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Abstract

The performance of maximum-likelihood (ML) decoded binéingar block codes over the AWGN channel is
addressed via the tangential sphere bound (TSB) and twe oédéent improved versions. The paper is focused on
the derivation of the error exponents of these bounds. Atghat was exemplified that some recent improvements
of the TSB tighten this bound for finite-length codes, it ismmstrated in this paper that their error exponents
coincide. For an arbitrary ensemble of binary linear blockles, the common value of these error exponents is
explicitly expressed in terms of the asymptotic growth raft¢he average distance spectrum.
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. INTRODUCTION

In recent years, much effort has been put into the derivaifdight performance bounds on the error probability
of linear block codes under soft-decision maximume-likebld (ML) decoding. During the last decade, this research
work was stimulated by the introduction of various codes @efion graphs and iterative decoding algorithms,
achieving reliable communication at rates close to capavith feasible complexity. The remarkable performance
of these codes at rates above the channel cut-off rate miakaesiton bound useless at a portion of the rate region
where their performance is most appealing. Hence, tighe€iopnmance bounds are required to gain some insight
on the performance of these efficient codes. Improved uppegr@mer bounds on the error probability of linear
codes under ML decoding are addressed in [12] and refergheesin, and these bounds are applied to various
codes and ensembles.

The tangential sphere bound (TSB) [9] forms one of the tightppet bounds on the error probability for ML
decoded linear block codes whose transmission takes plaaetioe binary-input additive white Gaussian noise
(BIAWGN) channel. The TSB was modified by Sason and Shamai [10] foratialysis of the bit error probability
of linear block codes, and was slightly refined by Zangl and bigf49]. This bound only depends on the distance
spectrum of the code, and hence, it can be applied to variedsscand ensembles. The TSB falls within the class
of upper bounds whose derivation relies on the basic inégual

Pr(word error| ¢p) <Pr(word errot y € R | co)
+Pr(y ¢ R | co), 1)

wherecy is the transmitted codeworg, denotes the received vector at the output of the channelRRaddsignates

an arbitrary geometrical region which can be interprete@ asibset of the observation space. The idea is to use
the union bound only for the joint event where the decodds fai decode correctly and the received vector falls
inside the regiorR (i.e., the union bound is used for upper bounding the first t@nmnthe right-hand side (RHS) of
(1)). The TSB, for example, uses a circular hyper-cone as therrég. Other upper bounds from this family are
addressed in [12, Sections 3 and 4], [18] and referencesithéne[15], Yousefi and Khandani prove that among
all the volumesR which possess some symmetry properties, the circular kggres yields the tightest bound. This
finding demonstrates the optimality of the TSB among a family ofifals associated with geometrical regions
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which possess some symmetry properties, and which arenebitdy applying theinion bound to the first term on
the RHS of (1). In [16], Yousefi and Khandani suggest to usetétismbound [8] (an upper bound which belongs to
the family of second order Bonferroni-type inequalitie} Bstead of the union bound. This modification results in
a tighter upper bound, referred to as the added hyper plaH®)Aound. Yousefi and Mehrabian [17] also rely on
Hunter's bound, but implement it in a quite different way irder to obtain an improved tangential sphere bound
(ITSB) which solely depends on the distance spectrum of the.cblde tightness of the ITSB and the AHP bound
is exemplified in [16] and [17] for some binary linear block esdof short block lengths; these bounds slightly
outperform the TSB at low SNR values.

An issue which is not addressed analytically in [16] and [$Ayhether the new upper bounds (namely, the AHP
bound and the ITSB) provide an improved lower bound on the exponent as compared to the error exponent
of the TSB. In this paper, we address this question, and praitethie error exponents of these improved bounds
coincide with the error exponent of the TSB. We note however itiea TSB fails to reproduce the random coding
error exponent, especially for high-rate linear block .

This correspondence is organized as follows: The TSB ([9], [18) AHP bound [16] and the ITSB [17] are
presented as a preliminary material in Section Il (some bamnéffects, which are not considered in [16] and
[17], are discussed in detail in Section I1). In Section lll, derive the error exponents of the ITSB and the AHP
bound, and state our main result. We conclude our discussi@ection IV. Appendices provide supplementary
details related to the proof of our main result.

II. PRELIMINARIES

We introduce in this section some preliminary material vatserves as a preparatory step towards the presentation
of the material in the following section. We also presentatioh from [1] which is useful for our analysis. The
reader is referred to [12] and [18] which introduce matedalered in this section. However, in the following
presentation, we consider boundary effects which wereat@t into account in the original derivation of the TSB
and its recent two improved versions in [7], [9], [16]-[18hese boundary effects do not have any implication on
the asymptotic exponential behavior of these bounds wheréetvthe block length of the codes tend to infinity.

A. Assumption

Throughout this paper, we assume a binary-input additiveaen@aussian noise (AWGN) channel with double-
sided power spectral density 8{9 The modulation of the transmitted signals is antipodal, #red modulated
signals are coherently detected and ML decoded (with safisiha).

B. Tangential Sphere Bound

The TSB forms an upper bound on the error probability of lineacklcodes under ML decoding where the
transmission takes place over a binary-input AWGN chanse (9]-[12]). Consider a(n, k) binary linear block
codeC of rate R = % bits per channel use. Let us designate the codewordsbyf{c;} wherei =0,1,...,2% —1.
Assume a BPSK modulation, and &t = (s;1,...,s:.n) € {+VFs, —VEs}" designate the corresponding equi-
energy modulated vectors whefg denotes the energy per symbol. The transmitted signal \&efipy are obtained
from the codewordgc;} by the mappings; ; = (—1)%7+/Es wherej = 1,2,....n, so the common value of their
energy is equal tmEs. Since the BIAWGN channel is memoryless and output-symmedird the code is linear,
then the conditional error probability under ML decodingedaot depend on the transmitted codeword. Hence,
without any loss of generality, one can assume that theeati-zodewordcy) is transmitted; this corresponds to
the signal vectosy = (+v/Es,. .., +v/Es). Under this assumption, the received vegore= (y1,y2,...,yn) iS
given by

yj:\/Es—#—zj, j:1,2,...,n (2)
wherez = (z1, 29, . .., z,) designates an-dimensional Gaussian noise vector which corresponds acthogonal

projections of the AWGN. Since is a Gaussian vector and all its components are un-corceléten then
components ok are statistically independent and identically distriloutei.d.); each component of has a zero
mean and variance? = 2.
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Fig. 1. The geometric interpretation of the TSB.

Let FE be the event of deciding erroneously (under ML decoding) eaodeword other than the transmitted one.
The TSB is based on the inequality

Pr(E | co) <Pr(E, y € R|co) +Pr(y ¢ R|co) 3)

whereR is ann-dimensional circular cone with a half anglevhose vertex is located at the origin and its central
line passes through the origin and the signal vesgofsee Fig. 1). Let us designate this circular cone(hy®).

