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1 Introduction

In recent years there has been renewed interest in deriving tight bounds on the error performance of

specific codes and ensembles, based on their distance spectrum. The incentive for introducing and

applying such bounds has increased with the introduction of turbo codes [1], the rediscovery of low-

density parity-check codes [2], and the introduction of efficiently decoded ensembles of turbo-like

codes (e.g, [3]). Clearly, the desired bounds must not be subject to the union bound limitation, since

for long blocks, these ensembles of turbo-like codes perform reliably at rates which are considerably

above the cutoff rate of the channel (recalling that union bounds for long codes are not informative

at the portion of the rate region above the cutoff rate of the channel, where the performance of these

capacity-approaching codes is most appealing). Although maximum-likelihood (ML) decoding is in

general prohibitively complex for long enough block codes, the derivation of upper bounds on the ML

decoding error probability is of interest, providing an ultimate indication of the system performance.

Further, the structure of efficient codes is usually not available, necessitating efficient bounds to rely

only on basic features, such as the distance spectrum or input-output weight enumeration function

(IOWEF) of the examined codes or ensembles. These latter features can usually be found by some

analytical methods (see e.g., [4, 5, 6]).

In this paper, we derive simple and tight bounds on the decoding error probability of block

codes which are operating over fully interleaved Rician fading channels, coherently detected and

ML decoded. These upper bounds are based on certain variations of Gallager bounds. The bounds

are simple, since they do not require any integration in their final version (as opposed to other

bounds, e.g., [7]–[11]). They are also tight in a portion of the rate region above the cutoff rate of

the channel. Certain interconnections between these bounds are demonstrated, and we show that

the bounds which are introduced in this paper form a generalization of some reported bounds for

the binary-input AWGN channel [12, 13, 14].

The generalization of the Viterbi & Viterbi bound [14] for fully interleaved fading channels with

perfect channel side information (CSI), as reported in [15], seems to be imprecise. Our reservation

stems from the fact that the Viterbi & Viterbi bounding technique [14] is invalidated once the

parameter H = exp(−Es
N0

) (in the AWGN case) is replaced by H in [15], Eq. (12), for the fast

Rician fading channel. The specific correlations in [14] demand special care when generalized to

fading channels. A generalization of the Viterbi & Viterbi bound for imperfect CSI is considered
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in [16]. Again, this is problematic as the technique relies on the arguments of [15], when now H is

replaced by the one corresponding to imperfect CSI.

In this paper we suggest an alternative generalization of the Viterbi & Viterbi upper bound

[14] for fully interleaved fading channels. Throughout the paper, we assume perfect CSI for the

realizations of the i.i.d. fading values. The analysis via tight upper bounds on the ML decoding

error probability for fully interleaved fading channels with imperfect CSI and their applications to

turbo and turbo-like codes was recently studied in [7, 11].

The paper is organized as follows: the derivation of an upper bound on the ML decoding

error probability for fully interleaved fading channels with perfect CSI is introduced in Section 2.1.

It is demonstrated that by determining the parameters of this bound in an appropriate way, a

generalization of the Viterbi & Viterbi upper bound for fully interleaved fading channels is obtained.

This generalized bound is derived in the appendix, and it is demonstrated in Section 2.2 that it can

be derived as a particular case of the upper bound in Section 2.1. It is shown in Section 2.3 that

the first version of the Duman and Salehi upper bound for a binary-input AWGN channel (see [12])

is a particular case of the upper bound in Section 2.1, where the latter bound is applicable for a

general fully interleaved Rician fading channel. Optimizations of the parameters of the upper bound

in Section 2.1 are discussed in Section 2.4. Inter-connections between these bounds are inserted

in Section 2.5, based on their geometrical interpretation. An application of these bounds for the

ensemble of the uniformly interleaved repeat and accumulate codes [3] over fully interleaved fading

channels is exemplified in Section 3, and various upper bounds on the decoding error probability

are compared there. We finally conclude our discussion in Section 4.

2 Analysis and Discussion

2.1 Derivation of the upper bound

In this section we derive an upper bound on the ML decoding error probability of binary and linear

block codes operating over fully interleaved Rician fading channels.

Consider a binary and linear (n, k) block code C of rate R = k
n bits per channel use, and suppose

that its distance spectrum {Sd}n
d=0 is calculable (numerically or analytically). Suppose the code is

BPSK modulated and transmitted over a fully interleaved Rician fading channel, with a perfect CSI
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of the i.i.d. fading samples at the receiver. Here Es = REb, where Es and Eb are the energies per

coded symbol and per information bit, respectively. The following equality holds for the conditional

probability density functions (pdf) with binary inputs: p0(y, a) = p1(−y, a), where y = ax + ν is

the received signal corresponding to antipodal signaling x ∈ {−√Es, +
√

Es}, i.i.d. fading samples

(a) and additive white Gaussian noise (ν). We denote the pdf of the i.i.d. fading samples (a) by

p(·) (the effect of the phases of the fading measurements is eliminated at the coherent receiver,

and the amplitudes of the fades during each symbol are treated as non-negative random variables).

