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Abstract

The complete characterization of the capacity region of@awser Gaussian interference channel is still an open
problem unless the interference is strong. In this work, evé an achievable rate region for this channel. It inctude
the rate region which is achieved by time/ frequency divismultiplexing (TDM/ FDM), and it also includes the
rate region which is obtained by time-sharing between the tate pairs where one of the transmitters sends its
data reliably at the maximal possible rate (i.e., the makirate it can achieve in the absence of interference),
and the other transmitter decreases its data rate to thé whare both receivers can reliably decode its message.
The suggested rate region is easily calculable, thoughatparticular case of the celebrated achievable rate region
of Han and Kobayashi whose calculation is in general praiiddy complex. In the high power regime, a lower
bound on the sum-rate capacity (i.e., maximal achievalild tate) is derived, and we show its superiority over
the maximal total rate which is achieved by the TDM/ FDM agmio for the case of moderate interference. For
degraded and one-sided Gaussian interference channelelywa some observations of Costa and Sato, and obtain
their sum-rate capacities. We conclude our discussion liytipng out two interesting open problems.

1. MODEL AND DEFINITION OF CAPACITY REGION

An interference channel (IFC) models the situation wheraralver (\/) of unrelated senders try to communicate
their separate information td/ different receivers via a common channel. Transmissiomfwirination from each
sender to its corresponding receiver interferes with theronanication between the other senders and their receivers.
A two-user (i.e,M = 2) discrete, memoryless IFC consists of four finite s&isX5,)1,),, and conditional
probability distributiong(-, -|z1,x2) on Yy x Vo, where(z1,z2) € X; x X3. For coded information of block length
n, the two-user discrete, memoryless IFC is denoted by

(Xln X X;,pn(yl,y2|xl,x2),y? X yg) ’
where
n
P (y1,ya2lx1,%x2) = Hp(yl,k73/2,k|xl,k>$2,k)a x1 € A", x2 € A2, y1 € V', y2 € V5.
k=1
In the model of a two-user IFC, there are two independent arfdnnly distributed sources. Senders 1, 2 produce

two integers:Wy € {1,...,2"%} Wy € {1,...,2"%=} respectively. A(2"f 2" n) code for a two-user IFC
consists of two encoding functions

613{17---,2"R1}—>X1", 62:{1,...,2”R2}—>X2”
and two decoding functions
dy V¢ —{1,...,2M0 ) dyYp s {1,..., 20,

Since there is no co-operation between the two receiversisnchannel, the average probabilities of error are

n 1 ,
Pe(,i) = M1M2 Z Prob {dl(yl) 75 wi|W1 = ’wl,Wg = wg}, 1 = 1,2.

wi, W2
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A rate pair (R;, Rs) is said to beachievable if there exists a sequence ¢f2"%1], [27%2] n) codes, such that
Pe(ﬁ) — 0 and Pe(g) — 0 asn — oo. The rates are expressed here in terms of bits per channel' heeapacity
region of an IFC is defined as the closure of the set of all its achievedie pairs.

In this correspondence, we derive an achievable rate régiahe two-user Gaussian IFC. The derivation of this
region is based on a modified time (or frequency) divisiontiplgixing approach that was originated by Sato for
the degraded Gaussian IFC, and which is studied here in agessdting. This achievable rate region includes the
achievable rate region by time/ frequency division mudtqphg (TDM/ FDM), and it also includes the rate region
that is obtained by time-sharing between the two rate paiveresone of the transmitters sends its data reliably
at the maximal possible rate (i.e., the maximum rate it cdriexe in the absence of interference), and the other
transmitter decreases its data rate to the point where legttivers can reliably decode its message. Yet, it is still
a particular case of the Han and Kobayashi (HK) achievalite negion. In the high power regime, an improved
lower bound on the sum-rate capacity is derived as a paati@ase of the general HK achievable rate region. We
analyze some of the properties of this lower bound, and sh®wuperiority over the maximal total rate that is
obtained by the TDM/ FDM approach. For degraded and onaddighaussian IFCs, we rely on some observations
of Costa and Sato, and derive their sum-rate capacities.

The structure of the correspondence is as follows: Eartisults which are related to the derivation of the new
results here are presented in Section 2. New results arédprbin Section 3, and proved in Section 4. Numerical
results are presented and explained in Section 5. Finallyclading remarks appear in Section 6, where we also
two interesting open problems.

2. EARLIER RESULTS

Similar to broadcast channels, since there is no co-operdtetween the receivers, the capacity region of a
two-user discrete, memoryless IFly depends on the following marginal probability distribunso

pr(yler, m2) = D plyr,valrr, x2),  pa(yelrr,z2) = Y plyr,valo, z2).
Y2EV2 Yy1E€M

Hence, the capacity region of a discrete, memoryless IFGeefore identical to the capacity region of any other
discrete, memoryless IFC whose marginal probability iistions are the same.

The information-theoretic characterization of the cafyacégion of a discrete memoryless IFC is in general
unknown yet, except for some special cases (see [15] antenefes therein). The capacity region of a discrete
memoryless IFC was expressed in [1] by the following lingtiexpression

I(Xn-yn I(Xn-Yn
C”:C = lim closure U {(Rl,Rg) R < M, Ry < M} , (1)

) n n
X7, X7 independent

which unfortunately does not lend itself to feasible comafionh. Unlike the case of a general discrete, memoryless
MAC whose capacity region is expressible by a single letbemfila, the limiting expression in Eq. (1) can not be
written in general by a single-letter expression (see [1WUDfortunately, it was also demonstrated in [4] that the
restriction to Gaussian inputs in the limiting expressianp EL) for the capacity region of a Gaussian memoryless
IFC falls short of achieving capacity, even if the inputs allewed to be dependent and non-stationary.

In 1981, Han and Kobayashi (HK) [9] have derived an achievaste region for a general discrete memoryless
IFC. It encompasses the achievable rate regions that welieresstablished, and is still the best one known to
date. However, the computation of the full HK achievables reggion for a general discrete, memoryless IFC is
in general prohibitively complex, because of the huge nunafedegrees of freedom which are involved in the
computation of its sub-regions (see [9]). We refer the edérd reader to a comprehensive survey paper on the IFC
[15].

