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Linear Block Codes: New Bounds and Applications
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Abstract

The moderate complexity of low-density parity-check (LDPC) codes under iterative decoding is attributed to the
sparseness of their parity-check matrices. It is thereforeof interest to consider how sparse parity-check matrices of
binary linear block codes can be as a function of the gap between their achievable rates and the channel capacity. This
issue was addressed by Sason and Urbanke, and it is revisitedin this paper. The remarkable performance of LDPC
codes under practical and sub-optimal decoding algorithmsmotivates one to assess the inherent loss in performance
which is attributed to the structure of the code or ensemble under maximum-likelihood (ML) decoding, and the
additional loss which is imposed by the sub-optimality of the decoder. These issues are addressed by obtaining
upper bounds on the achievable rates of binary linear block codes, and lower bounds on the asymptotic density of
their parity-check matrices as a function of the gap betweentheir achievable rates and the channel capacity; these
bounds are valid under ML decoding, and hence, they are validfor any sub-optimal decoding algorithm. The new
bounds improve on previously reported results by Burshteinet al. and by Sason and Urbanke, and they hold for
the case where the transmission takes place over an arbitrary memoryless binary-input output-symmetric (MBIOS)
channel. The significance of these information-theoretic bounds is in assessing the tradeoff between the asymptotic
performance of LDPC codes and their decoding complexity (per iteration) under message-passing decoding. They
are also helpful in studying the potential achievable ratesof ensembles of LDPC codes under optimal decoding; by
comparing these thresholds with those calculated by the density evolution technique, one obtains a measure for the
asymptotic sub-optimality of iterative decoding algorithms.

Index Terms

Block codes, iterative decoding, linear codes, low-density parity-check (LDPC) codes, maximum-likelihood
(ML) decoding, thresholds.

I. I NTRODUCTION

Error-correcting codes which employ iterative decoding algorithms are now considered state of the art in the
field of low-complexity coding techniques.

In [5], Khandekar and McEliece suggested to study the encoding and decoding complexity for ensembles of
codes defined on graphs where the complexity is expressed in terms of the gap between the achievable rates of
these ensembles and the channel capacity. They conjectured that if the achievable rate under message-passing
iterative (MPI) decoding is a fraction1− ε of the channel capacity, then for a wide class of channels, the encoding
complexity scales likeln 1

ε
and the decoding complexity scales like1

ε
ln 1

ε
. The only exception is the binary erasure

channel (BEC) where the decoding complexity behaves likeln 1
ε

(same as encoding complexity) due to the absolute
reliability of the messages passed through the edges of the graph (hence, every edge can be used only once during
the process of the iterative decoding).

Low-density parity-check (LDPC) codes have remarkable performance under practical iterative decoding algo-
rithms, and they are efficiently encoded and decoded due to thesparseness of their parity-check matrices. Consider
the number of ones in a parity-check matrix which representsa binary linear block code, and normalize it per
information bit (i.e., with respect to the dimension of the code). This quantity (which will be later defined as the
densityof the parity-check matrix) is equal to the normalized number of left to right (or right to left) messages
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per information bit which are passed in the corresponding bipartite graph during a single iteration of the MPI
decoder. In [14], Sason and Urbanke considered how sparse parity-check matrices of binary linear block codes can
be, as a function of their gap to capacity (where this gap depends in general on the channel and on the decoding
algorithm). An information-theoretic lower bound on the asymptotic density of parity-check matrices was derived
in [14, Theorem 2.1] where this bound holds for every sequenceof binary linear block codes transmitted over
an arbitrary memoryless binary-input output-symmetric (MBIOS) channel, and achieving a fraction1 − ε of the
channel capacity with vanishing bit error probability. It holds for an arbitrary representation of these codes by

full-rank parity-check matrices, and is of the form
K1+K2 ln 1

ε

1−ε
whereK1 andK2 are constants which only depend

on the channel. Though the logarithmic behavior of this lowerbound is in essence correct (due to a logarithmic
behavior of the upper bound on the asymptotic parity-check density in [14, Theorem 2.2]), the lower bound in [14,
Theorem 2.1] isnot tight (with the exception of the BEC, as demonstrated in [14, Theorem 2.3], and possibly also
the BSC).

In his thesis [3], Gallager proved that right-regular LDPC codes (i.e., LDPC codes with a constant degree (aR)
of the parity-check nodes) cannot achieve the channel capacity on a binary symmetric channel (BSC), even under
maximum-likelihood (ML) decoding. This inherent gap to capacity is well approximated by an expression which
decreases to zero exponentially fast inaR. Richardson et al. [12] have extended this result, and proved that the
same conclusion holds ifaR designates themaximal right degree. Sason and Urbanke later observed in [14] that the
result still holds when considering theaverage right degree. Gallager’s bound [3, Theorem 3.3] provides an upper
bound on the rate of right-regular LDPC codes which achieve reliable communications over the BSC. Burshtein
et al. have generalized Gallager’s bound for general ensembles of LDPC codes transmitted over MBIOS channels
[1]; to this end, they applied a two-level quantization to the log-likelihood ratio (LLR) of these channels which
essentially turns them into a BSC. The derivation of the boundsin this paper was motivated by the desire to improve
the results in [1, Theorems 1 and 2] and [14, Theorem 2.1] which are based on a two-level quantization of the
LLR.

In [7], Measson et al. derived an upper bound on the thresholds under ML decoding of LDPC ensembles trans-
mitted over the BEC. Their general approach relies on EXIT charts, having a surprising and deep connection with
the maximum a posteriori (MAP) threshold due to the area theorem for the BEC. Generalized extrinsic information
transfer (GEXIT) charts were recently introduced by Measson et al. [6]; GEXIT charts form a generalization of
the concept of EXIT charts, and they satisfy the area theorem for an arbitrary MBIOS channel (see [13, Section
3.4.10]). This conservation law enables one to get upper bounds on the thresholds of turbo-like ensembles under
bit-MAP decoding. The bound was shown to be tight for the BEC [7], and is conjectured to be tight in general for
MBIOS channels [6].

A new method for analyzing LDPC codes and low-density generator-matrix (LDGM) codes under bit-MAP
decoding is introduced by Montanari in [8]. The method is based on a rigorous approach to spin glasses, and
allows a construction of lower bounds on the entropy of the transmitted message conditioned on the received one.
The calculation of this bound is rather complicated, and its complexity grows exponentially with the maximal right
and left degrees (see [8, Eqs. (6.2) and (6.3)]); this imposesa considerable difficulty on its calculation (especially, for
continuous-output channels). Since the bounds in [7], [8] are derived for ensembles of codes, they are probabilistic
in their nature; based on concentration arguments, they hold asymptotically in probability 1 as the block length
goes to infinity. Based on heuristic statistical mechanics calculations, it was conjectured that the bounds in [8],
which hold for general LDPC and LDGM ensembles over MBIOS channels, are tight.

The new bounds introduced in this paper provide upper bounds on the achievable rates of LDPC codes under
ML decoding, and lower bounds on their asymptotic parity-check density. These information-theoretic bounds
are exemplified in this paper in the context of providing some insight on the tradeoff between the asymptotic
performance of LDPC codes and their decoding complexity (per iteration) under message-passing decoding. They
are also used in this paper for studying the potential achievable rates of ensembles of LDPC codes under optimal
decoding; by comparing these thresholds with the values which are calculated by the density evolution technique,
one obtains a measure for the sub-optimality of iterative decoding algorithms in the limit where we let the block
length tend to infinity. We note that the information-theoretic bounds in [1], [14] and this paper are valid forevery
sequence of binary linear block codes, in contrast to high probability results. As examples for the latter category of
probabilistic bounds which apply to ensembles, the reader is referred to the recent bounds of Montanari [8] under
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MAP decoding, the bound of Measson et al. for the BEC under MAP decoding [7], and the previously derived
bound of Shokrollahi, relying on density evolution analysisfor the BEC [17]. Shokrollahi proved in [17] that when
the codes are communicated over a BEC, the growth rate of the average right degree (i.e., the average degree of
the parity-check nodes in a bipartite Tanner graph) is at least logarithmic in terms of the gap to capacity. The
statement in [17] is a high probability result which assumesa sub-optimal (iterative) decoding algorithm, whereas
the statements in [1], [14] and this paper are valid even under ML decoding. As mentioned above, the bounds in
[7], [8] refer to MAP decoding, but they form high probability results as the block length gets large.

The structure of the paper is the following: Preliminary material is presented in Section II, and the theorems
are introduced and proved in Sections III and IV. The derivation of the bounds in Section III was motivated by
the desire to generalize the results in [1, Theorems 1 and 2] and [14, Theorem 2.1]. A two-level quantization of
the log-likelihood ratio (LLR), in essence replacing the arbitrary MBIOS channel by a physically degraded BSC,
is modified in Section III to a quantized channel which better reflects the statistics of the original channel (though
the quantized channel is still physically degraded w.r.t. the original channel). The number of quantization levels of
the LLR for the new channel is an arbitrary integer power of 2, and the calculation of these bounds is subject to
an optimization of the quantization levels, as to obtain thetightest bounds within their form. In Section IV, the
analysis relies on the conditional pdf of the LLR at the output of the considered MBIOS channel, and operates
on an equivalent channel without quantizing the LLR. This second approach leads in Section IV to bounds which
are uniformly tighter than the bounds derived in Section III and are easier to calculate. The significance of the
quantized and un-quantized bounds in Sections III and IV, respectively, stems from a comparison between these
bounds which gives insight on the effect of the number of quantization levels of the LLR (even if they are optimally
determined) on the achievable rates, as compared to the ideal case where no quantization is done. Numerical results
are exemplified in Section V. Finally, in Section VI, we summarizeand present interesting issues which deserve
further research. Appendices provide further technical details referring to the proofs in Sections III and IV.

We note that the statements in this paper refer to the case where the parity-check matrices are full rank. At
first glance, this requirement poses a problem when considering ensembles of LDPC codes; a parity-check matrix,
referring to a randomly chosen bipartite graph with a given pair of degree distributions, may not be full rank (even
asymptotically, as we let the block length tend to infinity).1 As explained in Section V, the statements in this paper
still hold for ensembles of LDPC codes when we replace the code rate with the design rate.

II. PRELIMINARIES

We introduce here some definitions and theorems from [1], [14]which serve as preliminary material for the rest
of the paper. Definitions 2.1 and 2.2 are taken from [14, Section2].

Definition 2.1: (Capacity-Approaching Codes) Let{Cm} be a sequence of codes, and denote the rate of the code
Cm by Rm. Assume that for everym, the codewords of the codeCm are transmitted with equal probability over
a channel whose capacity isC. This sequence is said toachieve a fraction1 − ε of the channel capacity with
vanishing bit error probabilityif limm→∞ Rm = (1− ε)C, and there exists a decoding algorithm under which the
average bit error probability of the codeCm tends to zero in the limit wherem → ∞.

Definition 2.2: (Parity-Check Density) LetC be a binary linear code of rateR and block lengthn, which is
represented by a parity-check matrixH. We define thedensityof H, call it ∆ = ∆(H), as the normalized number
of ones inH per information bit. The total number of ones inH is therefore equal tonR∆.

Definition 2.3: (Log-Likelihood Ratio (LLR)) Let us consider an MBIOS channel whose conditional pdf ispY |X

whereX andY designate the channel input and output, respectively. The log-likelihood ratio (LLR) at the output
of the channel is

LLR(y) , ln

(
pY |X(y|0)

pY |X(y|1)

)
.

Throughout the paper, we assume that all the codewords of a binary linear block code are equally likely to be
transmitted. Also, the functionh2 designates the binary entropy function to base 2, i.e.,h2(x) = −x log2(x)− (1−
x) log2(1 − x).

1One can construct LDPC ensembles where the design rate is strictly less than the asymptotic rate as the block length goes to infinity,
e.g., by simply repeating a non-vanishing fraction of the rows of the parity-check matrix.
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Theorem 2.1:(An Upper Bound on the Achievable Rates
for Reliable Communication over MBIOS Channels) [1, Theorem2]: Consider a sequence{Cm} of binary linear
block codes of rateRm, and assume that their block length tends to infinity asm → ∞. Let Hm be a full-rank
parity-check matrix of the codeCm, and assume thatΓk,m designates the fraction of the parity-check equations
involving k variables. Let

Γk , lim
m→∞

Γk,m, R , lim
m→∞

Rm (1)

where these limits are assumed to exist. Suppose that the transmission of these codes takes place over an MBIOS
channel with capacityC bits per channel use, and let

w ,
1

2

∫ ∞

−∞
min

(
f(y), f(−y)

)
dy (2)

where f(y) , pY |X(y|0) designates the conditional pdf of the output of the MBIOS channel when zero is
transmitted. Then, a necessary condition for vanishing block error probability asm → ∞ is

R ≤ 1 −
1 − C

∑

k

{
Γk h2

(
1 − (1 − 2w)k

2

)} .

Theorem 2.2:(Lower Bounds on the Asymptotic Parity-Check Density with Two-Level Quantization) [14, The-
orem 2.1]: Let{Cm} be a sequence of binary linear block codes achieving a fraction 1 − ε of the capacity of an
MBIOS channel with vanishing bit error probability. Denote∆m as the density of a full-rank parity-check matrix
of the codeCm. Then, the asymptotic density satisfies

lim inf
m→∞

∆m >
K1 + K2 ln 1

ε

1 − ε
(3)

where

K1 =
(1 − C) ln

(
1

2 ln 2
1−C

C

)

2C ln
(

1
1−2w

) , K2 =
1 − C

2C ln
(

1
1−2w

) (4)

andw is defined in (2). For a BEC with erasure probabilityp, the coefficientsK1 andK2 in (4) are improved to

K1 =
p ln

(
p

1−p

)

(1 − p) ln
(

1
1−p

) , K2 =
p

(1 − p) ln
(

1
1−p

) . (5)

The bounds in Theorems 2.1 and 2.2 are applied in [1] and [14], respectively, to ensembles of LDPC codes. In
general, LDPC codes are linear block codes which are represented by a sparse parity-check matrixH. This matrix
can be represented in an equivalent form by a bipartite graphG whose variable nodes (appearing on the left ofG)
represent the code bits, and whose parity-check nodes (appearing on the right ofG) represent the linear constraints
defined byH. In such a bipartite graph, an edge connects a variable node with a parity-check node if and only if
the corresponding code bit is involved in the parity-check equation; the degree of a node is defined as the number
of edges which are adjacent to it.

Following standard notation, letλi and ρi denote the fraction ofedgesattached to variable and parity-check
nodes of degreei, respectively. In a similar manner, letΛi andΓi denote the fraction of variable and parity-check
nodes of degreei, respectively. The LDPC ensemble is characterized by a triplet(n, λ, ρ) wheren designates the
block length of the codes, and the polynomials

λ(x) ,

∞∑

i=1

λix
i−1, ρ(x) ,

∞∑

i=1

ρix
i−1

represent, respectively, the left and right degree distributions (d.d.) from theedgeperspective. Equivalently, this
ensemble can be also characterized by the triplet(n, Λ, Γ) where the polynomials

Λ(x) ,

∞∑

i=1

Λix
i, Γ(x) ,

∞∑

i=1

Γix
i
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represent, respectively, the left and right d.d. from thenodeperspective. We denote by LDPC(n, λ, ρ) (or LDPC(n, Λ, Γ))
the ensemble of codes whose bipartite graphs are constructed according to the corresponding pairs of degree
distributions. One can switch between degree distributions w.r.t. to the nodes and edges of a bipartite graph, using
the following equations [13]:

Λ(x) =

∫ x

0
λ(u)du

∫ 1

0
λ(u)du

, Γ(x) =

∫ x

0
ρ(u)du

∫ 1

0
ρ(u)du

(6)

λ(x) =
Λ′(x)

Λ′(1)
, ρ(x) =

Γ′(x)

Γ′(1)
. (7)

An important characteristic of an ensemble of LPDC codes is itsdesign rate. For an LDPC ensemble whose codes
are represented by parity-check matrices of dimensionc×n, the design rate is defined to beRd , 1− c

n
. This serves

as a lower bound on the actual rate of any code from this ensemble, and is equal to the actual rate if the parity-check
matrix of a code isfull rank (i.e., if the linear constraints which define this code are linearly independent). For an
ensemble of LDPC codes, the design rate is given in terms of the degree distributions (either w.r.t. the edges or
nodes of a graph), and it can be expressed in two equivalent forms:

Rd = 1 −

∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

= 1 −
Λ′(1)

Γ′(1)
. (8)

A sufficient condition for the asymptotic convergence of the rate of a code, chosen uniformly at random from
an LDPC ensemble, to its design rate was stated in [7, Lemma 7].