Clearly, the fading realization (a) which is ideally provided to the receiver, is interpreted as part of

the measurements and is independent of the transmitted signal. It follows that

p0(y, a) = p1(−y, a) =
1√
2π

exp

[
−(y − a

√
2Es/N0)2

2

]
· p(a) , (1)

where −∞ < y < +∞ and a ≥ 0, assuming that the observation y is already normalized such that

the additive noise has unit variance.

Let the block code C be partitioned into a set of subcodes {Cd}n
d=1, where every subcode Cd

includes all the codewords possessing a constant Hamming weight d (d = 1, 2 . . . n), and the all-

zero codeword. Let Pe(d) denote the conditional block error probability of the subcode Cd under

ML decoding, where we assume that the all-zero codeword is the transmitted codeword (since the

binary block code C is linear and we consider a memoryless binary-input output-symmetric channel,

this assumption incurs no loss of generality). Based on the union bound, we obtain an upper bound

on the decoding error probability of the binary, linear block code C under ML decoding

Pe ≤
dmax∑

d=dmin

Pe(d) , (2)

where dmin and dmax denote the minimal and maximal Hamming weights of the nonzero codewords

of the code C, respectively. The generalization of the second version of Duman & Salehi bounds

(i.e., the generalization of the DS2 bound in [11]), which relies on the Gallager bounding technique

yields the following upper bound on Pe(d)

Pe(d) ≤ (Sd)ρ

{(∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ p0(y, a)

1
ρ da dy

)(1−δ)ρ

·

(∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ p0(y, a)

1
ρ
−λ

p1(y, a)λ da dy

)δρ
}n

,

(3)
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where d is the Hamming weight of the non-zero codewords in the subcode Cd, δ
4
= d

n designates the

normalized Hamming weight of these codewords (0 ≤ δ ≤ 1), 0 ≤ ρ ≤ 1, λ ≥ 0, and ψ(·, ·) is an

arbitrary joint pdf of the measurements y, a.

In contrast to [10], where the optimal function ψ (which can be viewed as a tilting measure with

respect to the two measurements y and a) was pursued, here for the sake of closed form expressions,

only an exponential tilting measure is examined. Let ψ(·, ·) be the following pdf:

ψ(y, a) =

√
α
2π exp

[
−α

2

(
y − au

√
2Es
N0

)2
− αv2a2Es

N0

]
· p(a)

∫ ∞

0
p(a) · exp

(
−αv2a2Es

N0

)
da

,
−∞ < y < +∞

a ≥ 0
(4)

where α is an arbitrary non-negative number and u, v are arbitrary real numbers.

We assume here that the fading amplitude (a) during each symbol is Rician distributed, so p(·)
admits the form

p(a) = 2(1 + K)a e−(1+K)a2−K I0

(
2a

√
K(K + 1)

)
, a ≥ 0 ,

where the Rician parameter K stands for the power ratio of the direct to the diffused received

paths.

Let c denote the normalization factor appearing in the denominator of ψ(·, ·) in (4):

c =
∫ ∞

0
p(a) · exp

(
−αv2Es

N0
· a2

)
da = E

[
exp(−a2t)

]
,

where t = αv2Es
N0

and E stands for the statistical expectation (with respect to a). According to the

Rician distribution of a, one obtains that

c =
1 + K

1 + K + t
· exp

(
− Kt

1 + K + t

)
, if 1 + K + t > 0 . (5)

The condition 1 + K + t > 0 holds since we assume that α ≥ 0 (which therefore yields that t ≥ 0),

and clearly K ≥ 0. A calculation of the integrals which are involved in the upper bound (3) with

the pdf ψ(·, ·) in (4) gives

∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ p0(y, a)

1
ρ da dy =

c
1
ρ
−1

α
1
2

(
1− 1

ρ

)

√
α− α− 1

ρ

· 1 + K

1 + K + ν
· exp

(
− Kν

1 + K + ν

)
, (6)
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where

ν =
[
α(u2 + v2)− α(u2 + v2)− 1

ρ
−

(
α− α− 1

ρ

)−1 (
αu− αu− 1

ρ

)2
]
· Es

N0
, (7)

under the assumption that 1 + K + ν > 0.

A calculation of the second integral in (3) yields:

∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ p0(y, a)

1
ρ
−λ

p1(y, a)λ da dy =
c

1
ρ
−1

α
1
2

(
1− 1

ρ

)

√
α− α−1

ρ

· 1 + K

1 + K + ε
·exp

(
− Kε

1 + K + ε

)
,

(8)

where

ε =


α(u2 + v2)− α(u2 + v2)− 1

ρ
−

(
αu− αu−1

ρ − 2λ
)2

α− α−1
ρ


 · Es

N0
, (9)

under the assumption that 1 + K + ε > 0.