We focus here on the Gaussian IFC, which was extensivelyetida the literature (e.g, [2]-[5], [9]-[15]). The
input and output alphabet of a memoryless Gaussian IFC ifiglteof real numbersX; = X5 = Y1 = J» = R),
and the probability density functiorp) of this channel is derived from the following linear retats between its
inputs and outputsy] = ¢z} + coxs +nj, Y5 = dix] + doxi + nj, wherexy, 3, y7, y5 are reals, anthj, n;
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are additive Gaussian noises with zero mean and variaNg¢eds respectively. The following power constraints
are imposed on the transmitted signaitsi€ngth codewordskx} € X', andxj € X3

1 — 1 —
- > (@) < Py - > (@h)* < Py
k=1 =1

The capacity region of this channel is identical to the cépaegion of the following Gaussian IFC in igandard
form

Y1 =21 ++vai2 r2+n1, Y2 = /a2 1+ T2 + na, (2
2N

whereas = dQ% ,Q91 = 2N , andny,n, are additive Gaussian noises with zero mean and unit variaruis
equivalence is verified by 'the transformation

7] dgl’ n;
an

ui
N=—F= Y=
VN, \/ VN - VN \/ ~ VN
Since the capacity region of an IFC only depends on the nmirgnmbablllty dlstrlbutlons, it is irrelevant whether

the noise terms; andn, are statistically dependent of each other or not. The powasttaints in the standard
form of the Gaussian IFC are

n

1 & 1
- Z(ﬂcm)z < P, - Z(ﬂcz,k)z <P, (3)

k=1

whereP; = C}fl P = may attain rather high values, and in the
broad band and power—llmlted scenario, the value®of, are typ|cally moderate or low. Throughout this paper,
we confine ourselves to Gaussian IFCs in trsgandard form. We assume here perfect synchronization between
the transmitters and their corresponding receivers, wimgdlies that the capacity region of the IFC is convex.

An IFC is calleddegraded if there exists a conditional probability(y2|y1) such that the following equality

holds

pa(waler, x2) = > P Waly)pr(yiler, x2), ¥y € Vo, (x1,22) € X1 X Xa.
Yy1€M1
The last equality implies that one of the output termindfg) (s a degraded version of the other output terminal
(Y1). Since the capacity region of a degraded IFC only dependssanarginal probability distributions, then the
capacity region of a degraded IFC is identical to the capaegion of the IFC whose conditional probability
distribution is

Py, yalzr, z2) = p'(y2lyr) pr(yaler, x2), Y (21,22) € X1 x Xa, (y1,12) € V1 X Va.

The latter IFC forms a serial concatenation of two chanpel$:|x1,z2) and p/(y2|y1) which are combined in
cascade. The full characterization of the capacity regiba discrete, memoryless and degraded IFC is still an
open problem. In its standard form (2), a two-user Gaus$t&hi$ degraded if and only if15 - as; = 1 [3]. Inner
and outer bounds on the capacity region of a degraded Gaussiawere derived in [13].

A two-user Gaussian IFC is callemhe-sided if either a1 = 0 or ao; = 0. In [5], Costa has demonstrated that the
class of degraded Gaussian IFCs are equivalent to the didke one-sided Gaussian IFCs (from the view point
of their capacity regions). More specifically,(f< ¢ < 1, then it follows from [5] that the one-sided Gaussian IFC
whose characterization in the standard form is

Y1 =21 +n1, Y2 =cr1+ T2+ ng,
has the same capacity region as the degraded Gaussian IFC
x
Y1 =w1+?2+n17 Y2 = cx1 + T2 + Na.

In both case®, n, are Gaussian random variables with zero mean and unit eajiand the same power constraints
are imposed on the transmitted signajsx- for the two channels. The degraded Gaussian IFC above isahdasd
form of the IFC which was depicted in [5, Fig. 6(d)]. Later, wal rely on the equivalence between one-sided
and degraded Gaussian IFCs, and derive an exact expressitrefsum-rate capacities of both channels.
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The capacity region of a Gaussian IFC with strong interfeeewas independently determined by Han and
Kobayashi [9, Theorem 5.2] and Sato [14]. The capacity regibthe Gaussian IFC with very strong interference
was determined by Carleial [2]. For the latter case of a Gansd-C with very strong interference (which is
characterized by the inequalitiesis > 1 + P, andas; > 1+ BP), it was surprisingly demonstrated in [2] that
the interferencedoes not harm the capacity region. However, the capacity region ef @aussian IFC was not
determined yet if eithen,5 or as; lie in the open interval0,1). The complete characterization of the capacity
region of a one-sided Gaussian IFC whose non-vanishingénémce coefficient is between zero and unity is also
still unknown. For interference parameters in the inte(¢al ), weak and moderate interference are defined in the
symmetric case as follows: His = a9y = a and P, = P, = P in (2) and (3), respectively, then by treating the
interfering signals as an additive gaussian noise, one chieg a total rate olog, (1 + 1+171P bits per channel
use. On the other hand, if time or frequency division muitihg (TDM/ FDM) are applied, then the maximal
achievable total rate is independent of the interferenedficeents and equal% log,(1 4 2P) bits per channel use.
Weak/ moderate interference is defined as the range of valuedetween zero and unity for which the former/
latter approach yields a larger value of maximal achievadiigl rate. Following this definition, one obtains that
weak interference in a two-user, symmetric Gaussian IF€sdb the conditiond < a < 7”22;‘1 , and moderate

interference refers to the complementary condition, Lé—.v.gff‘l < a < 1. For a two-user Gaussian IFC with
weak or moderate interference, the gap between the repopjeer and lower bounds on the sum-rate capacity is
rather large (see [10]), though it tends to zero in the caserewh — 0 (i.e., no interference) o — 1 (i.e., a
Gaussian MAC).

3. NEwW RESULTS

Theorem 1 (A Computable Achievable Rate Region for the Two-User Gaussian Interference Channel): The set of
rate pairs

_ ' R1SA-V(O‘—PI)+(1—)\).min{7<%>ﬁ(%)}
o | raz 0 (55 o i () 1 (357
where

(4)

1) £ J logy(1 4 ), Q

is achievable for the standard two-user Gaussian IFC (2gmtid power constraints in (3). The rate regibnn
Eqg. (4) is included in the general Han and Kobayashi (HK) exdible rate region (see [9, Theorem 3.2]).

If 0 <aj9,a21 <1, thenD has the following properties:

1) It includes the straight line which connects the two pwint

(a, i) = (270 ($22)) L (i) = (7 (£200) () ©

2) It includes the achievable rate region by TDM/ FDM, but iothb cases, the maximal achievable total rate
stays the same.
3) In the symmetric case whetg, = as; = a, andP, = P, £ P:

« The calculation of the achievable rate region in (4) can bepbfied, so that it only involves the two
parameterg, \) € [0, 1] x [0, 1].