Lemma 2.1:(A sufficient condition for the equality between the design rate and asymptotic rate for ensembles
of LDPC codes) [7, Lemma 7]: LetC be a code which is chosen uniformly at random from the ensemble
LDPC(n, Λ, Γ), let R be the rate ofC, and letRd be the design rate of this ensemble. Consider the function

Ψ(Λ,Γ)(u) , −Λ′(1) log2

[
1 + uv

(1 + u)(1 + v)

]

+
∞∑

i=1

Λi log2

[
1 + ui

2(1 + u)i

]

+
Λ′(1)

Γ′(1)

∞∑

i=1

Γi log2

[
1 +

(
1 − v

1 + v

)i
]

where

v ,

(
∞∑

i=1

λi

1 + ui

)−1 (
∞∑

i=1

λiu
i−1

1 + ui

)
.

Assume that the functionΨ(Λ,Γ) achieves its global maximum in the rangeu ∈ [0,∞) at u = 1. Then, there exists
a constantB > 0 such that for anyξ > 0 andn > n0(ξ,Λ, Γ)

Pr{|R − Rd| > ξ} ≤ e−Bnξ .

Moreover, there exists a constantC > 0 such that forn > n0(ξ,Λ, Γ)

E {|R − Rd|} ≤
C lnn

n
.

In Section V, we rely on this lemma in order to verify that the asymptotic rates of codes randomly chosen (with
uniform distribution) from various ensembles of LDPC codes tend in probability 1 to the design rates of these
ensembles.
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III. A PPROACHI: BOUNDS BASED ON QUANTIZATION OF THE LOG-L IKELIHOOD RATIO

In this section, we introduce bounds on the achievable ratesand the asymptotic parity-check density of sequences
of binary linear block codes. The bounds generalize previously reported results in [1] and [14] which were based on
a symmetric two-level quantization of the LLR. This is achievedby extending the quantization to a number of levels
which is equal to an arbitrary natural power of 2. In Section III-A, we particularize the results and their proofs for
a four-level quantization. In Section III-B, the results areextended to a symmetric quantization with a number of
levels which is an arbitrary natural power of 2. This order of presentation was chosen since many concepts which
are helpful for the generalization in Section III-B are written in a simplified notation for the four-level quantization,
along with all the relevant lemmas for the general case whichare already introduced in the derivation of the bound
with four-level quantization. This also shortens considerably the proof for the general quantization in Section III-B.

A. Bounds for Four-Levels of Quantization

As a preparatory step towards developing bounds on the parity-check density and the rate of binary linear block
codes, we present a lower bound on the conditional entropy ofa transmitted codeword given the received sequence
at the output of an arbitrary MBIOS channel.

Proposition 3.1:Let C be a binary linear block code of lengthn and rateR, and assume that its transmission
takes place over an MBIOS channel whose conditional pdf is given by pY |X . Let X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn) designate the transmitted codeword and received sequence,respectively. For an arbitrary positive
l ∈ R

+, let us define the probabilitiesp0, p1, p2, p3 as follows:

p0 , Pr{LLR(Y ) > l | X = 0}

p1 , Pr{LLR(Y ) ∈ (0, l] | X = 0}

+
1

2
Pr{LLR(Y ) = 0 | X = 0}

p2 , Pr{LLR(Y ) ∈ [−l, 0) | X = 0}

+
1

2
Pr{LLR(Y ) = 0 | X = 0}

p3 , Pr{LLR(Y ) < −l | X = 0}. (9)

For an arbitrary full-rank parity-check matrix of the codeC, let Γk designate the fraction of parity-check equations
involving k variables. Then, the conditional entropy of the transmittedcodeword, given the received sequence,
satisfies

H(X|Y)

n
≥ 1 − C − (1 − R)

·
∑

k

{
Γk

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

· h2

(
1 −

(
1 − 2p2

p1+p2

)t(
1 − 2p3

p0+p3

)k−t

2

)}
. (10)

Remark 3.1:Note that the input vectorX is chosen uniformly from the codewords of a binary linear block code.
Each input bitXi therefore either gets the values0 or 1 with probability 1

2 or is set to zero (due to the linearity of
the code). In the following proof, we assume that all the codesymbols get the values0 or 1 with equal probability.
By slightly modifying the proof, it is simple to show that thebound also holds for the other case where some of
the code bits are set to zero. Without mentioning explicitly, the same assumption will be taken in the proofs of
Propositions 3.2 and 4.1.

Proof: Considering an MBIOS channel whose conditional pdf is givenby pY |X , we introduce a new physically
degraded channel. It is a binary-input, quaternary-outputsymmetric channel (see Fig. 1). To this end, letl ∈ R

+

be an arbitrary positive number, and letα be a primitive element of the Galois field GF(22) (so α2 = 1 + α). The
set of elements of this field is{0, 1, α, 1 + α}. Let Xi andYi designate the random variables referring to the input
and output of the original channel at timei (wherei = 1, 2, . . . , n). We define the degraded channel as a channel
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00
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Fig. 1. The channel model in the upper plot is a physically degraded channel used for the derivation of the bound with four levels of
quantization. The elementα denotes a primitive element in GF(22). This channel model is equivalent to a channel with an additive noise
in GF(22) (see lower plot).

with four quantization levels of the LLR. The output of the degraded channel at timei, Zi, is calculated from the
outputYi of the original channel as follows:

• If LLR (Yi) > l, thenZi = 0.
• If 0 < LLR(Yi) ≤ l, thenZi = α.
• If −l ≤ LLR(Yi) < 0, thenZi = 1 + α.
• If LLR (Yi) < −l, thenZi = 1.
• If LLR (Yi) = 0, thenZi = α or Zi = 1 + α w.p. 1

2 .
From the definition of the degraded channel in Fig. 1, this channel has an additive noise in GF(22) and is also

binary-input output-symmetric. It follows that the transition probabilities of the degraded channel are

p0 = Pr(Z = 0 | X = 0) = Pr(Z = 1 | X = 1)

p1 = Pr(Z = α | X = 0) = Pr(Z = 1 + α | X = 1)

p2 = Pr(Z = 1 + α | X = 0) = Pr(Z = α | X = 1)

p3 = Pr(Z = 1 | X = 0) = Pr(Z = 0 | X = 1)

wherepj is introduced in (9) for0 ≤ j ≤ 3, and the symmetry in these transition probabilities holds since the
original channel is MBIOS.

SinceC is a binary linear block code of lengthn and rateR, and the codewords are transmitted with equal
probability then

H(X) = nR. (11)

Also, since the channel is memoryless, then

H(Y|X) = nH(Y |X). (12)

We designate the output sequence of the degraded channel byZ = (Z1, . . . , Zn). Since the mapping fromYi to
the degraded outputZi (i = 1, 2, · · · , n) is memoryless, thenH(Z|Y) = nH(Z|Y ) and

H(Y) = H(Z) − H(Z|Y) + H(Y|Z)

= H(Z) − nH(Z|Y ) + H(Y|Z) (13)

H(Y|Z) ≤
n∑

i=1

H(Yi|Zi)

= nH(Y |Z)

= n [H(Y ) − H(Z) + H(Z|Y )] . (14)
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Applying the above towards a lower bound on the conditional entropy H(X|Y), we get

H(X|Y) = H(X) + H(Y|X) − H(Y)

= nR + nH(Y |X) − H(Y)

= nR + nH(Y |X) − H(Z) − H(Y|Z)

+nH(Z|Y )

≥ nR + nH(Y |X) − H(Z)

−n [H(Y ) − H(Z) + H(Z|Y )] + nH(Z|Y )

= nR − H(Z) + nH(Z) − n [H(Y ) − H(Y |X)]

= nR − H(Z) + nH(Z) − nI(X; Y )

≥ nR − H(Z) + nH(Z) − nC (15)

where the second equality relies on (11) and (12), the third equality relies on (13), the first inequality relies on
(14), andI(X; Y ) ≤ C is used for the last transition (whereC designates the capacity of the original channel).

In order to obtain a lower bound onH(X|Y) from (15), we calculate the entropy of the random variableZ,
and derive an upper bound on the entropy of the random vectorZ. This finally provides the lower bound in (10).
Observing that the degraded channel is additive over GF(22), we denote the additive noise by

Ni = Θi + Ωiα, i ∈ {1, . . . , n}

whereΘ = (Θ1, . . . ,Θn) andΩ = (Ω1, . . . ,Ωn) are random vectors over GF(2). Note thatΘ andΩ are statistically
independent of the transmitted codewordX. Since the code is binary, it follows that

Zi = Φi + Ωiα (16)

whereΦi , Θi + Xi. This gives

H(Z) = H(Φ, Ω)

= H(Ω) + H(Φ|Ω)

= H(Ω) + 1 (17)

where the last equality follows since the inputX is equally likely to be zero or one (see Remark 3.1) and the
channel in Fig. 1 is MBIOS; sinceΩ is independent ofX, thenΦ is equally likely to be zero or one given the
value ofΩ.

We now derive an upper bound on the entropyH(Z). Based on (16), it is easy to verify the following chain of
equalities:

H(Z) = H(Φ,Ω)

= H(Ω) + H(Φ | Ω)

= n H(Ω) + H(Φ | Ω) (18)

whereΦ , (Φ1, . . . ,Φn), and the last equality follows since the degraded channel inFig. 1 is memoryless. Let us
define the syndrome at the output of the degraded channel as

S , ΦHT

whereH is a full-rank parity-check matrix of the binary linear block codeC. We note that the calculation of the
syndrome only takes into account theΦ-component of the vectorZ in (16). Also note that sinceXHT = 0 for
every codewordX, thenS = ΘHT which is independent of the transmitted codeword. Let us defineM as the
index of the vectorΦ in the coset referring to the syndromeS. Since each coset has exactly2nR elements which
are equally likely, thenH(M) = nR, and

H(Φ | Ω) = H(S, M | Ω)

≤ H(M) + H(S | Ω)

= nR + H(S | Ω). (19)
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Considering a parity-check equation involvingk variables, let{i1, . . . , ik} be the set of indices of the variables
involved in this parity-check equation. The relevant component of the syndromeS which refers to this parity-check
equation is equal to zero or one if and only if the Hamming weight of the sub-vector(Θi1 , . . . ,Θik

) is even or
odd, respectively. It is clear from Fig. 1 that for an indexi for which Ωi = 1, Θi is equal to one in probability

p2

p1+p2
. Similarly, for an indexi for which Ωi = 0, thenΘi is equal to one in probability p3

p0+p3
.

Given that the Hamming weight of the vector(Ωi1 , . . . ,Ωik
) is t, then the probability of an even Hamming

weight of the random vector(Θi1 , . . . ,Θik
) is equal to

q1(t, k) q2(t, k) +
(
1 − q1(t, k)

) (
1 − q2(t, k)

)

whereq1(t, k) designates the probability that among thet indicesi for which Ωi = 1, the random variableΘi is
equal to 1 an even number of times, andq2(t, k) designates the probability that the same happens for thek − t

indicesi for which Ωi = 0. Based on the discussion above, it follows that

q1(t, k) =
∑

i even

{(
t

i

) (
p1

p1 + p2

)t−i (
p2

p1 + p2

)i
}

=
1 +

(
1 − 2p2

p1+p2

)t

2

q2(t, k) =
∑

i even

{(
k − t

i

) (
p0

p0 + p3

)k−t−i (
p3

p0 + p3

)i
}

=
1 +

(
1 − 2p3

p0+p3

)k−t

2
.

Hence, the probability that the vector(Θi1 , Θi2 , . . . ,Θik
) is of even Hamming weight is

q1(t, k) q2(t, k) +
(
1 − q1(t, k)

) (
1 − q2(t, k)

)

=
1 +

(
1 − 2p2

p1+p2

)t (
1 − 2p3

p0+p3

)k−t

2
.

We conclude that given a vectorω ∈ {0, 1}k of Hamming weightt

H
(
Si | (Ωi1 , . . . ,Ωik

) = ω
)

= h2

(
1 +

(
1 − 2p2

p1+p2

)t (
1 − 2p3

p0+p3

)k−t

2

)
.

This yields that if the calculation of a componentSi (wherei = 1, . . . , n(1 − R)) in the syndromeS relies on a
parity-check equation involvingk variables, then

H(Si | Ω)

= H(Si |Ωi1 , . . . ,Ωik
)

=
∑

ω∈{0,1}k

Pr
(
(Ωi1 , . . . ,Ωik

) = ω
)

· H
(
Si | (Ωi1 , . . . ,Ωik

) = ω
)

=
k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

· h2

(
1 +

(
1 − 2p2

p1+p2

)t (
1 − 2p3

p0+p3

)k−t

2

)
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=

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

· h2

(
1 −

(
1 − 2p2

p1+p2

)t (
1 − 2p3

p0+p3

)k−t

2

)

where the third equality turns to averaging over the Hammingweight of (Ωi1 , . . . ,Ωik
) (note that each component

is Bernoulli distributed withPr(Ωi = 0) = p0 + p3), and the last equality follows from the symmetry of the binary
entropy function (whereh2(x) = h2(1− x) for x ∈ [0, 1]). Let Γk designate the fraction of parity-check equations
in the full-rank parity-check matrix which involvek variables, so their total number isn(1 − R)Γk and

H(S | Φ)

≤

n(1−R)∑

i=1

H(Si |Φ)

= n(1 − R)
∑

k

{
Γk

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

· h2

(
1 −

(
1 − 2p2

p1+p2

)t(
1 − 2p3

p0+p3

)k−t

2

)}
. (20)

By combining (18)–(20), an upper bound on the entropy of the random vectorZ follows:

H(Z) ≤ nR + nH(Ω) + n(1 − R)

·
∑

k

{
Γk

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

· h2

(
1 −

(
1 − 2p2

p1+p2

)t(
1 − 2p3

p0+p3

)k−t

2

)}
. (21)

The substitution of (17) and (21) in (15) finally provides the lower bound on the conditional entropyH(X |Y) in
(10).

The following theorem tightens the lower bound on the parity-check density of an arbitrary sequence of binary
linear block codes given in [14, Theorem 2.1]. It is based on a four-level quantization of the LLR at the output of
an MBIOS channel (as opposed to the two-level quantization of the LLR used in [14]).

Theorem 3.1:(“Four-Level Quantization” Lower Bound on the Asymptotic Parity-Check Density of Binary
Linear Block Codes) Let{Cm} be a sequence of binary linear block codes achieving a fraction 1 − ε of the
capacity of an MBIOS channel with vanishing bit error probability. Let Hm be an arbitraryfull-rank parity-check
matrix of the codeCm, and denote its density by∆m. Then, the asymptotic density satisfies

lim inf
m→∞

∆m >
K1 + K2 ln 1

ε

1 − ε
(22)

where

K1 = K2 ln

(
1

2 ln 2

1 − C

C

)
,

K2 = −
1 − C

C ln
(

(p1−p2)2

p1+p2
+ (p0−p3)2

p0+p3

) (23)

andp0, p1, p2, p3 are defined in (9) in terms ofl ∈ R
+. The optimal value ofl is given implicitly as a solution to

the equation
p2
2 + e−lp2

1

(p1 + p2)2
=

p2
3 + e−lp2

0

(p0 + p3)2
(24)
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where such a solution always exists.2

Proof: We first prove the lower bound in (22) and (23), and then, the optimization equation (24).
Derivation of the lower bound in(22) and (23):
Lemma 3.1:Let C be a binary linear block code of lengthn and rateR. Let Pb designate the average bit error

probability of the codeC which is associated with an arbitrary decoding algorithm and channel, and letX andY

designate the transmitted codeword and received sequence,respectively. Then

H(X | Y)

n
≤ R h2(Pb). (25)

Proof: The lemma is proved in Appendix I-A.

Lemma 3.2:h2(x) ≤ 1 − 2
ln 2 (1

2 − x)2 for 0 ≤ x ≤ 1.
Proof: The lemma is proved in [14, Lemma 3.1]; this inequality actually forms a particular case of Eq. (100)

whose derivation is based on truncating the power series expansion of the binary entropy function around1
2 .