The optimization of the upper bound on the decoding error givdity (3) with R = C,,(0) is carried overr
(wherer and#@ are related as shown in Fig. 1). Let be the radial component of the noise vectofsee Fig. 1),
so the othem — 1 components of. are orthogonal to the radial component From Fig. 1, we obtain that

r=+y/nEstanf, r, = <\/nEs - z1> tan 6

ﬂh(zl) = (\/TTE‘S— 2’1) tang = @% (4)
nEs— % 2
ST 4

where §, = 2v/hkEs is the Euclidean distance between two BPSK modulated signabrges, and s;, which
correspond to two codewordsg(and c;, respectively) whose Hamming distancehisThe random variable

y £y 7
=2
is x? distributed withn — 1 degrees of freedom, so ifslif is given by
"T_sefﬁU
fy(y) = L (Ejf
25 oIl (15
where the functiorU designates the unit step function, and the funciiois the complete Gamma function

I(x) = /000 t*te~tdt, Re(x) > 0. (6)

()




Conditioned on the value of the radial component of the naiselet £(z;) designate the decoding error event.
The conditional error probability satisfies the inequality

Pr(E(x1) | 21) <Pr(B(21),y € Cu(0) | 1)

+Pr(y ¢ Cn(0) | 1) (7)
The conditional error even#’(z;), can be expressed as a union of pairwise error events, so
Pr(E(z1),y € Cn(0) | 21) (8)

M—1
=Pr < U E(),Z'(Zl),y S Cn(e) ‘ 2’1> , M 2 9F
=1

where E ;(z1) designates the error event had the only codewords bgemdc;, given the valuez; of the radial
component noise in Fig. 13/ £ 2¢ denotes the number of codewords of the cddéNe note that for BPSK
modulation, the Euclidean distance between the two signa#nd s, is directly linked to the Hamming weight
of the codewordc;. Let the Hamming weight o€; be A, then the Euclidean distance betwegnands; is equal
to 0, = 2v/hFEs. Let {A;} be the distance spectrum of the linear cddeand letEy,(z1) be the event of deciding
under ML decoding in favor of other codewoeg whose Hamming weight i, given the value ot;. By applying
the union bound on the RHS of (8), we get

Pr(E(z1),y € Ca(0) | 21) (9)

< ZAh Pr(Eh(zl),y c Cn(e) ‘ 21).
h=1

Combining (7) and (9) gives
Pr(B(21) | 21) < > {AnPr(Bu(21),y € Ca(6) | 21)}
h
+Pr(y ¢ Cp(0) | 21) . (10)
The second term on the RHS of (10) is evaluated from (5)

Pr(y ¢ Cu(0) | 21) = Pr (Y 272 | 21)

= [, frwdy
o0 y%e_#
= — dy. (11)
/ 27 oI (%)
This integral can be expressed in terms of the incomplete Gafnction
1 x
y(a,z) & / t*le7tdt, a>0, x>0 (12)
I'(a) Jo
and it is given by
n—1 7“21
Pr(y ¢ Cu(6) | 21) =1 -7 ("5 55 ) (13)

Let 25 designate the tangential component of the noise vesgtahich is on the plane that contains the signals
s; and the origin, and orthogonal tq (see Fig. 1). Referring to the first term on the RHS of (10), itofek from
the geometry in Fig. 1 that if; < v/nFEs then
Pr(En(z1),y € Cn(0) | z1)
Pr(Ep(z1), Y <12 | z1)
= Pr(Bu(z1) <2 <7, Y <12 | 21). (14)



LetV £ 3" . Z2 thenV =Y — Z3. If 21 < /nEs, then we obtain the equality
Pr(En(z1),y € Cnh(0) | z1)
=Pr(Bu(21) < Zo <1,V <12 —Z3 | 21). (15)
The random variablé” is x? distributed withn — 2 degrees of freedom, so it®lf is
v%e_ﬁU(v)
25 T (252)
and since the random variabl&sand Z, are statistically independent, thenzif < /nFEs

Pr(En(z1),y € Cn(0) | 21)

2

_ / e / " fo(v) do des. (17)
Bu(z) V2o Jo

In order to obtain an upper bound on the decoding error pibttyabPr(E), one should apply the statistical
expectation operator on the RHS of (10) w.r.t. the radias@@omponent;. Referring to the upper half azimuthal
cone depicted in Fig. 1, which corresponds to the case whereattial noise component satisfies the condition
21 < V/nFEs, it follows from (4) that the inequality3,(z1) < r,, holds for those values of for which %,, < ap
where

(16)

fv(v) =

5
AnEs

ap =ry/1 (18)
From Fig. 1, ifz; > \/nE, then the range of integration on the RHS of (17) for the nom®ponent:; changes;
as it corresponds to the joint evefy,(z1),y € C,(6)), then the relevant interval of integration w.rd; is
Br(z1) < 29 < —r,,. This inequality is meaningful for all values d@f (since forz; > \/nEs, we get from (4)
thatr,, < 0 and ,(z1) < 0, so the inequalityd;(z1) < —r,, holds in this case for all values df). Since
Zy ~ N(0,0%) whereo? = 22, then the probability that the Gaussian random varighlexceeds,/nEs is equal

© <\/T> 2nRE
()= (5

(o2 NO

where E}, is the energy per information bit, ants = RE},.
This results in the following upper bound on the decoding reprobability under ML decoding

2
z
+vnkEs e—ﬁ

Pr(E) <
—00 2o
. { Z {Ah/ 21 e 220 / 21 %2 fv(v) " sz}
h:%<ah 6);(2—’1) ™o JO
n—1 73 Ry
1-— L= | 1
+ ’Y( 5 22>}d21+Q< N ) 19)

The upper bound on the error probability (19) is valid for aisptive values ofr. Hence, in order to achieve
the tightest upper bound of the form (19), one sets to zerqomeial derivative of the integrand on the RHS of
(19) w.r.t.r,,; note that it follows from (4) that,, = (1 — ﬁ r, so for any value of; < /nE,, setting to
zero the partial derivative of the integrand on the RHS of) (#9.t. r,, is equivalent to setting to zero its partial
derivative w.r.t.r. Straightforward algebra gives the following optimizatieguation for the value of [9]:

On n—2
S [t g = VIO
h:%’<ah 0 (T) (20)




whereqy, is given in (18). A proof for the existence and uniqueness slationr to the optimization equation (20)

is provided in [11, Appendix B], together with an efficient alijhm to solve this equation numerically. In order
to derive an upper bound on the bit error probability, gt ;, designate the coefficient of the input-output weight
enumeration function (IOWEF) which corresponds to the nundfesodewords that are encoded by information
bits whose number of ones is equal#o(where0 < w < nR) and whose Hamming weight (after encoding) is

equal toh, and let
nR

%éz(%>Aw7h, h=0,...,n. (21)

In [11, Appendix C], Sason and Shamai derive an upper boundebitterror probability; the upper bound on the
bit error probability is identical to the TSB on the block erpsobability, except of the replacement of the distance
spectrum{A;} in (19) and (20) with the sequended, }, as in (21) (whered), < A; holds for all Hamming
weights h, so the upper bound on the bit error probability is not ladgem the upper bound on the block error
probability, as expected).

