). In this
case,g1 = C = 1 — p wherep designates the erasure probability of the BEC, so the addithefficientk; in the
RHS of (70) is improved to
D
K, » In <1_p)

:ﬂ@'

This concludes the proof of this theorem. ]

Remark 4.2:For a BEC, the lower bound on the asymptotic parity-checkitiestated in Theorem 4.1 coincides
with the bound for the BEC in [14, Eq. (3)]. This lower bound wasndestrated in [14, Theorem 2.3] to be tight.
This is proved by showing that the sequence of right-regulaPCznsembles of Shokrollahi [17] is optimal in the
sense that it achieves (up to a small additive coefficient)dier bound on the asymptotic parity-check density
for the BEC.

For a general MBIOS channel (other than the BEC), we show irpthef above that the preferable logarithmic
growth rate of the lower bound on the parity-check densitpdhieved by using the bound which follows from
(76). However, we note that the lower bound on the parityekhaensity which follows from (75) isiniversalfor
all MBIOS channels with the same capacity.

Remark 4.3:The lower bound on the parity-check density in Theorem 4.1 ifoumly tighter than the one in
[14, Theorem 2.1] (except for the BSC and BEC where they coijiciger a proof of this claim, the reader is
referred to Appendix IlI-A.

Based on the proof of Theorem 4.1, we prove and discuss an bpped on the asymptotic rate of an arbitrary
sequence of binary linear block codes for which reliable wmmication is achievable. The bound refers to ML
decoding, and it is therefore valid for any sub-optimal dieg algorithm. Hence, the following result also provides
an upper bound on the achievable rates of ensembles of LDPG noader iterative decoding, where the transmission
takes places over an MBIOS channel.

Corollary 4.1: (Upper Bound on Achievable Rates) Lgft,, } be a sequence of binary linear block codes whose
codewords are transmitted with equal probability over anl®®B channel, and assume that the block lengths of
these codes tend to infinity as — oco. LetI'; ,,, be the fraction of the parity-check nodes of degkder arbitrary
representations of the codég by bipartite graphs which correspond to full-rank paribeck matrices, and assume
the limit Ty £ lim,,—oo 'y, m exists. Then, in the limit wherem — oo, a necessary condition on the asymptotic
achievable raté R) for obtaining vanishing bit error probability is

R<1-— 11;Cr( ) (79)
9p
1= 2In2 Z;p(Zp -1)

p=

(78)
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whereI'(z) £ Y, Txz*, andg, is given in (57).

Proof: This upper bound on the achievable rate follows immediatalynfLemma 3.1 and the lower bound
on the conditional entropy in Proposition 4.1. The upper boamd? follows since the bit error probability of the
sequence of code&’,,} vanishes as we let tend to infinity. [ |

Remark 4.4:We note that the upper bound on the achievable rate in the RKi®pdoesn’t involve maximiza-
tion, in contrast to the bound in the RHS of (55). The seconuh t&f the maximization in the latter bound follows
from considerations related to the BEC where such an expressinot required in the RHS of (79). The reader
is referred to Appendix IlI-B for a proof of this claim.

Corollary 4.2: (Lower Bounds on the Bit Error Probability of LDPC Codes) l&tbe a binary linear block
code of rateR whose transmission takes place over an MBIOS channel wighaity C. For an arbitrary full-rank
parity-check matrix{ of the codeC, letT";, designate the fraction of parity-check equations thatlire/é variables,
andI'(z) £ 3", Tx2* be the right degree distribution from the node perspectiiehvrefers to the corresponding
bipartite graph ofC. Then, under ML decoding (or any other decoding algorithimg, kit error probability £,) of
the code satisfies

C 1-R I'(gp)

halfb) 2 1= 5+ opns Z; p(2p—1) (80)

p=

[e.9]

whereg, is introduced in (57).
Proof: This follows directly by combining (25) and (56). ]

We now introduce the definition of a normalized parity-cheekslity, as given in [14], and derive an improved
lower bound on the bit error probability (as compared to [IHeorem 2.5]) in terms of this quantity.

Definition 4.1: (Normalized parity-check density [14]) L&t be a binary linear block code of rafe, which is
represented by a parity-check matik whose density isA. The normalized densityf H, call it ¢t = ¢(H), is
defined to be = £5;.

In the following, we clarify the motivation for the definitioof a normalized parity-check density. Let us assume
thatC is a binary linear block code of length and rateR, and suppose that it can be represented by a bipartite
graph which iscycle-free From [14, Lemma 2.1], since this bipartite graph contadihts R)n — 1 edges, connecting
n variable nodes with1 — R)n parity-check nodes without any cycles, then the parityekh@ensity of such a
cycle-free code iA = % — n—lR. Hence, in the limit where we let tend to infinity, the normalized parity-
check density of a cycle-free code tendsltd-or codes which are represented by bipartite graphs witlesythe
normalized parity-check density is above As shown in [14, Corollary 2.5], the number of fundamentaties
in a bipartite graph which represents an arbitrary lineacklC grows linearly with the normalized parity-check
density. The normalized parity-check density thereforevides a measure for the number of cycles in bipartite
graphs representing linear block codes. It is well known dtyale-free codes are not good in terms of performance,
even under ML decoding [18]; hence, good error-correctindes (e.g., LDPC codes) should be represented by
bipartite graphs with cycles. Following [14], a lower bouod the asymptotic normalized parity-check density is
expressed in terms of the gap (in rate) to capacity (evenrukiledecoding); this bound provides a quantitative
measure for the number of fundamental cycles of bipartitgplgs representing good error correcting codes. In
the following, we provide such an improved bound as compé#oeithe bound given in [14, Theorem 2.5]. In the
continuation (see Section V-B), the resulting improvemsnéxemplified.

From Definition 4.1, it follows that the relation between themalized density of a full-rank parity-check matrix
and the corresponding average right degrefe=is ;:1}%2 ar SO the normalized parity-check density grows linearly
with the average right degree (which is directly linked te thecoding complexity per iteration of LDPC codes
under MPI decoding) where the scaling factor depends on tHe cateR.