« For moderate interference (i.e., ﬁ% < a < 1), the regionD includes the particular achievable
sub-regiong’ of the full HK achievable rate region (see [9], Eq. (5.9))eTimaximal total rate which is
achieved by the regio® is also strictly larger than the one achieved@y

« For weak interference, the maximal total rate which is adieby G’ is strictly larger than the one
achieved by the regio® (with an equality ifa = Y1 122=1),

Theorem 2 (Sum-Capacity of Degraded and One-Sded Gaussian Interference Channels): For adegraded Gaus-
sian IFC which is expressed in the standard form (2) with thwey constraints (3), the sum-rate capacity is

(Pl) +’Y (m) If a2 2 1
max(Rl + RQ) = (7)
(PQ) + 7y (m) if a1 > 1.
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For aone-sided Gaussian IFC, the sum-rate capacity for the case whgre- 0 is
7(P1)+’Y(71+5221P1> if0§a21§1
max(Ry + Ra) = ¢ ~(an P + P») if1<ay <1+P (8)

Y(P1) +7(F2) if a1 > 1+ P
with a similar expression for the case wherg = 0 (by switching the indices of users 1 and 2).

Corollary 1: For a one-sided Gaussian IFC with weak or moderate interferdi.e., when the interference
coefficient is not above unity), the sum-rate capacity isieaad if the transmitter which is not interfered sends
its data at the maximal achievable rate of a single-user,t@decond transmitter sends its data at the maximal
possible rate where the interfering signal is treated asdditige Gaussian noise.

Theorem 3 (Achievable Sum-Rate for the Gaussian Interference Channel): Consider a two-user symmetric Gaus-
sian IFC in the standard form (2) whetg, = a2 £ a, and P, = P, £ P is the common power constraint in
Eq. (3). Then, for large enough values Bf the sum-rate capacity is larger than the maximal total waieh is
achieved by TDM/ FDM.

In particular, leta = a¢ be thesingle root of the polynomial equation

P%a* + 2P(P +1)a® 4+ (2P + 1)a* — 2Pa — (1 + P) = 0 (9)

which lies in the intervaM*Et1=1 < ¢ <1 (i.e,, it is included in the range of values of moderate fietence).
Then, if P > 17 dB, the maximal total rate which is attained by this subwagis a decreasing function of
a € [ag, 1]; it decreases from its maximal value @t= a(, which is at least

ag + agP + a(Z)P
1 10
082 (1—ao+a%(Pao+1) (10)

to the value% log,(1 4+ 2P) ata =1 (i.e., the maximal total rate that is achieved by TDM/ FDM).
Corollary 2: For a symmetric Gaussian IFC with moderate interferencayiT@d FDM are not optimal in the
high power regime or in th@arrow band regime.

4. PROOFS OF THENEW RESULTS
A. Proof of Theorem 1
In [12, Theorem 5], Sato has proved that the following ra&igieon is achievable for a general two-user channel:

Gg = convex hull{Gp, UGp, }

where

Gp, = convex hullpxqjx {(Rl,Rg) : 8 i Z; i fla(ﬁi;l}(/)lf‘fizf),f(X2;Yé)} } (11)
and

Gp, =convex hull | | {(Ri,Ry): 8 i g; i?ﬁ;’}(fj&?%ﬂXﬁYﬁ}a } (12)

Px,,Px,

As was noted in Corollary 3.3 of [9], the achievable rate sagi(11) and (12) form particular cases of the general
Han and Kobayashi achievable rate region.

For a two-user Gaussian IFC in standard form (2) with the posamstraints in Eq. (3), consider the situation
where during a fraction\ of the transmission time, the symbols ©f andx, are Gaussian distributed with zero
mean, and variance® and 222, respectively:

OéPl ﬁPg

,T), x27iNN(O’T)’ Oéa,ﬁgl, izl,Q,...,n)\ (13)

5L'1,i ~ N(O
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and during the remaining fractioh = 1 — X\ of the transmission time, the symbols »f and x, are Gaussian
distributed with zero mean, and varianc% and ﬁfz, respectively:

5)]\32)7 i=nA+1,n\+2,...,n (14)

aPl
A
It can be easily verified that the two input codewords to theisSamn IFC (2) satisfy the power constraints in

Eq. (3):

r1i~ N(O, S0, s~ N,

1 aP, -~ @b 1 BPy BP,
_E =)\ —1 —l_p.  ZE £z 2 _p,.
[lJx1][?] = A 3 + A A (- [lx2][*] = A X + - S )

Consider now two modes of work: In the first mode, receiverdt fiecodes the message of the second sender, and
then uses it as side information for decoding his messaghditGaussian IFC model (2), receiver 1 subtracts from
the received signay;, a scaled version of;). On the other hand, receiver 2 directly decodes his message
based on his received signakj. This mode of work corresponds to the achievable rate reigideq. (11), and will

be used here a fractiok of the transmission time with inputs to the Gaussian IFC Whice Gaussian distributed
according to Eqg. (13). In the second mode (which is dual tofitlse mode), we refer to the mode of work which
corresponds to the achievable rate region in Eq. (12), aswuhaes that it is used during the remaining fractioof

the transmission time. We will assume here that during tlersg mode, the two inputs to the Gaussian IFC (2)
are Gaussian distributed according to Eq. (14). Rélf and Ré’) be the transmission rates in mode moHence,

by time-sharing, the transmission rates of the two users are

(R1, Ro) = ARV, RIV) + X(RP RDY) (15)
where from Egs. (11)—(14), and the definition of the functiom (5):
a128P B8P
(1) OzPl (1) . by DY
OSRI §7<T>7 0§R2 Smln{/}/(l_i_al:’])’/y(l_l_azl)(flPl)} (16)
and
ah anaPy -
0§R(2)§min vl —A2— 1.7 A O§R(2)§7 @ . a7
! 14 @m2BP [Ty B ) (] 2 )
A A

The combination of Egs. (15)—(17) provides the achievasle region in Eq. (4).
If 0 <ai9,a21 <1, thenD in (4) is simplified to

B Ri<xeq () +37 (850
77 o\ (58 (1)

Though the achievable rate region (18) extends the one wdialesponds to TDM/ FDM (since the latter region
is a particular case of the region (18) for the particularecaberea = 1 and 5 = 0), unfortunately, the former
rate region does not increase the maximal total rate whigltléevable by TDM/ FDM. From Eg. (18), and from
the simple identitw(%) +v(:%) = 7(%“) which is valid for all positive values aof,y and z, we obtain that

r+y
aP; +a 2/3P2 A /3F2 + ag1aP
1 1 > _10g2<1+_ 1 1>‘

(18)

A A
The maximal value of the right-hand side above is achieved by
aP; + ajp3Ps
(+ a1@) P + (B + a1208) P
which yields that the maximal total rate satisfies the indiua

Ri+ Ry < 1Llogy (14 (a+an®)P + (B+ a128)P,)

< Lllogy(1+ P+ P)

A
R1+R2§§-log2 <1—|—
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with equality if « = 1 and g = 0. Since the maximal value here is also the maximal total rdtetwis achievable
by optimal TDM/ FDM, it follows that the maximal total rate ¢fie achievable rate region (18) is equal to the
one which corresponds to TDM/ FDM. However, in contrast te #thievable rate region by TDM/ FDM, the
substitutionae = 3 = X reveals that the rate region (18) also includes the achievake pairs

(i) = (v ($222)). (i) = (5 (£22) ()

and the straight line which connects these two points. Thisvs that the achievable rate region (18) necessarily
extends the achievable rate region of TDM/ FDM.