C. Improved Tangential Sphere Bound

In [17], Yousefi and Mehrabian derive a new upper bound on tbekberror probability of binary linear block
codes whose transmission takes place over a binary-inpusMNWhannel, and which are coherently detected and
ML decoded. This upper bound, referred to as the improvedetatigy sphere bound (ITSB), originates from (3)
where the corresponding regid® on the RHS of (3) is the same as for the TSB (i.e., it isradimensional
circular cone whose main axis passes through the origin e@adransmitted signal vector). However, unlike the
TSB which relies on the union bound for bounding the first termlm RHS of (3), the derivation of the ITSB
relies on Hunter's bound which is a Bonferroni-type inegyadf the second order (see [5] and [8]); as compared
to the union bound, the latter inequality is used in orderdbaytighter upper bound on the probability of the joint
event where there is a decoding error and the received vé&tsrwithin the n-dimensional circular con€’,,(0)
(see Fig. 1).

The basic idea in [17] relies on Hunter's bound which states ih{ £;}}£, designates a set df/ events, and
EY¢ designates the complementary eventthf then

M
Pr (U E) =Pr(E) + Pr(Ey N EY)
=1

+...+Pr(EyyNES_...NEY)
M
<Pr(Ey)+ > Pr(E;NEY). (22)
=2

where the indices € {1,2,...i — 1} are chosen arbitrarily fof € {2,..., M}. Clearly, the upper bound (22) is
tighter than the union bound. The LHS of (22) is invariant to tndering of the events (since it only depends
on the union of these events) while the RHS of (22) dependsisnordering. Hence, the tightest bound of the
form (22) is obtained by choosing the optimal indices omtgri € {1,2,..., M} andi € {1,2,...,i — 1}. Let

us designate b¥1(1,2,..., M) = {m1,m,...,mp} an arbitrary permutation among tiié! possible permutations
of the set{1,2,..., M} (i.e., a permutation of the indices of the evefisto Ej), and letA = (A2, A3, ... A\yr)
designate an arbitrary sequence of integers where {7, 79, ...m—1}. Then, the tightest form of of the bound
in (22) is given by

M M
Pr <L:J1 E) < min {Pr(Em) + ; Pr(E,, N Eil)} . (23)

Similar to the TSB, the derivation of the ITSB originates from tipper bound (7) on the conditional decoding
error probability, given the radial component; ) of the noise vector (see Fig. 1). In [17], it is proposed to gppl
the upper bound (23) on the RHS of (8) which for an arbitramnpeation{;, 72,..., 7/} and a corresponding



sequence of integerS\a, A3, ... A\y—1) as above, gives

M—-1
Pr < U E[)J(Zl),y c Cn(e) | 21>

i=1

< III[li/{l{PT(EO,m (21),y € Cpn(0) | 21)

M—1
+ Y Pr(Box(21), ES 5 (21).y € Cn(0) | zo} (24)
i=2
where Ey j(z1) designates the pairwise error event for which the decodeides on codewora; rather than the
transmitted codeword,, given the radial componeritZ;) of the noise is equal te;. As indicated in [16] and
[17], the optimization problem of (24) is prohibitively cqiex. In order to simplify it, Yousefi and Mehrabian
suggest to choose; = \; = imin for all i = 2,..., M — 1, whereini, designates the index of a codeword which
is closest (in terms of Euclidian distance) to the transmhigéynal vectorsy. Since the code is linear and the
channel is memoryless and symmetric, one can assume wingubss of generality that the all-zero codeword is
transmitted. Moreover, since we deal with antipodal maiibha thenwy(c;,,,,) = dmin Wheredmi, is the minimum
distance of the code. Hence, by this particular choice;0dnd A (which in general loosen the bound in (24)), the
ordering of the indicegms,...,my/—1} is irrelevant, and one can omit the optimization oVeand A. The above
simplification results in the following inequality:

Pr(E(z1)|21) < Pr(Eoim,(21),y € Cn(0) | 21)
M-1
+> " Pr(Eo(z1), B§ 0 (21), 5 € Cu(0) | 21)
=2
+Pr(y ¢ Ca(8) | 21). (25)
Based on Fig. 1, the first term on the RHS of (25) satisfy the dégual

Pr (Eoipn(21), y € Cn(0) | 21)
= Pr(Bmin(21) < Zo <12y, V <12 — Z3) (26)

Brin21) 2 fa(21) = (ViEs— 1) ) 0 @7

Recall thatZ, is the tangential component of the noise veciowhich is on the plane that contains the signals
S0, Sin, and the origin (see Fig. 1), and the other parameters aredinteal in (4). The third term on the RHS of
(25) which corresponds to the probability that the receivectory falls outside the circular con€,(6) is given
in (13).

In order to express the probabilities of the foln(Eo,i(21), £ ;. (21), ¥ € Cn(0) | 21) which are encountered
on the RHS of (25), we rely on the geometry shown in the uppet gfl Fig. 2. The BPSK modulated signaig,
s; ands;, wherej = inp, all lie on the surface of a hyper-sphere centered at thénoaigd with radiusy/nEs. The
planesP; and P, are constructed by the triplets of points, §,,s;) and @, so,s;), respectively. In the derivation
of the ITSB, Yousefi and Mehrabian choasgto correspond to codeword; with Hamming weightdmin.

where it follows from (4)

Let Z} be a noise component which is orthogonalzp and which lies on the plan®. (see the upper plot in
Fig. 2). Based on the geometry shown in Fig. 2Zif= z1 < v/nE;, then the joint eventEy;(z1), Ej ;(21),y €
Cn(0)) is equivalent to the case where the projections of the redeectory on the planesP, and P, fall,
respectively, inside the left and right dashed areas offiige. One therefore obtains the following equality if

21 < VnkEs.
Pr(Eoi(21), E§ i, (21), ¥ € Cn(0) | 21)
= Pr(ﬁi(?«“l) < Zy<r,,

e < 25 < (1), Y <72, | 21)). (28)



z3

lj(z1, 22 )1

z2

Fig. 2. Upper plot:sy is the transmitted vectog; is the radial noise component; and z5 are two (not necessarily orthogonal) noise
components, which are perpendicularztg and lie on planed” and P», respectively. The doted and dashed areas are the regions where
the eventsky, ; and E§ ; occur, respectively. Lower plot: A cross-section of the geometry )n (a

Furthermore, from the geometry shown in the lower plot of Figit 2ollows that
Z% = Z3sin ¢ + Zy cos ¢ (29)

where Z3 is a noise component which is orthogonal to the two noise aoreptsZ; and Z,, and lies on the
n-dimensional plane which is formed by the noise componeftand Z; (see the lower plot of Fig. 2). Given
that Z; = z1, plugging (29) into the conditior-r,, < Z% < Bmin(21) in (28) yields that

-1, < Z3 < min{l(21, ZQ)’T%}

where Brin(21)
in\21) — pz
(21, 20) = Pmin\21) — P22 (30)
V1—p?
and p = cos ¢ is the correlation coefficient between the noise componehtsses sizes are, and z; (see Fig. 2
where ¢ designates the angle between the plaResnd P).