Since), kT, = ar, then by applying Jensen’s inequality to the RHS of (80), wetge following lower bound
on the bit error probability:

(2—R)t

C 1-RX gyt F
ho(Py) >1— — P .
2(F) = R+2Rln2p:1p(2p—1)

(81)
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This lower bound on the bit error probability is tighter thdre tbound given in [14, Eqg. (23)] because of two
reasons: Firstly, by combining inequality (76) with Lemmall(see Appendix IlI-A), we obtain that

(2-R)t 2(2— R)t

LS gt (-2
21112p:1 p(2p—1) — 2In2

o0

Secondly, the further improvement in the tightness of the bhewnd is obtained by dividing the RHS of (81) by
R (whereR < 1), as compared to the RHS of [14, Eq. (23)].

The bounds in (80) and (81) become trivial when the RHS of thiesqualities are non-positive. Let the
(multiplicative) gap to capacity be definedag 1 — %. Analysis shows that the bounds in (80) and (81) are useful
unlesse > (. For the bound in the RHS of (803 gets the form

_(1-0)B 2 1 o T(g)
T ca-B)’ B_2ln22p(2pil) (82)

and for the bound in the RHS of (81, is the unique solution of the equation

p=1

(2—(1—£g)O)t

1—(1—¢g)C

1—(1-— >
eI I L 0. (83)
p=1 p

2In2 (2p—1)

For a proof of (82) and (83), the reader is referred to Appesslilll-C and 1lI-D, respectively. Similarly to [14,
Eq. (25)], we note that, in (83) forms a lower bound on the gap to capacity for an abjtsequence of binary
linear block codes achieving vanishing bit error prob&pibver an MBIOS channel; the bound is expressed in
terms of their asymptotic rat® and normalized parity-check densitylt follows from the transition from (80) to
(81) that the lower bound on the gap to capacity in (83) isdo@s compared to the one given in (82). However,
the bound in (83) solely depends on the normalized parigekhdensity, while the bound in (82) requires full
knowledge of the degree distribution for the parity-cheokies.

Discussion:Due to the symmetry property for an arbitrary MBIOS chantte, conditional probability density
function of the random variabl® = Pr(X = 1]Y)—Pr(X = —1|Y) satisfies the property (see [16, Proposition 3.1])

Fr(t) = fr(—1) (1 L

— -1 <t <.
R,

The relationT” = tanh (%) forms a one-to-one correspondence between the value oatitlom variabld” and the
value of the random variablg for the LLR. This implies thaf (X; L) = I(X;T). It is shown in [16, Lemma 3.2]
that the moments of" satisfy the property

E[T?] = E[T?*71], VpeN.

Based on the above equality, it follows (see [16, Proposi8d@]) that the mutual information betweet and L
can be expressed in the following form:

I(X;L) = I(X;T)
1
= /_1 fr(t)logy(1+t)dt

o0

1 1 )
" In2 2 2p(2p — 1) E[T?]

p=1
o

~ In2 Z 2p(2p — 1)
p=1
where the last transition follows from (57) and the symmetrgperty, giving the equality

9p = /OO a(l) tanh? (é) dl = E[T?).

—00
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Therefore, the mutual information is expressed as a sum of ;x@nents ofl" (exactly like the lower bound on
the conditional entropy in (56)). Similar properties alspegr in [8, Lemma 3]. This gives insight to the reason for
being able to express the bound on the entropy in (56) as a $umeedimensional integrals witavenmoments

of the tangent hyperbolic function.

V. NUMERICAL RESULTS

We present here numerical results for the information4tbobounds derived in Sections Il and IV. As expected,
the new bounds improve the numerical results presented, idédtion 4] and [14, Section 4]. This improvement is
attributed to the fact that, in contrast to [1] and [14], thexi¢htion of the new bounds does not rely on a two-level
guantization of the LLR; this quantization converts the aapit MBIOS channel (whose output may be continuous)
to a BSC, and it therefore loosens the bounds. Throughout dusos, we assume that the transmission of the
codes is over the binary-input AWGN channel. Note that theatdized bounds” rely on quantized values of the
LLR as side information used for the derivation of these boubdsthe channel itself is not quantized. Hence, by
increasing the number of quantization levels used for tihesmds, the corresponding values of tﬁgthresholds
under ML decoding get farther from the channel capacity {Geges I-Ill).

We note that the statements in Sections II-IV refer to the gasere the parity-check matrices are full rank.
Though it seems like a feasible requirement for specific lingades, this poses a problem when considering
ensembles of LDPC codes. In the latter case, a parity-chedixmaferring to a randomly chosen bipartite graph
with a given pair of degree distributions, may not be fullkgone can even construct LDPC ensembles where the
design rate is strictly less than their asymptotic rate ashilock length goes to infinity). Considering ensembles
of LDPC codes, it follows from the proofs of Propositions 3.12 and 4.1 that the statements stay valid with
the following modifications: the actual code rakeof a code which is randomly picked from the ensemble is
replaced by the design rat&{) of the ensemble, an{ll';,} becomes the degree distribution of the parity-check
nodes referring to the original bipartite graph which repras a parity-check matrix, possibly not of full rank.
The reason for the validity of the bound with the suggestedification is that instead of bounding the entropy
of the syndrome by the sum of the entropies ofri{s — R) independent components, we sum oa#rn (1 — Rq)
components (where sincBqy < R, some of these components are possibly linearly dependéritllows from
the proofs that the entropy of the transmitted codew@d cancels out with the entropy of the indéxX of the
received vector in the appropriate coset (see e.g. (19ardéess of the rank off. By doing this modification,
the bound becomes looser when the asymptotic rate of thesdsdsrictly above the design rate of the ensemble.
In light of this modification, we note that the fractidh. of nodes of degreé is calculated in terms of the degree
distribution p by equation (6), which gives

Pk 1

k/olp(a:)dx.

Though the bounds in Sections llI-IV improve on the bounds intHe possible replacement of the code rate
with the design rate in case that the parity-check matricesat full rank was also noted in [1, p. 2439].

Based on [7, Lemma 7] (see Lemma 2.1 on p. 5), it was verified tleatdésign rates of the LDPC ensembles
presented in this section are equal with probability 1 todkgmptotic rates of codes chosen uniformly at random
from these ensembles. This allows one to consider the Sharapaity limit for these ensembles by referring to
the capacity values 0% which correspond to their design rates (see Tables I-Ill).

I'y =

A. Thresholds of LDPC Ensembles under ML Decoding

Tables I-Ill provide bounds on the thresholds of variouseertdes of LDPC codes under ML decoding. By
comparing these bounds with the exact thresholds undetiiterdecoding (based on the density evolution (DE)
technique), Tables I-lll provide a quantitative measunetfie sub-optimality of MPI decoding (as compared to
ML decoding).

