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Abstract

The complete characterization of the capacity region of a two-user Gaussian interference channel is still an open
problem unless the interference is strong. In this work, we derive an achievable rate region for this channel. It includes
the rate region which is achieved by time/ frequency division multiplexing (TDM/ FDM), and it also includes the
rate region which is obtained by time-sharing between the two rate pairs where one of the transmitters sends its
data reliably at the maximal possible rate (i.e., the maximal rate it can achieve in the absence of interference),
and the other transmitter decreases its data rate to the point where both receivers can reliably decode its message.
The suggested rate region is easily calculable, though it isa particular case of the celebrated achievable rate region
of Han and Kobayashi whose calculation is in general prohibitively complex. In the high power regime, a lower
bound on the sum-rate capacity (i.e., maximal achievable total rate) is derived, and we show its superiority over
the maximal total rate which is achieved by the TDM/ FDM approach for the case of moderate interference. For
degraded and one-sided Gaussian interference channels, werely on some observations of Costa and Sato, and obtain
their sum-rate capacities. We conclude our discussion by pointing out two interesting open problems.

1. MODEL AND DEFINITION OF CAPACITY REGION

An interference channel (IFC) models the situation where a number (M ) of unrelated senders try to communicate
their separate information toM different receivers via a common channel. Transmission of information from each
sender to its corresponding receiver interferes with the communication between the other senders and their receivers.
A two-user (i.e,M = 2) discrete, memoryless IFC consists of four finite setsX1,X2,Y1,Y2, and conditional
probability distributionsp(·, ·|x1, x2) onY1×Y2, where(x1, x2) ∈ X1×X2. For coded information of block length
n, the two-user discrete, memoryless IFC is denoted by

(X n
1 ×X n

2 , pn(y1,y2|x1,x2),Yn
1 × Yn

2 ) ,

where

pn(y1,y2|x1,x2) =

n
∏

k=1

p(y1,k, y2,k|x1,k, x2,k), x1 ∈ X n
1 ,x2 ∈ X n

2 ,y1 ∈ Yn
1 ,y2 ∈ Yn

2 .

In the model of a two-user IFC, there are two independent and uniformly distributed sources. Senders 1, 2 produce
two integers:W1 ∈ {1, . . . , 2nR1}, W2 ∈ {1, . . . , 2nR2}, respectively. A(2nR1 , 2nR2 , n) code for a two-user IFC
consists of two encoding functions

e1 : {1, . . . , 2nR1} → X n
1 , e2 : {1, . . . , 2nR2} → X n

2

and two decoding functions

d1 : Yn
1 → {1, . . . , 2nR1}, d2 : Yn

2 → {1, . . . , 2nR2}.
Since there is no co-operation between the two receivers in this channel, the average probabilities of error are

P
(n)
e,i =

1

M1M2

∑

w1,w2

Prob {di(yi) 6= wi|W1 = w1,W2 = w2} , i = 1, 2.
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the Technion – Israel Institute of Technology, Haifa, Israel.
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A rate pair (R1, R2) is said to beachievable if there exists a sequence of(d2nR1e, d2nR2e, n) codes, such that
P

(n)
e,1 → 0 andP

(n)
e,2 → 0 asn → ∞. The rates are expressed here in terms of bits per channel use. The capacity

region of an IFC is defined as the closure of the set of all its achievable rate pairs.
In this correspondence, we derive an achievable rate regionfor the two-user Gaussian IFC. The derivation of this

region is based on a modified time (or frequency) division multiplexing approach that was originated by Sato for
the degraded Gaussian IFC, and which is studied here in a general setting. This achievable rate region includes the
achievable rate region by time/ frequency division multiplexing (TDM/ FDM), and it also includes the rate region
that is obtained by time-sharing between the two rate pairs where one of the transmitters sends its data reliably
at the maximal possible rate (i.e., the maximum rate it can achieve in the absence of interference), and the other
transmitter decreases its data rate to the point where both receivers can reliably decode its message. Yet, it is still
a particular case of the Han and Kobayashi (HK) achievable rate region. In the high power regime, an improved
lower bound on the sum-rate capacity is derived as a particular case of the general HK achievable rate region. We
analyze some of the properties of this lower bound, and show its superiority over the maximal total rate that is
obtained by the TDM/ FDM approach. For degraded and one-sided Gaussian IFCs, we rely on some observations
of Costa and Sato, and derive their sum-rate capacities.

The structure of the correspondence is as follows: Earlier results which are related to the derivation of the new
results here are presented in Section 2. New results are provided in Section 3, and proved in Section 4. Numerical
results are presented and explained in Section 5. Finally, concluding remarks appear in Section 6, where we also
two interesting open problems.

2. EARLIER RESULTS

Similar to broadcast channels, since there is no co-operation between the receivers, the capacity region of a
two-user discrete, memoryless IFConly depends on the following marginal probability distributions

p1(y1|x1, x2) =
∑

y2∈Y2

p(y1, y2|x1, x2), p2(y2|x1, x2) =
∑

y1∈Y1

p(y1, y2|x1, x2).

Hence, the capacity region of a discrete, memoryless IFC is therefore identical to the capacity region of any other
discrete, memoryless IFC whose marginal probability distributions are the same.