Let W = ZZIQ then if z; < \/nFEs, the following equality holds:
i=4

PI‘(E07Z'(21), Eg,z'mm(zl)’ NS Cn(e) ‘ Zl)

= Pr <ﬁi(731) <Zy <71y, —ry < Z3< min{l(zl, Zz)ﬂ“zl},

W<r§1—ZQ2—Z§\zl>. (31)

The random variabléV is Chi-squared distributed with — 3 degrees of freedom, so itlf is given by

fr(w) = 2 Uw) (32)

25 g (25)

Since the probability
Pr(Eoi(21), Ejn(21), ¥y € Cn(0) | 21)

depends on the correlation coefficient between the noise coemtsz; and z; (see Fig. 2), then the distance
spectrum of the code does not provide sufficient informatmmtiie calculation of the bound. To circumvent this
problem and obtain an upper bound which solely depends owlilience spectrum of the code, it is suggested
in [17] to loosen the bound as follows. It is shown in [16, Apdix B] that while referring to two codewords
of Hamming weights/; andd; (other than the transmitted codeword), the correspondimgelation coefficient as
defined above (see Fig. 2) satisfies

_mm{V did, ,¢m—dMn—¢»}
(n — dz)(n — dj) ’ didj

min(d;, d;)[n — max(d;, d;)]

Vdidj(n = d;)(n — dj)
Moreover, the RHS of (31) is shown to be a monotonic decrgdsinction ofp (see [17, Appendix 1] and a further
discussion in Appendix Il here). Hence, one can omit theedeency in the geometry of the code (and loosen
the upper bound) by replacing the correlation coefficient&3t) with their lower bounds which solely depend on
the weights of the two codewords. In the derivation of the IT8B, consider the above correlation coefficients
in Fig. 2 while referring to two codewords of Hamming weighiis= h (h < n) andd; = dmin (other than the
transmitted codeword). Let

IN

<p (33)

2 . hdmin (n—h n—dmin
ph 3 — min { (n—h)(n—dmin)’ })lEimin ) }

— e i din+ B <7

- . (34)

—/ e if i + B>

From (25) and (26) and by averaging w.#t., one gets the following upper bound on the decoding errdvadoibity:
Pr(E)
< Pr (21 < \/nBs, Bun(21) < Z3 <17,V <13, — Z3)
+ Z {Ah PI’(Zl S V nESa /Bh(Zl) S ZQ S VAR

h=dmin

—Trz § Zg § min{lh(Zl,Zg), ’I“Zl},
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W<t - 23 -22)}

+Pr (21 < \/nEs Y > TZZl) +Pr(Zy > \/nEs) (35)
where the parametéy,(z1, z2) is simply I(z1, z2) in (30) with the correlatiorp replaced byp, in (34), i.e.,

Bmin(z1) — pree (36)

(21, 22) 2
1/1—p}21

Using the probability density functions of the random valég in the RHS of (35), and since the random variables
71,72y, Z5 and W are statistically independent, the final form of the ITSB is gty

VnEs T2y T2 —23
Pr(E) §/ [ fZQ(zg)/ fv(v)dv - dzy (37)

—00 Bmin

min{ly(z1,22),72; }
s (4 [ ( / T 722, 2)

h: ﬂh(zl)<r T2

/ ) dw d dZ3>
0

- 2
(350 ) o).

Note thatV £ 3" . 22 andW = Y%, 22 are Chi-squared distributed with —2) and(n—3) degrees of freedom,
respectively (see (16) and (32) for their probability dgn§iinctions fi, and fy,, respectively).

D. Added-Hyper-Plane (AHP) Bound

In [16], Yousefi and Khandani introduce a new upper bound erMh decoding block error probability, referred
to as the added hyper plane (AHP) bound. Similar to the deowadf the ITSB, the AHP bound is based on
Hunter's bound (22) which gives the inequality (24). The cbogped optimization problem in (24), however, is
treated differently.

Let us denote by, the set of the indices of the codeword<Cofvith Hamming weighto. Fori € {1,2,..., M}\

Zw, let {j;} be a sequence of integers chosen from theZgetThen, based on (8) and the concept of Hunter’s
bound in (22), the following upper bound holds

Pr(E(z1), y € Crh(0) | z1)

<m}n{Pr<U{E0]zl} yEC()Zl) (38)

swWJw ]GI

+Z Pr (Eo,i(z1), EG j,(21), ¥y € Cu(0) | 21) }

ie{l,...M—11\Z,,

From (28) and the lower plot in Fig. 2, it is clear that the praligds which appear in the second term of the RHS
of (38) depend on the corresponding correlation coefficibetsveen the noise components and z;. Hence, in
order to compute the upper bound (38), one has to know the gfeiocal characterization of the Voronoi regions
of the codewords. To obtain an upper bound which only requine knowledge of the distance spectrum of the
code, Yousefi and Khandani [16] suggest to extend the codebp@dding all the remaininﬁg) — A, n-tuples
with Hamming weightw (i.e., to generate an extended block code which containdditian all the binary vectors
of length » and Hamming weightv). Let us designate the new code By and denote its codewords kg
wherei € {0,1,...,M + (') — A, — 1}. The new codebook is not necessarily linear, and all possitnieslation
coefficientsp = cos¢ (see Fig. 2) are available while referring to two codewordseptthan the transmitted
codeword where one of these codewords is of Hamming weighiherei € {dyin,...n}, and the other is of
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Hamming weightw. Thus, for each layer of the codebook, one can chooséatlyest available correlation p with
respect to any possible-tuple binary vector of Hamming weight; this is due to the fact that the RHS of (38)
is a monotonically decreasing function pf as shown in [17], so by choosing the largest available tiioa in
Fig. 2 where one of the signal points can be any binary vectddashming weightw tightens the upper bound
on the error probability. Now, one may find the optimum layewhich the codebook extension is done, i.e., find
the optimumw € {1,2,...n} which yields the tightest upper bound within this form. Weenthat the resulting
upper bound is not proved to be uniformly tighter than the TSBe tb the extension of the code. The maximal
correlation coefficienp between the noise components whose sizes:a@nd z; (see Fig. 2) while referring to
two codewords of Hamming weight§ andd; is introduced on the RHS of (33) (see [16]). Let us designate th
maximal possible correlation coefficient in Fig. 2 which reiertwo n-tuples with Hamming weights) and i by
puw.h » 1.€., based on (33) we define

o & min(h, w)[n — max(h, w)]
’ Vhw(n —h)(n —w)

By using the same bounding technique as of the ITSB, and rejalce correlation coefficients with their respective
upper boundsp,, 1, (38) gets the form

Pr(E(z1), y € Cn(0) | z1)

< mw {Pr ( U Eo,j(zl), y € Cn(e) | 21)

(c¥)=w

. w#h. (39)

+ Z {Ah Pr(Y < ?“21, Zy > Br(z1),
h#w

Zs < lyp(21,Z2)) }} (40)

where based on the lower plot of Fig. 2 and the explanationeoth the correlatiorp replaced byp,, ,, we get

Bw(zl) Pw,h?2 (41)

lw h(217 ZQ)
\/ 1 - w h

and p,, ;, is introduced in (39). Applying Hunter's bound to the firstnbeon the RHS of (40) gives

Pr ( U E(]J'(Zl), y € Cn(e) ’ 2’1)
JiWH

(e¥)=w
< Pr(Eoy,(21), y € Cn(0) | 21)
(n)-1

+ Pr(Eo (21), Ef; (21), ¥y € Cu(0) | 21) (42)