The bounds on the achievable rates derived in [1] and Coiedl&:1, 3.2 and 4.1 provide lower bounds onﬁiie
thresholds under ML decoding. For Gallager's ensembleggidlar LDPC codes, the gap between the thresholds
under ML decoding and the exact thresholds under the #eratim-product decoding algorithm is rather large.



31

TABLE |
COMPARISON OF THRESHOLDS FORGALLAGER’S ENSEMBLES OF REGULARLDPC CODES TRANSMITTED OVER THE BINARYINPUT
AWGN CHANNEL. THE 2-LEVEL LOWER BOUND ON THE THRESHOLD OI'ETE REFERS TOML DECODING, AND IS BASED ON[1,
THEOREM 1] (SEE ALSO[14, TABLE II]). THE 4-LEVEL, 8-LEVEL AND UN-QUANTIZED LOWER BOUNDS REFER TGML DECODING, AND
ARE BASED ONCOROLLARIES 3.1, 3.2AND 4.1,RESPECTIVELY THE UPPER BOUND ON THE THRESHOLD oﬁ% HOLDS UNDER
"TYPICAL PAIRS DECODING [4] (AND HENCE, ALSO UNDER ML DECODING). THE DE THRESHOLDS ARE BASED ON THE DENSITY
EVOLUTION ANALYSIS, PROVIDING EXACT THRESHOLDS UNDER THE ITERATIVE SUMPRODUCT DECODING ALGORITHM[11].

LDPC Capacity Lower Bounds Upper DE
Ensemble|  Limit 2-Level | 4-Level | 8-Level [ Un-Quantized Bound [4] | Threshold
(3,6) | +0.187 dB | +0.249 dB | +0.332 dB | +0.361 dB | +0.371 dB | +0.673 dB | +1.110 dB
(4,6) | —0.495 dB | —0.488 dB | —0.472 dB | —0.463 dB | —0.463 dB | —0.423 dB | +1.674 dB
(34) | —0.794dB | —0.761dB | —0.713 dB | —0.694 dB | —0.687 dB | —0.510 dB | +1.003 dB
TABLE II

COMPARISON OF THRESHOLDS FOR RATE ONHALF ENSEMBLES OF IRREGULARLDPC CODES TRANSMITTED OVER THE
BINARY-INPUT AWGN CHANNEL. THE SHANNON CAPACITY LIMIT CORRESPONDS ToEb = 0.187 DECIBELS. THE 2-LEVEL, 4-LEVEL,
8-LEVEL AND UN-QUANTIZED LOWER BOUNDS ON THE THRESHOLD REFER T®IL DECODING, AND ARE BASED ON[1, THEOREM 2],
COROLLARIES 3.1, 3.2AND 4.1,RESPECTIVELY THE DEGREE DISTRIBUTIONS OF THE ENSEMBLES AND THEIRE THRESHOLDS ARE
BASED ON DENSITY EVOLUTION ANALYSIS UNDER ITERATIVE SUMPRODUCT DECODING[11], AND ARE TAKEN FROM [12, TABLES 1
AND 2].

A(z) p(z) Lower Bounds DE
2-Level | 4-Level | 8-Level | Un-Quantized| Threshold

2

0.38354z 4 0.0423727 + | 0.241230% + | 969 4B | 0,370 dB | 0404 dB | 0417 dB | 0.809 dB
0.57409x 0.75877 x>
0.23802z  + 0.209972% +

3 4
8:8?512%6 I 00.6101%1053;1131 835158;3;5; + 10201 dB | 0226 dB | 0.236 dB | 0.239dB | 0.335 dB
0.376272'*
0.21991x + 0.23328z2 +
0.02058z3 4 0.085432° + | 0.6485427 +
0.065402% + 0.0476727 + | 0.347472% + | 0.198 dB | 0.221 dB | 0.229 dB 0.232 dB 0.310 dB
0.019122% + 0.08064z'® + | 0.003992°
0.227982:1°
0.19606x + 0.2403922 +
0.00228z° + 0.0551625 + | 0.00749z7 +
0.16602z7 + 0.04088z% + | 0.991012% + | 0.194 dB | 0.208 dB | 0.214 dB 0.216 dB 0.274 dB
0.01064z° + 0.00221227 + | 0.001502°
0.2863622°

For this reason, we also compare the lower bounds on]%hénresholds under ML decoding with upper bounds
on the Eb thresholds which rely on "typical pairs decoding” [4]; anpap bound on ther’i thresholds under
an arbltrary sub-optimal decoding algorithm (e.g., “tyipairs decoding”) also forms an upper bound on these
thresholds under ML decoding. It is shown in Table | that fall&ger's ensembles of regular LDPC codes, the
gap between the thresholds under iterative sum-productditeg and ML decoding is rather large (this follows by
comparing the columns referring to the DE threshold and tieeubound based on “typical pairs decoding”). This
large gap is attributed to the sub-optimality of belief pagption decoding for regular LDPC codes. On the other
hand, it is also demonstrated in Table | that the gap betwleempper and lower bounds on the thresholds under
ML decoding is much smaller. For example, according to theenical results in Table I, the inherent loss in the
asymptotic performance due to the sub-optimality of bgtiefpagation for Gallager's ensemble (@f, 6) regular
LDPC codes (whose design rate%isbits per channel use) ranges between 2.097 and 2.137 dB.

For carefully chosen ensembles of LDPC codes, it is shown inegalb and Il that the gap between the DE
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TABLE Il
COMPARISON OF THRESHOLDS FOR RATE} ENSEMBLES OF IRREGULARLDPC CODES TRANSMITTED OVER THE BINARY¥INPUT
AWGN CHANNEL. THE SHANNON CAPACITY LIMIT CORRESPONDS TO% = 1.626 DECIBELS. THE 2-LEVEL, 4-LEVEL, 8-LEVEL AND
UN-QUANTIZED LOWER BOUNDS ON THE THRESHOLD REFER TOML DECODING, AND ARE BASED ON[1, THEOREM 2],
COROLLARIES 3.1, 3.2AND 4.1,RESPECTIVELY THE DEGREE DISTRIBUTIONS OF THE ENSEMBLES AND THEI®E THRESHOLDS ARE
BASED ON DENSITY EVOLUTION ANALYSIS UNDER ITERATIVE SUM-PRODUCT DECODING[11], AND ARE TAKEN FROM [19].