By substituting (6) and (8) in the upper bound on Pe(d) (3), one obtains an upper bound on

the conditional ML decoding error probability of the subcode Cd (under the assumption that the

all-zero codeword is transmitted):

Pe(d) ≤ (Sd)ρα−
n(1−ρ)

2

(
α− α− 1

ρ

)−nρ
2

·
(

1 + K

1 + K + t

)n(1−ρ)

· exp
(
−n(1− ρ) Kt

1 + K + t

)

·
(

1 + K

1 + K + ε

)dρ

· exp
(
− Kεdρ

1 + K + ε

)

·
(

1 + K

1 + K + ν

)(n−d)ρ

· exp
(
−Kν(n− d)ρ

1 + K + ν

)
,

(10)

where t, ν, ε are introduced in (5), (7) and (9) respectively. The parameters above lie in the regions:

0 ≤ α < 1
1−ρ (since α should be non-negative and also α − α−1

ρ > 0), 0 < ρ ≤ 1, λ > 0 and

u, v are arbitrary real numbers. In order to get the tightest upper bound within this family, these

parameters should be optimized.
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Following the arguments in [10], a similar upper bound on the bit error probability is derived

for binary and linear block codes. To that end, one relies on the input-output weight distribution

of the examined code or ensemble (the reader is referred to [4, 5, 6] which derive several techniques

for calculating the input-output weight distribution of codes and ensembles). In the final form of

the upper bound on the bit error probability under ML decoding, the distance spectrum {Sd}n
d=0

which appears in (3) is replaced by S′d =
∑k

w=1

{(
w
k

)
Aw,d

}
. Here, Aw,d designates the number of

codewords which are encoded by information bits of Hamming weight w and whose total Hamming

weight (after the encoding) is d (where 0 ≤ w ≤ k and 0 ≤ d ≤ n).

In the following subsections we show that the upper bound (10) yields a generalization of the

Viterbi & Viterbi bound [14] and the first version of the Duman and Salehi bounds [12], where

the latter two bounds apply to the binary-input AWGN channel. An alternative generalization of

the Viterbi & Viterbi bound for fully interleaved Rician fading channels (with perfect CSI at the

receiver) is derived in the Appendix.

2.2 Generalization of the Viterbi & Viterbi bound [14] for fully interleaved

Rician fading channels

The Viterbi & Viterbi bound is an upper bound on the ML decoding error probability of binary

linear block codes operating over a binary-input AWGN channel [14]. A generalization of this

bound for fully interleaved Rician fading channels with perfect CSI at the receiver is derived in the

Appendix of this paper. It admits the form (2), where the upper bound on Pe(d) is

Pe(d) ≤ (Sd)ρ

(
1 + K

1 + K + β3

)n(1−ρ)

· exp
(
−Kβ3n(1− ρ)

1 + K + β3

)

·
(

1 + K

1 + K + β1

)dρ

· exp
(
− Kβ1dρ

1 + K + β1

)

·
(

1 + K

1 + K + β2

)(n−d)ρ

· exp
(
−Kβ2(n− d)ρ

1 + K + β2

)
,

(11)

and

0 ≤ ρ ≤ 1, β1 =
Es

N0
, β2 =

Es

N0
·

[
1−

(
1 + ζ(1− ρ)

)2
]
, β3 =

Es

N0
·
[
1− (1− ζρ)2

]
. (12)
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By comparing the upper bounds (10) and (11), we want to determine the parameters in (10) so

that the upper bound (11) results as a particular case of (10). To this end, we set α = 1 in (10),

and then we try to choose the remaining parameters in (10) so that the following equalities hold:

β1 = ε, β2 = ν, β3 = t. (13)

Based on Eqs. (5), (10) and (11), straightforward algebra reveals that the bound (10) specializes

to the generalized Viterbi & Viterbi bound (11), by setting the parameters in (10) as follows:

α = 1, u = 1− ζρ, v =
√

1− (1− ζρ)2, λ =
1 + ζ(1− ρ)

2
(14)

in case that β3 ≥ 0 in (11). However, the optimal value of β3 in terms of minimizing the upper

bound (11) is non-negative. To see this, we rewrite the upper bound (11) in the form:

Pe(d) ≤ exp (−nE)

where

E =
Kβ1δρ

1 + K + β1
+

Kβ2(1− δ)ρ
1 + K + β2

+
Kβ3(1− ρ)
1 + K + β3

− ρ r(δ)

+ δρ ln
(

1 +
β1

1 + K

)
+ (1− δ)ρ ln

(
1 +

β2

1 + K

)
+ (1− ρ) ln

(
1 +

β3

1 + K

)
,

and δ
4
= d

n , r(δ)
4
= ln Sd

n . By nulling the partial derivative of the error exponent E with respect to ζ

(recall that only β2 and β3 depend on ζ), it can be verified that 0 ≤ ζρ ≤ 1, which yields from (12)

that β3 ≥ 0. We note that for the particular case of a binary-input AWGN channel, it follows from

(12) and (A.39) that β3 = 1−
(

1−δ
1−δ+δρ

)2
. For a general fully interleaved Rician fading channel, the

optimal value of β3 does not admit a closed form expression, but it can be verified analytically that

it is indeed non-negative. This observation makes the discussion in the case where β3 is negative

irrelevant, and therefore the generalization of the Viterbi & Viterbi bound (11) (which is detailed

in the Appendix) is a particular case of the upper bound (10) in Section 2.1.