=1
where{l;} for i € {0,1,...,(]) — 1} is a sequence which designates the indices of all the codewafrthe
extended codé,, with Hamming weightw; this sequence is expressed in an arbitrary order/aadlo, 1, . ..,li—1)

forl1 <i< (Z) — 1. In order to obtain the tightest upper bound on the LHS of (42)his approach, one has
to order the error events such that the correlation coeftsiamich correspond to codewords and c; get their
maximal available value, which it — (see [16, Appendix D]). Let us designate this valuedgij , l.e.,

n

Pww = 1- m y W §é {0,71}. (43)
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Hence, based on the geometry of Fig. 2zif< /nFEs, we can rewrite (42) as

Pr ( U Eoj(z1), y € Cul0) | Zl)

Jrwn(ey)=w

<Pr(Bu(z1) < Zo <1,V < 7“31 — 73 | 21)

4 [(Z) _ 1] . Pr <ﬁw(z1) < Zy <7y,

— 71y < Z3 < min{lw,w(zlv22)7('021}7
W <2 —Z75— 73 | z1> (44)

where
Bw(zl) Pw,wz2

Ly w(Zla 22)

By replacing the first term on the RHS of (40) with the RHS of (4#lugging the result in (7) and averaging w.r.t.
7, finally gives the following upper bound on the block error pabliity:

Pr(E)

<m {Pr(Z1 < VnEs, Bu(Z1) < Zy <z,

(45)

V< r%l — Z22>
+<n) Pr<21 < \VnEs, fu(Z1) < Zy <1z,
w
—rz, < Z3 < min{lw,w(zlaZQ)’Tzl}7

Wgr%l—Zg—Z§>

+>° A, PY<Z1 < VnEs, Bp(Z1) < Zy <z,

h#w
—rz, < 23 < min{lw,h(zla 22)7r21}’

wgrz—z%—zz)}

+Pr <21 < \/nEs, Y > r%1> +Pr (21 > \/TES) . (46)

Rewriting the RHS of (46) in terms of probability density @ions, the AHP bound gets the form

Pr(E) < min { / f l /ﬁ ( fuater) [ B ) do- e

min{lw,w(z1,22),r2; }
( >/ / [ 25,25 (22,23)
w Zl) Tz

T‘]*Z2 ZS
/ fw(w) dw - dzg - dzs

mln{lw n(z1,22), rzl}
DY (Ah/ /
Bn(z1)

h:Br(z1) <1z T
h # w
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SN
fZ27Z3 (227 Z3)/ fW(rUJ) dw dzo dZ3>

0

n—1 7’3
+1 -7 (27 %‘_12)‘| le(zl)dzl}

QHREb
+Q ( N, ) (“47)
whereV and W are introduced at the end of Section II-C (after Eq. (37)), dedlast term in (47) follows from
(13).

[11. THE ERROREXPONENTS OF THEIMPROVED VERSIONS OF THETANGENTIAL SPHEREBOUND

The ITSB and the AHP bound are derived in [16], [17] as upper bswrdthe ML decoding error probability
of binary linear block codes which are transmitted over thety-input AWGN channel. In the following, we
discuss the exponential behavior of the new upper boundarbitrary ensembles of binary linear block codes, and
compare it to the error exponent of the TSB. The following lemmalso noted in [17]:

Lemma 3.1: LetC be a binary linear block code, and let us denote by IXSBand TSBC) the ITSB and TSB,
respectively, on the decoding error probability(bfThen

ITSB(C) < TSB(C).
Proof: SincePr(A, B) < Pr(A) for arbitrary eventsA and B, the lemma follows immediately by comparing
the bounds on the RHS of (10) and (25) which correspond to the digBthe ITSB, respectively. ]
Corallary 3.1: The ITSB can not exceed the value of the TSB while referring to tlezame error probability
of an ensemble of binary linear block codes under ML decading
Lemma 3.2: The AHP bound cannot be looser than the TSB in the limit where wéhé&eblock length tend to
infinity.

Proof: To show this, we rely on (46) and extend the code by referintpé layer of Hamming weight = n.
Hence, the extended code contains at most one additionalvood whose Hamming weight s (as compared to
the codebook of the original code); this possible extensibthe codebook by a single codeword has no impact
on the exponential behavior of the decoding error prokghbitir long enough codes. The resulting upper bound
is evidently not tighter than the AHP bound (which carriesagtimization overw), and on the other hand, it
is at least as tight as the TSB (since the joint probability ad ®vents cannot exceed the probabilities of these
individual events). ]

The extension of Lemma 3.2 to ensembles of codes is straiglatfdr(by calculating the statistical expectation
over the codes of an ensemble, Lemma 3.2 also holds for ensgmblence, it follows that the error exponents
of both the AHP bound and the ITSB are larger or equal to the exponent of the TSB. In the following, we
introduce a lower bound on both the ITSB and the AHP bound. lteseas an intermediate stage to get our main
result.

Lemma 3.3: Let C designate an ensemble of binary linear block codes of lengtivhose transmission takes
place over an AWGN channel. Let, be the number of codewords of Hamming weighfwhere0 < h < n), and
let E- designate the statistical expectation over the codebobles @nsemble’. Then both the ITSB and AHP
upper bounds on the average ML decoding error probability afe lower bounded by

Y(C) éngn{Pl(Zl < V/nEs, Bu(Z1) < Zy < 1z,
V<l - zg)
+ Z{EC[A;J Pr(Zl < VnFEs, Bn(Z1) < Zy <1z,
h

—ry, < Z3 < min{lw,h(Z17Z2),7’Zl}7

WSTQZl_Zg_Z?%)

+Pr(Z < VB, ¥ 21,) } (48)
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wherel,, (21, 22) is defined in (41).

Proof: By comparing (46) with (48), it is easily verified that the RHE5(48) is not larger than the RHS of
(46) (actually, the RHS of (48) is just the AHMthout any extension of the code). Referring to the ITSB, we get
by calculating the statistical expectation of the RHS of) (845-t. the codes of the ensemiffe

ITSB(C)
@ PT<Z1 < \/nBs, Brin(Z1) < Zy <71z, V <1}, — Z22>
+Z{EC[Ah] PT(Z1 < \/nEs, Bu(Z1) < Zy <1z,
h
—rz, < Zs < min{lu(Z1, Z2), 72},
W<l _zg_zg)}
+Pr (20 < VB Y 213, ) + Pr (2 > V/nk)

Pr| Zy < /nEs, Buw(Z1) < Zy <71y,

vz
e E.
=}
——

V< 7"221 — Z22>
+ {]EC[Ah,] Pr(Zl </nEs, fn(Z1) < Zy <rg,
h

—rg, < Z3 < min{lw,h(Zl, Zz)ﬂ”zl},

Wg@lzgzg)}
+Pr(Z1 < \/TES,,YZT2Z1>}+Pr(Zl>\/7TES>

> (C). (49)

Equality (a) in (49) follows from calculating the statisticaxpectation of the RHS of (35) w.r.t. the codes from
the ensembl€, and also from the linearity of this expression w.r.t. thetalice spectrum. Inequality (b) follows
by replacingw = dp;, With a minimization w.r.t.w, and since the ITSB is a monotonically decreasing function
w.r.t. the correlation coefficients (see Appendix Il where vely here on (33), (34), (39) and (43) to get that
pn < pd,..n for all values ofh). Inequality (c) follows by removing the last positive terRr (21 > \/TES) which
gives (48). ]

In [16] and [17], the RHS of (46) and (35), respectively, wenaluated by integrals, which results in the
upper bounds (47) and (37). In [1, Section D], Divsalar introetl an alternative way to obtain a simple, yet an
asymptotically identical version of the TSB by using the Cléfribounding technique. Using this technique, we
obtain the exponential version @f(C) which happens to coincide with that one of the TSB (see Appehdix
the following, we state the main result of this paper.