Referring to an arbitrary sequence of binary linear block codes{Cm} which achieves a fraction1 − ε of capacity
with vanishing bit error probability, then according to Definition 2.1, there exists a decoding algorithm (e.g.,
ML decoding) so that the average bit error probability of thecodeCm tends to zero asm goes to infinity, and
limm→∞ Rm = (1−ε)C. From Lemma 3.1, we get thatlimm→∞

H(Xm|Ym)
nm

= 0 whereXm andYm designate the
transmitted codeword of the codeCm and the received sequence, respectively, andnm designates the block length
of the codeCm. From Proposition 3.1, we obtain

H(Xm|Ym)

nm

≥ 1 − C − (1 − Rm)

·
∑

k

{
Γk,m

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

· h2

(
1 −

(
1 − 2p2

p1+p2

)t(
1 − 2p3

p0+p3

)k−t

2

)}

whereΓk,m designates the fraction of parity-check equations in a parity-check matrixHm which involvek variables.
The upper bound on the binary entropy functionh2 in Lemma 3.2 gives

H(Xm|Ym)

nm

≥ 1 − C − (1 − Rm) (26)

·
∑

k

{
Γk,m

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

·

[
1 −

1

2 ln 2

(
p1 − p2

p1 + p2

)2t (
p0 − p3

p0 + p3

)2(k−t)
]}

Sincep0 + p1 + p2 + p3 = 1 (i.e., the transition probabilities of the degraded channel in Fig. 1 sum to 1), then

∑

k

{
Γk,m

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

·

[
1 −

1

2 ln 2

(
p1 − p2

p1 + p2

)2t (
p0 − p3

p0 + p3

)2(k−t)
]}

=
∑

k

{
Γk,m

[
1 −

1

2 ln 2

k∑

t=0

(
k

t

) (
(p1 − p2)

2

p1 + p2

)t

2It was observed numerically that the solutionl of the optimization equation (24) is unique when considering the binary-input AWGN
channel. We conjecture that the uniqueness of such a solution is a property which holds for MBIOS channels under some mild conditions.
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·

(
(p0 − p3)

2

p0 + p3

)k−t
]}

= 1 −
1

2 ln 2

∑

k

{
Γk,m

k∑

t=0

(
k

t

) (
(p1 − p2)

2

p1 + p2

)t

·

(
(p0 − p3)

2

p0 + p3

)k−t
}

= 1 −
1

2 ln 2

∑

k

{
Γk,m

(
(p1 − p2)

2

p1 + p2
+

(p0 − p3)
2

p0 + p3

)k
}

≤ 1 −
1

2 ln 2

(
(p1 − p2)

2

p1 + p2
+

(p0 − p3)
2

p0 + p3

)aR(m)

(27)

whereaR(m) ,
∑

k kΓk,m designates the average right degree of the bipartite graph which refers to the parity-
check matrixHm, and the last transition follows from Jensen’s inequality.Substituting (27) into the RHS of (26)
and lettingm tend to infinity gives the inequality

0 ≥ 1 − C −
(
1 − (1 − ε)C

)
(

1 −
1

2 ln 2

(
(p1 − p2)

2

p1 + p2
+

(p0 − p3)
2

p0 + p3

)aR(∞)
)

(28)

whereaR(∞) , lim infm→∞ aR(m). Note that the base of the exponent in the RHS of this inequality does not
exceed unity, i.e.,

(p1 − p2)
2

p1 + p2
+

(p0 − p3)
2

p0 + p3
≤

(p1 + p2)
2

p1 + p2
+

(p0 + p3)
2

p0 + p3

= p0 + p1 + p2 + p3

= 1.

Therefore, the inequality in (28) yields the following lowerbound on the asymptotic average right degree:

aR(∞) ≥ K ′
1 + K ′

2 ln

(
1

ε

)
(29)

where

K ′
1 = −

ln
(

1
2 ln 2

1−C
C

)

ln
(

(p1−p2)2

p1+p2
+ (p0−p3)2

p0+p3

) ,

K ′
2 = −

1

ln
(

(p1−p2)2

p1+p2
+ (p0−p3)2

p0+p3

) . (30)

According to Definition 2.2, the density(∆) of a parity-check matrix is equal to the number of edges in the
corresponding bipartite graph normalized per informationbit, while the average right degree(aR) is equal to the
same number of edges normalized per parity-check node. Sincethe parity-check matrixH is full rank, then the
above scalings of the number of edges in a bipartite graph imply

∆ =

(
1 − R

R

)
aR (31)

whereR is the rate of a binary linear block code. By our assumption, the asymptotic rate of the sequence of codes
{Cm} is equal to a fraction1 − ε of the capacity. Therefore, by combining (29) and (31) withR = (1 − ε)C, we
obtain a lower bound on the asymptotic parity-check densitywhich gets the form

lim inf
m→∞

∆m ≥
K1 + K2 ln

(
1
ε

)

1 − ε
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where
K1,2 =

1 − C

C
· K ′

1,2 (32)

andK ′
1,2 are introduced in (30) (note that1 − R ≥ 1 − C). This completes the proof of the lower bound in (22)

with the coefficientsK1,2 in (23).
Derivation of the optimization equation(24): The reader is referred to Appendix I-B, where the existence of

such a solution is also shown.
Discussion:It is required to show that we achieve an improved lower boundon the parity-check density, as

compared to the one in [14, Theorem 2.1]. To this end, it sufficesto show that

(p1 − p2)
2

p1 + p2
+

(p0 − p3)
2

p0 + p3
≥ (1 − 2w)2 (33)

wherew is introduced in (2). For a proof of (33), the reader is referred to Appendix I-C. This therefore proves
that the new lower bound which is based on a four-level quantization is tighter than the original bound in [14,
Theorem 2.1] which corresponds to a two-level quantization of the LLR. A more general proof which relies on the
information processing inequality is later presented (seeSection III-B) where it shows that the bound is improved
by adding quantization levels to the existing ones; this enables to show that the lower bound on the parity-check
density which corresponds to2d optimized quantization levels (so as to get the tightest bound where the number
of quantization levels is fixed) is monotonically increasingw.r.t. d.

Based on Proposition 3.1, we introduce an upper bound on the asymptotic rate of every sequence of binary linear
block codes for which reliable communication is achievable. The bound refers to soft-decision ML decoding, and it
is therefore valid for any suboptimal decoding algorithm. Hence, the following result also provides an upper bound
on the achievable rates of ensembles of LDPC codes under iterative decoding where the transmission takes places
over an MBIOS channel. The following bound improves the bounds stated in [1, Theorems 1 and 2]:

Corollary 3.1: (“Four-Level Quantization” Upper Bound on the Asymptotic Achievable Rates of Sequences of
Binary Linear Block Codes) Let{Cm} be a sequence of binary linear block codes whose codewords are transmitted
with equal probability over an MBIOS channel, and suppose that the block length of this sequence of codes tends to
infinity asm → ∞. Let Γk,m be the fraction of the parity-check nodes of degreek in an arbitrary representation of
the codeCm by a bipartite graph which corresponds to a full-rank parity-check matrix. Then a necessary condition
for this sequence to achieve vanishing bit error probability asm → ∞ is that the asymptotic rateR of this sequence
satisfies

1 − max

{
(1 − C)

[
∑

k

{
Γk

k∑

t=0

(
k

t

)
(p1 + p2)

t(p0 + p3)
k−t

· h2

(
1 −

(
1 − 2p2

p1+p2

)t(
1 − 2p3

p0+p3

)k−t

2

)}]−1

,

2(p2 + p3)

1 −
∑

k

Γk

(
1 − 2(p2 + p3)

)k

}
≥ R (34)

wherep0, p1, p2, p3 are introduced in (9), andΓk andR are introduced in (1).
Proof: The first term in the maximization on the LHS of (34) is based on (10) and (25); it follows directly

by combining these inequalities, and letting the bit error probability Pb tend to zero. The second term in the
maximization on the LHS of (34) follows from the proof of [14, Corollary 3.1] which is based on the erasure
decomposition Lemma [12]; in the context considered here,p = 2(p2 + p3) is the erasure probability of the
corresponding BEC (see the upper plot in Fig. 1).

B. Extension of the Bounds to2d Quantization Levels

Following the method introduced in Section III-A, we commence by deriving a lower bound on the conditional
entropy of a transmitted codeword given the received sequence.
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Proposition 3.2:Let C be a binary linear block code of lengthn and rateR. Let X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn) designate the transmitted codeword and received sequence,respectively, when the communication
takes place over an MBIOS channel with conditional pdfpY |X(·|·). For an arbitraryd ≥ 2 and0 < l2d−1−1 < . . . <

l1 < l0 , ∞, let us define the set of probabilities{ps}
2d−1
s=0 as follows:

ps ,





Pr{ls+1 < LLR(Y ) ≤ ls | X = 0}

if s = 0, . . . , 2d−1 − 2

Pr{0 < LLR(Y ) ≤ l2d−1−1 |X = 0}

+1
2 Pr{LLR(Y ) = 0 |X = 0}

if s = 2d−1 − 1

Pr{−l2d−1−1 ≤ LLR(Y ) < 0 | X = 0}

+1
2 Pr{LLR(Y ) = 0 | X = 0}

if s = 2d−1

Pr{−l2d−(s+1) ≤ LLR(Y ) < −l2d−s |X = 0}

if s = 2d−1 + 1, . . . , 2d − 1.

(35)

For an arbitrary full-rank parity-check matrix of the codeC, let Γk designate the fraction of the parity-checks
involving k variables. Then, the conditional entropy of the transmittedcodeword given the received sequence
satisfies

H(X|Y)

n
≥ 1 − C − (1 − R) (36)

·
∑

k

{
Γk

∑

k0,...,k2d−1
−1∑

i
ki=k

(
k

k0, . . . , k2d−1−1

)

·
2d−1−1∏

i=0

(pi + p2d−1−i)
ki

· h2

(
1

2

[
1 −

2d−1−1∏

i=0

(
1 −

2p2d−1−i

pi + p2d−1−i

)ki

])}
.

Proof: Following the proof of Proposition 3.1, we introduce a new physically degraded channel. It is a
memoryless binary-input2d-ary output symmetric channel (see Fig. 1 ford = 2). To this end, letl2d−1−1 < . . . < l1
be arbitrary positive numbers, and denotel0 , ∞. The output alphabet of the degraded channel is defined to be
GF(2d) whose elements form the set





d−1∑

j=0

aj αj : (a0, a1, . . . , ad−1) ∈ {0, 1}d





whereα is a primitive element of the Galois field GF(2d).
For s = 0, 1, . . . , 2d−1 − 1 , denote the(d − 1)–bit binary representation ofs by (a

(s)
1 , . . . , a

(s)
d−1), i.e.,

s =
d−1∑

j=1

a
(s)
j 2j−1.

Let Xi and Yi designate the random variables referring to the input and output of the original channelpY |X at
time i (wherei = 1, . . . , n). As a natural generalization of the channel model in Fig. 1, we introduce a physically
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degraded channel with2d quantization levels of the LLR. The output of this channel at time i, Zi, is calculated
from the outputYi of the original channel as follows:

Zi = Φi + Ωiα. (37)

The componentΦi in (37) depends on the sign of LLR(Yi); it is set to zero or one, if the LLR is positive or
negative, respectively; if LLR(Yi) = 0, then Φi is either zero or one with equal probability. The value ofΩi is
calculated based on the absolute value of LLR(Yi) as follows:

• If ls+1 < |LLR(Yi)| ≤ ls for some0 ≤ s < 2d−1 − 1, then

Ωi =
d−1∑

j=1

a
(s)
j αj−1. (38)

• If 0 ≤ |LLR(Yi)| ≤ l2d−1−1, then

Ωi =
d−1∑

j=1

αj−1. (39)

From (35), the transition probabilities of the degraded channel are given by

ps = Pr(Z =
d−1∑

j=1

a
(s)
j αj |X = 0)

= Pr(Z = 1 +
d−1∑

j=1

a
(s)
j αj |X = 1)

p2d−1−s = Pr(Z = 1 +
d−1∑

j=1

a
(s)
j αj |X = 0)

= Pr(Z =
d−1∑

j=1

a
(s)
j αj | X = 1) (40)

wheres = 0, 1, . . . , 2d−1 − 1. The symmetry in these equalities holds since the channel is MBIOS.
Equations (11)–(15) hold also for the case of2d-level quantization. Thus, we will calculate the entropy of the

random variableZ, and an upper bound on the entropy of the random vectorZ. This will finally provide the lower
bound in (36).

Analogously to the proof of Proposition 3.1, the degraded channel is additive over GF(2d). We denote the additive
noise by

Ni = Θi + Ωiα. (41)

Note that since the codeC is binary, thenΦi = Θi + Xi, and the value ofΩi stays the same in (37) and (41). Let
Θ , (Θ1, . . . ,Θn) andΩ , (Ω1, . . . ,Ωn). Due to the symmetry of the communication channel, it follows thatΘ
andΩ are statistically independent of the transmitted codewordX. This gives

H(Z) = H(Ω) + 1 (42)

which follows from the same argument which validates (17).
We now derive an upper bound on the entropy of the random vector Z. From the same chain of equalities leading

to (18), it follows that
H(Z) = nH(Ω) + H(Φ | Ω) (43)

whereΦ , (Φ1, . . . ,Φn). As in the proof of Proposition 3.1, we define the syndrome asS , ΦHT whereH is a
full-rank parity-check matrix of the codeC. As before, the calculation of the syndromeS only takes into account
the Φ-components of the vectorZ. SinceXHT = 0 andΦ = X + Θ, thenS = ΘHT which is independent of
the transmitted codeword. In parallel to (19), we obtain

H(Φ | Ω) ≤ nR + H(S | Ω). (44)
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Consider a parity-check equation which involvesk variables, and let{i1, . . . , ik} be the set of indices of the variables
involved in this parity-check equation. The component of thesyndromeS which refers to this parity-check equation
is zero if and only if the binary sub-vector(Θi1 , . . . ,Θik

) has an even Hamming weight.
Lemma 3.3:Given that (Ωi1 , . . . ,Ωik

) has ks elements equal to
∑d−1

j=1 a
(s)
j αj−1 (s = 0, . . . , 2d−1 − 1), the

probability that the corresponding component of the syndrome Sl is equal to 1 is given by

1

2


1 −

2d−1−1∏

s=0

(
1 −

2p2d−1−s

ps + p2d−1−s

)ks


 .

Proof: From the probabilities which are associated with the quantized values of the LLR in (40), it follows
that for 0 ≤ s ≤ 2d−1 − 1

Pr
(
Θi = 1 |Ωi =

d−1∑

j=1

a
(s)
j αj−1

)
=

p2d−1−s

ps + p2d−1−s

.

Since there areks indices i in the set{i1, . . . , ik} for which Ωi =
∑d−1

j=1 a
(s)
j αj−1, the lemma follows from [3,

Lemma 4.1].
Based on Lemma 3.3 and the discussion above, it follows that for any vectorω = (ω1, . . . , ωk) which hasks

elements equal to
∑d−1

j=1 a
(s)
j αj−1 (wheres = 0, . . . , 2d−1 − 1)

H
(
Si | (Ωi1 , . . . ,Ωik

) = ω
)

= h2

(
1

2

[
1 −

2d−1−1∏

s=0

(
1 −

2p2d−1−s

ps + p2d−1−s

)ks

])
. (45)

For a componentSi (1 ≤ i ≤ n(1 − R)) of the syndromeS which refers to a parity-check equation involvingk
variables

H(Si |Ω)

= H(Si |Ωi1 , . . . ,Ωik
)

=
∑

ω

Pr
(
(Ωi1 , . . . ,Ωik

) = ω
)

H
(
Si|(Ωi1 , . . . ,Ωik

) = ω
)

=
∑

k0,...,k2d−1
−1∑

s
ks=k

{(
k

k0, . . . , k2d−1−1

) 2d−1−1∏

s=0

(ps + p2d−1−s)
ks

· h2

(
1

2

[
1 −

2d−1−1∏

s=0

(
1 −

2p2d−1−s

ps + p2d−1−s

)ks

])}

where the last equality follows since there are
(

k
k0,...,k2d−1

−1

)
vectors ω which haveks elements of the type

∑d−1
j=1 a

(s)
j αj−1 for s ∈ {0, . . . , 2d−1 − 1}, and it also follows from the statistical independence of the components

of the vectorΩ, and from Eqs. (40) and (45). The number of parity-check equations involving k variables is
n(1 − R)Γk, hence

H(S |Ω)

≤

n(1−R)∑

i=1

H(Si |Ω)

= n(1 − R) (46)

·
∑

k

{
Γk

∑

k0,...,k2d−1
−1∑

s
ks=k

(
k

k0, . . . , k2d−1−1

)
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·

2d−1−1∏

s=0

(ps + p2d−1−s)
ks

· h2

(
1

2

[
1 −

2d−1−1∏

s=0

(
1 −

2p2d−1−s

ps + p2d−1−s

)ks

])}
.