For the symmetric case whefg = P, £ P andajs = as; £ a, the achievable rate region in (18) is simplified
under the assumption of weak or moderate interference (i€.a < 1) to

Ry< Ay (20) + (-2 (=555 )
D= (R1,Ry) : N . (19)
a,ﬁ,g[o,ﬂ { o Ry <(1=A) ((1 s ) +A (Afjp>

The simplification in (19) also su&;gests a simplificationtie humerical calculation of the achievable rate region

in (4). For values ofR, betweeny ) and~(P), calculate for any pair of3, \) € [0,1] x [0, 1], the value of
a which satisfies the equation

o2 (B 2 ()

which is given in closed form as

2o =aiferl3 (o002 (G0} -5, @)

T+aP

and then to choose the maximal value of the function

Ri2 Ri(B,0) =X+ (%) A=A (1 _aA(lfua)—Pﬁ)P)

over those values ofg, \) € [0, 1] x [0, 1] for which «(3, A) in Eq. (20) is located inside the intervil, 1]. This
procedure suggests a simplification in the calculation eflibundary of the achievable rate region (4) under the
assumption above (we note that based on Eg. (18), a simimredure can be done under the assumption that
0 < ai2,a91 < 1, even without the further symmetry assumption above.)i@ttiorward (though tedious) algebra
shows that for moderate interference (i.e., w@ < a < 1), the sub-regioy’ which is given in Egs. (4.1)—
(4.9) and Eq. (5.9) of [9] (with the special setting in Sectl®A of [9]) is strictly included in the achievable rate
region in (19) (as is also exemplified later in Section 5). ldear, in the case of weak interference (i.e., when
0 < a < YHH22=1) then we have already proved that the maximal total ratelvborresponds to the achievable
rate region |n (4) is equal to that of TDM/ FDM, but on the otliand, the maximal total rate of the regign
exceeds this common value. The reason for the latter stateisiattributed to the fact that since the achievable
rate regiong’ includes the achievable rate region where the interferiggas is regarded as an additive Gaussian

noise, and also in the latter case, the total rate is equhlg@(l + H%), then for weak interference (i.e., if
0 < a < YE2E=1) it exceeds the total rate of optimal TDM/ FDM which is equal} log,(1 + 2P). It then

follows dlrectly that for weak interference, the maximatalorate of the achievable rate reglgh is strictly larger
than the maximal total rate which is obtained by the achilkevedite region in (18).

B. Proof of Theorem 2

The sum-rate capacity of a degraded Gaussian IFC is obtam@dconsequence of the analysis by Sato in [13].
By referring to [13, Fig. 1], the poin#; in this figure was shown to be on the boundary of the capacgipneof
degraded Gaussian IFCs (by showing that this point lies erbtiundary of some inner and outer bounds on this
capacity region). Relying on observations in [13], we shbet the pointA4; in [13, Fig. 1] achieves the sum-rate
capacity of this channel (note that the capacity region oégraded Gaussian IFC is unknown yet). To verify this
claim, we refer to the curve connecting poims and As in [13, Fig. 1], which together with the lineB; = C;
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and R, = C, forms an outer bound on the capacity region of a degradeddizaub-C [13]. The pointd; achieves

the maximal total rate w.r.t. this outer bound (and henas;esiit also lies on the boundary of the inner bound,
it also obtains the sum-rate capacity). The reason for thiencthat A; indeed achieves the maximal total rate of
the outer bound follows from [13, Eq. (11)] where it yieldsttor points on the curve which connects the points
A; and A; in [13, Fig. 1], the inequality—1 < dgz < 0 is satisfied. Hence, in the considered case where the
outputYs is degraded w.r.t. the outplyf, the pointA; achieves the maximal value @; + R, on this curve. By
symmetry, if the outpul; is degraded w.r.tY5, then the point which achieves the sum-rate capacity is tiee o
which is symmetric to the poinfl; w.r.t. to the lineR; = Rs.

The sum-rate capacity of a one-sided Gaussian IFC follows fihe observation which was made by Costa [5]
regarding the equivalence between one-sided and degraaiggskian IFCs (see also Section 2 of this paper). Based
on this equivalence, the part of Eqg. (8) which provides thea-sate capacity of a one-sided Gaussian IFC with
weak or moderate interference follows from Eq. (7) (whicfere to the sum-rate capacity of a degraded Gaussian
IFC). The part of Eq. (8) which provides the maximal totakraf a one-sided Gaussian IFC with strong or very
strong interference is a known result (and it is included8p for the sake of completeness; it follows directly
from the discussion in [14, Section 3]). we refer the readeRémarks 3 and 4 in Section 6 where we discuss a
consequence of Theorem 2.

C. Proof of Theorem 3

Based on Theorem 6 in [3], the following rate region is acaide for the two-user Gaussian IFC in the standard
form (2)

6P (a1+61) P
(1+ (o1 +01) P1+(112P2> +7 (1(');'1112062132) ’
a21(61+061)P1 1Py
(1+a21061P1+(012+52) 2) + (1+3120£2P2>
62 P> (a2 +052) P2
(1+ (02+062) P2+l121P1> + (1(');'1121061131) ?
a12(02452) P2 2Py
v (1+a12062P2+(011+51)P1> +7 (1+3210£1P1>
whereqy;, 3;, 9; (wherei = 1,2) are non-negative numbers so thatt+ 3; + §; = 1, and the functiony is introduced
in (5). We note that the interference coefficients andas; in the standard form (2) are flipped as compared to
the notation in [3].

In our case, since we assume that the two-user Gaussian §y@isetric (i.e.a12 = as; £ aandP, = P, £ P),
then it follows that the maximal value ak; + R in the achievable rate region (21) is attained in the symmetr
case wherev; = as £ a, 31 = 2 £ 3, 61 = 6 £ 6, anda, 8 andJ are non-negative numbers whose sum is 1
(le,a+p8+d5=1).