A(x) p(x) Lower Bounds DE
2-Level | 4-Level | 8-Level | Un-Quantized| Threshold

2
0.3024682 + 03194472 + | 1 | 1 608 g | 1786 dB | 1.815dB | 1.825dB | 2.049 dB

0.378085x* z

8:223225& 0.2923752% + z13 | 1.664 dB | 1.718 dB | 1.736 dB | 1.742 dB 1.874 dB
0.205439z + 0.25543222 +

8:%?;}1%? i 15 | 1.647 dB | 1.680 dB | 1.691 dB | 1.695 dB 1.763 dB

0.3626670x'!

thresholds under the sum-product decoding algorithm aachéw lower bounds on thﬁ;L thresholds under ML
decoding is rather small. This indicates that for the degrsteilobutions which are prowded by the LDPC optimizer
[19], the asymptotic degradation in performance due to theaptimality of belief propagation is marginal (it is
observed from Tables Il and Il that for several LDPC ensemlilds degradation in the asymptotic performance
is at most in the order of hundredths of a decibel).

The plots in Figure 2 compare different lower bounds on ﬁqethreshold under ML decoding of right-regular
LDPC ensembles. The plots refer to a right degree of 6 (uppe) @idtO (lower plot). The following lower bounds
are depicted in these plots: the Shannon capacity limit, thevel quantization lower bound in [1, Theorem 1],
the 4 and 8-level quantization bounds of the LLR in Section Ifi¢g dinally, the bound in Section IV where no
guantization of the LLR is performed. It can be observed froenttto plots in Figure 2 that the range of code rates
where there exists a visible improvement with the new lowaunns depends on the degree of the parity-check
nodes. In principle, the larger the value of the right-degi® then the improvement obtained by these bounds
is more pronounced starting from a higher rate code rate, (aga right degree of 6 or 10, the improvement
obtained by the new 'un-quantized’ bounds is observed falecates above 0.35 and 0.55 bits per channel use,
respectively).

B. Lower Bounds on the Bit Error Probability of LDPC Codes

Corollary 4.2 provides an improved lower bound on the bibeprobability of binary linear block codes, as
compared to the one given in [14, Theorem 2.5]. The plot of Figre3gnts a comparison of these lower bounds
for binary linear block codes where the new bound relies d) éhd the previously reported bound by Sason and
Urbanke is introduced in [14, Theorem 2.5]. The two bounds &eegnl as a function of the normalized density of
an arbitrary parity-check matrix (see Definition 4.1). In getting, the capacity of the channel%isbit per channel
use, and the bounds are depicted for binary linear blockcadimse rate is a fractioh— ¢ of the channel capacity.
To demonstrate the advantage of the lower bound on the loit probability in (81) over the lower bound derived
in [14, Theorem 2.5], let us assume that one wishes to designaaybLDPC code which achieves a bit-error
probability of 10~ at a rate which i99% of the channel capacity. The curve of the lower bound from [b#]

a fractional gap to capacity of = 0.01 implies that the normalized density of an arbitrary paoheck matrix
which represents the code (see Definition 4.1 on p. 28) shoaldtbeast:,,;, = 4.33, while the curve depicting
the bound from (81) strengthens this requirement to a nazewldensity (of each parity-check matrix) of at least
tmin = 5.68. Translating this into terms of parity-check density, whis also the complexity per iteration under
MPI decoding, yields mlnlmal E)arlty -check densities 1316 and 17.27, respectively (the minimal parity-check
density is given byA i, = ). It is reflected from Fig. 3 that as the gap to capaeitiends to zero, the
lower bound on the normallzed density of an arbitrary pactigck matrix {), representing a code which achieves
low error probability for a rate ofR = (1 — ¢)C, grows significantly.



33

—=— Shannon Capacity Limit

—— Lower Bound [1, Theorem 1]
— — 4-Level Quantization Bound
—— 8-Level Quantization Bound
— - Un-Quantized Bound

055 2 q

0.6

Rate

045 s 4

04 4 R

/ I 1 L L
-0.75 -05 -0.25 0 0.25 0.5 0.75 1 125 15 175
Eb/No [dB]

0.751 —e— Shannon Capacity Limit

—— Lower Bound [1,Theorem 1]
— — 4 Level Quantization Bound
—— 8 Level Quantization Bound
— - Un-Quantized Bound
0.7 T

Rate

0.6 i

0.55 T

L L L L L L
02 04 06 08 1 12 14 16 18 2 2.2
Eb/No [dB]

0.5

Fig. 2. Comparison between lower bounds on ﬁ#&thresholds under ML decoding for right-regular LDPC ensembles ayith- 6 (upper
plot) andar = 10 (lower plot). The transmission takes place over the binary-input AWGhhoal.

C. Lower Bounds on the Asymptotic Parity-Check Density

The lower bound on the parity-check density derived in Theofeinenables to assess the tradeoff between
asymptotic performance and asymptotic decoding compl€gér iteration) of an MPI decoder. This bound tightens
the lower bound on the asymptotic parity-check densityvaelin [14, Theorem 2.1]. Fig. 4 compares these bounds
for codes of rateL (upper plot) andr (lower plot) where the bounds are plotted as a functlon%)f It can be
observed from Flg 4 that a% increases, the advantage of the bound in Theorem 4.1 overatnedhin [14,
Theorem 2.1] diminishes. This follows from the fact that asuhleie of 5> b js increased, the two-level quantization
of the LLR used in [1] and [14, Theorem 2.1] better captures the b'ehaV|or of the MBIOS channel. It is also
reflected in this figure that as tends to zero (i.e., when the gap to capacity vanishes), ltpe ©f the bounds
becomes very sharp. This is due to the logarithmic behavidgh@tounds.