2.3 The first version of the Duman and Salehi bounds [12]

We demonstrate here that the first version of the Duman and Salehi bounds, which is derived in [12]

for a binary-input AWGN channel is also a particular case of the upper bound (10) in Section 2.1.
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To this end, we first write (10) in the limit case where K → ∞ (as for an AWGN channel, the

Rician factor tends to infinity), and obtain the upper bound:

Pe(d) ≤ (Sd)ρ

(
α− α− 1

ρ

)−nρ
2

· α−n(1−ρ)
2 · exp

(
−n(1− ρ)t

)
· exp(−εdρ) exp

(
−ν(n− d)ρ

)
. (15)

By setting v = 0, we get t = 0 (based on the definition of the parameter t before Eq. (5)), which

reduces the upper bound (15) to the form:

Pe(d) ≤ (Sd)ρ α−
n(1−ρ)

2

(
α− α− 1

ρ

)−nρ
2

· exp
(
−(ε− ν) dρ

)
· exp(−νnρ) . (16)

The substitution of ν and ε in (7) and (9) respectively, and the introduction of a new parameter

β, where β = αu leads to the upper bound:

Pe(d) ≤ (Sd)ρ α−
n(1−ρ)

2

(
α− α− 1

ρ

)−nρ
2

· exp
[(
−1 +

β2

α
· (1− ρ) +

ρ
(
β − β−1

ρ

)2

α− α−1
ρ

)
nEs

N0

]

· exp
[
−

4λρ
(
β − λ− β−1

ρ

)

α− α−1
ρ

dEs

N0

]
.

(17)

The latter bound coincides with the upper bound (15) in [12], which proves that (10) yields the

first version of the Duman & Salehi bounds in [12] as a particular case.

2.4 Optimization of the parameters in the upper bound (10)

We wish to reduce the number of parameters which have to be numerically optimized in the upper

bound (10), as to get the tightest bound within this family. We first optimize the parameter λ in

the upper bound (10), and define for that aim a function f1 which includes the terms in (10) which

depend on λ:

f1 =
(

1 + K

1 + K + ε

)dρ

· exp
(
− Kdρε

1 + K + ε

)
.

A short calculation reveals that

∂

∂λ

{
ln(f1)

}
=

4dρ

α− α−1
ρ

· (1 + K)2 + ε

(1 + K + ε)2
·
(

αu− αu− 1
ρ

− 2λ

)
· Es

N0
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which yields that the optimal value of λ is

λ =





1
2

(
αu− αu− 1

ρ

)
if αu < 1

1−ρ

0 otherwise
.

The choice λ = 0 in (10) provides a useless upper bound on the decoding error probability (this

choice in Gallager’s bound already gives an upper bound which equals to unity, and by invoking

Jensen’s bound for the derivation of (10), one can only loosen this upper bound). Therefore, without

any loss of generality, one can restrict the optimization of (10) to the case where αu < 1
1−ρ , and

choose the parameter λ under this restriction to be

λ =
1
2

(
αu− αu− 1

ρ

)
. (18)

The substitution of (18) in (9) and a simplification of (9) give

ε =
[
α(u2 + v2)

(
1− 1

ρ

)
+

1
ρ

]
Es

N0
, ν =

(
1− 1

ρ

) [
αv2 +

α(u− 1)2

1− (1− ρ)α

]
Es

N0
. (19)

The closed form expression (18) for the optimized parameter λ reduces the number of parameters

which should be optimized in (10) to four (namely, to optimizing (α, u, v, ρ)).

We optimize now the upper bound (10) with respect to the parameter r
4
= αv2: Based on

(5), (19) and the introduction of the new parameter r (instead of the parameter v), we optionally

express t, ε, ν as functions of r:

t =
rEs

N0
, ν =

(
1− 1

ρ

) [
r +

α(u− 1)2

1− α(1− ρ)

]
Es

N0
, ε =

(
1− 1

ρ

)(
r + αu2 − 1

1− ρ

)
Es

N0
(20)

where r is a non-negative parameter (since α > 0). We optimize here r by minimizing the relevant

part of (10) which depends on r, and for this purpose, we introduce the following function:

f2(r) =
(

1 + K

1 + K + t

)n(1−ρ)

exp
(
−n(1− ρ)Kt

1 + K + t

)

·
(

1 + K

1 + K + ε

)dρ

exp
(
− Kεdρ

1 + K + ε

)

·
(

1 + K

1 + K + ν

)(n−d)ρ

exp
(
−Kν(n− d)ρ

1 + K + ν

)
.
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A short calculation shows that

∂
{

ln(f2)
}

∂r
= −n(1− ρ) · Es

N0

{
(1 + K)2 + t

(1 + K + t)2
− δ

[
(1 + K)2 + ε

]

(1 + K + ε)2
− (1− δ)

[
(1 + K)2 + ν

]

(1 + K + ν)2

}

where δ
4
= d

n stands for the normalized Hamming weight. Nulling the partial derivative above gives

the equation:

(1 + K)2 + t

(1 + K + t)2
− δ

[
(1 + K)2 + ε

]

(1 + K + ε)2
− (1− δ)

[
(1 + K)2 + ν

]

(1 + K + ν)2
= 0. (21)