We intend to show that for values &f which areabove a certain threshold, the maximal total rate which is acldeve
by Carleial’s region (21) is above the maximal total rateshhis achieved by optimal TDM/ FDM (where the latter
value is equal t(% log, (14 2P) bits per channel use). To this end, we will simplify the cé#dtion by showing that
for high enough values oP, then even for the particular case whete= 0 in (21), the corresponding maximal
total rate of the latter achievable rate region exceeds theimal total rate which is obtained by optimal TDM/
FDM. Under the assumption tha = 0, one obtains thaf = @ = 1 — a, which yields that the maximization

of R; + R, for the special case of the achievable rate region (21) whete0 is performed by maximizing the
function

aP aaP aP
£ min 4 1 1+—2 ) 1+ ——— 1 14— 22
f@) mln{0g2< +1—|—aP—|—aP 082 +1—|—aaP—|—ozP loes +1—|—ao¢P (22)

over the interval < o < 1.
The ratio between the two arguments of the funcfieg, (1 + =) inside the minimization in the right-hand side
of (22) is

5
Rq < min

)

(21)

v
Ry < min

aaP
TfaaPtaP _ a+a*P +aaP

= =
Haaw 1+ aP + aaP
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soifa+a’P <1 (ie., if 0 < a < YEL=1) then it follows (since alser > 0) that

aaP aP
= 1 1+ —— 1 1+ —
J(@) 0g2< +1+aaP—|—ozP>+ 0g2< +1+aozP>

acP + aP)

= 1 1
0g2< * 1+ aaP

Sincea + a?P < 1, then the maximum of the functiofi(a) over the intervak € [0, 1] is achieved for = 1, and

it is equal tolog, (1 + H% . The latter value corresponds to the maximal total rate wigcachieved when the

interfering signal Is Gaussian distributed, and when theder treats it as part of the additive Gaussian noise of
the received signal (in addition to the AWGN of the channel).

If on the other hand: + a?P > 1 anda < 1 (i.e., Y75 =1 < 4 < 1), then we can separate the latter condition

into two sub-cases: If < a + a?P < 1+ aP, then same as we had before
aaP + aP
f(a) =log, (1 + 7> :

1+ aaP
Otherwise, ifl <1+ aP < a + a?P, then it follows from Eq. (22) that

aP aP
=1 1+ ———F—— 1 1+ —— .
J(@) og2< +1+ozP—i—aP>+Og2< +1+aaP>

Let ag & Mpp‘l (so that0 < o < 1, and1 + agP = a + a*P), then short calculation shows that the maximal
total rate which is achieved by the rate region (21) is attlegsal to

Fao) 1o a+aP + a’P
0/ =082 l—a+a(aP+1))"

Let us define the function

P +a?P V1+4P —1
g(a)é a+aP +a ’ + <a<l. 23)
l—a+a?(aP+1) 2P

From the monotonicity of the logarithm function, the maxinralue of the total rate in the achievable rate region
(21) is lower bounded by the logarithm gfa) for all values ofa within the interval 7”*;1;‘1 <a<1. We
intend to find the maximum of on the latter interval, and also to find a range of valuesafoso that the lower
bound on the total ratéR; + R2) exceeds the value of the total rate which is obtained by @ptibM/ FDM
(i.e., 3 logy(1 4 2P)).

It can be shown that the derivative gfis a monotonic decreasing function in the inter@ <a <1,
and it has opposite signs at the endpoints of this intervdaérdfore, there exits a single point inside this interval
where the derivative of is equal to zero, which also achieves the maximal valug @fside this interval. By
differentiating the functiorny, and setting the derivative to zero, straightforward atgethows that the maximal
value of g inside this interval can be calculated by solving the potyied equation (9). Lett = ag be the proper
solution of the polynomial equation (9) (see Theorem 3).nMTteelower bound on the maximal total rate which is
attained by the achievable region (21) is above the valuewbbrresponds to TDM/ FDM if

ao + apP + a3 P
log, 5
1 —ap+ag(apP +1)
where it can be verified numerically that inequality (24) &isfied for values of? above 17 dB.

> > %logz(l +2P) (24)

Discussion: We will now consider a generalization of the achievable nagion of Carleial considered above
(based on Theorem 6 in [3]), which also includes the two aggines of treating the weak signal as additive noise
(for weak interference) or the TDM/ FDM approach (for moderanterference). To this end, we will consider
the particular case of the achievable rate region of Han awvlhifashi [9] where the size of the alphabet of the
time-sharing parametep is four, the random variablds;, Us, W, and W, are conditionally independent givep
(their distributions are given in Table | for every possilsdue ofQ)), and where the random variabldg and X,
are given by

Xi=U14+Wq, Xo=Us+ Ws. (25)
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| Time-sharing parameter | Ux | Wi | Us | Wa |
Prob (Q =0)=§ ~ N(0,2a6P) | ~ N(0,2a6P) | ~ N(0,286P) | ~ N(0,285P)
Prob(Q=1)=94 ~ N(0,286P) | ~ N(0,286P) | ~ N(0,2a6P) | ~ N(0,2asP)
Prob (Q = 2) = A(1 — 28) | ~ N(0, L2207 0 0 0
Prob (Q = 3) = X(1 — 26) 0 0 ~ N(0, 1208 0
TABLE |

THE PARAMETERSQ, U1, W1, Uz, W2 WHICH ARE USED TO DEFINE A PARTICULAR SUBREGION OF THE ACHIEVABLE RATE REGION OF
HAN AND KOBAYASHI [9]. THE RANDOM VARIABLES Uy, Us, W1 AND W ARE CONDITIONALLY INDEPENDENT GIVEN (Q, AND THE
RANDOM VARIABLES X1 AND X2 ARE GIVEN IN EQ. (25). WE ASSUME HERE THAT0 < v < 1,0 <8< 1,0 <A< 1,AND 0 < 6 < 1.

Based on Table | and Eq. (25)

(1+25)P
)

and similarly E[z3] = P, so both inputs of the two-user Gaussian IFC satisfy the compower constraint (3)
whereP; = P, £ P. By symmetry considerations, it is clear that the maximtlitcate of the considered achievable
rate region is achieved fox = 3.