VI. SUMMARY AND OUTLOOK

The outstanding performance of low-density parity-check RKI) codes under iterative decoding is attributed to
the sparseness of the parity-check matrices of these cbtigivated to consider how sparse parity-check matrices
of binary linear block codes can be as a function of their egle rates and their gap to capacity, we derive in
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Fig. 3. Lower bounds on the bit error probability for any binary linearckloode transmitted over a binary-input AWGN channel whose
capacity is% bits per channel use. The bounds are depicted in terms of the normeknsity of an arbitrary parity-check matrix which
represents the code, and the curves correspond to code rates whialractionl — ¢ of the channel capacity (for different values &f
The bounds depicted in dashed lines are based on [14, Theorena2d5ihe bounds in solid lines are given in Corollary 4.2.

this paper two kinds of bounds. The first category is some ingatdewer bounds on the asymptotic density of
parity-check matrices in terms of the achievable gap (ie)rai capacity, and the second category is upper bounds
on the achievable rates of binary linear block codes. Thesadsorefer to the case where the transmission takes
place over memoryless binary-input output-symmetric (&B) channels, and improve the tightness of the bounds
given in [1], [14] (as exemplified in Section V). The informatidreoretic bounds derived in this paper are valid for
everysequence of binary linear block codes, in contrast to higiaiility results which follow from probabilistic
tools (e.g., density evolution (DE) analysis under mesgagsing iterative (MPI) decoding). The bounds hold
under maximume-likelihood (ML) decoding, and hence, they disld under any sub-optimal decoding algorithm.

The bounds in this paper are applied to ensembles of LDPC codesewie significance of these bounds is
as follows: Firstly, by comparing the new upper bounds on ttldexable rates with thresholds provided by DE
analysis, we obtain rigorous bounds on the asymptotic loggiformance of various LDPC ensembles due to the
sub-optimality of MPI decoding (as compared to ML decodirf@gcondly, the parity-check density of binary linear
block codes which are represented by standard bipartitghgraan be interpreted as the complexity per iteration
under MPI decoding. Therefore, by tightening the reportedetobound on the asymptotic parity-check density
(see [14, Theorem 2.1]), the new bounds provide better ihsighhe tradeoff between the asymptotic performance
and the asymptotic decoding complexity of iteratively ddsmb LDPC codes. Thirdly, the new lower bound on
the bit error probability of binary linear block codes tighs the reported lower bound in [14, Theorem 2.5] and
provides a gquantitative measure to the number of fundarhepttes in the graph which should exist in terms of
the achievable rate (even under ML decoding) and its gap paay. It is well known that cycle-free codes have
poor performance [18]; hence, the lower bound on the minimhber of fundamental cycles in the graph, as a
function of the gap to capacity, strengthens the result 8j.[1

The derivation of the bounds in Section Il was motivated bydasire to generalize the results in [1, Theorems 1
and 2] and [14, Theorem 2.1]. The two-level quantization ofltlgelikelihood ratio (LLR) which in essence replaces
the arbitrary MBIOS channel by a physically degraded birgmnmetric channel (BSC), is modified in Section Il
to a quantized channel which better reflects the statisticheobriginal channel (though the quantized channel is
still physically degraded w.r.t. the original channel). Tinember of quantization levels at the output of the new
channel is an arbitrary integer power of 2. The calculatiothefbounds in Section Il is subject to an optimization
of the quantization levels of the LLR, as to get the tightestriatsuwithin their form. In Section IV, we rely on
the conditional pdf of the LLR at the output of the MBIOS chanrald operate on an equivalent channel without
guantizing the LLR. This second approach finally leads to bourtdshnare uniformly tighter than the bounds in
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Fig. 4. Comparison between lower bounds on the asymptotic parity-alexagity of binary linear block codes where the transmission
takes place over a binary-input AWGN channel. The dashed line refdfist, Theorem 2.1], and the solid line refers to Theorem 4.1. The
upper and lower plots refer to code rateséohnd 3 respectively. The Shannon capacity limit for these code rates pomds toﬁ—g of
0.187 dB and 1.626 dB, respectively.

Section l1ll. It appears to be even simpler to calculate thejusntized bounds in Section 1V, as their calculation
does not involve the solution of any optimization equatietated to the quantization levels. The comparison
between the quantized and un-quantized bounds gives tngiglthe effect of the number of quantization levels
of the LLR (even if they are chosen optimally) on the achievables, as compared to the ideal case where no
guantization is done. The results of such a comparison angrsio Tables |-lll (see Section V-A), and indicate
that the improvement in the tightness of the bounds when rii@re 8 levels of quantization are used is marginal
(in the case that the quantization levels are optimally rdateed). We also note that practically, the possibility
to calculate un-quantized bounds which are uniformly lbetian the quantized bounds was facilitated due to an
efficient transformation of the multi-dimensional integraAppendix 11-B into an infinite series of one-dimensional
integrals whose convergence rate is fast.
In [8], a new method for analyzing LDPC and low-density germratatrix (LDGM) codes under MAP decoding

is introduced, based on tools borrowed from statisticalsptsy Considering ensembles of codes, one gets from [8]
high probability results as the block length gets large,tbatperformance of specific codes of finite length deviates
from the average ensemble performance. Since the boundihgitgies which rely on statistical physics [8] do
not allow for a bound which is valid for every linear block @dt would be interesting to get some theory that
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unifies the information-theoretic and statistical physippraaches and provides bounds that are tight on average
and valid code by code.

For ensembles of LDPC codes, the introduced bounds on thénthdssunder ML decoding only depend on the
degree distribution of their parity-check nodes and thesign rate. For a given parity-check degree distribution
(p) and design ratéR), the bounds provide an indication on the inherent gap toapanhich is independent of
the choice of the left degree distribution(as long as the pair of degree distributiofs p) yield the design rate
R). Sections Ill and IV giveuniversalbounds on the gap to capacity for general LDPC ensembles ovdé©BIB
channels, no matter what the degree of the variable nodes i®iig as the design rate is fixed). These bounds can
be exploited to gain insight on how good a specific design ofateglistributions is in terms of the design rate
and the average right degree where this is done by compdragxact thresholds under iterative decoding with
the lower bounds on the thresholds under ML decoding (see3dband Il in Section V). On the other hand,
the bounds are not necessarily tight for LDPC ensembles witiven gair of degree distribution§\, p) since
the explicit influence of\ is not taken into account except through the design rate efetisemble. As a topic
for further research, it is suggested to examine the pdisgibf tightening the bounds for specific ensembles by
explicitly taking into account the exact characterizatadn\. The numerical results shown in Section V indicate,
however, that these bounds are useful for assessing theeitthgap to capacity of various LDPC ensembles. The
gap to capacity is attributed to the finite average right degfethese LDPC ensembles [14].