In general (i.e., for an arbitrary Rician factor K ≥ 0), since t, ν, ε in (20) are linearly proportional

to the parameter r, then (21) can be expressed as a polynomial equation of the fifth degree with

the variable r. Therefore, for any selection of the three parameters α, u, ρ in (20) (where 0 ≤
ρ ≤ 1, αu < 1

1−ρ and 0 < α < 1
1−ρ), the (non-negative) optimal value of r can be numerically

determined as a solution of the polynomial equation above. In particular, if K = 0 (i.e., a Rayleigh

fading channel), (21) is further simplified and admits the form:

1
1 + t

− δ

1 + ε
− 1− δ

1− ν
= 0 , (22)

which easily transforms to a quadratic polynomial equation in r (based on (20), which relates the

parameters ε, ν, t to r). To conclude, for a fully interleaved Rician fading channel, one needs to

solve numerically a polynomial equation in r of the fifth degree, while for the particular case of a

fully interleaved Rayleigh fading channel, this equation is simplified to a quadratic equation in r.

Based on the discussion above, the number of parameters which should be optimized numerically

is reduced to three. In the suggested bound, one optimize numerically the parameters α, ρ, u under

the following constraints:

0 ≤ ρ ≤ 1 , 0 ≤ α <
1

1− ρ
, 0 ≤ αu <

1
1− ρ

, (23)

and the other two parameters (λ and r) are determined based on (18) and the solution of the above

polynomial equation in r (as to tighten the bound (10), where d = dmin, · · · , dmax).
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2.5 Geometrical interpretation of the upper bound (10)

In [11], we provide a geometric interpretation of the Gallager-type bounds. Based on the discussion

there, we conclude that the connection between the Fano-Gallager tilting [11] associated with the

function f and the Duman and Salehi tilting measure ψ is

f(y, a) = ψ(y, a)
1
s · p0(y, a)1−

1
s (24)

where s ≥ 0. The substitution of (1) and (4) in (24) gives:

ln
(

f(y, a)
p0(y, a)

)
=

1
s

ln
(

ψ(y, a)
p0(y, a)

)

=
1− α

2s

[
y2 − γay · 2(1− αu)

1− α
+ a2γ2

(
1− α(u2 + v2)

1− α

)]
,

(25)

where γ2 = 2Es
N0

. It can be verified that if 0 < α < 1, α(u2 + v2) < 1 and (u− 1)2 < αv2, then the

geometrical region which is associated with the Fano-Gallager 1961 bounding technique [2, 11] is

{
(y, a)

∣∣∣∣
n∑

i=1

ln
(

f(yi, ai)
p0(yi, ai)

)
≤ nR

}
. (26)

Based on (24) and (26), this region can be rewritten in the form

|| y − (a, x0) · γ ξejφ ||2 ≤ nR′ , (27)

where x0 is an n-length vector of ‘1’ (corresponding to the transmitted all-zero codeword), the

scaling factor ξ and the rotation angle φ are related to the parameters of the bound (10) as follows

ξ2 =
1− α(u2 + v2)

1− α
, φ = cos−1

(
1− αu

ξ(1− α)

)
, R′ =

2sR

1− α
, (28)

where we assume that

0 < α < 1 , α(u2 + v2) < 1 , (u− 1)2 < αv2 . (29)

These constraints cover all the region where ξ ≥ 0 and −π ≤ φ < π. Therefore, the spherical region

(27) which is associated with the Fano-Gallager 1961 bound (based on the exponential tilting

ψ(·, ·) in (4) for the generalized second version of Duman and Salehi bounds) coincides with the
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geometrical interpretation of a Gallager-based version of the Divsalar & Biglieri bound [8, 9]. We

conclude that since the constraints on the parameters of the upper bound combined by (10) and

(20) are less restrictive than those in (29), then the upper bound here is at least as tight as the

Divsalar & Biglieri bound [8, 9] (the former bound may be in fact better than the latter bound).

We note that the upper bound (10) involves in its final form a numerical optimization of three

parameters (see Section 2.4), which is also the case with the computation of Divsalar & Biglieri

bound. However, the upper bound here does not require integrations, in contrast to the Divsalar

& Biglieri upper bound [8, 9], and also in contrast to the generalization of the second version of

the Duman and Salehi bounds with the optimal tilting measure ψ (see [10]).

3 An Example

We examine here the ensemble performance of the uniformly interleaved repeat-accumulate (RA)

codes [3] of rate–
1
4
, where the information block length is N = 1024 and every information is

repeated q = 4 times (see Fig. 1). The ensemble of codes is assumed to be transmitted through

a fully interleaved Rayleigh fading channel with perfect CSI at the receiver. For the calculation

of upper bounds on the bit error probability under ML decoding, we rely here on the closed form

expression of the average input-output weight distribution of uniformly interleaved RA codes which

was derived in [3], which yields that S′0 = 0 and

S′d =
N∑

w=1

(
N−1
w−1

)(qN−d

b qw
2 c

)(
d−1

d qw
2
e−1

)
(
qN
qw

) , 1 ≤ d ≤ qN.