By combining (43)–(46), an upper bound on the entropy of the random vectorZ follows:

H(Z)

≤ nR + nH(Ω) + n(1 − R) (47)

·
∑

k

{
Γk

∑

k0,...,k2d−1
−1∑

s
ks=k

(
k

k0, . . . , k2d−1−1

)

·

2d−1−1∏

s=0

(ps + p2d−1−s)
ks

· h2

(
1

2

[
1 −

2d−1−1∏

s=0

(
1 −

2p2d−1−s

ps + p2d−1−s

)ks

])}
.

The substitution of (42) and (47) in (15) finally provides the lower bound on the conditional entropyH(X | Y) in
(36).

Discussion: In the proof of Proposition 3.2, the upper bound on the entropy of the outputZ is of the form

H(Z) ≤ nH(Ω) + nR +

n(1−R)∑

i=1

H(Si|Ω)

which follows directly from (43), (44) and (46). Here,Ω is defined according to the conditions stated in (38) and
(39), andSi is the ith component of the syndromeS. Substituting (42) and the above inequality in (15) yields

H(X|Y)

n
≥ 1 − C −

1

n

n(1−R)∑

i=1

H(Si|Ω)

and the lower bound in (36) is in fact an explicit expression for the above inequality. The calculation of the
lower bound in the RHS of (36) becomes more complex as the value of d is increased. However, when the
quantization levelsl1, . . . , l2d−1−1 are set to maximize the lower bound in the RHS of (36), we show that the bound
is monotonically increasing withd.

To this end, letd ≥ 2 be an arbitrary integer,(l(d)
1 , . . . , l

(d)
2d−1−1) with their symmetric values around zero be the

optimal choice of2d quantization levels, and denote the random variableΩ for this setting byΩ(d) (see (38) and
(39)). Consider any set of2d+1 quantization levels(l(d+1)

1 , . . . , l
(d+1)
2d−1 ) with their symmetric values around zero such

that l(d+1)
2i = l

(d)
i for i = 1, . . . , 2d−1 − 1. Denote the random variableΩ for this choice of quantization levels by

Ω(d+1). Clearly, since the former set of2d quantization levels is a subset of the latter set of2d+1 levels, thenΩ(d)

can be calculated fromΩ(d+1). Let Ω
(k) , (Ω

(k)
1 , . . . ,Ω

(k)
n ) for k = d and d + 1. By the information processing

inequality

1 − C −
1

n

n(1−R)∑

i=1

H(Si|Ω
(d))

≤ 1 − C −
1

n

n(1−R)∑

i=1

H(Si|Ω
(d+1)).

Therefore, the (possibly sub-optimal) set of2d+1 quantization levels(l(d+1)
1 , . . . , l

(d+1)
2d−1 ) with their symmetric values

around zero provides a tighter lower bound than theoptimal choice of2d quantization levels. Hence, this proves
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that the lower bound is monotonically increasing with the number of quantization levels when these levels are set
optimally.

Theorem 3.2:(“2d-Level Quantization” Lower Bound on the Asymptotic Parity-Check Density of Binary Linear
Block Codes) Let{Cm} be a sequence of binary linear block codes achieving a fraction 1 − ε of the capacity of
an MBIOS channel with vanishing bit error probability. LetHm be an arbitraryfull-rank parity-check matrix of
the codeCm, and denote its density by∆m. Then, the asymptotic density satisfies

lim inf
m→∞

∆m >
K1 + K2 ln 1

ε

1 − ε
(48)

where

K1 = K2 ln

(
1

2 ln 2

1 − C

C

)
,

K2 = −
1 − C

C ln

(
2d−1−1∑

i=0

(pi − p2d−1−i)
2

pi + p2d−1−i

) . (49)

Here,d ≥ 2 is an arbitrary integer and the probabilities{pi} are introduced in (35) in terms ofl1 > . . . > l2d−1−1 ∈
R

+. The optimal vector of quantization levels(l1, . . . , l2d−1−1) is given implicitly by solving the set of2d−1 − 1
equations

p2
2d−1−i + e−lip2

i

(pi + p2d−1−i)2
=

p2
2d−i + e−lip2

i−1

(pi−1 + p2d−i)2
, i = 1, . . . , 2d−1 − 1 (50)

where such a solution always exists.3

Proof: For an arbitrary sequence of binary linear block codes{Cm} which achieves a fraction1−ε to capacity
with vanishing bit error probability, we get from Lemma 3.1 that

lim
m→∞

H(Xm | Ym)

nm

= 0

whereXm and Ym designate the transmitted codeword in the codeCm and the received sequence, respectively,
andnm designates the block length of the codeCm. From Proposition 3.2, we obtain

H(Xm|Ym)

nm

≥ 1 − C − (1 − Rm)

·
∑

k

{
Γk,m

∑

k0,...,k2d−1
−1∑

s
ks=k

(
k

k0, . . . , k2d−1−1

)

·
2d−1−1∏

s=0

(ps + p2d−1−s)
ks

· h2

(
1

2

[
1 −

2d−1−1∏

s=0

(
1 −

2p2d−1−s

ps + p2d−1−s

)ks

])}

3See the footnote to Theorem 3.1 on p. 10.
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whereΓk,m designates the fraction of parity-check equations in a parity-check matrixHm which involvek variables.
The upper bound on the binary entropy functionh2 in Lemma 3.2 gives

H(Xm|Ym)

nm

≥ 1 − C −
(
1 − Rm) (51)

·
∑

k

{
Γk,m

∑

k0,...,k2d−1
−1∑

s
ks=k

(
k

k0, . . . , k2d−1−1

)

·
2d−1−1∏

s=0

(ps + p2d−1−s)
ks

·

[
1 −

1

2 ln 2

2d−1−1∏

s=0

(
ps − p2d−1−s

ps + p2d−1−s

)2ks

]}
.

Since
∑

k Γk,m = 1 and
∑2d−1

s=0 ps = 1, we get

1 −
1

2 ln 2

∑

k

{
Γk,m

∑

k0,...,k2d−1
−1∑

s
ks=k

(
k

k0, . . . , k2d−1−1

)

·
2d−1−1∏

s=0

(
(ps − p2d−1−s)

2

ps + p2d−1−s

)ks

}

= 1 −
1

2 ln 2

∑

k





Γk,m




2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s




k




≤ 1 −
1

2 ln 2




2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s




aR(m)

(52)

whereaR(m) ,
∑

k kΓk,m designates the average right degree of the bipartite graph which refers to the parity-check
matrix Hm, and the last transition follows from Jensen’s inequality.

Substituting (52) into the RHS of (51) and lettingm tend to infinity gives the inequality

0 ≥ 1 − C −
(
1 − (1 − ε)C

)

·

[
1 −

1

2 ln 2

( 2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s

)aR(∞)
]

(53)

whereaR(∞) , lim infm→∞ aR(m). Note that the validity of (53) follows since the base of the exponent in this
inequality does not exceed unity, i.e.,

2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s

≤
2d−1−1∑

s=0

(ps + p2d−1−s)
2

ps + p2d−1−s

=
2d−1−1∑

s=0

(ps + p2d−1−s) = 1.
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Inequality (53) gives the following lower bound on the asymptotic average right degree:

aR ≥ K ′
1 + K ′

2 ln

(
1

ε

)
(54)

where

K ′
1 = ln

(
1

2 ln 2

1 − C

C

)
K ′

2 ,

K ′
2 = −

1

ln

( 2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s

) .

By combining (31) and (54) with the asymptotic rateR = (1 − ε)C, we obtain a lower bound on the asymptotic
parity-check density which is of the form

lim inf
m→∞

∆m ≥
K1 + K2 ln

(
1
ε

)

1 − ε

where
K1,2 =

1 − C

C
· K ′

1,2.

This completes the proof of the lower bound in (48) and (49). Thederivation of the set of optimization equations
in (50) follows along the lines of the derivation of (24). In the general case of2d quantization levels, it follows
from (49) that we need to maximize

2d−1−1∑

s=0

(ps − p2d−1−s)
2

ps + p2d−1−s

.

To this end, we set to zero all the partial derivatives w.r.t.ls wheres = 1, . . . , 2d−1 − 1. Since from (35) onlyps,
ps−1, p2d−s andp2d−s−1 depend onls, then

∂

∂ls

{
(ps−1 − p2d−s)

2

ps−1 + p2d−s

+
(ps − p2d−s−1)

2

ps + p2d−s−1

}
= 0.

We express now the probabilitiesps, ps−1, p2d−s andp2d−s−1 as integrals of the conditional pdfa of the LLR, and
rely on the symmetry property which states thata(l) = ela(−l) for l ∈ R. In a similar manner to the derivation of
(24), this gives the set of equations in (50). Their solution provides the quantization levelsl1, . . . , l2d−1−1 (where
according to Proposition III-B, the other2d−1 − 1 levels are set to be symmetric w.r.t. zero).
Based on the proof of Theorem 3.2, we derive an upper bound on the asymptotic rate of every sequence of binary
linear codes for which reliable communication is achievable. The bound refers of soft-decision ML decoding, and
it is therefore valid for any sub-optimal decoding algorithm.

Corollary 3.2: (“2d-Level Quantization” Upper Bound on the Asymptotic Achievable Rates of Sequences of
Binary Linear Block Codes) Let{Cm} be a sequence of binary linear block codes whose codewords are transmitted
with equal probability over an MBIOS channel, and suppose that the block length of this sequence of codes tends to
infinity asm → ∞. Let Γk,m be the fraction of the parity-check nodes of degreek in an arbitrary representation of
the codeCm by a bipartite graph which corresponds to a full-rank parity-check matrix. Then a necessary condition
for this sequence to achieve vanishing bit error probability asm → ∞ is that the asymptotic rateR of this sequence
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satisfies

1 − max

{
(1 − C)

[
∑

k

Γk

∑

k0,...,k2d−1
−1∑

i
ki=k

(
k

k0, . . . , k2d−1−1

)

·
2d−1−1∏

i=0

(pi + p2d−1−i)
ki

· h2

(
1

2

{
1 −

2d−1−1∏

i=0

(
1 −

2p2d−1−i

pi + p2d−1−i

)ki
})]−1

,

2

2d−1∑

i=2d−1

pi

1 −
∑

k

Γk

(
1 − 2

2d−1∑

i=2d−1

pi

)k

}
≥ R (55)

whered ≥ 2 is an integer, the probabilities{pi} are introduced in (35), andΓk andR are introduced in (1).
Proof: The concept of the proof here is the same as the one of Corollary3.1, except that the first term

in the maximization on the RHS of (55) relies on (36). The second term in this maximization follows from [14,
Corollary 3.1], relying on the erasure decomposition lemma; from (35), the erasure probability of the corresponding
BEC is equal top = 2

∑2d−1
i=2d−1 pi.

IV. A PPROACHII: B OUNDS WITHOUT QUANTIZATION OF THE LLR

Similarly to the previous section, we derive bounds on the asymptotic achievable rate and the asymptotic parity-
check density of an arbitrary sequence of binary, linear block codes transmitted over an MBIOS channel. As in
Section III, the derivation of these two bounds is based on a lower bound on the conditional entropy of a transmitted
codeword given the received sequence at the output of the channel.

Proposition 4.1:Let C be a binary linear block code of lengthn and rateR transmitted over an MBIOS channel.
Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) designate the transmitted codeword and the received sequence,
respectively. For an arbitrary representation of the codeC by a full-rank parity-check matrix, letΓk designate the
fraction of the parity-check equations of degreek, andΓ(x) ,

∑
k Γkx

k be the degree distribution of the parity-
check nodes in the corresponding bipartite graph. Then, the conditional entropy of the transmitted codeword given
the received sequence satisfies

H(X|Y)

n
≥ 1 − C − (1 − R)

(
1 −

1

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)

)
(56)

where

gp ,

∫ ∞

0
a(l)(1 + e−l) tanh2p

(
l

2

)
dl , p ∈ N (57)

anda denotes the conditional pdf of the LLR given that the channel input is 0.
Proof: We consider a binary linear block codeC of lengthn and rateR whose transmission takes place over

an MBIOS channel. For the continuation of the proof, we move from the mapping of the MBIOS channelX → Y

to the channelX → Ỹ whereỸ represents the LLR of the channel outputY . These channels are equivalent in the
sense thatH(X|Y ) = H(X|Ỹ ). The basic idea for showing the equivalence between the original channel and the
one which will be introduced shortly is based on the fact thatthe LLR forms a sufficient statistics of the channel.

For the characterization of the equivalent channel, let thefunction a designate the conditional pdf of the LLR
given that the channel input is 0. We randomly generate an i.i.d. sequence{Li}

n
i=1 w.r.t. the conditional pdfa, and

define

Ωi , |Li|, Θi ,





0 if Li > 0

1 if Li < 0

0 or 1 w.p. 1
2 if Li = 0

. (58)
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The output of the equivalent channel is defined to be the sequence Ỹ = (Ỹ1, . . . , Ỹn) where

Ỹi = (Φi, Ωi), i = 1, . . . , n

andΦi = Θi + Xi where this addition is modulo-2. The output of this equivalent channel at timei is therefore the
pair (Φi, Ωi) whereΦi ∈ {0, 1} andΩi ∈ R

+. This defines the memoryless mapping

X → Ỹ , (Φ, Ω)

whereΦ is a binary random variable which is affected byX, andΩ is a non-negative random variable which is
not affected byX. Note that due to the symmetry of the communication channel,the joint distribution of the pair
(Φ, Ω) is equal to the one which corresponds to the pair representing the sign and magnitude of LLR(Y ). Hence,

fΩ(ω) =

{
a(ω) + a(−ω) = (1 + e−ω) a(ω) if ω > 0

a(0) if ω = 0
(59)

where we rely on the symmetry property of the pdfa.
Following the lines which lead to (15), we obtain

H(X|Y) ≥ nR − H(Ỹ) + nH(Ỹ ) − nC. (60)

In order to get a lower bound onH(X|Y), we calculate the entropy of̃Y and also obtain an upper bound on the
entropy ofỸ. The calculation of the first entropy is direct

H(Ỹ ) = H(Φ, Ω)

= H(Ω) + H(Φ|Ω)

= H(Ω) + Eω [H(Φ|Ω = ω)]

= H(Ω) + 1 (61)

where the last transition is due to the fact that given the absolute value of the LLR, its sign is equally likely to be
positive or negative. The entropyH(Ω) is not expressed explicitly as it will cancel out later.

We now derive an upper bound onH(Ỹ)

H(Ỹ) = H
(
Φ1, Ω1, . . . ,Φn, Ωn

)

= H(Ω1, . . . ,Ωn) + H
(
Φ1, . . . ,Φn | Ω1, . . . ,Ωn

)

= nH(Ω) + H
(
Φ1, . . . ,Φn | Ω1, . . . ,Ωn

)
. (62)

Define the syndrome vector
S = (Φ1, . . . ,Φn)HT

whereH is an arbitrary full-rank parity-check matrix of the binarylinear block codeC, and letM be the index
of the vector(Φ̃1, . . . , Φ̃n) in the coset which corresponds toS. Since each coset has exactly2nR elements which
are equally likely thenH(M) = nR, and we get

H
(
(Φ1, . . . ,Φn) | (Ω1, . . . ,Ωn)

)

= H(S, M | (Ω1, . . . ,Ωn)
)

≤ H(M) + H
(
S | (Ω1, . . . ,Ωn)

)

= nR + H
(
S | (Ω1, . . . ,Ωn)

)

≤ nR +

n(1−R)∑

j=1

H
(
Sj | (Ω1, . . . ,Ωn)

)
. (63)

SinceXHT = 0 for any codewordX, then

S = (Θ1, . . . ,Θn)HT
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which is independent of the transmitted codeword. Considerthe jth parity-check equation, and assume that it
involves k variables whose indices arei1, . . . , ik. Then, the componentSj of the syndrome is equal to 1 if and
only if there is an odd number of ones in the random vector(Θi1 , . . . ,Θik

).
Lemma 4.1:If the j-th component of the syndromeS involvesk variables whose indices arei1, i2, . . . , ik, then

Pr
(
Sj = 1 | (Ωi1 , . . . ,Ωik

) = (α1, . . . , αk)
)

=
1

2

[
1 −

k∏

m=1

tanh
(αm

2

)]
. (64)

Proof: Due to the symmetry of the channel

Pm , Pr(Θim
= 1 | Ωim

= αm)

=
a(−αm)

a(αm) + a(−αm)

=
1

1 + eαm

.