As a topic for further research, we also suggest to study ailglesgeneralization of the bounds to non-binary
linear block codes. These generalized bounds can be applig tanalysis of the ML performance of non-binary
LDPC ensembles whose transmission takes place over arhdlismete memoryless channels with possibly different
types of quantization [2].

The lower bound on the asymptotic parity-check density in Tl#eorem 2.1] and its improvements in Sections Il
and IV grow like the log of the inverse of the gap (in rate) tpaeity. The result in [14, Theorem 2.2] shows that
a logarithmic growth rate of the parity-check density isiaghble for Gallager's ensembles of regular LDPC codes
under ML decoding when the transmission takes place overlzitraay MBIOS channel. These results show that
for any iterative decoder which is based on the representati the codes by Tanner graphs, there exists a tradeoff
between asymptotic performance and complexity which cabhasurpassed. Recently, it was shown in [10] that a
better tradeoff can be achieved by allowing more complatgt@phical models which involve a sufficient number
of state nodes in the graph; for the BEC, the encoding and degambmplexity of properly designed codes on
graphs remains bounded as the gap to capacity vanishesl@ge [

In [15], the authors consider the achievable rates and degombmplexity of LDPC codes over statistically
independenparallel channelsand generalize in a non-trivial way the un-quantized beunttoduced in Section IV.
The bounds in [15] are applied to randomly and intentionalipwgiured LDPC codes, and improved puncturing
theorems are derived as compared to those introduced inTHdhrems 3 and 4].

APPENDIX |
A. Proof of Lemma 3.1

Since there is a one to one correspondence between the codesval the set of information bits used to encode
them, thenH (X|Y) = H(U|Y) where the random vectdd = (U, ..., U,r) denotes the sequence of information
bits used to encode the codewaxd Let Pél) denote the probability of decoding the Bit erroneously given the
received sequence at the output of the MBIOS channel, theetitherror probability is given by

nR

1 (@)
This therefore gives
HXJY) _ HU]Y)
n - n

A
INe

1nR
— HU;|Y
2 D HUY)
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where inequality (a) holds from the chain rule of the entrapg since conditioning reduces entropy, inequality (b)
follows from Fano’s inequality and since the code is binamgquality (c) is based on Jensen’s inequality and the
concavity of the binary entropy functiofhs), and equality (d) follows from (84).

B. Derivation of the Optimization Equation {{24) and Proving the Existence of its Solution

Derivation of the optimization equatiof24): We derive here the optimization equation (24) whickeneto the
"four-level quantization” lower bound on the parity-cheg&nsity.

Let the functiona designate the conditional pdf of the LLR at the output of thgiadl MBIOS channel, given
the zero symbol is transmitted. In the following, we exprésstransition probabilities of the degraded channel in
Fig. 1 (see p. 7) in terms of the pdfand the value of:

po = Pr(ZzO]XzO):/OOa(u)du (85)
l
pp = Pr(Z=a|X=0)
! 1 [o*
= /O+ a(u) du + 5 / a(u) du (86)
pp = Pr(Z=14+a|X =0)
= /_ i a(u) du + % / ' a(u) du (87)
1
ps = Pr(Z=1|X=0)= / a(u) du. (88)

We note that the integration of the functianfrom v = 0~ to u = 0% gives a non-zero value if and only if there
is a non-vanishing probability that the value of the LLR at tlhipat of the original channel is zero (e.g., a BEC).
Otherwise, the contribution of this integral to (86) and)(8@nishes. Since the channel is MBIOS, the symmetry
property [11] gives

a(u) =e" a(—u), YuelR.

(89)

Based on the expressions for the coefficigifisand K5 in the lower bound on the asymptotic parity-check density
(22), then in order to find the tightest lower bound then we reeghaximize

(p1 —p2)* | (po—p3)? (90)
Dp1 + D2 Do + D3
w.r.t. the free parametdrc R*. From Egs. (85)—(88) and the symmetry property in (89)
== [ a1 - du
= a(po —p3) =—a()(1—e7h) (91)
Po +p3 = / a(u)(l+e ) du
!
= = (po+ps) = —a)(1+e7) (92)

ol
pl_pZZ/
0

l
a(u)(l —e ) du

+
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0 =a(l ! 93
E(Pl—m)—a()(l—e ) (93)
!
p1 +p2=/0 a(u)(I1+e ™) du

+

=

= Do) = a1+ e (94)

so the calculation of the partial derivative of (90) w.t.gives

Q { (p1 — p2)? + (po — p3)2}
p1+ P2 Ppo + p3

ol
ol () )
9 2
(&) B <p0]—9£p3> ”

Since the first derivative of a function changes its sign at ghimirhood of any local maxima or minima point,
and since the pdi is always non-negative, then the second multiplicativentebove is the one which changes its
sign at a neighborhood df maximizing (90). For this value of, the second multiplicative term vanishes, which
gives the optimization equation férin (24).

Proof of existence of a solution {@4). In order to show that a solution to (24) always exists, we adé how
the LHS and the RHS of this equation behavd as 0™ and/ — oo. From (85)—(88), it follows that in the limit
wherel — oo

+ e

p1 —=1—w—Pr(LLR(Y) =00 | X =0), p2—w
wherew is introduced in (2), and therefore
P +e”'pi

2
. B w
zlinolo (p1 +p2)? (1 —Pr(LLR(Y) =0 | X = 0)> ' >

Since from the symmetry property
o0
p3:/ a(—u)du
l

:/ e “a(u)du

l

ge—l/ a(u)du
l

-1
=€ Do

then the fractiong—z tends to zero ag — oo, SO

2
2, 1.2 <Zﬁ> +e!
im ]Lepg — lim pOiQ —0. (96)
e R L,
14 L2

It therefore follows from (95) and (96) that for large enougtiues ofl, the LHS of (24) is larger than the RHS
of this equation. On the other hand, in the limit whére: 0T, we get
1[0
PPz = 5 a(u)du
0-

and therefore 212
lim 225¢ PL_ 2 (97)
1=0% (p1 + p2) 2
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In the limit wherel — 0%, one also gets

po— | a(uds, ps— / a(w)du, po+py— B
0+ —00

ot oo
where3 = 1 —/ a(u)du. By denotingu é/ a(u)du,

- o+
we get0 <u < 3, and z

2 1,2 2 2
pstepy _ uw+(B—u) >1
120% (po +pa)? 32 23 vuelod) (98)

We note that the last inequality holds in equality if and oifily, = g But if this condition holds, then this implies
that

/_io a(u) du = /Uio a(u) du

which from the symmetry property cannot be satisfied unidsg = 6(u). The latter condition corresponds to a
BEC with erasure probability 1 (whose capacity is equal tam)er

From (97) and (98), we obtain that for small enough (and nayatiee) values of, the LHS of (24) is less or
equal to the RHS of this equation. Since we also obtained traafge enoughi, the LHS of (24) is larger than
the RHS of this equation, the existence of a solution to (&pws from continuity considerations.