The sequence {S′d}qN
d=0 which is used to calculate upper bounds on the bit error probability under

ML decoding for the considered ensemble of RA codes is depicted in Fig. 1(b) in [10].

In Fig. 2, several upper bounds on the bit error probability which apply to the optimal ML decoding

are depicted.

qN coded 
bitsN information bits a repetition code

(q repetitions)
uniform interleaver

of length qN

differential

encoder

Figure 1: The encoder of RA codes
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Figure 2: A comparison of upper bounds on the bit error probability of uniformly interleaved RA

codes, transmitted over a fully interleaved Rayleigh fading channel. All the upper bounds refer to

the optimal ML decoding, and refer to an ensemble of rate–1
4 . The curves which are depicted in the

graph are: 1 – Generalization of the Duman and Salehi bound with the optimal tilting measure, 2

– The upper bound in (10), 3 – generalization of Viterbi & Viterbi bound, 4 – union bound, 5 –

computer simulation results of the sum-product iterative decoding algorithm with 40 iterations.

The generalization of the Duman and Salehi bound with the optimal tilting measure (curve 1, see

[10]) is the tightest bound among the upper bounds depicted in Fig. 2. The upper bound proposed

here which is based on the generalization of the Duman and Salehi bound with the exponential

tilting measure in (4) (curve 2) is clearly looser than the former bound which relies on the optimal

tilting measure, but is tighter than the generalization of the Viterbi & Viterbi bound (curve 3)

for fully interleaved fading channels. This observation is expected by the arguments put forth in

Section 2.2, as the Viterbi & Viterbi bound was demonstrated as a particular case of the bound (10)

proposed here. The three bounds depicted in curves 1–3, are evidently tighter than the ubiquitous

union bound (see curve 4), and are also effective at a portion of the rate region exceeding the cutoff

rate, which for the rate 1
4 equals Eb

N0
= 2.71 dB. The capacity for rate 1

4 is attained at Eb
N0

= −0.08

dB. The various upper bounds on the bit error probability (curves 1–4) are also compared here

with computer simulation results of the (efficient and sub-optimal) sum-product iterative decoding

algorithm with 40 iterations (see curve 5). It is easily realized in Fig. 2 that at a portion of the
Eb
N0

values which correspond to rates above the channel cut-off rate, the improved upper bounds on
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the bit error probability with ML decoding are advantageous over the computer simulation results

of the iterative decoding algorithm, which demonstrates the sub-optimality of the latter decoding

algorithm. We note here that the tightest upper bound of the generalization of the second version

of the Duman and Salehi bound was studied and evaluated for various fading channel models (e.g,

Rayleigh and Rician fading channels with or without space diversity) in [10]. This upper bound is

subject to numerical integrations and optimizations, while the bounds which are considered here

are slightly looser then the former bound, but are expressed in closed form expressions. The reader

who is interested in more applications of the former upper bound is referred to [10].

4 Summary and Conclusions

We derive here an upper bound on the decoding error probability under ML decoding, which

is applicable for binary linear block codes which are transmitted over fully interleaved Rician

fading channels with perfect channel side information (CSI) at the receiver. This upper bound is a

particular case of the generalization of the second version of Duman and Salehi bounds [10], since

the tilting measure ψ is taken in this paper as an exponential tilting measure with respect to the

fading (a) and the received vector (y) (rather than the optimal function ‘ψ’ which yields an upper

bound whose calculation involves numerical integrations, see [7, 10, 11, 13]). This bound yields

the generalized version of the Viterbi & Viterbi bound as a particular case (this generalized bound

is derived in the Appendix of this paper, and it forms a generalization of the Viterbi & Viterbi

bound [14] which was derived for a binary-input AWGN channel). The bound in this paper also

forms a generalization of the first version of the Duman and Salehi bounds, which was derived for a

binary-input AWGN channel [12]. It coincides with the geometrical interpretation of the Divsalar

& Biglieri bound [8, 9], where this observation is demonstrated by showing that both bounds define

the same geometrical region in terms of the Fano-Gallager 1961 bounding terminology [2] (see also

[11]). The current bound admits a closed form expression (up to three parameters that should

be optimized numerically) for a general fully interleaved Rician fading channel. The upper bound

which is derived in this paper does not require integrations, in contrast to a Gallager-based version

of the Divsalar & Biglieri upper bound [8, 9], and also in contrast to the generalization of the

second version of the Duman and Salehi bounds with the optimal tilting measure ψ (see the DS2

bound in [10]). From this discussion, it is clear that the computational complexity of this bound is

reduced as compared to the former two upper bounds (which also involve numerical optimizations of
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parameters in addition to numerical integrations). Sason and Shamai have reported in [10] that the

generalization of the second version of the Duman and Salehi bound was efficiently implemented in

MATLAB software. However, the bound which was proposed here is evidently less heavy in terms

of its computational complexity, with the penalty of a slight reduction in the tightness of the latter

bound (as compared to the generalization of the second version of the Duman and Salehi bounds

for fully interleaved fading channels [10], which is the tightest reported upper bound under ML

decoding). We note that the bound which is derived in this paper (see Sections 2.1 and 2.4) is as

tight as the Divsalar & Biglieri bound, but is simpler in terms of computational complexity (as

both bounds involve numerical optimizations of three parameters, but the former bound is given

in a closed form expression, while the computation of a Gallager-based version of the Divsalar &

Biglieri bound involves tasks of numerical integrations). The interested reader is referred to [10]

for more worked out examples which compare performance bounds of turbo-like codes under ML

decoding with computer simulation results of iterative decoding, under the assumption of BPSK

modulation and transmission over fully interleaved Rician fading channels with perfect CSI at the

receiver. The case of imperfect estimates of the i.i.d. fading samples at the receiver is addressed in

[7, 11, 16].