Substituting this result in [3, Lemma 4.1] gives

Pr
(
Sj = 1 | (Ωi1 , . . . ,Ωik

) = (α1, . . . , αk)
)

=
1

2

[
1 −

k∏

m=1

(1 − 2Pm)

]

=
1

2

[
1 −

k∏

m=1

tanh
(αm

2

)]
, m = 1, . . . , k.

We therefore obtain from Lemma 4.1 that

H
(
Sj |(Ωi1 , . . . ,Ωik

) = (α1, . . . , αk)
)

= h2

(
1

2

[
1 −

k∏

m=1

tanh
(αm

2

)])

and by taking the statistical expectation over thek random variablesΩi1 , . . . ,Ωik
, we get

H
(
Sj |Ωi1 , . . . ,Ωik

)

=

∫ ∞

0
. . .

∫ ∞

0
h2

(
1

2

[
1 −

k∏

m=1

tanh
(αm

2

)])

·
k∏

m=1

fΩ(αm) dα1dα2 . . . dαk

= 1 −
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

·

(∫ ∞

0
fΩ(α) tanh2p

(α

2

)
dα

)k
}

(65)
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where the equality in the last transition is proved in Appendix II-B. Hence, sincen(1−R)Γk designates the number
of parity-check equations of degreek, then

n(1−R)∑

j=1

H
(
Sj |Ω1, . . . ,Ωn

)

= n(1 − R)

[
1 −

1

2 ln 2

∑

k

{
Γk

∞∑

p=1

1

p(2p − 1)

·

(∫ ∞

0
fΩ(α) tanh2p

(α

2

)
dα

)k }]

= n(1 − R)

[
1 −

1

2 ln 2

∑

k

{
Γk

∞∑

p=1

g k
p

p(2p − 1)

}]
(66)

where the last equality follows from (57) and (59). By combining (62), (63) and (66), we get the following upper
bound onH(Ỹ):

H(Ỹ)

≤ nH(Ω) + nR + n(1 − R)

·

[
1 −

1

2 ln 2

∑

k

{
Γk

∞∑

p=1

g k
p

p(2p − 1)

}]

= nH(Ω) + nR + n(1 − R)

·

[
1 −

1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

∑

k

Γkg
k
p

}]

= nH(Ω) + nR + n(1 − R)

(
1 −

1

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)

)
. (67)

Finally, the equality in (61) and the upper bound onH(Ỹ) given in (67) are substituted in the RHS of (60).
This provides the lower bound on the conditional entropyH(X|Y) given in (56), and completes the proof of this
proposition.

Remark 4.1:For the particular case of a BEC with erasure probabilityp, the capacity isC = 1 − p bits per
cannel use. The conditional pdf of the LLR, given that the0 is transmitted, is equal to

a(l) = pδ0(l) + (1 − p)δ∞(l)

where the functionδa designates the Dirac Delta function at the pointa, i.e., δa(x) , δ(x − a). We obtain from
(57) thatgm = 1 − p for all m ∈ N, so (56) gives

H(X|Y)

n
≥ p − (1 − R)

[
1 −

1

2 ln 2

∞∑

m=1

Γ(1 − p)

m(2m − 1)

]

= p − (1 − R)
[
1 − Γ(1 − p)

]
(68)

where the last transition follows from the equality
∞∑

m=1

1

2m(2m − 1)
= ln 2 .

The lower bound on the conditional entropy for the BEC, as givenin (68), coincides with the result proved in
[14, Eqs. (33) and (34)]. The result there was obtained by the derivation of an upper bound on the rank ofHE

which is a sub-matrix ofH whose columns correspond to the variables erased by the BEC.
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Discussion: The proof of Proposition 4.1 relies on the analysis of an equivalent channel rather than a degraded
(quantized) channel. We therefore expect the lower bound inthe RHS of (56) to be tighter than the one in the RHS
of (36). By following the derivation in (60)–(63), one gets

H(X|Y)

n
≥ 1 − C −

1

n

n(1−R)∑

j=1

H(Sj |Ω1, . . . ,Ωn) (69)

where the random variablesΩ1, . . . ,Ωn are defined in (58) andSj is the j-th component of the syndrome. The
lower bound in (56) is in fact an explicit expression for the above inequality where the side informationΩ is the
absolute value of the LLR without quantization. From the discussion following Proposition 3.2, the bound in (36)
is of the same form, except that the side informationΩ1, . . . ,Ωn is a quantized versionof the absolute value of
the LLR. Hence, from the information processing inequality, it follows that indeed (56) is a tighter lower bound
on the conditional entropy than (36) for any number of quantization levels.

Theorem 4.1:(“Un-Quantized” Lower Bound on the Asymptotic Parity-CheckDensity of Binary Linear Block
Codes) Let{Cm} be a sequence of binary linear block codes achieving a fraction 1 − ε of the capacityC of an
MBIOS channel with vanishing bit error probability. LetHm be an arbitraryfull-rank parity-check matrix of the
codeCm, and denote its density by∆m. Then, the asymptotic density satisfies

lim inf
m→∞

∆m ≥
K1 + K2 ln 1

ε

1 − ε
(70)

where

K1 = K2 ln

(
ξ (1 − C)

C

)
, K2 =

1 − C

C

1

ln
(

1
g1

) (71)

g1 is introduced in (57), and

ξ ,

{
1 for a BEC

1
2 ln 2 otherwise

. (72)

Proof: From the lower bound onH(X | Y)
n

in Eq. (56) and Lemma 3.1 (see p. 11), we obtain that if{Cm} is
a sequence of binary linear block codes which achieves a fraction 1− ε of the channel capacity with vanishing bit
error probability, then

1 − C −
(
1 − (1 − ε)C

)

1 −

1

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)


 ≤ 0

whereΓ(x) ,
∑

k Γkx
k is the asymptotic right degree distribution from the node perspective which corresponds

to the sequence of parity-check matrices{Hm}. Since
∑

k kΓk = aR is the average right degree, then from the
convexity of the exponential function, we obtain by invoking Jensen’s inequality thatΓ(x) ≥ xaR for all x ≥ 0,
and therefore

1 − C −
(
1 − (1 − ε)C

) [
1 −

1

2 ln 2

∞∑

p=1

g aR
p

p(2p − 1)

]
≤ 0. (73)

We derive now two different lower bounds on the infinite sum in the RHS of (73), and compare them later. For
the derivation of the lower bound in the first approach, let us define the positive sequence

αp ,
1

2 ln 2

1

p(2p − 1)
, p ∈ N. (74)
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From (99) (see Appendix II-A), the substitution ofx = 0 in both sides of the equality gives that
∑∞

p=1 αp = 1, so
the sequence{αp} forms a probability distribution. We therefore obtain that

1

2 ln 2

∞∑

p=1

g aR
p

p(2p − 1)

(a)
=

∞∑

p=1

{
αp

(∫ ∞

0
a(l)(1 + e−l) tanh2p

(
l

2

)
dl

)aR
}

(b)

≥




∫ ∞

0
a(l)(1 + e−l)

∞∑

p=1

αp tanh2p

(
l

2

)
dl




aR

(c)
=

(∫ ∞

0
a(l)(1 + e−l)

[
1 − h2

(
1 − tanh

(
l
2

)

2

)]
dl

)aR

(d)
=

(∫ ∞

0
a(l)(1 + e−l)

[
1 − h2

(
1

1 + el

)]
dl

)aR

(e)
= CaR (75)

where equality (a) follows from (57) and (74), inequality (b) follows from Jensen’s inequality, equality (c) follows
from (74) and (99), equality (d) follows from the identitytanh(x) = e2x−1

e2x+1 , and equality (e) follows from the relation
between the capacity of an MBIOS channel and the pdf of the absolute value of the LLR (see [13, Lemma 4.30]).

For a derivation of an alternative lower bound on the infinite series above, we truncate the infinite sum in the
RHS of (73) and take into account only the first term in this series. This gives

1

2 ln 2

∞∑

p=1

g aR
p

p(2p − 1)
≥

g aR
1

2 ln 2
(76)

which follows from (57) sincegp ≥ 0 for all p ∈ N.
In order to compare the tightness of the two lower bounds in (75) and (76), we first compare the bases of their

exponents (i.e.,g1 andC). To this end, it is easy to verify that

tanh2

(
l

2

)
≥ 1 − h2

(
1

1 + el

)
l ∈ [0,∞)

with an equality if and only ifl = 0 or l → ∞. To show this, we start from equality (99), use the inequality

(1 − 2x)2p ≤ (1 − 2x)2 for p ∈ N and0 ≤ x ≤ 1, and the equality
∞∑

p=1

1

2p(2p − 1)
= ln 2 to finally get

h2(x) ≥ 1 − (1 − 2x)2 , 0 ≤ x ≤ 1.

Hence, (57) and (75) giveg1 ≥ C with equality if and only if the MBIOS channel is a BEC. Therefore, up to the
multiplicative constant 1

2 ln 2 , the lower bound in (76) is tighter than the first one in (75). However, for the BEC,
(75) is tighter than (76); it provides an improvement by a factor of 2 ln 2 ≈ 1.386.

We will therefore continue the analysis based on the second bound in (76), and then give the potential improvement
which follows from the first bound in (75) for a BEC. From (73) and (76), we obtain that

1 − C −
(
1 − (1 − ε)C

) (
1 −

g aR
1

2 ln 2

)
≤ 0.

Sinceg1 ≤ 1 (where equality is achieved for a noiseless channel), then the asymptotic average right degree(aR)
satisfies the lower bound

aR ≥
ln

(
1

2 ln 2

(
1 + 1−C

εC

))

ln
(

1
g1

) .
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By dropping the 1 inside the logarithm in the numerator, we obtain that

aR > K ′
1 + K ′

2 ln

(
1

ε

)
(77)

where

K ′
1 =

ln
(

1
2 ln 2

1−C
C

)

ln
(

1
g1

) , K ′
2 =

1

ln
(

1
g1

) .

Finally, since for a full-rank parity-check matrix, the parity-check density and average right degree are directly
linked by the equality∆ =

(
1−R

R

)
aR, one obtains the following lower bound on the asymptotic parity-check

density:

lim inf
m→∞

∆m >
1 − (1 − ε)C

(1 − ε)C

(
K ′

1 + K ′
2 ln

(
1

ε

))

>
K1 + K2 ln

(
1
ε

)

1 − ε
(78)

whereK1,2 , 1−C
C

K ′
1,2. For the BEC, this lower bound can be improved by using the first bound in (75). In this

case,g1 = C = 1− p wherep designates the erasure probability of the BEC, so the additive coefficientK1 in the
RHS of (70) is improved to

K1 =
p

1 − p

ln
(

p
1−p

)

ln
(

1
1−p

) .

This concludes the proof of this theorem.
Remark 4.2:For a BEC, the lower bound on the asymptotic parity-check density stated in Theorem 4.1 coincides

with the bound for the BEC in [14, Eq. (3)]. This lower bound was demonstrated in [14, Theorem 2.3] to be tight.
This is proved by showing that the sequence of right-regular LDPC ensembles of Shokrollahi [17] is optimal in the
sense that it achieves (up to a small additive coefficient) thelower bound on the asymptotic parity-check density
for the BEC.

For a general MBIOS channel (other than the BEC), we show in theproof above that the preferable logarithmic
growth rate of the lower bound on the parity-check density isachieved by using the bound which follows from
(76). However, we note that the lower bound on the parity-check density which follows from (75) isuniversalfor
all MBIOS channels with the same capacity.

Remark 4.3:The lower bound on the parity-check density in Theorem 4.1 is uniformly tighter than the one in
[14, Theorem 2.1] (except for the BSC and BEC where they coincide). For a proof of this claim, the reader is
referred to Appendix III-A.

Based on the proof of Theorem 4.1, we prove and discuss an upperbound on the asymptotic rate of an arbitrary
sequence of binary linear block codes for which reliable communication is achievable. The bound refers to ML
decoding, and it is therefore valid for any sub-optimal decoding algorithm. Hence, the following result also provides
an upper bound on the achievable rates of ensembles of LDPC codes under iterative decoding, where the transmission
takes places over an MBIOS channel.

Corollary 4.1: (Upper Bound on Achievable Rates) Let{Cm} be a sequence of binary linear block codes whose
codewords are transmitted with equal probability over an MBIOS channel, and assume that the block lengths of
these codes tend to infinity asm → ∞. Let Γk,m be the fraction of the parity-check nodes of degreek for arbitrary
representations of the codesCm by bipartite graphs which correspond to full-rank parity-check matrices, and assume
the limit Γk , limm→∞ Γk,m exists. Then, in the limit wherem → ∞, a necessary condition on the asymptotic
achievable rate(R) for obtaining vanishing bit error probability is

R ≤ 1 −
1 − C

1 −
1

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)

(79)
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whereΓ(x) ,
∑

k Γkx
k, andgp is given in (57).

Proof: This upper bound on the achievable rate follows immediately from Lemma 3.1 and the lower bound
on the conditional entropy in Proposition 4.1. The upper boundon R follows since the bit error probability of the
sequence of codes{Cm} vanishes as we letm tend to infinity.

Remark 4.4:We note that the upper bound on the achievable rate in the RHS of (79) doesn’t involve maximiza-
tion, in contrast to the bound in the RHS of (55). The second term of the maximization in the latter bound follows
from considerations related to the BEC where such an expression is not required in the RHS of (79). The reader
is referred to Appendix III-B for a proof of this claim.

Corollary 4.2: (Lower Bounds on the Bit Error Probability of LDPC Codes) LetC be a binary linear block
code of rateR whose transmission takes place over an MBIOS channel with capacity C. For an arbitrary full-rank
parity-check matrixH of the codeC, let Γk designate the fraction of parity-check equations that involve k variables,
andΓ(x) ,

∑
k Γkx

k be the right degree distribution from the node perspective which refers to the corresponding
bipartite graph ofC. Then, under ML decoding (or any other decoding algorithm), the bit error probability (Pb) of
the code satisfies

h2(Pb) ≥ 1 −
C

R
+

1 − R

2R ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)
(80)

wheregp is introduced in (57).
Proof: This follows directly by combining (25) and (56).

We now introduce the definition of a normalized parity-check density, as given in [14], and derive an improved
lower bound on the bit error probability (as compared to [14,Theorem 2.5]) in terms of this quantity.

Definition 4.1: (Normalized parity-check density [14]) LetC be a binary linear block code of rateR, which is
represented by a parity-check matrixH whose density is∆. The normalized densityof H, call it t = t(H), is
defined to bet = R∆

2−R
.

In the following, we clarify the motivation for the definitionof a normalized parity-check density. Let us assume
that C is a binary linear block code of lengthn and rateR, and suppose that it can be represented by a bipartite
graph which iscycle-free. From [14, Lemma 2.1], since this bipartite graph contains(2−R)n−1 edges, connecting
n variable nodes with(1 − R)n parity-check nodes without any cycles, then the parity-check density of such a
cycle-free code is∆ = 2−R

R
− 1

nR
. Hence, in the limit where we letn tend to infinity, the normalized parity-

check density of a cycle-free code tends to1. For codes which are represented by bipartite graphs with cycles, the
normalized parity-check density is above1. As shown in [14, Corollary 2.5], the number of fundamental cycles
in a bipartite graph which represents an arbitrary linear block C grows linearly with the normalized parity-check
density. The normalized parity-check density therefore provides a measure for the number of cycles in bipartite
graphs representing linear block codes. It is well known that cycle-free codes are not good in terms of performance,
even under ML decoding [18]; hence, good error-correcting codes (e.g., LDPC codes) should be represented by
bipartite graphs with cycles. Following [14], a lower boundon the asymptotic normalized parity-check density is
expressed in terms of the gap (in rate) to capacity (even under ML decoding); this bound provides a quantitative
measure for the number of fundamental cycles of bipartite graphs representing good error correcting codes. In
the following, we provide such an improved bound as comparedto the bound given in [14, Theorem 2.5]. In the
continuation (see Section V-B), the resulting improvement is exemplified.