C. Proof of Inequality(33)

We prove here the inequality (33) (see p. 13) which implieg the "four-level quantization” lower bound on
the parity-check density (see p. 10) is tighter than whatlmamnterpreted as the "two levels quantization” bound
in [14, Theorem 2.1]. Based on (2), we get

1
w=Pr{LLR(Y) < 0| X =0} + J Pr{LLR(Y) = 0| X =0}
so from (9),w = ps + p3. By invoking Jensen’s inequality, we get

(p1 — p2)? n (po — p3)?
p1+ p2 Po + P3

2 2
pP1 — P2 Po — P3
=(p1+p — ) +Po+p ( )
<1 2) <P1+p2) (0 3>

Do + D3
2
pP1 — P2 Po — Ps3
= |(p1+p2 <)+ Po + Pp3 ( >]
[( ) p1+p2 ( ) po + p3
= (po +p1 — p2 — p3)?

= (1—2ps — 2p3)°
= (1 —2w)>.

An equality is achieved if and only @“ng = §°+§3 From (91)—(94), we get

l
—/Ol =M di

T 1l4e!
J(1+e™) du

y41 +p2

and

Do + D3 +e) du 14l

)(1— d
Po — P3 /l ¢ )u>1—€*l
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The two fractlonspljrz2 and §°+p3 cannot be equal unless the LLR is either equal twr —I. This makes the
four-level quantization of the LLR identical to the two-levgliantization used for the derivation of the original
bound in [1, Theorem 2]. Equality can be also achievegh - p» = 0 or pg + ps = 0 which converts the channel
model in Fig. 1 (see p. 7) to a BSC.

APPENDIX I

This appendix provides further mathematical details rdlate the proof of Proposition 4.1. We note that
Appendix 1I-A serves here as a preparatory step for the dgon in Appendix II-B.

A. Power Series Expansion of the Binary Entropy Function
Lemma I.1:

1 & (1—22)%
ho(z) =1 — <z<l. 99
2(2) QIDQPZ:; pap—1) USTS (99)

Proof: We prove this by expanding the binary entropy function inposver series arouné. The first order
derivative is B ( 1oay
n
/ x
and the higher order derivatives get the form

W () = — =2 <(—1)”+ 1 >

In2 a0 (1 —x)nl

for n =2,3,... . The derivatives of odd degree therefore vanish ai =, and for an even value of > 2

h(n) 1 :_(n—2)!2n'
2 \2 In2

This yields the following power series expansion of the byremtropy function around the poi%t

o= 3 {55 (1))

n>2 even
1 (22 —1)"
- m n>§e:ven n(n B 1)
1 & (2z—-1)%
~ 2In2 pzl p(2p—1)
and this power series converges for alE [0, 1]. [

We note that since the power series in (99) has always noatimegcoefficients, then its truncation always gives
an upper bound on the binary entropy function, i.e.,

m _ 2p
ho(z) < 1— 21112 ; $(2p2f)1) Ve, meN. (100)

The case where: = 1 gives the upper bound in Lemma 3.2 which is used in this papethfo derivation of the
lower bounds on the parity-check density. The reason for simigua tighter version of the binary entropy function
for this case was because otherwise we would get a polynaqizdtion forar whose solution cannot be given
necessarily in closed form. As shown in Fig. 5, the upper baamdthe binary entropy functioh, over the whole
interval [0, 1] is improved considerably by taking even a moderate valuerfde.g.,m = 10 gives already a very
tight upper bound o, which deviates from the exact values only at a small neiginbaa near the two endpoints
of this interval).
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Fig. 5. Plot of the binary entropy function to base 2 and some upperdsowhich are obtained by truncating its power series around
1

B. Calculation of the Multi-Dimensional Integral if65)
Based on (99), we get

m=1
k
1 1—em
hg (( — H s >> dOél dak
2 m1<1+e m)
R 1
T 2In2 Z{p(2p—1)
p=1
o0 o0 k
// T folom)
0 0 m=1
k _ 2
1_eam)p
. dal...dak}
R— 1
=1 92 I;{p@p—l)
o0 o0 k o
: fa(am) tanh? (=2 )
AR (5
dal...dak}
ERE i ! /Oof()tah2p(o‘)d '
T 2m2 42— 1) Uy plajtait =g ) %) -

This transforms the originat-dimensional integral to an infinite sum of one-dimensioma¢grals. Since we are
interested in obtaining a tight upper bound on thdimensional integral above, and all the terms of the |d#tite
series are positive, then any truncation of the last infintges forms an upper bound on the multi-dimensional



42

integral given in (65). Based on the discussion in AppenbBi,lwe compute the first 10 terms of this series which
(see the plot in Fig. 5) give a very tight upper bound on th@imensional integral (for alk).

APPENDIX I
A. On the Tightness of the Lower Bound in Theorem 4.1

We show here that the lower bound on the parity-check densititheorem 4.1 is uniformly tighter than the one
in [14, Theorem 2.1] (except for the BSC and BEC where the two #swwincide). In order to show this , we
first prove the following lemma:

Lemma lll.1: For any MBIOS channelg; > (1 — 2w)? where w and g; are introduced in (2) and (57),
respectively.

Proof: From (2), (57) and (59)

gpi/x>(0(1+e)tmm2<é) dl
/ fa(l) tanh2< ) dl

where the single inequality above follows from Jensen'gjiradity. Note also tha; < 1 with equality if and only
if the channel is noiseless. ]
The proof of the claim stated at the beginning of this appeifallows directly by noticing that the lower bound
on the parity-check density, as given in (70)—(72), is eqoal

K1+K21n(%) _1-C In (3775 ;CC)
1—¢ T (1-¢)C 1n<i>

g1

where we refer here to all MBIOS channels except the BEC. Owtiier hand, the lower bound on the parity-check
density which is given in [14, Theorem 2.1] gets the form

1-C n(gp') .
(1=€)C ((1-%)2)
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If the lower bound is not trivial (i.e., the common numeraitoiboth bounds is positive), then the improvement in
the tightness of the former bound over the latter bound ¥gdldrom Lemma Ill.1. We note that for the particular
case of a BSC, the above two bounds coincide (as for a BSC whossower probability i, it is easy to verify
from (2) and (57) thatv = p andg; = (1 — 2p)?, respectively, hence; = (1 — 2w)?).