Theorem 3.1: (The error exponents of the AHP bound and the ITSB coincide with the error exponent of the TSB)
The TSB, ITSB and the AHP bound possess the same error exponeah ishgiven by

I —2r(8) VA%
E(c)—orggl{2ln(1—’y+’ye >+1+7A2 (50)
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where

7:7(6)é1%§ [\/60?5) +(1+C)2—1—(1+C):| (51)
co(8) 2 (1 _ e*‘”(é)) 12;55 (52)

Here,d designates the normalized Hamming weight

a s A 0
Ny STVTTs

andr(0) denotes the asymptotic growth rate of the (average) distapectrum of the code (ensemble) in terms of
J.

Proof: The exponential version of)(C) in (48) is identical to the exponential version of the TSB (see
Appendices | and Il). Since/(C) does not exceed the AHP bound and the ITSB (see Lemma 3.3), thlesm
that the error exponents of the AHP and the ITSB are not largaer the error exponent of the TSB. On the other
hand, from Lemmas 3.1 and 3.2 it follows that asymptoticdityth the AHP and the ITSB are at least as tight as
the TSB, so their error exponents are at least as large as threesgonent of the TSB. Combining these results
we obtain that the error exponents of the ITSB, AHP and the TSBlhrdeatical. In [1], Divsalar shows that the
error exponent of the TSB is determined by (50)-(52), whichchates the proof of the theorem. ]

Remark 3.1: The upper bound on the bit error probability in [11] is exadtlg same as the TSB on the block
error probability by Poltyrev [9], except that the averagstatice spectrurfi4;,} of the ensemble is now replaced
by the sequencéA} } where

nR

;1:1UZ:0<T:UR>Aw,h, helo,...,n)

and4,, , denotes the average number of codewords encoded by informizts of Hamming weightv and having
a Hamming weight (after encoding) which is equalitoSince

nR
Ap =Y Ay
w=0

then N
h
ESA,}LSA}L, hE{O,,n}

The last inequality therefore implies that the replaceménih® distance spectrurfpd,} by {4} } (for the analysis
of the bit error probability) does not affect the asymptajiowth rate ofr(§) whered = % and hence, the error
exponents of the TSB on the block and bit error probabilitiegaaide.

Remark 3.2: In [19], Zangl and Herzog suggest a modification of the TSB on thestvor probability. Their
basic idea is to tighten the upper bound on the bit error fitihbawhen the received vectoy falls outside the
coneR on the RHS of (3) (see Fig. 1). In the derivation of the versiérihe TSB on the bit error probability,
as suggested by Sason and Shamai [11], the conditional bitgabability in this case was upper bounded by 1,
where Zangl and Herzog [19] refine the bound and provide a tididend on the conditional bit error probability
when the vectory falls in the bad region (i.e., when it is outside the cone in. Big Though this modification
tightens the bound on the bit error probability at low SNR (asneplified in [19] for some short linear block
codes), it has no effect on the error exponent. The reasomiglysibecause the conditional bit error probability
in this case cannot be beloyﬁﬁ (i.e., one over the dimension of the code), so the bound dhstill possess the
same error exponent. This shows that the TSB versions on therbitprobability, as suggested in [11] and [19],
have the same error exponents as of the TSB.

Corallary 3.2: The error exponents of the TSB on the bit error probability ddies with the error exponent of
the TSB on the block error probability. Moreover, the error agnts of the TSB on the bit error probability, as
suggested by Sason and Shamai [11] and refined by Zangl and H&@pgdincide. The common value of these
error exponents is explicitly given in Theorem 3.1.
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IV. SUMMARY AND CONCLUSIONS

The tangential sphere bound (TSB) of Poltyrev [9] and its recerovements by Yousefi et al. ([16], [17])
serve as useful upper bounds on the ML decoding error priiyadsi binary linear block codes, transmitted over a
binary-input AWGN channel. However, in the random codintiisg, the TSB fails to reproduce the random coding
error exponent [6]; the larger the code rate is, the moreifignt becomes the gap between the error exponent of
the TSB and the random coding error exponent of Gallager [@ [sg. 3, and the plots in [9, Figs. 2—4]). In this
respect, we note that the expression for the error exporfethieol SB, as derived by Divsalar [1], is significantly
easier for numerical calculations than the original exgimsof this error exponent which was provided by Poltyrev
[9, Theorem 2]. The analysis made by Divsalar is also more gemerthe sense that it applies to an arbitrary
ensemble, so it is not only restricted to the ensemble of flhdom block codes.

The recently introduced bounds by Yousefi et al. ([16]-[18]ely depend on the distance spectrum of the code
(or on their input-output weight enumerators for the arialg$ the bit error probability). Though these new bounds
were previously exemplified (see [16]-[18]) to slightly tigh the TSB for short binary linear block codes, their
error exponents were not considered yet. The focus of thisrpgpon the analysis of the error exponents of these
new bounds for an arbitrary ensemble of binary linear bloo#tes; it is given in terms of the asymptotic growth
rate of the average distance spectrum for the considereshdnes.

Putting the results reported by Divsalar [1] with the mainutes this paper (see Theorem 3.1), we conclude
that the error exponents of the simple bound of Divsalar fig, first version of Duman and Salehi bounds [2],
and the Chernoff versions of the TSB [9] and its recent impramis) by Yousefi et al. [16]-[18] all coincide.
This conclusion holds for an arbitrary ensemble of binargdinblock codes (e.g., turbo codes, LDPC codes etc.)
where we let the block length tend to infinity, in addition te tBnsemble of fully random block codes (whose
distance spectrum is binomially distributed). Moreovlee TSB versions for the bit error probability, as provided
in [11] and [19], have error exponents which coincide; tleimmon value is equal to the error exponent of the
TSB for the block error probability. Based on Theorem 3.1, itoiwk that for any value of SNR, the same value
of the normalized Hamming weight dominates the exponehghhlvior of the TSB and its two improved versions.
In the asymptotic case where we let the block length tendfioityy the dominating normalized Hamming weight
can be explicitly calculated in terms of the SNR; this caltialais based on finding the value of the normalized
Hamming weighty which achieves the minimal value of the RHS of (50), whers thilue clearly depends on the
asymptotic growth rate of the distance spectrum of the ehkeomder consideration. A similar calculation of this
critical weight as a function of the SNR was done in [4] whiléereng to the ensemble of fully random block
codes and the union bound.

In a companion paper [14], new upper bounds on the block anerimr probabilities of linear block codes are
derived. These bounds improve the tightness of the Shulmaraddr bound [13] and therefore also reproduce
the random coding error exponent.
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APPENDIX |
THE EXPONENTIAL BEHAVIOR OF(C) IN (48)

In the following, the exponential behavior of the RHS of (#8pbtained by using the Chernoff bound fo(C).