Appendix: Extension of the Viterbi & Viterbi upper bound on

error probability for fading channels

Consider a linear (n, k) block code C with code rate Rc = k/n and the minimum distance dmin,

and the maximum distance dmax. We consider concatenated codes with interleavers as an (n,k)

block code. Following the derivations in [14], divide the codewords x with output weight d into

subsets Cd, d = 0, 1, 2, . . . , n. Cardinality of these sets are |Cd| = Sd, where Sd is the number of

codewords of the block code with Hamming weight d. Define

P (d) = Pr{ some x ∈ Cd is chosen in preference to the all zero codeword} , (A.1)

then using union bound we obtain (2).

Let the observation samples at the output of channel given the all one sequence X0 is transmitted

be modeled as:

yi = γai + ni , (A.2)
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where ai are independent fading samples with unit average power, γ =
√

2Es
N0

, and ni are zero

mean, unit variance Gaussian noise samples. Assume the fading samples are perfectly known at

the receiver and let a = (a1, a2, . . . , an) be the vector of the independent fading samples. Consider

the correlator output for X0, as

Y0 =
n∑

i=1

aiyi , (A.3)

and the correlator output for other codewords as

Y (d)
m =

n∑

i=1

aiyix
(d)
m,i , (A.4)

where x
(d)
m,i has negative ones i.e. -1 in d positions and +1 in (n− d) positions. Then we get,

E{Y0|X0, a} = γ
n∑

i=1

a2
i , (A.5)

and

E{Y (d)
m |X0, a} = γ

n∑

i=1

a2
i x

(d)
m,i , (A.6)

V ar{Y (d)
m |X0, a} = V ar{Y0|X0} =

n∑

i=1

a2
i , (A.7)

Define

Z(d)
m = Y (d)

m − Y0 ·
(∑n

i=1 a2
i x

(d)
m,i∑n

i=1 a2
i

)
, (A.8)

then we get:

Cov{Z(d)
m , Y0|X0, a} = 0 , (A.9)

E{Z(d)
m |X0, a} = 0 . (A.10)

Since

Cov{Y0, Y
(d)
m |X0, a} =

n∑

i=1

a2
i x

(d)
m,i (A.11)
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depends on m (though for the AWGN channel, it depends only on d) we cannot use Viterbi’s

independence concept [14] to proceed. So straightforward Viterbi’s method will not work for

fading. Note that Viterbi started with

E{[
Sd∑

m=1

exp(λ(Y (d)
m − Y0))]ρ|X0} (A.12)

We can write

Y (d)
m − Y0 = [Y (d)

m − (1− α)Y0]− αY0 (A.13)

For AWGN, choosing α = 2d/n, makes [Y (d)
m − (1 − α)Y0] independent of Y0 . For fading we can

optimize α as a parameter. Thus for 0 ≤ ρ ≤ 1 we have

P (d) ≤ E

{[
Sd∑

m=1

exp(λ(Y (d)
m − Y0))

]ρ

|X0

}
(A.14)

≤ E{exp(−αλρY0)|X0}
[

Sd∑

m=1

E

{
exp(−αλρY0)

E{exp(−αλρY0)|X0)} exp(λ(Y (d)
m − (1− α)Y0))|X0

}]ρ

(A.15)

For AWGN we have α = 2d/n, since Y0 is independent of Y
(d)
m − (1− α)Y0, so we get

P (d) ≤ E{exp(−αλρY0)|X0}
[

Sd∑

m=1

E{exp(λ(Y (d)
m − (1− α)Y0))|X0}

]ρ

(A.16)

which corresponds to Viterbi’s result. However for fading channel we should compute

P (d) ≤ [E{exp(−αλρY0)|X0}]1−ρ

[
Sd∑

m=1

E{exp(−αλρY0) exp(λ(Y (d)
m − (1− α)Y0))|X0}

]ρ

(A.17)

or

P (d) ≤ [E{exp(−αλρY0)|X0}]1−ρ

[
Sd∑

m=1

E{exp(λ(Y (d)
m − (1− α(1− ρ))Y0))|X0}

]ρ

(A.18)

where expectations are with respect to both the noise and the fading distributions. If Y is a

Gaussian r.v. with mean η and variance σ2 then

E{eβY } = eηβ+ 1
2
σ2β2

(A.19)
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using this result then we have

E{e−αλρY0 |X0,a} =
n∏

i=1

e(−αλργ+ 1
2
α2λ2ρ2)a2

i . (A.20)