From Definition 4.1, it follows that the relation between the normalized density of a full-rank parity-check matrix
and the corresponding average right degree ist =

(
1−R
2−R

)
aR so the normalized parity-check density grows linearly

with the average right degree (which is directly linked to the decoding complexity per iteration of LDPC codes
under MPI decoding) where the scaling factor depends on the code rateR.

Since
∑

k kΓk = aR, then by applying Jensen’s inequality to the RHS of (80), we get the following lower bound
on the bit error probability:

h2(Pb) ≥ 1 −
C

R
+

1 − R

2R ln 2

∞∑

p=1

g
(2−R)t

1−R

p

p(2p − 1)
. (81)
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This lower bound on the bit error probability is tighter than the bound given in [14, Eq. (23)] because of two
reasons: Firstly, by combining inequality (76) with Lemma III.1 (see Appendix III-A), we obtain that

1

2 ln 2

∞∑

p=1

g
(2−R)t

1−R

p

p(2p − 1)
≥

(1 − 2w)
2(2−R)t

1−R

2 ln 2
.

Secondly, the further improvement in the tightness of the newbound is obtained by dividing the RHS of (81) by
R (whereR ≤ 1), as compared to the RHS of [14, Eq. (23)].

The bounds in (80) and (81) become trivial when the RHS of theseinequalities are non-positive. Let the
(multiplicative) gap to capacity be defined asε , 1− R

C
. Analysis shows that the bounds in (80) and (81) are useful

unlessε ≥ ε0. For the bound in the RHS of (80),ε0 gets the form

ε0 =
(1 − C)B

C(1 − B)
, B ,

1

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)
(82)

and for the bound in the RHS of (81),ε0 is the unique solution of the equation

−ε0C +
1 − (1 − ε0)C

2 ln 2

∞∑

p=1

g
(2−(1−ε0)C)t

1−(1−ε0)C

p

p(2p − 1)
= 0. (83)

For a proof of (82) and (83), the reader is referred to Appendices III-C and III-D, respectively. Similarly to [14,
Eq. (25)], we note thatε0 in (83) forms a lower bound on the gap to capacity for an arbitrary sequence of binary
linear block codes achieving vanishing bit error probability over an MBIOS channel; the bound is expressed in
terms of their asymptotic rateR and normalized parity-check densityt. It follows from the transition from (80) to
(81) that the lower bound on the gap to capacity in (83) is looser as compared to the one given in (82). However,
the bound in (83) solely depends on the normalized parity-check density, while the bound in (82) requires full
knowledge of the degree distribution for the parity-check nodes.

Discussion:Due to the symmetry property for an arbitrary MBIOS channel,the conditional probability density
function of the random variableT = Pr(X = 1|Y )−Pr(X = −1|Y ) satisfies the property (see [16, Proposition 3.1])

fT (t) = fT (−t)

(
1 + t

1 − t

)
, −1 ≤ t ≤ 1.

The relationT = tanh
(

L
2

)
forms a one-to-one correspondence between the value of the random variableT and the

value of the random variableL for the LLR. This implies thatI(X; L) = I(X; T ). It is shown in [16, Lemma 3.2]
that the moments ofT satisfy the property

E[T 2p] = E[T 2p−1], ∀ p ∈ N .

Based on the above equality, it follows (see [16, Proposition3.3]) that the mutual information betweenX andL

can be expressed in the following form:

I(X; L) = I(X; T )

=

∫ 1

−1
fT (t) log2(1 + t)dt

=
1

ln 2

∞∑

p=1

1

2p(2p − 1)
E[T 2p]

=
1

ln 2

∞∑

p=1

gp

2p(2p − 1)

where the last transition follows from (57) and the symmetryproperty, giving the equality

gp =

∫ ∞

−∞
a(l) tanh2p

(
l

2

)
dl = E[T 2p].
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Therefore, the mutual information is expressed as a sum of even moments ofT (exactly like the lower bound on
the conditional entropy in (56)). Similar properties also appear in [8, Lemma 3]. This gives insight to the reason for
being able to express the bound on the entropy in (56) as a sum of one-dimensional integrals withevenmoments
of the tangent hyperbolic function.

V. NUMERICAL RESULTS

We present here numerical results for the information-theoretic bounds derived in Sections III and IV. As expected,
the new bounds improve the numerical results presented in [1, Section 4] and [14, Section 4]. This improvement is
attributed to the fact that, in contrast to [1] and [14], the derivation of the new bounds does not rely on a two-level
quantization of the LLR; this quantization converts the arbitrary MBIOS channel (whose output may be continuous)
to a BSC, and it therefore loosens the bounds. Throughout this section, we assume that the transmission of the
codes is over the binary-input AWGN channel. Note that the ”quantized bounds” rely on quantized values of the
LLR as side information used for the derivation of these bounds, but the channel itself is not quantized. Hence, by
increasing the number of quantization levels used for thesebounds, the corresponding values of theEb

N0
thresholds

under ML decoding get farther from the channel capacity (seeTables I–III).
We note that the statements in Sections II–IV refer to the casewhere the parity-check matrices are full rank.

Though it seems like a feasible requirement for specific linearcodes, this poses a problem when considering
ensembles of LDPC codes. In the latter case, a parity-check matrix, referring to a randomly chosen bipartite graph
with a given pair of degree distributions, may not be full rank (one can even construct LDPC ensembles where the
design rate is strictly less than their asymptotic rate as the block length goes to infinity). Considering ensembles
of LDPC codes, it follows from the proofs of Propositions 3.1, 3.2 and 4.1 that the statements stay valid with
the following modifications: the actual code rateR of a code which is randomly picked from the ensemble is
replaced by the design rate (Rd) of the ensemble, and{Γk} becomes the degree distribution of the parity-check
nodes referring to the original bipartite graph which represents a parity-check matrix, possibly not of full rank.
The reason for the validity of the bound with the suggested modification is that instead of bounding the entropy
of the syndrome by the sum of the entropies of itsn(1−R) independent components, we sum overall n(1−Rd)
components (where sinceRd ≤ R, some of these components are possibly linearly dependent). It follows from
the proofs that the entropy of the transmitted codeword(X) cancels out with the entropy of the indexM of the
received vector in the appropriate coset (see e.g. (19)), regardless of the rank ofH. By doing this modification,
the bound becomes looser when the asymptotic rate of the codes is strictly above the design rate of the ensemble.
In light of this modification, we note that the fractionΓk of nodes of degreek is calculated in terms of the degree
distributionρ by equation (6), which gives

Γk =
ρk

k

1
∫ 1

0
ρ(x) dx

.

Though the bounds in Sections III–IV improve on the bounds in [1], the possible replacement of the code rate
with the design rate in case that the parity-check matrices are not full rank was also noted in [1, p. 2439].

Based on [7, Lemma 7] (see Lemma 2.1 on p. 5), it was verified that the design rates of the LDPC ensembles
presented in this section are equal with probability 1 to theasymptotic rates of codes chosen uniformly at random
from these ensembles. This allows one to consider the Shannon capacity limit for these ensembles by referring to
the capacity values ofEb

N0
which correspond to their design rates (see Tables I–III).

A. Thresholds of LDPC Ensembles under ML Decoding

Tables I–III provide bounds on the thresholds of various ensembles of LDPC codes under ML decoding. By
comparing these bounds with the exact thresholds under iterative decoding (based on the density evolution (DE)
technique), Tables I–III provide a quantitative measure for the sub-optimality of MPI decoding (as compared to
ML decoding).

The bounds on the achievable rates derived in [1] and Corollaries 3.1, 3.2 and 4.1 provide lower bounds on theEb
N0

thresholds under ML decoding. For Gallager’s ensembles of regular LDPC codes, the gap between the thresholds
under ML decoding and the exact thresholds under the iterative sum-product decoding algorithm is rather large.
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TABLE I

COMPARISON OF THRESHOLDS FORGALLAGER ’ S ENSEMBLES OF REGULARLDPC CODES TRANSMITTED OVER THE BINARY-INPUT

AWGN CHANNEL. THE 2-LEVEL LOWER BOUND ON THE THRESHOLD OF
Eb
N0

REFERS TOML DECODING, AND IS BASED ON [1,

THEOREM 1] (SEE ALSO[14, TABLE II]). T HE 4-LEVEL , 8-LEVEL AND UN -QUANTIZED LOWER BOUNDS REFER TOML DECODING, AND

ARE BASED ONCOROLLARIES 3.1, 3.2AND 4.1, RESPECTIVELY. THE UPPER BOUND ON THE THRESHOLD OF
Eb
N0

HOLDS UNDER

’ TYPICAL PAIRS’ DECODING [4] (AND HENCE, ALSO UNDER ML DECODING). THE DE THRESHOLDS ARE BASED ON THE DENSITY

EVOLUTION ANALYSIS , PROVIDING EXACT THRESHOLDS UNDER THE ITERATIVE SUM-PRODUCT DECODING ALGORITHM[11].

LDPC Capacity Lower Bounds Upper DE
Ensemble Limit 2-Level 4-Level 8-Level Un-Quantized Bound [4] Threshold

(3,6) +0.187 dB +0.249 dB +0.332 dB +0.361 dB +0.371 dB +0.673 dB +1.110 dB
(4,6) −0.495 dB −0.488 dB −0.472 dB −0.463 dB −0.463 dB −0.423 dB +1.674 dB
(3,4) −0.794 dB −0.761 dB −0.713 dB −0.694 dB −0.687 dB −0.510 dB +1.003 dB

TABLE II

COMPARISON OF THRESHOLDS FOR RATE ONE-HALF ENSEMBLES OF IRREGULARLDPC CODES TRANSMITTED OVER THE

BINARY-INPUT AWGN CHANNEL. THE SHANNON CAPACITY LIMIT CORRESPONDS TO
Eb
N0

= 0.187 DECIBELS. THE 2-LEVEL , 4-LEVEL ,

8-LEVEL AND UN -QUANTIZED LOWER BOUNDS ON THE THRESHOLD REFER TOML DECODING, AND ARE BASED ON [1, THEOREM 2],

COROLLARIES 3.1, 3.2AND 4.1, RESPECTIVELY. THE DEGREE DISTRIBUTIONS OF THE ENSEMBLES AND THEIRDE THRESHOLDS ARE

BASED ON DENSITY EVOLUTION ANALYSIS UNDER ITERATIVE SUM-PRODUCT DECODING[11], AND ARE TAKEN FROM [12, TABLES 1

AND 2].

λ(x) ρ(x) Lower Bounds DE
2-Level 4-Level 8-Level Un-Quantized Threshold

0.38354x + 0.04237x2 +
0.57409x3

0.24123x4 +
0.75877x5

0.269 dB 0.370 dB 0.404 dB 0.417 dB 0.809 dB

0.23802x + 0.20997x2 +
0.03492x3 + 0.12015x4 +
0.01587x6 + 0.00480x13 +
0.37627x14

0.98013x7 +
0.01987x8

0.201 dB 0.226 dB 0.236 dB 0.239 dB 0.335 dB

0.21991x + 0.23328x2 +
0.02058x3 + 0.08543x5 +
0.06540x6 + 0.04767x7 +
0.01912x8 + 0.08064x18 +
0.22798x19

0.64854x7 +
0.34747x8 +
0.00399x9

0.198 dB 0.221 dB 0.229 dB 0.232 dB 0.310 dB

0.19606x + 0.24039x2 +
0.00228x5 + 0.05516x6 +
0.16602x7 + 0.04088x8 +
0.01064x9 + 0.00221x27 +
0.28636x29

0.00749x7 +
0.99101x8 +
0.00150x9

0.194 dB 0.208 dB 0.214 dB 0.216 dB 0.274 dB

For this reason, we also compare the lower bounds on theEb
N0

thresholds under ML decoding with upper bounds
on the Eb

N0
thresholds which rely on ”typical pairs decoding” [4]; an upper bound on theEb

N0
thresholds under

an arbitrary sub-optimal decoding algorithm (e.g., “typical pairs decoding”) also forms an upper bound on these
thresholds under ML decoding. It is shown in Table I that for Gallager’s ensembles of regular LDPC codes, the
gap between the thresholds under iterative sum-product decoding and ML decoding is rather large (this follows by
comparing the columns referring to the DE threshold and the upper bound based on “typical pairs decoding”). This
large gap is attributed to the sub-optimality of belief propagation decoding for regular LDPC codes. On the other
hand, it is also demonstrated in Table I that the gap between the upper and lower bounds on the thresholds under
ML decoding is much smaller. For example, according to the numerical results in Table I, the inherent loss in the
asymptotic performance due to the sub-optimality of beliefpropagation for Gallager’s ensemble of(4, 6) regular
LDPC codes (whose design rate is1

3 bits per channel use) ranges between 2.097 and 2.137 dB.
For carefully chosen ensembles of LDPC codes, it is shown in Tables II and III that the gap between the DE
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TABLE III

COMPARISON OF THRESHOLDS FOR RATE- 3

4
ENSEMBLES OF IRREGULARLDPC CODES TRANSMITTED OVER THE BINARY-INPUT

AWGN CHANNEL. THE SHANNON CAPACITY LIMIT CORRESPONDS TO
Eb
N0

= 1.626 DECIBELS. THE 2-LEVEL , 4-LEVEL , 8-LEVEL AND

UN-QUANTIZED LOWER BOUNDS ON THE THRESHOLD REFER TOML DECODING, AND ARE BASED ON [1, THEOREM 2],

COROLLARIES 3.1, 3.2AND 4.1, RESPECTIVELY. THE DEGREE DISTRIBUTIONS OF THE ENSEMBLES AND THEIRDE THRESHOLDS ARE

BASED ON DENSITY EVOLUTION ANALYSIS UNDER ITERATIVE SUM-PRODUCT DECODING[11], AND ARE TAKEN FROM [19].

λ(x) ρ(x) Lower Bounds DE
2-Level 4-Level 8-Level Un-Quantized Threshold

0.302468x + 0.319447x2 +
0.378085x4 x11 1.698 dB 1.786 dB 1.815 dB 1.825 dB 2.049 dB

0.244067x + 0.292375x2 +
0.463558x6 x13 1.664 dB 1.718 dB 1.736 dB 1.742 dB 1.874 dB

0.205439x + 0.255432x2 +
0.0751187x4 +
0.1013440x5 +
0.3626670x11

x15 1.647 dB 1.680 dB 1.691 dB 1.695 dB 1.763 dB

thresholds under the sum-product decoding algorithm and the new lower bounds on theEb
N0

thresholds under ML
decoding is rather small. This indicates that for the degree distributions which are provided by the LDPC optimizer
[19], the asymptotic degradation in performance due to the sub-optimality of belief propagation is marginal (it is
observed from Tables II and III that for several LDPC ensembles, this degradation in the asymptotic performance
is at most in the order of hundredths of a decibel).

The plots in Figure 2 compare different lower bounds on theEb
N0

-threshold under ML decoding of right-regular
LDPC ensembles. The plots refer to a right degree of 6 (upper plot) or 10 (lower plot). The following lower bounds
are depicted in these plots: the Shannon capacity limit, the 2-level quantization lower bound in [1, Theorem 1],
the 4 and 8-level quantization bounds of the LLR in Section III, and finally, the bound in Section IV where no
quantization of the LLR is performed. It can be observed from the two plots in Figure 2 that the range of code rates
where there exists a visible improvement with the new lower bounds depends on the degree of the parity-check
nodes. In principle, the larger the value of the right-degree is, then the improvement obtained by these bounds
is more pronounced starting from a higher rate code rate (e.g., for a right degree of 6 or 10, the improvement
obtained by the new ’un-quantized’ bounds is observed for code rates above 0.35 and 0.55 bits per channel use,
respectively).