Note that the geometrical region of the TSB corresponds to &ldaided circular cone. For the derivation of
the bound for the circular cone in Fig. 1, we refer to the evemeneZ; < /nEs; however, sinceZ; ~ N(0, %),
then this boundary effect does not have any implication enetkponential behavior of the functiainC) for large
values ofn (as also noted in [1, p. 23]). To simplify the analysis, weréfiere do not take into consideration of
this boundary effect for large values of Let 4(C) designate the function which is obtained by removing thereve
Z1 < v/nEs from the expression fo(C) (see the RHS of (48)); then, the exponential behavioy @) and(C)
asymptotically coincide for large values of

Let us designate the normalized Gaussian noise vectarby(Aq,...,Ay),i.e.,(A1,...,Ay) = 4 /NlO(Zl, ce s Zn),
and define; £ tan? . The Gaussian random vector ha®rthogonal components which are therefore statistically
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independent. Without abuse of notation,Agt. . . , \,, designate in this appendix realizations of the random kg
Aq,..., A, respectively (note that the sequercg} was used in a different context for the derivation of the ITSB,

where the\;’s there are integer numbers). From (4) and (41), and by niyitig all signals by, /Nl0 (which follows
from the scaling above), the following holds for BPSK modullasggnals:

r=+/2ncn, T =N <\/%* )‘1>

ﬂw()‘l) — Pw,h )\2

1_Pih

Lw.h(A1, A2)

c® 2. (1.1)

0.2

= = TSB
- -uB
— RCE

Exponent of error probability

wL

. TSB
--uB [
— RCE

Exponent of error probability

0.5

Fig. 3. Comparison between the error exponents for random bloaksocetiich are based on the union bound (UB), the tangential sphere
bound (TSB) of Poltyrev [9] (which according to Theorem 3.1 is idehtioathe error exponents of the ITSB and AHP bounds), and the
random coding bound (RCE) of Gallager [6]. The upper and lower péfes to code rates of 0.5 and 0.9 bits per channel use, respectively
The error exponents are plotted versus the reciprocal of the energyitpto the one-sided spectral noise density.
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Hence, we obtain from (48) and the above discussion

¢(C) = min { Pr <i A2 <r} Ay > ﬁw(A1)>

=2

+ ZAh Pr (Z AZ <13, Ay > Bu(Ay), Ag > —zu,,h(Al,A2)>

h=1 1=2

+ Pr (iAf z@) } (1.2)

=2
At this point, we upper bound the RHS of (1.2) by the Chernaftibds, namely, for three random variablédV
and Z
Pr(V>0)<E[e?V], p>0
Pr(W<0,V>0)<E[e"*], ¢<0,u>0

Pr(W<0,V>0,2Z>0)<E [etW“V*’fZ} ,

t<0,s>0, k>0. (1.3)
The Chernoff versions of the first and last terms on the RHS 8 ére introduced in [1, Egs.(134)—(137)], and
are given by
Pr zn:A2 >r | <y /71 2P e~nEerm) 4y > (1.4)
i 1 — 1 + 2p,’7 ) i
(ZAQ <73, Ay > ﬁw(A1)>
[1-= 1-2  myeqs 1
< nk, c,q,nm) L <ag<0 1.5
—V1+ 2q77 2n — 4= (15)
where Spne 1
E £ —In(1-2 1.6
and
EQ(Ca q, 57 77) (|7)

. 2qn + (1 - 29)/ 125 1
1+2qn+ (1 —29)y/ 125

Next, by invoking the Chernoff bound (1.3), we get an expdiamupper bound on the second term on the RHS
of (48). Using the notation
A
.
Cw,h - h(n — ( 8)

we get (see Appendix Il for details)

Ap Pr <Z A7 <13, Ao > Br(Ar), Ag > _lw,h(AlaA2)>

1=2
< 1 _ 2t eig(cztakasjhh’n)
V142 ’
1
SR (1.9)

2n
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where
g(c, t,k,s,m, h,n)
2
K dtnne + 2v/2nc (s - 1CP§M> Ap — A} <S - 14%%:,;1)
2(1 + 2tn)
2
__kpwn 2
<S ”ivh) o + 21— 20) (h) (1.10)
2(1— 2t) 2 " AN '
and
h h InA
Ah é ] rn(i) é h'
n—nh n n

The next step is to find optimal values ferand s in order to maximize the function. If £* = 0 then the exponent
of ¢(C) is identical to that of the TSB. In order to find the optinkal 0 ands > 0 which maximizeg, we consider
the aforementioned probabilities by discussing separdte three cases whefe< w, h > w andh = w.

Case 1: h = w. In this case, it follows from (1.8) thaf,, , = Cww = 1, and we get

Aw PI‘ <Z A12 S T/2\17 A2 Z ﬂw(Al); AS Z lw,w(A1;A2)>

=2
< [T etsm (111)
=V 1+2tm ’
1
- —<t<0,k>0,5>0
2n
where
g(c7tak75anawan> (|12)
2
Atyne + 2v/2ne (5 - 1—kp%,,,w> Au = A (s - Jﬁ)
= 2(1 + 2tn)

(s _ _kpuww )2
1-— %u w k2
B \/177 + E ln(l — 2t) — hl(Aw)-
2(1— 2t) 2(1-2t) 2

E=5— _k (1.13)
1- p%u,w
rmg Puw (1.14)
1- p%u,w
From (1.13) and (1.14), we get
k=—(&—7)a (1.15)

where

1
qb =T Pew (1.16)
1 — Pw,w

Hence, the Chernoff bounding technique gives

Pr (Z A7 <r%,, Mg > Bu(Ar), Az > _lw,w(A17A2)>
i=2

< 1-2¢ e~ gr(etEmnwn) b <t<0 (1.17)

VYV 1+2ty 2n
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where

4tnne + 2v/2nc€ A, — A2 €2
2(1 + 2tn)

72 (€ —7)%a? N n

2(1—2t) 2(1—2t) ' 2

Maximizing the RHS of (1.17) w.r.tr yields

gl<c7t7€77—7 m, h7 n) =

In(1 — 2t). (1.18)

o1 T (E—71)a?
or ~ 12 1-a =0
a2§*
= = .19
=T T+ o ( )

Notice that%zfz1 < 0, hence plugging™ in (1.18) maximizesg;. Substitutings* into (1.18) gives

92(67 ta §7 777 'LU, TL) égl (C7 ta 5) T*a 777 ’lU, n)
_Atnne + 2v2ncAy§ — A2 ¢2

2(1 4+ 2tn)

1_?_62252 n
SR ET LN WY ")
21— Tam-2)

A differentiation of go w.r.t. ¢ and an introduction of the new paramete® % gives

8g2 _ \/%Aw - A%Uf e§ N
A 1+ 2ty C1-2t
. V2neAy, (1 — 2t)
& = AZ(1—2t) +€e(1+2tn)

0

Again, %25%2 < 0, so& = &* maximizes the functio,. From (1.19),£* — 7* > 0. Sincea is non-negative, we get
that£* in (1.15) is not-positive. But since from (1.9 > 0, this yields that the optimal value @fis equal to zero.