Let Y = Y
(d)
m − (1− α(1− ρ))Y0 then

η = E{Y |X0,a} =
n∑

i=1

a2
i [γx

(d)
m,i − γ(1− α(1− ρ))] (A.21)

σ2 = V ar{Y |X0,a} =
n∑

i=1

{
a2

i

(
1− 2(1− α(1− ρ))x(d)

m,i + (1− α(1− ρ))2 )} . (A.22)

using the above results we get

E{eλ(Y
(d)
m −(1−α(1−ρ))Y0)|X0,a} = eηλ+ 1

2
σ2λ2

(A.23)

or

E{eλ(Y
(d)
m −(1−α(1−ρ))Y0)|X0,a} =

n∏

i=1

{
ea2

i {λγ[x
(d)
m,i−(1−α(1−ρ))]+ 1

2
λ2[x

(d)
m,i−(1−α(1−ρ))]2}

}
. (A.24)

The Rician density function is used to model the density function of independent fading samples.

The normalized version of Rician density function (E{a2}=1) is expressed in (5), which yields:

E{e−βa2} =
(

1 + K

1 + K + β

)
e
− Kβ

1+K+β if 1 + K + β > 0 , (A.25)

where the expectation is with respect to the normalized Rician density function. From (A.3), it

can be verified that

E{e−αλρY0 |X0} =
(

1 + K

1 + K + β3

)n

e
− Kβ3n

1+K+β3 (A.26)

where

β3 = αλργ − 1
2
α2λ2ρ2 . (A.27)

Moreover, it can be shown that

E{eY
(d)
m −(1−α(1−ρ))Y0 |X0} =

(
1 + K

1 + K + β1

)d

e
− Kβ1d

1+K+β1

(
1 + K

1 + K + β2

)n−d

e
−Kβ2(n−d)

1+K+β2 , (A.28)
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where

β1 = λγ(2− α(1− ρ))− 1
2
λ2(2− α(1− ρ))2 , (A.29)

and

β2 = −λγα(1− ρ)− 1
2
λ2α2(1− ρ)2 . (A.30)

Thus:

P (d) ≤ Sρ
d

(
1 + K

1 + K + β3

)n(1−ρ)

e
−Kβ3n(1−ρ)

1+K+β3

·
(

1 + K

1 + K + β1

)dρ

e
− Kβ1dρ

1+K+β1

·
(

1 + K

1 + K + β2

)(n−d)ρ

e
−Kβ2(n−d)ρ

1+K+β2 . (A.31)

Let λ = µγ, µ > 0, and c
4
= γ2

2 then

β3 = c[1− (1− αµρ)2] , (A.32)

β1 = c[1− (1− µ(2− α(1− ρ)))2] , (A.33)

β2 = c[1− (1 + µα(1− ρ))2] . (A.34)

Let δ
4
= d

n , and r(δ)
4
= ln Sd

n , then

P (d) ≤ e−nE(c,δ,K,ρ,α,µ) , (A.35)

where

E(c, δ,K, ρ, α, µ) = −ρ r(δ)− ρδ ln
(

1 + K

1 + K + β1

)
+ ρδ

(
Kβ1

1 + K + β1

)

−ρ(1− δ) ln
(

1 + K

1 + K + β2

)
+ ρ(1− δ)

(
Kβ2

1 + K + β2

)

−(1− ρ) ln
(

1 + K

1 + K + β3

)
+ (1− ρ)

(
Kβ3

1 + K + β3

)
(A.36)
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For Rayleigh fading we have K = 0, thus the exponent reduces to:

E(c, δ, ρ, α, µ) = −ρ r(δ) + ρδ ln
[
1 + c− c[1− µ(2− α(1− ρ))]2

]

+ρ(1− δ) ln
[
1 + c− c[1 + µα(1− ρ)]2

]

+(1− ρ) ln
[
1 + c− c[1− µαρ]2

]
(A.37)

For bit error probability we need to replace r(δ) in the above results simply by r(δ)
4
= ln

∑
w

w
k

Aw,d

n

where Aw,d is the input–output weight coefficient, i.e. the number of codewords of the block code

with output weight d associated with an input sequence of weight w.

To optimize the parameters, let ζ = µα. Taking derivative of exponent with respect to µ implies

that β1 = c, β2 = c[1 − (1 + ζ(1 − ρ))2], and β3 = c[1 − (1 − ζρ)2]. Therefore the bound can be

optimized numerically over two parameters ζ ≥ 0, and 0 ≤ ρ ≤ 1.

For a binary-input AWGN channel, as K →∞ the exponent reduces to:

E(c, δ, ρ, ζ) = −ρ r(δ) + ρδc + ρ(1− δ)β2 + (1− ρ)β3 . (A.38)

The optimum ζ is

ζ =
δ

1− δ + δρ
. (A.39)

For this optimum value, the exponent reduces to E(c, δ, ρ) = −ρ r(δ) + cδρ
1−δ+δρ .

Now, the optimum ρ is ρ = 1 if c ≥ r(δ)
δ(1−δ) . In this case, the exponent corresponds to conventional

union bound: E(c, δ, ρ = 1) = −r(δ) + cδ.
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