B. Proof for the Claim in Remark 4.4
In order to prove the claim in Remark 4.4 (see p. 28), it is m&guto show that

1-C
J— 1
1— — N1, 45
211122{19(217—1)Z kgp}
p=1 k
2w

101
Zl—ZFk(l—Zw)k (oh
k

wherew is introduced in (2). The reason for showing this in light oé ttlaim in Remark 4.4 is that the RHS of
the last inequality follows from considerations relatedcatBEC, essentially in the same way that the second term
of the maximization on the RHS of (55) is derived. By showihgtwe prove that the maximization of the two
expressions in the LHS and RHS of (101) doesn't affect the éanrCorollary 4.1.
Following the steps which lead to (75), we get that for anggetr s > 2
o0 k

1 Ip k
g > C".
211[121):1 p(2p—1)

Applying this to (101) and denoting(z) = 3", I'z2*, we get that a sufficient condition for (101) to hold is
1-C S 2w

1-T(C) —1-T(1 -2w)’

From the erasure decomposition lemma, we get that an MBIOSnetas physically degraded as compared to a

BEC with an erasure probability = 2w. By the information processing inequality, it follows that< 1 — 2w.
Therefore, in order to prove (102), it is enough to show thetftinction

(102)

11—z
is monotonically decreasing far € (0,1). We prove this property by showing that the derivative of filnection f
is non-positive on the intervdb, 1). As the denominator of the derivative is positive, we mayieantly show

that
I(z) (1-2)— (1-T(z)) <0.

Dividing both sides of the inequality by — x which is in the intervak (0, 1) and noting thal’(1) = >, I'y =1,
we get that it is enough to show that fore (0,1)
I'(z) -

Since the functionl” is a polynomial and therefore analytic, by the mean-valletbm we get that for some
z € (x,1)

() —T'(=)
1—=x

<0. (103)

MO =IE) g

Sincel”(z) = Y, kI'yz*~! is monotonically increasing far > 0, then (103) follows for allx € (0,1). This in
turn proves (101).
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C. Proof of Eq.(82)

In order to prove (82), we first multiply the two sides of (80) By and denoteR = (1 — ¢)C. This gives that
the lower bound on the bit error probability in (80) is norsjive if and only if

(1—C)B—eC(1-B)<0. (104)

Unless the channel is noiseless, we get

oo

_ 1 F(gp)
~2In2 pz:; p(2p—1)

a3 | ) ST
T2n2 =\ p2 - 1) k Ip

21n2 p(2p—1)
ZFk(/m J(1+e )tanh2p<l)dl)k}
21n2 o= T) Zrk(/ Y1 +e )dl)k}

5
i k
{ S ’“(/R{O}a(l)dz>}
£

=T Zrk(1 — Pr(LLR = 0)>k}
1
p(2p—1)

Since B < 1, the LHS of (104) is monotonically decreasingdnWe therefore deduce that the inequality (104)
holds fore > ¢g, wheregg is the solution of

(1-C)B —2,C(1— B) =0.

21n2 Z
p=1

1

< =1.
~2In2

M

It can be readily seen that the solution of the last equasogivien bye, defined in (82).

D. Proof of EQ.(83)

We will show both that there exists a unigeg that satisfies (83), and that the RHS of (81) is non-positive if
and only ife > ¢y whereegg is that unique solution. As in Appendix III-C, we begin by riplying the two sides
of (81) by R and denotingR = (1 — ¢)C. It follows that the bound in the RHS of (81) is trivial (nowsgitive) if
and only if

(2-(1—e)O)t
1 _5 1—(1-¢)C

9p
— < 105
5C’+ 21n2 g pZp— 1) <0 (105)

whereg, is introduced in (57). We now show that the LHS of the last irsdityiis monotonically decreasing i
Let us denote

(2-(1-5)O)t
1—(1-¢)C

s (1-¢)C 9p
fe) 2 —<C+ - 21n2 Z p(2p— 1)

L1 1
~ 2In2 p(2p—1)’

peN.

Qp
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By dividing the derivative off w.r.t. ¢ by C, we get

f/ e 1 (21 (11 EE)C)t
é)_c C+czapgp =9
p=1
@=G-cjon
+(1-(1-¢)C Zapg ~4799 In(gp)
p=1

N tC
(1-(1-¢)0)?
(2—(1—£)O)t
= Z {ap (1 - 111( ;0 E)C)> gp' 0TC } —1. (106)
From the symmetry property of the pdfthen (57) yields that
gp—/ a(l)(1 + e7!) tanh? <;> dl
0

:/_Z a(l) tanh* <;> dl

g/oo a(l)dl =1

—00

(2—(1—2)O)t

and, sincey, < 1, it follows thatgp1 4= < g, a0 . Therefore, (106) gives

0 t t
{ap (1 —ln p Em)) gﬁ(ls)c} —1.

— 0, where0 < 6, < 1, then the last inequality gives

i{ 1—1n1—5))(1—5p)}—1
SZapflz()

where the second transition follows from the inequality
i
In(1—2)>———, € (0,1).
n(l-2)> -, @01

1— (1 aC A

Forp € N, let us denotey,

This concludes the proof of the monotonicity of the LHS of (18bserving that

(2-C)t

Z()cpgp1 < >0

and

(o.)
1) = —C’+Zapg]2]t
p=1

[e.e]
—C+ Z ap Gp
p=1
=-C+C=0

where the first inequality follows singg, < 1 andt > 1 (asymptoticallyt = 1 if and only if the code is cycle-free).
The second equality follows from the last three equalitieslileg to (75). From the continuity of the functigh
w.r.t. £, we conclude that the monotonicity property fafas shown above, ensures a unique solution for (83). From
(105), it also follows from the monotonicity and continujtyoperties of the functiorf in terms ofe € (0,1) that
the RHS of (81) is non-positive if and only if > ¢, whereg is the unique solution of (83).
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