From the Chernoff bound in (1.3), an optimality éfwhen it is set to zero implies that asymptotically,7as+ co

Pr (Z A? <73, As > By(A1), Az > lw,w(A17A2)>
=2

= Pr (Z AZ<r}, Ay > ﬁw(A1)> : (1.20)
=2
Case 2: h > w. In this case, it follows from (39) that, ;, = 7:((::3. Hence, for this case, we get from (1.8)

that p,, r, = Cu.». Replacingp,, », by ., in (1.10) gives
g(c7t? k) S)n? h?n)

2
ECw.h _ A2 __kCuwn
dtnnec + 2+/2nc (s - 1@2%) Ap — A7 (3 141)}1)

2(1 + 2tn)

2
<S_ kG ) )
17412”;7, k n h
- V__en/ (1= 2t) — nra ().
2(1 — 2t) Sa—ap a2 (n)

In the following, we introduce the parameters:
fé ka,h

A
§— —— T=k.

2 )
\/1_ w,h
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Optimization overr yields 7* = 0, so k* = 0, and asymptotically (as we let tend to infinity), one gets the
following equality in terms of the exponential behaviors:

Pr (Z A? <73, As > Br(Aq), A > —lw,h(A17A2)>

i=2
= Pr (Z AZ<r%, Ay > ﬁh(A1)> : (1.22)
1=2
Case 3: h < w. From (39), it follows that for these values 6f p,, ), = Z((Z:”“Zg, so we get from (1.8) that
Pwh < Cw,n- Define
A ka,h N kpw,h
§=85— —F—=F—, TE=ES— ————.
\/ 1 - p?y,h 1—- Pi,h
This givesk = —(¢ — 7)o’ where
2
o & ! pwﬁ.
Cw,h - pw,h

Since in this case,, , < (u.n, thena’ > 0. Similarly to the arguments in case 1, we get again that thenapt
value for k is k* = 0 which gives again (1.21) (i.e., in the limit where the bloangth tends to infinity, the
exponential behavior of the LHS and RHS of (1.21) coincide).

APPENDIXII
DERIVATION OF THE CHERNOFFBOUND IN (1.9) WITH THE FUNCTION g IN (1.10)
Using the Chernoff bound (1.3) and defining

A w

Ay

(I1.1)

we get

Pr <Z A7 <73, As > Br(Aq), Az > —lw,h(Al,A2)>
i—
(a)
E

N\

I

gﬂziﬂM—&J+4Arﬁﬂm»+um+mmmhmn}

t<0,5>0,k>0

) et(Zf'ZQAf—n(\/ch—Al)Q)-i—s(Ag—A;L(\/%—Al))

—
o
=

Kl Mgt Aw(\/ch—AIQ)—p,wY}LAQ
.e \/lipw,h,

et S, AZ—tnAf —2tnnc+2ntv/2neA1+sAa—sApV2ne+sAp Ay

=E

52 _ .2
.e \/1 Pw,h \/1 Pw,h

kAs+ kAwV32ne k<AwA1+pw,hA2)]

—tnA2+ <2nt\/2nc+sAh, - W) Ay

—p2
Pw,h

©g [etz:;w%} E |e
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kpw,h
+| s———===—= | A:
Ele ( mﬁ,,h) ’ _E{et/\g%/\g}

—2tnnc—sA, \/%—l—mwi*/?
1—p:

(I.2)

where inequality (a) follows from the Chernoff bound (l.8yuality (b) follows from (1.1), and equality (c) follows
from the statistical independence of the components of tralized noise vectoA. For a zero-mean and unit-
variance Gaussian random variab¥e the following equality holds:

Blexn] - T2

V1-—2a’

Evaluating each term in (11.2) by the equality in (I1.3), angbstituting¢,, , = 2—1: which follows from (1.8) and
(11.1), gives

- €

1
5 bER. (11.3)

0 Az 1 n—3
SoIN.C N G <
E[e } <m> L t<0 (11.4)

—tnA2+ (21715\/ 2nc+sAp— "A“’Q> Ay
L=Pw,n

2
k
antVEREHA, | s —lwih
1 1=ek

E |e

= —— ¢ 2(142tn) ”5
V14 2in (11.5)
2
kpyw
tAZ4 | s— —Lwh )A ( 1-p, )
E ez( 1-p2 2 :$'6W’
V1-2t
k>0,s>0 (11.6)
1 k2
E |:et/\§+k1\3:| - 62(1*2”), t < O, k> 0. 1.7
Vv1-—2t - - (1.7)
From (I1.5), straightforward algebra gives
—tnA§+(2nt\/2nc+sAh— kA“é >A1
E |e L=hn
wV2nc
' 672tnncfsAh\/ﬁ+i??7§“)h
1 —4tnne — 2v/2ne (s — ]igpg ) Ay
“FPw,h
~iram OF 2(1 + 2tn)

2
2 kCuw,
Ay (s — 751_;); h)

- exp RET . (11.8)




23
Plugging (11.4) and (11.6)—(11.8) into (11.2) finally gives

Ay Pr (Z A? <rX,, As > Br(A), Az > —lw,h(A1,A2)>

=2

2
Ku,
_ Ah 1 n—1 Ai (S — ﬁﬂgh)
=Tt 2m (\/1 = 2t> P 2(1+ 2tn)

ka h
—4t —2v?2 - = A
nnc vV 2nc (s 1—/’i,h) h

2(1 + 2tn)

- exp

2
s — kpw,h
vV lfpi,,’h + k2
2(1— 2t) 2(1— 2t)

- 1-2¢ e~ 9otk smhon) 1 <t<0,k>0,s>0
14 2tn 2n - - -

which proves the Chernoff bound in (1.9) with the functigrintroduced in (1.10).

- exp

APPENDIXIII
MONOTONICITY W.R.T. THE CORRELATION COEFFICIENT

Consider the probabilities
Pr(Eoi(21), Ej ;(21), y € Cu(0) | 21)

and denote the Hamming weightsgfandc; by d; andd;, respectively. In [17], it is shown that as longd&s> d;,

the probabilities above are monotonically decreasingtfans of the correlation coefficients = cos ¢ between

the noise components whose sizes arand 2} (see the upper plot of Fig. 2). Hence, the optimization probie

(24) is simplified by choosing the first error event as well asabm@plementary error events on the RHS of (24) to
correspond to a codeword with Hamming weight,, and (25) is obtained. Here we prove that the aforementioned
probabilities are monotonically decreasing functions lué torrelation coefficients foany choice ofi,j. As a
consequence, one can obtain a version of the ITSB by settingdinmg = \; = w wherew € {dmin,...,n}, and
then choose the optimat which minimizes the resulting upper bound. In order to prthis, we follow the steps

in [17, Appendix I] where it is shown that the above probdieii are monotonically decreasing functionspaf

2., (I.1)

Bj(z1)
Note that the joint eventEy ;(z1), y € C,(#)) implies that the noise compone#s is in the range betwee; (2 )
andr,, (see Fig. 1), so the minimal value of the RHS of (lll.1) is
Bi(z1) _ [di(n —dj)
Bj(z1) dj(n — d;)

where the last equality follows from (4) and singe= 2v/hEs for BPSK modulated signals. Clearly,

dl(n — dj) min(di, dj)[n — max(di, d])]

dj(n — dy) Vdidj(n — d;)(n — dj)
and from (33), it is evident that the RHS of (Ill.2) is the maral value ofp, so condition (Ill.1) is always satisfied
while referring to the joint eventEy ;(z1), y € Cn(0)) given thatZ; = z;.

(I1.2)
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