B. Lower Bounds on the Bit Error Probability of LDPC Codes

Corollary 4.2 provides an improved lower bound on the bit error probability of binary linear block codes, as
compared to the one given in [14, Theorem 2.5]. The plot of Fig. 3 presents a comparison of these lower bounds
for binary linear block codes where the new bound relies on (81) and the previously reported bound by Sason and
Urbanke is introduced in [14, Theorem 2.5]. The two bounds are plotted as a function of the normalized density of
an arbitrary parity-check matrix (see Definition 4.1). In oursetting, the capacity of the channel is1

2 bit per channel
use, and the bounds are depicted for binary linear block codes whose rate is a fraction1−ε of the channel capacity.
To demonstrate the advantage of the lower bound on the bit error probability in (81) over the lower bound derived
in [14, Theorem 2.5], let us assume that one wishes to design a binary LDPC code which achieves a bit-error
probability of 10−6 at a rate which is99% of the channel capacity. The curve of the lower bound from [14]for
a fractional gap to capacity ofε = 0.01 implies that the normalized density of an arbitrary parity-check matrix
which represents the code (see Definition 4.1 on p. 28) should be at leasttmin = 4.33, while the curve depicting
the bound from (81) strengthens this requirement to a normalized density (of each parity-check matrix) of at least
tmin = 5.68. Translating this into terms of parity-check density, which is also the complexity per iteration under
MPI decoding, yields minimal parity-check densities of13.16 and 17.27, respectively (the minimal parity-check
density is given by∆min = (2−R)tmin

R
). It is reflected from Fig. 3 that as the gap to capacityε tends to zero, the

lower bound on the normalized density of an arbitrary parity-check matrix (t), representing a code which achieves
low error probability for a rate ofR = (1 − ε)C, grows significantly.
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Fig. 2. Comparison between lower bounds on theEb
N0

–thresholds under ML decoding for right-regular LDPC ensembles withaR = 6 (upper
plot) andaR = 10 (lower plot). The transmission takes place over the binary-input AWGN channel.

C. Lower Bounds on the Asymptotic Parity-Check Density

The lower bound on the parity-check density derived in Theorem4.1 enables to assess the tradeoff between
asymptotic performance and asymptotic decoding complexity (per iteration) of an MPI decoder. This bound tightens
the lower bound on the asymptotic parity-check density derived in [14, Theorem 2.1]. Fig. 4 compares these bounds
for codes of rate1

2 (upper plot) and3
4 (lower plot) where the bounds are plotted as a function ofEb

N0
. It can be

observed from Fig. 4 that asEb
N0

increases, the advantage of the bound in Theorem 4.1 over the bound in [14,
Theorem 2.1] diminishes. This follows from the fact that as thevalue of Eb

N0
is increased, the two-level quantization

of the LLR used in [1] and [14, Theorem 2.1] better captures the true behavior of the MBIOS channel. It is also
reflected in this figure that asε tends to zero (i.e., when the gap to capacity vanishes), the slope of the bounds
becomes very sharp. This is due to the logarithmic behavior ofthe bounds.

VI. SUMMARY AND OUTLOOK

The outstanding performance of low-density parity-check (LDPC) codes under iterative decoding is attributed to
the sparseness of the parity-check matrices of these codes.Motivated to consider how sparse parity-check matrices
of binary linear block codes can be as a function of their achievable rates and their gap to capacity, we derive in
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Fig. 3. Lower bounds on the bit error probability for any binary linear block code transmitted over a binary-input AWGN channel whose
capacity is 1

2
bits per channel use. The bounds are depicted in terms of the normalizeddensity of an arbitrary parity-check matrix which

represents the code, and the curves correspond to code rates which are a fraction1 − ε of the channel capacity (for different values ofε).
The bounds depicted in dashed lines are based on [14, Theorem 2.5],and the bounds in solid lines are given in Corollary 4.2.

this paper two kinds of bounds. The first category is some improved lower bounds on the asymptotic density of
parity-check matrices in terms of the achievable gap (in rate) to capacity, and the second category is upper bounds
on the achievable rates of binary linear block codes. These bounds refer to the case where the transmission takes
place over memoryless binary-input output-symmetric (MBIOS) channels, and improve the tightness of the bounds
given in [1], [14] (as exemplified in Section V). The information-theoretic bounds derived in this paper are valid for
everysequence of binary linear block codes, in contrast to high probability results which follow from probabilistic
tools (e.g., density evolution (DE) analysis under message-passing iterative (MPI) decoding). The bounds hold
under maximum-likelihood (ML) decoding, and hence, they also hold under any sub-optimal decoding algorithm.

The bounds in this paper are applied to ensembles of LDPC codes where the significance of these bounds is
as follows: Firstly, by comparing the new upper bounds on the achievable rates with thresholds provided by DE
analysis, we obtain rigorous bounds on the asymptotic loss in performance of various LDPC ensembles due to the
sub-optimality of MPI decoding (as compared to ML decoding).Secondly, the parity-check density of binary linear
block codes which are represented by standard bipartite graphs can be interpreted as the complexity per iteration
under MPI decoding. Therefore, by tightening the reported lower bound on the asymptotic parity-check density
(see [14, Theorem 2.1]), the new bounds provide better insight on the tradeoff between the asymptotic performance
and the asymptotic decoding complexity of iteratively decoded LDPC codes. Thirdly, the new lower bound on
the bit error probability of binary linear block codes tightens the reported lower bound in [14, Theorem 2.5] and
provides a quantitative measure to the number of fundamental cycles in the graph which should exist in terms of
the achievable rate (even under ML decoding) and its gap to capacity. It is well known that cycle-free codes have
poor performance [18]; hence, the lower bound on the minimalnumber of fundamental cycles in the graph, as a
function of the gap to capacity, strengthens the result in [18].

The derivation of the bounds in Section III was motivated by thedesire to generalize the results in [1, Theorems 1
and 2] and [14, Theorem 2.1]. The two-level quantization of thelog-likelihood ratio (LLR) which in essence replaces
the arbitrary MBIOS channel by a physically degraded binarysymmetric channel (BSC), is modified in Section III
to a quantized channel which better reflects the statistics ofthe original channel (though the quantized channel is
still physically degraded w.r.t. the original channel). Thenumber of quantization levels at the output of the new
channel is an arbitrary integer power of 2. The calculation ofthe bounds in Section III is subject to an optimization
of the quantization levels of the LLR, as to get the tightest bounds within their form. In Section IV, we rely on
the conditional pdf of the LLR at the output of the MBIOS channel, and operate on an equivalent channel without
quantizing the LLR. This second approach finally leads to bounds which are uniformly tighter than the bounds in



35

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

3

4

5

6

7

8

9

10

11

12

Eb/No [dB]

P
ar

ity
−

C
he

ck
 D

en
si

ty

Lower Bound in Theorem 4.1
Lower Bound [14, Theorem 2.1]

1.6 1.8 2 2.2 2.4 2.6 2.8
0

1

2

3

4

5

6

7

8

9

Eb/No [dB]

P
ar

ity
−

C
he

ck
 D

en
si

ty

Lower Bound in Theorem 4.1
Lower Bound [14, Theorem 2.1]

Fig. 4. Comparison between lower bounds on the asymptotic parity-checkdensity of binary linear block codes where the transmission
takes place over a binary-input AWGN channel. The dashed line refersto [14, Theorem 2.1], and the solid line refers to Theorem 4.1. The
upper and lower plots refer to code rates of1

2
and 3

4
, respectively. The Shannon capacity limit for these code rates corresponds to Eb

N0
of

0.187 dB and 1.626 dB, respectively.

Section III. It appears to be even simpler to calculate the un-quantized bounds in Section IV, as their calculation
does not involve the solution of any optimization equation related to the quantization levels. The comparison
between the quantized and un-quantized bounds gives insight on the effect of the number of quantization levels
of the LLR (even if they are chosen optimally) on the achievablerates, as compared to the ideal case where no
quantization is done. The results of such a comparison are shown in Tables I–III (see Section V-A), and indicate
that the improvement in the tightness of the bounds when morethan 8 levels of quantization are used is marginal
(in the case that the quantization levels are optimally determined). We also note that practically, the possibility
to calculate un-quantized bounds which are uniformly better than the quantized bounds was facilitated due to an
efficient transformation of the multi-dimensional integralin Appendix II-B into an infinite series of one-dimensional
integrals whose convergence rate is fast.

In [8], a new method for analyzing LDPC and low-density generator-matrix (LDGM) codes under MAP decoding
is introduced, based on tools borrowed from statistical physics. Considering ensembles of codes, one gets from [8]
high probability results as the block length gets large, butthe performance of specific codes of finite length deviates
from the average ensemble performance. Since the bounding techniques which rely on statistical physics [8] do
not allow for a bound which is valid for every linear block code, it would be interesting to get some theory that
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unifies the information-theoretic and statistical physics approaches and provides bounds that are tight on average
and valid code by code.

For ensembles of LDPC codes, the introduced bounds on the thresholds under ML decoding only depend on the
degree distribution of their parity-check nodes and their design rate. For a given parity-check degree distribution
(ρ) and design rate(R), the bounds provide an indication on the inherent gap to capacity which is independent of
the choice of the left degree distributionλ (as long as the pair of degree distributions(λ, ρ) yield the design rate
R). Sections III and IV giveuniversalbounds on the gap to capacity for general LDPC ensembles over MBIOS
channels, no matter what the degree of the variable nodes is (as long as the design rate is fixed). These bounds can
be exploited to gain insight on how good a specific design of degree distributions is in terms of the design rate
and the average right degree where this is done by comparing the exact thresholds under iterative decoding with
the lower bounds on the thresholds under ML decoding (see Tables II and III in Section V). On the other hand,
the bounds are not necessarily tight for LDPC ensembles with a given pair of degree distributions(λ, ρ) since
the explicit influence ofλ is not taken into account except through the design rate of the ensemble. As a topic
for further research, it is suggested to examine the possibility of tightening the bounds for specific ensembles by
explicitly taking into account the exact characterizationof λ. The numerical results shown in Section V indicate,
however, that these bounds are useful for assessing the inherent gap to capacity of various LDPC ensembles. The
gap to capacity is attributed to the finite average right degree of these LDPC ensembles [14].

As a topic for further research, we also suggest to study a possible generalization of the bounds to non-binary
linear block codes. These generalized bounds can be applied to the analysis of the ML performance of non-binary
LDPC ensembles whose transmission takes place over arbitrarydiscrete memoryless channels with possibly different
types of quantization [2].

The lower bound on the asymptotic parity-check density in [14, Theorem 2.1] and its improvements in Sections III
and IV grow like the log of the inverse of the gap (in rate) to capacity. The result in [14, Theorem 2.2] shows that
a logarithmic growth rate of the parity-check density is achievable for Gallager’s ensembles of regular LDPC codes
under ML decoding when the transmission takes place over an arbitrary MBIOS channel. These results show that
for any iterative decoder which is based on the representation of the codes by Tanner graphs, there exists a tradeoff
between asymptotic performance and complexity which cannot be surpassed. Recently, it was shown in [10] that a
better tradeoff can be achieved by allowing more complicated graphical models which involve a sufficient number
of state nodes in the graph; for the BEC, the encoding and decoding complexity of properly designed codes on
graphs remains bounded as the gap to capacity vanishes (see [10]).

In [15], the authors consider the achievable rates and decoding complexity of LDPC codes over statistically
independentparallel channels, and generalize in a non-trivial way the un-quantized bounds introduced in Section IV.
The bounds in [15] are applied to randomly and intentionally punctured LDPC codes, and improved puncturing
theorems are derived as compared to those introduced in [10,Theorems 3 and 4].

APPENDIX I

A. Proof of Lemma 3.1

Since there is a one to one correspondence between the codewords and the set of information bits used to encode
them, thenH(X|Y) = H(U|Y) where the random vectorU = (U1, . . . , UnR) denotes the sequence of information
bits used to encode the codewordX. Let P

(i)
b denote the probability of decoding the bitUi erroneously given the

received sequence at the output of the MBIOS channel, then the bit error probability is given by

Pb =
1

nR

nR∑

i=1

P
(i)
b . (84)

This therefore gives

H(X|Y)

n
=

H(U|Y)

n

(a)

≤
1

n

nR∑

i=1

H(Ui|Y)
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(b)

≤
1

n

nR∑

i=1

h2

(
P

(i)
b

)

(c)

≤ R h2

(
1

nR

nR∑

i=1

P
(i)
b

)

(d)
= R h2

(
Pb

)

where inequality (a) holds from the chain rule of the entropyand since conditioning reduces entropy, inequality (b)
follows from Fano’s inequality and since the code is binary,inequality (c) is based on Jensen’s inequality and the
concavity of the binary entropy function(h2), and equality (d) follows from (84).

B. Derivation of the Optimization Equation in(24) and Proving the Existence of its Solution

Derivation of the optimization equation(24): We derive here the optimization equation (24) which refers to the
”four-level quantization” lower bound on the parity-checkdensity.

Let the functiona designate the conditional pdf of the LLR at the output of the original MBIOS channel, given
the zero symbol is transmitted. In the following, we expressthe transition probabilities of the degraded channel in
Fig. 1 (see p. 7) in terms of the pdfa and the value ofl:

p0 = Pr(Z = 0 |X = 0) =

∫ ∞

l

a(u) du (85)

p1 = Pr(Z = α |X = 0)

=

∫ l

0+

a(u) du +
1

2

∫ 0+

0−

a(u) du (86)

p2 = Pr(Z = 1 + α |X = 0)

=

∫ 0−

−l

a(u) du +
1

2

∫ 0+

0−

a(u) du (87)

p3 = Pr(Z = 1 |X = 0) =

∫ −l

−∞
a(u) du. (88)

We note that the integration of the functiona from u = 0− to u = 0+ gives a non-zero value if and only if there
is a non-vanishing probability that the value of the LLR at the output of the original channel is zero (e.g., a BEC).
Otherwise, the contribution of this integral to (86) and (87) vanishes. Since the channel is MBIOS, the symmetry
property [11] gives

a(u) = eu a(−u), ∀ u ∈ R. (89)

Based on the expressions for the coefficientsK1 andK2 in the lower bound on the asymptotic parity-check density
(22), then in order to find the tightest lower bound then we needto maximize

(p1 − p2)
2

p1 + p2
+

(p0 − p3)
2

p0 + p3
(90)

w.r.t. the free parameterl ∈ R
+. From Eqs. (85)–(88) and the symmetry property in (89)

p0 − p3 =

∫ ∞

l

a(u)(1 − e−u) du

⇒
∂

∂l
(p0 − p3) = −a(l)(1 − e−l) (91)

p0 + p3 =

∫ ∞

l

a(u)(1 + e−u) du

⇒
∂

∂l
(p0 + p3) = −a(l)(1 + e−l) (92)

p1 − p2 =

∫ l

0+

a(u)(1 − e−u) du
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⇒
∂

∂l
(p1 − p2) = a(l)(1 − e−l) (93)

p1 + p2 =

∫ l

0+

a(u)(1 + e−u) du

⇒
∂

∂l
(p1 + p2) = a(l)(1 + e−l) (94)

so the calculation of the partial derivative of (90) w.r.t.l gives

∂

∂l

{
(p1 − p2)

2

p1 + p2
+

(p0 − p3)
2

p0 + p3

}

= −4 a(l)

{[(
p2

p1 + p2

)2

−

(
p3

p0 + p3

)2
]

+ e−l

[(
p1

p1 + p2

)2

−

(
p0

p0 + p3

)2
]}

.

Since the first derivative of a function changes its sign at a neighborhood of any local maxima or minima point,
and since the pdfa is always non-negative, then the second multiplicative term above is the one which changes its
sign at a neighborhood ofl maximizing (90). For this value ofl, the second multiplicative term vanishes, which
gives the optimization equation forl in (24).

Proof of existence of a solution to(24): In order to show that a solution to (24) always exists, we willsee how
the LHS and the RHS of this equation behave asl → 0+ and l → ∞. From (85)–(88), it follows that in the limit
wherel → ∞

p1 → 1 − w − Pr(LLR(Y ) = ∞ | X = 0), p2 → w

wherew is introduced in (2), and therefore

lim
l→∞

p2
2 + e−lp2

1

(p1 + p2)2
=

(
w

1 − Pr(LLR(Y ) = ∞|X = 0)

)2

. (95)

Since from the symmetry property

p3=

∫ ∞

l

a(−u)du

=

∫ ∞

l

e−ua(u)du

≤e−l

∫ ∞

l

a(u)du

=e−lp0

then the fractionp3

p0
tends to zero asl → ∞, so

lim
l→∞

p2
3 + e−lp2

0

(p0 + p3)2
= lim

l→∞

(
p3

p0

)2
+ e−l

(
1 + p3

p0

)2 = 0. (96)

It therefore follows from (95) and (96) that for large enoughvalues ofl, the LHS of (24) is larger than the RHS
of this equation. On the other hand, in the limit wherel → 0+, we get

p1, p2 →
1

2

∫ 0+

0−

a(u)du

and therefore

lim
l→0+

p2
2 + e−lp2

1

(p1 + p2)2
=

1

2
. (97)
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In the limit wherel → 0+, one also gets

p0 →

∫ ∞

0+

a(u)du, p3 →

∫ 0−

−∞
a(u)du, p0 + p3 → β

whereβ , 1 −

∫ 0+

0−

a(u)du. By denotingu ,

∫ ∞

0+

a(u)du,

we get0 ≤ u ≤ β, and

lim
l→0+

p2
3 + e−lp2

0

(p0 + p3)2
=

u2 + (β − u)2

β2
≥

1

2
, ∀u ∈ [0, β]. (98)

We note that the last inequality holds in equality if and onlyif u = β
2 . But if this condition holds, then this implies

that ∫ 0−

−∞
a(u) du =

∫ ∞

0+

a(u) du

which from the symmetry property cannot be satisfied unlessa(u) = δ(u). The latter condition corresponds to a
BEC with erasure probability 1 (whose capacity is equal to zero).