The achievable rate region by TDM/ FDM results in as a padicgase of the HK region with the setting
in Table | wheny = 0. The special achievable rate region where the interferiggas is treated as an additive
Gaussian noise results in as a particular case of the HKnegiih the setting in Table | fo = % anda =3 =1.
Finally, The particular achievable rate region of Carlésde [3, Theorem 6]) for the symmetric two-user Gaussian
IFC results in from the setting in Table | whén= % (which is verified from the superposition in Eq. (25)). These
simple observations yield that the maximal total rate of dlchievable rate region of Han and Kobayashi in the
setting of Table | is not below the maximal total rate whicteawbtains by treating the interfering signal as an
additive noise (in the case of weak interference), and itse aot below the maximal total rate which is obtained
by optimal TDM/ FDM (in the case of moderate interferencejori the discussion above regarding Carleial’s
achievable rate region (21), we obtained that for high \alfeP, the maximal total rate of the latter region (and
hence, the maximal total rate which corresponds to the HdrKabayashi (HK) region with the setting in Table I)
exceeds the maximal total rate which is obtained by the tvaveafientioned methods (for weak and moderate
interference). In the sequel, we will calculate the maxinwdhl rate which corresponds to the HK region with
the specific setting in Table |, and numerical results of thgulting expression are presented in Section 5. The
discussion in [9] yields that the maximal total rate of th@iagable rate region by Han and Kobayashi is given by

E[22] = 6-20P + 6 - 26P + (1 — 20) - =P

max(R; + Rs) = p12 (26)

where
p12 = o1g + I(Y1; Ur[Wh, Wa, Q) + I(Ya; Ua|[ W1, Wa, Q) @7)
and

o1z & min{ I(Y1; Wi, Wa|Q), I(Ye; WiW3|Q),
I(Y1; Wh|[Wa, Q) + I(Ya; Wa| W1, Q), (28)
1(Yo W1 |Wa, Q) + (Y1 Wa W2, Q) }

Based on the definition of the functionin Eq. (5), we obtain that foh = %

I(Y1; Ui |[Wh, Wa, Q) = 1(Ya; Ua| W1, W, Q)

5. 200P [ _260F 1-20\ (29)
-’ 7<1+2aﬁ6P>+5 7<1+2aaap>+<—2 > 7(2(1+20)P),
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v

2a6P + 2a[35P
I(Yl;Wl,Wle)=I(Y2;W1,W2|Q)=5-7< aOP + 2a8 )+5.

14 2adP + 2aB6P
200 P >

236 P + 2aad P (30)
14 280P + 2aadé P
265 P
07 <1 T 230P 1 2aa5P> (31)
2aa0 P 2035 P
[(¥a; Wi |W2, @) = I(Y1; Wa[W1,Q) = 0 4 (1 + 2aadP + 25513) +o-y (1 +2a0P + 2a55P> - (32

By substituting Egs. (27)—(32) in (26), we obtain that theximmeal total rate of the achievable region that
corresponds to Table | is equal to the maximum of the function

I(Y1;Wh|[Wa, Q) = I(Yo; Wa|W1,Q) =6 -y (1 + 206 P + 2a36 P

p12 £ pra(a, B, 0)
=257 <ﬂ> +28 -y <ﬂ> + (1 —28) - ~(2(1+20)P)

1+ 2aB6P 14 2aadP
, 2a6P + 2a36 P 230 P + 2aad P
§- §- 33
+mm{ 7<1+2a5P+2aﬁ5P> * ”<1+255P+2aa519>’ (33)

05 2a0P 95 236 P
"\15220P + 2a35P "\1¥235P + 2aa0P )

05 2aa0 P 495 2035 P
"\ TF2a00P +235P "\ TF2a6P + 2a35P

where the functiony is defined in Eq. (5), and the maximization pf, is carried over the parametefs, 3, 0)
where0 <a<1,0<pB<1land0<d< 1.

Corollary 2 follows directly from the scaling of the inpugsials in order to obtain the standard form (2) for the
two-user Gaussian IFC.

5. NUMERICAL RESULTS

We present here numerical results which illustrate therdérae in Section 3, regarding achievable rate regions
and bounds on the sum-rate capacity of a two-user Gauss@n IF

Fig. 1 compares the achievable rate region for a two-usessian IFC wherei;o = ao; = 0.5 in the standard
form (2), and under the common power constradit= P, = 6 in (3). As expected from Theorem 1, the achievable
rate region by TDM/ FDM (curve 1) is included in the rate ragiwhich is achieved by Theorem 1 (curve 4),
but the maximal total rate in both cases stays the same. Basdtheorem 1, the achievable rate region whose
boundary is curve 2 is included in the achievable rate regibith is obtained in Theorem 1. Since in our setting
P =6,a=05, anda > ¥122=1 = 0.2171, then it follows from Theorem 1 that the particular achideatate
region G’ (see curve 3) is included in the achievable rate region ofoldra 1 (see curve 4), as is illustrated in
Fig. 1. Moreover, the maximal achievable total rate in themfer region is strictly smaller than the one which
corresponds to the latter achievable rate region.

Fig. 2 compares upper and lower bounds on the sum-rate ¢tamdc two-user symmetric Gaussian IFC. We
consider here the symmetric case where in the standard fre, P, £ P, andas = ag; = a (Wherea designates
the square of the magnitude of the interference coefficier(2), and it is the horizontal axis in Fig. 2). As an
example, for the case wherfe = 30 dB, it follows thatay, = 0.0821 is the appropriate solution of the polynomial
equation in Theorem 3. As can be verified from Fig. 2, if the own value ofa;2 andas; (under the symmetry
assumption) is between 0.0821 and 1, then the maximal tatalwhich is achieved by curve 5 is strictly larger
than the achievable region by TDM/ FDM (curve 2). In partisulf a1o = a1 = 0.0821, the values of the maximal
total rate which are achieved by curves 2 and 5 are 5.483 &id hits per channel use, respectively (furthermore,
the latter value coincides with the lower bound on the makiotal rate which is given in Eq. (10), as compared
to an upper bound of 6.774 bits per channel use, which follivars Kramer’s upper bound [10] and is depicted
in curve 1 of Fig. 2). Moreover, the solution of inequalityjqwherea, in (24) is now replaced with the arbitrary
common value of the interference coefficientyields that0.0448 < a < 0.1382. Clearly, as reflected in Fig. 2, it
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05

P1 = P2 =6.0, a12=a2120.5

Ry

Fig. 1. Achievable rates for the two-user Gaussian IFC wittakl moderate interference coefficients. Curve 1 is the daynof the
achievable rate region by TDM/ FDM. Curve 2 is the boundarythaf achievable rate region which is obtained by time-sihabatween
the two rate pairs where one of the transmitters sends it @dibbly at the maximal possible rate (i.e., the maximé& i can achieve
in the absence of interference), and the other transmiteredses its data rate to the point where both receiversetiaibly decode its
message. The boundary of curve 2 includes the straight tiaedonnects the two rate pairs specified in Eq. (6). CurvetBasbhoundary
of the achievable rate regiof’ which was derived by Han and Kobayashi as a particular caskeaf general achievable rate region (see
Egs. (4.1)—(4.9), (5.9), and the setting in Section 5.A §f.[€urve 4 is the achievable rate region in Theorem 1 whiclkha symmetric
case whereP?; = P» andai2 = a1, it is simplified to the rate region in Eq. (19).

is a partial interval as compared to the interval for whiclhveu5 in Fig. 2 gets values above the horizontal line
in curve 2 (where the latter corresponds to the maximal tati@ which is obtained by TDM/ FDM). The reason
for this observation is related to the simplifications whigfally led to the derivation of inequality (24), referring
to a looser achievable rate region as compared to one whithspmnds to the particular Han and Kobayashi rate
region with the setting in Table | and Eg. (25). However, iinteresting to note the lower bound &d(i.e., 0.0448)
approximates well the lower limit of, for which the total rate in curves 3, 4, and 5 is above the esalhich
corresponds to curve 2 (see Fig. 2). This phenomenon wafiededlso for other values aP above 17 dB. This
value is the threshold o for which there exists a bump in Fig. 2 which in turn signalsotalt rate above the
maximal total rate which is obtained by TDM/FDM.

The sum-rate capacity of a degraded or a one-sided Gau$staark provided in Egs. (7) and (8), respectively.
The sum-rate capacity of a one-sided Gaussian IFC is shoigir8, where we assume a common power constraint
of P = 6. It is a monotonic decreasing function of the interferenoefiicient @) in the range) < a < 1, and
a monotonic increasing function aef for strong interference (i.e., fotr < a < 1 + P) [14]. For very strong
interference, the sum-rate capacity stays constant bed¢hasnterference does not harm, as was demonstrated by
Carleial [2]. The two limit cases in Fig. 3 where= 0 anda = 1 correspond to two separate AWGN channels
and to a Gaussian multiple-access channel, and thereferesum-rate capacity is equal ez, (1 + P) = 2.807
and%logQ(l + 2P) = 1.850 bits per channel use, respectively (see Fig. 3).
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Fig. 2. Upper and lower bounds on the sum-rate capacity ®iwlo-user Gaussian IFC. The curves which are depicted in2Rigrrespond
to the following bounds: Curve 1 is Kramer’'s upper bound oa mhaximal achievable total rate [10, Theorem 2]. Curve 2 ésgimple
version of Carleial’s lower bound [3] which treats the iféging signal as an additive Gaussian noise for weak intemfee, and which relies
on the TDM/ FDM approach for moderate interference. Curve hé maximal total rate which is achieved with the particslzb-region of
Han and Kobayashid{') in Section 5.A of [9] (where in the latter case, time-shgris not performed). Curves 4 and 5 refer to the maximal
total rates which are obtained for the particular cases®fyineral achievable rate region of Han and Kobayashi [9] thi¢ specific setting
in Table | and in Eq. (25); curve 4 refers to the case whie&e% in Table 1 (so, the time-sharing paramet@ris binary), and curve 5 of
Fig. 2 corresponds to the case where the maximization ofdtet tate is carried over the additional parametes [0, %] (so, in the latter
case,( is a random variable whose alphabet is of size four). Curvasd45 are therefore calculated by the maximization of thet4figand
side of Eq. (33) where for the calculation of curve 4, we&et 1 and maximizep:2 over the parametergy, 3) € [0, 1] x [0, 1], and the
calculation of curve 5 is performed by the numerical maxatiom of p12 in (33) over the three parametess s andé (where0 < § < %).

6. CONCLUDING REMARKS

1) In[9, Theorem 3.1], Han and Kobayashi derived an achievatte region for a general discrete memoryless
IFC. It is the best reported achievable rate region, andeidgi as particular cases all the previously reported
achievable rate regions by Sato, Carleial and others (irduthe achievable rate region that is specified
in Theorem 1 here). However, it is in general prohibitivelymplex to calculate the HK rate region. For
a two-user Gaussian IFC with weak or moderate interferetiee calculation of the achievable region in
[9, Theorem 3.1] does not seem to be feasible. The achievatderegionD in Theorem 1 is feasible for
calculation, and for a two-user Gaussian IFC witbderate interference (i.e., if*122=1 < ¢ < 1), it
includes the particular rate regia@fi which was derived by Han and Kobayashi in [9, Section V-A]téno
that, as opposed to their full achievable rate region, thiggodar rate regioryy’ is feasible for calculation, and
it also coincides with the capacity region of a two-user Gars|FC withstrong interference). For moderate
interference, the maximal total rate which is achieved kg dte regionD in Theorem 1 is strictly larger
than the maximal total rate which correspondgjtoWe note that although for a two-user Gaussian IFC with
weak interference (i.e., fob < a < 7”221313‘1), the maximal total rate which is obtained k¥ is strictly
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Square of the one-sided interference coefficient (a)

Fig. 3. The sum-rate capacity of a one-sided Gaussian IFE avitommon power constraiit, = P> = 6.

2)

3)

larger than the one which corresponds to the achievableregien D in Theorem 1, the regiol is not
necessarily included ig’ for the case of weak interference; on the hand, Theorem lremsbatG’ c D

for a two-user Gaussian IFC with moderate interference.

It is not clear whether the sum-rate capacity should beaedsing function of the common interference
coefficient when its value varies between zero and unitycésthere is no co-operation between the receivers).
Nonetheless, we believe that the bump which is observed imesu3, 4 and 5 of Fig. 2 is an artifact of
the inner bounds on the capacity region: for one-sided oratlel Gaussian IFC, the sum-rate capacity is a
monotonic decreasing function in the range of weak/ moddraerference (as follows from Theorem 2, and
exemplified in Fig. 3), it is likely to be the case in general fotwo-user Gaussian IFC.

It is noted that the sum-capacity of a one-sided Gaussi@nwith is provided in Eg. (8) implies the upper
bound on the sum-rate capacity of a two-user Gaussian IFCOnTTheorem 1]. To see that, let us consider a
two-user Gaussian IFC in the standard form (see (2)) wherpakwver constraints on the first and second inputs
are P, and P, respectively. We will consider in the following the caseeand the interference coefficients
a12 andas; in the standard form (2) are between zero and one, thoughainedbfollow in the same way for
all the other cases. If one of the interferences betweenwthesénders in canceled (i.e., if we sgt = 0 or

ao1 = 0), then the capacity region of the resulting one-sided GandsC does not shrink as compared to the
capacity region of the original Gaussian IFC. Hence, theimahvalue among the two sum-rate capacities
of the two resulting one-sided Gaussian IFCs forms an uppendb on the sum-rate capacity of the original
Gaussian IFC (whose interference coefficiemts and as; are both nonzero). From the expression for the
exact sum-rate capacity of a one-sided Gaussian IFC int(@)laws that the sum-rate capacity of the original
Gaussian IFC satisfies the inequality