From (97) and (98), we obtain that for small enough (and non-negative) values ofl, the LHS of (24) is less or
equal to the RHS of this equation. Since we also obtained that for large enoughl, the LHS of (24) is larger than
the RHS of this equation, the existence of a solution to (24) follows from continuity considerations.

C. Proof of Inequality(33)

We prove here the inequality (33) (see p. 13) which implies that the ”four-level quantization” lower bound on
the parity-check density (see p. 10) is tighter than what canbe interpreted as the ”two levels quantization” bound
in [14, Theorem 2.1]. Based on (2), we get

w = Pr{LLR(Y ) < 0 |X = 0} +
1

2
Pr{LLR(Y ) = 0 |X = 0}

so from (9),w = p2 + p3. By invoking Jensen’s inequality, we get

(p1 − p2)
2

p1 + p2
+

(p0 − p3)
2

p0 + p3

= (p1 + p2)

(
p1 − p2

p1 + p2

)2

+ (p0 + p3)

(
p0 − p3

p0 + p3

)2

≥

[
(p1 + p2)

(
p1 − p2

p1 + p2

)
+ (p0 + p3)

(
p0 − p3

p0 + p3

)]2

= (p0 + p1 − p2 − p3)
2

= (1 − 2p2 − 2p3)
2

= (1 − 2w)2.

An equality is achieved if and only ifp1−p2

p1+p2
= p0−p3

p0+p3
. From (91)–(94), we get

p1 − p2

p1 + p2
=

∫ l

0+

a(u)(1 − e−u) du

∫ l

0+

a(u)(1 + e−u) du

≤
1 − e−l

1 + e−l

and

p0 − p3

p0 + p3
=

∫ ∞

l

a(u)(1 − e−u) du

∫ ∞

l

a(u)(1 + e−u) du

≥
1 − e−l

1 + e−l
.
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The two fractionsp1−p2

p1+p2
and p0−p3

p0+p3
cannot be equal unless the LLR is either equal tol or −l. This makes the

four-level quantization of the LLR identical to the two-levelquantization used for the derivation of the original
bound in [1, Theorem 2]. Equality can be also achieved ifp1 + p2 = 0 or p0 + p3 = 0 which converts the channel
model in Fig. 1 (see p. 7) to a BSC.

APPENDIX II

This appendix provides further mathematical details related to the proof of Proposition 4.1. We note that
Appendix II-A serves here as a preparatory step for the derivation in Appendix II-B.

A. Power Series Expansion of the Binary Entropy Function

Lemma II.1:

h2(x) = 1 −
1

2 ln 2

∞∑

p=1

(1 − 2x)2p

p(2p − 1)
, 0 ≤ x ≤ 1. (99)

Proof: We prove this by expanding the binary entropy function into apower series around12 . The first order
derivative is

h′
2(x) =

ln
(

1−x
x

)

ln 2

and the higher order derivatives get the form

h
(n)
2 (x) = −

(n − 2)!

ln 2

(
(−1)n

xn−1
+

1

(1 − x)n−1

)

for n = 2, 3, . . . . The derivatives of odd degree therefore vanish atx = 1
2 , and for an even value ofn ≥ 2

h
(n)
2

(
1

2

)
= −

(n − 2)! 2n

ln 2
.

This yields the following power series expansion of the binary entropy function around the point12 :

h2(x)=1 −
∑

n≥2 even

{
(n−2)! 2n

ln 2

n!
·

(
x −

1

2

)n
}

=1 −
1

ln 2

∑

n≥2 even

(2x − 1)n

n(n − 1)

=1 −
1

2 ln 2

∞∑

p=1

(2x − 1)2p

p(2p − 1)

and this power series converges for allx ∈ [0, 1].
We note that since the power series in (99) has always non-negative coefficients, then its truncation always gives
an upper bound on the binary entropy function, i.e.,

h2(x) ≤ 1 −
1

2 ln 2

m∑

p=1

(1 − 2x)2p

p(2p − 1)
∀ x ∈ [0, 1], m ∈ N. (100)

The case wherem = 1 gives the upper bound in Lemma 3.2 which is used in this paper for the derivation of the
lower bounds on the parity-check density. The reason for not using a tighter version of the binary entropy function
for this case was because otherwise we would get a polynomialequation foraR whose solution cannot be given
necessarily in closed form. As shown in Fig. 5, the upper boundon the binary entropy functionh2 over the whole
interval [0, 1] is improved considerably by taking even a moderate value form (e.g.,m = 10 gives already a very
tight upper bound onh2 which deviates from the exact values only at a small neighborhood near the two endpoints
of this interval).
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Fig. 5. Plot of the binary entropy function to base 2 and some upper bounds which are obtained by truncating its power series around
x = 1

2
.

B. Calculation of the Multi-Dimensional Integral in(65)

Based on (99), we get
∫ ∞

0
. . .

∫ ∞

0

k∏

m=1

fΩ(αm)

· h2

(
1

2

(
1 −

k∏

m=1

(1 − e−αm

1 + e−αm

)))
dα1 . . . dαk

= 1 −
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

·

∫ ∞

0
. . .

∫ ∞

0

k∏

m=1

fΩ(αm)

·
k∏

m=1

(
1 − e−αm

1 + e−αm

)2p

dα1 . . . dαk

}

= 1 −
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

·

∫ ∞

0
. . .

∫ ∞

0

k∏

m=1

(
fΩ(αm) tanh2p

(αm

2

))

dα1 . . . dαk

}

= 1 −
1

2 ln 2

∞∑

p=1

1

p(2p − 1)

(∫ ∞

0
fΩ(α) tanh2p

(α

2

)
dα

)k

.

This transforms the originalk-dimensional integral to an infinite sum of one-dimensional integrals. Since we are
interested in obtaining a tight upper bound on thek-dimensional integral above, and all the terms of the last infinite
series are positive, then any truncation of the last infinite series forms an upper bound on the multi-dimensional
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integral given in (65). Based on the discussion in Appendix II-A, we compute the first 10 terms of this series which
(see the plot in Fig. 5) give a very tight upper bound on thek-dimensional integral (for allk).

APPENDIX III

A. On the Tightness of the Lower Bound in Theorem 4.1

We show here that the lower bound on the parity-check densityin Theorem 4.1 is uniformly tighter than the one
in [14, Theorem 2.1] (except for the BSC and BEC where the two bounds coincide). In order to show this , we
first prove the following lemma:

Lemma III.1: For any MBIOS channel,g1 ≥ (1 − 2w)2 where w and g1 are introduced in (2) and (57),
respectively.

Proof: From (2), (57) and (59)

g1=

∫ ∞

0
a(l) (1 + e−l) tanh2

(
l

2

)
dl

=

∫ ∞

0
fΩ(l) tanh2

(
l

2

)
dl

≥

(∫ ∞

0
fΩ(l) tanh

(
l

2

)
dl

)2

=

(∫ ∞

0
a(l) (1 + e−l) ·

(
1 − e−l

1 + e−l

)
dl

)2

=

(∫ ∞

0+

a(l) dl −

∫ ∞

0+

e−l a(l) dl

)2

=

(∫ ∞

0+

a(l) dl −

∫ ∞

0+

a(−l) dl

)2

=

(∫ ∞

0+

[a(l) + a(−l)] dl − 2

∫ ∞

0+

a(−l) dl

)2

=

(∫ ∞

−∞
a(l) dl −

∫ 0+

0−

a(l) dl − 2

∫ ∞

0+

a(−l) dl

)2

=

(
1 − 2

(∫ 0−

−∞
a(l) dl +

1

2

∫ 0+

0−

a(l) dl

))2

=(1 − 2w)2

where the single inequality above follows from Jensen’s inequality. Note also thatg1 ≤ 1 with equality if and only
if the channel is noiseless.
The proof of the claim stated at the beginning of this appendixfollows directly by noticing that the lower bound
on the parity-check density, as given in (70)–(72), is equalto

K1 + K2 ln
(

1
ε

)

1 − ε
=

1 − C

(1 − ε)C

ln
(

1
2 ln 2

1−C
εC

)

ln
(

1
g1

)

where we refer here to all MBIOS channels except the BEC. On theother hand, the lower bound on the parity-check
density which is given in [14, Theorem 2.1] gets the form

1 − C

(1 − ε)C

ln
(

1
2 ln 2

1−C
εC

)

ln
(

1
(1−2w)2

) .
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If the lower bound is not trivial (i.e., the common numeratorin both bounds is positive), then the improvement in
the tightness of the former bound over the latter bound follows from Lemma III.1. We note that for the particular
case of a BSC, the above two bounds coincide (as for a BSC whose crossover probability isp, it is easy to verify
from (2) and (57) thatw = p andg1 = (1 − 2p)2, respectively, henceg1 = (1 − 2w)2).

B. Proof for the Claim in Remark 4.4

In order to prove the claim in Remark 4.4 (see p. 28), it is required to show that

1 − C

1 −
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

∑

k

Γk g k
p

}

≥
2w

1 −
∑

k

Γk (1 − 2w)k
(101)

wherew is introduced in (2). The reason for showing this in light of the claim in Remark 4.4 is that the RHS of
the last inequality follows from considerations related toa BEC, essentially in the same way that the second term
of the maximization on the RHS of (55) is derived. By showing this, we prove that the maximization of the two
expressions in the LHS and RHS of (101) doesn’t affect the bound in Corollary 4.1.

Following the steps which lead to (75), we get that for any integerk ≥ 2

1

2 ln 2

∞∑

p=1

g k
p

p(2p − 1)
≥ Ck.

Applying this to (101) and denotingΓ(x) ,
∑

k Γkx
k, we get that a sufficient condition for (101) to hold is

1 − C

1 − Γ(C)
≥

2w

1 − Γ(1 − 2w)
. (102)

From the erasure decomposition lemma, we get that an MBIOS channel is physically degraded as compared to a
BEC with an erasure probabilityp = 2w. By the information processing inequality, it follows thatC ≤ 1 − 2w.
Therefore, in order to prove (102), it is enough to show that the function

f(x) =
1 − x

1 − Γ(x)

is monotonically decreasing forx ∈ (0, 1). We prove this property by showing that the derivative of thefunction f

is non-positive on the interval(0, 1). As the denominator of the derivative is positive, we may equivalently show
that

Γ′(x) (1 − x) −
(
1 − Γ(x)

)
≤ 0.

Dividing both sides of the inequality by1− x which is in the interval∈ (0, 1) and noting thatΓ(1) =
∑

k Γk = 1,
we get that it is enough to show that forx ∈ (0, 1)

Γ′(x) −
Γ(1) − Γ(x)

1 − x
≤ 0. (103)

Since the functionΓ is a polynomial and therefore analytic, by the mean-value theorem we get that for some
x̃ ∈ (x, 1)

Γ(1) − Γ(x)

1 − x
= Γ′(x̃).

SinceΓ′(x) =
∑

k kΓkx
k−1 is monotonically increasing forx ≥ 0, then (103) follows for allx ∈ (0, 1). This in

turn proves (101).
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C. Proof of Eq.(82)

In order to prove (82), we first multiply the two sides of (80) byR, and denoteR = (1 − ε)C. This gives that
the lower bound on the bit error probability in (80) is non-positive if and only if

(1 − C)B − εC(1 − B) ≤ 0. (104)

Unless the channel is noiseless, we get

B=
1

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)

=
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

∑

k

Γk g k
p

}

=
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

·
∑

k

Γk

(∫ ∞

0+

a(l)(1 + e−l) tanh2p
( l

2

)
dl

)k
}

<
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

∑

k

Γk

(∫ ∞

0+

a(l)(1 + e−l) dl

)k
}

=
1

2 ln 2

∞∑

p=1





1

p(2p − 1)

∑

k

Γk

(∫

R−{0}
a(l) dl

)k




=
1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)

∑

k

Γk

(
1 − Pr(LLR = 0)

)k

}

≤
1

2 ln 2

∞∑

p=1

1

p(2p − 1)
= 1.

SinceB < 1, the LHS of (104) is monotonically decreasing inε. We therefore deduce that the inequality (104)
holds forε ≥ ε0, whereε0 is the solution of

(1 − C)B − ε0C(1 − B) = 0.

It can be readily seen that the solution of the last equation is given byε0 defined in (82).

D. Proof of Eq.(83)

We will show both that there exists a uniqueε0 that satisfies (83), and that the RHS of (81) is non-positive if
and only if ε ≥ ε0 whereε0 is that unique solution. As in Appendix III-C, we begin by multiplying the two sides
of (81) by R and denotingR = (1 − ε)C. It follows that the bound in the RHS of (81) is trivial (non-positive) if
and only if

−εC +
1 − (1 − ε)C

2 ln 2

∞∑

p=1

g
(2−(1−ε)C)t

1−(1−ε)C

p

p(2p − 1)
≤ 0 (105)

wheregp is introduced in (57). We now show that the LHS of the last inequality is monotonically decreasing inε.
Let us denote

f(ε) , −εC +
1 − (1 − ε)C

2 ln 2

∞∑

p=1

g
(2−(1−ε)C)t

1−(1−ε)C

p

p(2p − 1)

αp ,
1

2 ln 2

1

p(2p − 1)
, p ∈ N.
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By dividing the derivative off w.r.t. ε by C, we get

f ′(ε)

C
=

1

C

(
− C + C

∞∑

p=1

αp g
(2−(1−ε)C)t

1−(1−ε)C

p

+
(
1 − (1 − ε)C

) ∞∑

p=1

αp g
(2−(1−ε)C)t

1−(1−ε)C

p ln(gp)

·

(
−

tC

(1 − (1 − ε)C)2

) )

=
∞∑

p=1

{
αp

(
1 − ln

(
g

t

1−(1−ε)C

p

))
g

(2−(1−ε)C)t

1−(1−ε)C

p

}
− 1 . (106)

From the symmetry property of the pdfa then (57) yields that

gp=

∫ ∞

0
a(l)(1 + e−l) tanh2p

(
l

2

)
dl

=

∫ ∞

−∞
a(l) tanh2p

(
l

2

)
dl

≤

∫ ∞

−∞
a(l)dl = 1

and, sincegp ≤ 1, it follows that g
(2−(1−ε)C)t

1−(1−ε)C

p ≤ g
t

1−(1−ε)C

p . Therefore, (106) gives

f ′(ε)

C
≤

∞∑

p=1

{
αp

(
1 − ln

(
g

t

1−(1−ε)C

p

))
g

t

1−(1−ε)C

p

}
− 1.

For p ∈ N, let us denoteg
t

1−(1−ε)C

p , 1 − δp where0 < δp < 1, then the last inequality gives

f ′(ε)

C
≤

∞∑

p=1

{
αp

(
1 − ln(1 − δp)

)
(1 − δp)

}
− 1

≤
∞∑

p=1

αp − 1 = 0

where the second transition follows from the inequality

ln(1 − x) > −
x

1 − x
, x ∈ (0, 1).

This concludes the proof of the monotonicity of the LHS of (105). Observing that

f(0) = (1 − C)
∞∑

p=1

αp g
(2−C)t

1−C

p > 0

and

f(1) = −C +
∞∑

p=1

αp g2t
p

≤ −C +
∞∑

p=1

αp gp

= −C + C = 0

where the first inequality follows sincegp ≤ 1 andt ≥ 1 (asymptotically,t = 1 if and only if the code is cycle-free).
The second equality follows from the last three equalities leading to (75). From the continuity of the functionf
w.r.t. ε, we conclude that the monotonicity property off , as shown above, ensures a unique solution for (83). From
(105), it also follows from the monotonicity and continuityproperties of the functionf in terms ofε ∈ (0, 1) that
the RHS of (81) is non-positive if and only ifε ≥ ε0 whereε0 is the unique solution of (83).
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