. P P
< P —_— P, — ;. 34
Ri+ Ry < mm{’v( 1) +7<1+a21P1>’ V(P2) +’Y(1+a12P2)} (34)
Sincey(z) = £ logy(1 + z) and we examine here the case Where ai», as < 1, then it follows that
Py 1 P +1
P — ) ==1 P P +1 35
’Y( 1)+7<1—|—a21P1) 2 OgQ(( 2+ andd + )(min{l,agl}P1+1>> ( )
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4)

5)

and

P 1 P+1
P — ) ==1 P, P+1 36
g 2)+7<1+a12P2) 2 ng(( 1+ G122 + )(min{l,alg}Pg—i—l)) (36)

so the combination of (34)—(36) provides the upper boundhensum-rate capacity of a two-user Gaussian
IFC which appears in [10, Theorem 1]. It also proves that theen bound on the sum-rate capacity in [10,
Theorem 2] is always better than the one in [10, Theorem 1yyasdemonstrated in [10, Theorem 3]. It is
here that our notation for the interference coefficients2pgre consistent with those in the paper by Han
and Kobayashi (see [9, Egs. (5.3), (5.4)]), gt andas; in [10] need to be reversed to be consistent with
the notation used here.

In continuation to item 3, it is noted that the upper bouadghe sum-rate capacity of a two-user Gaussian
IFC which are presented in [10] coincide asymptotically lie {imit where we letP tend to infinity. For
simplicity, it is shown in the symmetric case wherg = as; = ¢ and P, = P, = P. In this case, the upper
bounds on the sum-rate capacity of a two-user Gaussian IEC ar

1 1
Ry + Ry < 5 logy(1+ P) + 5 log; (1+ ) (37)

14+ aP
and

(38)

Rl+Raélog2<1+ (L+a) + T aP + da(l +a) >

2a
so, it can be verified that the ratio of the right-hand sideg33f) and (38) tends to 1 as we Iét tend

to infinity. For finite P, as was mentioned in [10] and in item 3 above, the upper bounthe same-rate
capacity in (38) is always tighter than the upper bound in.(37

For a two-user Gaussian IFC, it was stated in [5, Theorenhdi if one of the senders is transmitting at
its maximal possible rate (i.e., the maximal rate which isieable for a single-user, in the absence of
interference), then the other sender is obliged to decrémskata rate to the point where both receivers can
reliably decode its message. The implication of the proahisf converse theorem is that these two rate-pairs
form the corner points of the capacity region of a two-useuss&@n IFC. For a two-user Gaussian IFC with
strong interference whose characterization of its capaegion is completely known (see [9, Theorem 5.2]
and [14]), this is indeed the case, as the capacity regiohearidtter case is the intersection of the capacity
regions of the two Gaussian multiple-access channels warehinduced by the two-user Gaussian IFC.
Unfortunately, it is not clear whether in general these &ee ttvo corner points of the capacity region of
a two-user Gaussian IFC due to a problem in a certain stepeopthof to the converse theorem in [5,
Appendix B] (which was confirmed by the author of [5], thougk would not fix this problematic step in
the proof). By restating this step as a mathematical propiemonsiders the following issue: LeX and

Y be two n-dimensional random vectors, wheké is a Gaussian random vector with i.i.d. components of
zero mean and variane€. The differential entropy ofX attains its maximal value under the above power
constraint, and it is equal to

hX) = g log(2mea?).
Let Y be ann-dimensional random vector whose components satisfy th@niong constraints:
ElYi]=0, =) (v)?<o” (39)
=1

Unlike X, the components of may be correlated, and may not be Gaussian. Howevey, is considered
to be "almost Gaussian” in the sense that

h(X) = h(Y) < ne (40)

for some positive: (we note that under the conditions in (39), the left-hane %8l (40) is necessarily non-
negative.) We introduce now an arbitrasydimensional random vectdf where in probability 1, the vector
Z is inside a sphere of radiugnP for a positive constanp, i.e.,

- Z}:(zi)? <P (41)
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and Z is known to be statistically independent &f and Y. The question is if under the assumptions in
(39)—(41), one can prove an inequality of the form

WY +Z)—h(X +Z) < 6(e,P) - n

whered(e, P) — 0 ase — 0 ?
In essence, the proof in [5, Appendix B] shows that

D(Py“PX) § ne,

where Py and Py designate the probability distributions &f and Y, respectively, and)(P||Q) stands
for the divergence between the probability distributidhsand @. Then, by the data processing theorem, it
follows that

D(Py12]|Px+2) < D(Py||Px) < ne.

The proof in [5, Appendix B] relies on Pinsker's inequalithieh forms a lower bound on the divergence in
terms of theL; distance between the two probability measures. The praiilenssue in this proof is related
to the link between thd,; distance and the difference between the two differenti&dopies. Specifically,
[5] utilizes a parametef which depends exponentially i, but is treated after [5, Eq. (B.11)] as if it was
a constant. This yields thabg(/3) in Eq. (B.14) of [5] grows linearly im, and hence the right-hand side of
(B.14) grows liken? (and not linearly, as desired).

One possible direction in trying to fix the problematicuisswvhich is addressed in item 5 relied on some
recent refinements of Pinsker’s inequality [8]. One of thedmements (see [8, Theorem 7]) states that

1 1 1 . 221
D(P||Q) > 51/2 + Vi Vo4

8
42
36 270 340,200 v (42)

whereV designates thé,; distance betwee® and@, i.e.,
ve [T |P@) - Q) dr

Inequality (42) enables to reduce the powemoih the right hand-side of [5, Inequality (B.14)]) fror§1 to

%. A further refinement of Pinsker’s inequality (see [8, Satd]) enables to further reduce the powernof

to %, but it is still not the desiredinear dependence in n which is required to complete the proof in [5].
Solving this problem has a direct implication on the charazation of the two corner points of the capacity
region of a general Gaussian interference channel (it @ylithat the two rate pairs which were specified in
Theorem 1 of [5] are indeed the two corner points of the capaepion of a two-user Gaussian IFC.)

The derivation of an achievable rate region for the twer@Gaussian IFC refers to vanishiagerage decoding
error probability. The maximal-error and average-error capacity regionsnatenecessarily identical for
general multi-user channels; In [7], Dueck has shown by gtesthat for two-way channels and for multiple-
access channels, the capacity regions depend on the emoemtoused. Though these two capacity regions
are identical for a general broadcast channel ([6], [16])s ts not necessarily the case for general multi-
user channels. In particular, these two capacity regioasat necessarily identical for interference channels
(otherwise, this would also be the case for the multipleeasachannel, in contradiction to [7]).
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