The information-theoretic characterization of the capacity region of a discrete memoryless IFC is in general
unknown yet, except for some special cases (see [15] and references therein). The capacity region of a discrete
memoryless IFC was expressed in [1] by the following limiting expression

CIFC = lim
n→∞

closure





⋃

Xn

1
,Xn

2
independent

{

(R1, R2) : R1 ≤ I(Xn
1 ;Y n

1 )

n
, R2 ≤ I(Xn

2 ;Y n
2 )

n

}



 , (1)

which unfortunately does not lend itself to feasible computation. Unlike the case of a general discrete, memoryless
MAC whose capacity region is expressible by a single letter formula, the limiting expression in Eq. (1) can not be
written in general by a single-letter expression (see [11]). Unfortunately, it was also demonstrated in [4] that the
restriction to Gaussian inputs in the limiting expression Eq. (1) for the capacity region of a Gaussian memoryless
IFC falls short of achieving capacity, even if the inputs areallowed to be dependent and non-stationary.

In 1981, Han and Kobayashi (HK) [9] have derived an achievable rate region for a general discrete memoryless
IFC. It encompasses the achievable rate regions that were earlier established, and is still the best one known to
date. However, the computation of the full HK achievable rate region for a general discrete, memoryless IFC is
in general prohibitively complex, because of the huge number of degrees of freedom which are involved in the
computation of its sub-regions (see [9]). We refer the interested reader to a comprehensive survey paper on the IFC
[15].

We focus here on the Gaussian IFC, which was extensively treated in the literature (e.g, [2]–[5], [9]–[15]). The
input and output alphabet of a memoryless Gaussian IFC is thefield of real numbers (X1 = X2 = Y1 = Y2 = IR),
and the probability density function (p) of this channel is derived from the following linear relations between its
inputs and outputs:y∗1 = c1x

∗
1 + c2x

∗
2 + n∗

1, y∗2 = d1x
∗
1 + d2x

∗
2 + n∗

2, wherex∗
1, x

∗
2, y

∗
1, y

∗
2 are reals, andn∗

1, n
∗
2
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are additive Gaussian noises with zero mean and variancesN1, N2 respectively. The following power constraints
are imposed on the transmitted signals (n-length codewords)x∗

1 ∈ X n
1 , andx

∗
2 ∈ X n

2 :

1

n

n
∑

k=1

(x∗
1,k)

2 ≤ P ∗
1 ,

1

n

n
∑

k=1

(x∗
2,k)

2 ≤ P ∗
2 .

The capacity region of this channel is identical to the capacity region of the following Gaussian IFC in itsstandard
form

y1 = x1 +
√

a12 x2 + n1, y2 =
√

a21 x1 + x2 + n2, (2)

wherea12 = c2

2
N2

d2

2
N1

, a21 = d2

1
N1

c2

1
N2

, andn1, n2 are additive Gaussian noises with zero mean and unit variance. This
equivalence is verified by the transformation

y1 =
y∗1√
N1

, y2 =
y∗2√
N2

, x1 =
c1x

∗
1√

N1
, x2 =

d2x
∗
2√

N2
, n1 =

n∗
1√
N1

, n2 =
n∗

2√
N2

.

Since the capacity region of an IFC only depends on the marginal probability distributions, it is irrelevant whether
the noise termsn1 andn2 are statistically dependent of each other or not. The power constraints in the standard
form of the Gaussian IFC are

1

n

n
∑

k=1

(x1,k)
2 ≤ P1,

1

n

n
∑

k=1

(x2,k)
2 ≤ P2, (3)

whereP1 = c2

1
P ∗

1

N1

, P2 = d2

2
P ∗

2

N2

. We note that in the high SNR regime,P1, P2 may attain rather high values, and in the
broad band and power-limited scenario, the values ofP1, P2 are typically moderate or low. Throughout this paper,
we confine ourselves to Gaussian IFCs in theirstandard form. We assume here perfect synchronization between
the transmitters and their corresponding receivers, whichimplies that the capacity region of the IFC is convex.

An IFC is calleddegraded if there exists a conditional probabilityp′(y2|y1) such that the following equality
holds

p2(y2|x1, x2) =
∑

y1∈Y1

p′(y2|y1)p1(y1|x1, x2), ∀ y2 ∈ Y2, (x1, x2) ∈ X1 ×X2.

The last equality implies that one of the output terminals (Y2) is a degraded version of the other output terminal
(Y1). Since the capacity region of a degraded IFC only depends onits marginal probability distributions, then the
capacity region of a degraded IFC is identical to the capacity region of the IFC whose conditional probability
distribution is

p(y1, y2|x1, x2) = p′(y2|y1) p1(y1|x1, x2), ∀ (x1, x2) ∈ X1 ×X2, (y1, y2) ∈ Y1 ×Y2.

The latter IFC forms a serial concatenation of two channelsp1(y1|x1, x2) and p′(y2|y1) which are combined in
cascade. The full characterization of the capacity region of a discrete, memoryless and degraded IFC is still an
open problem. In its standard form (2), a two-user Gaussian IFC is degraded if and only ifa12 · a21 = 1 [3]. Inner
and outer bounds on the capacity region of a degraded Gaussian IFC were derived in [13].

A two-user Gaussian IFC is calledone-sided if either a12 = 0 or a21 = 0. In [5], Costa has demonstrated that the
class of degraded Gaussian IFCs are equivalent to the class of the one-sided Gaussian IFCs (from the view point
of their capacity regions). More specifically, if0 < c < 1, then it follows from [5] that the one-sided Gaussian IFC
whose characterization in the standard form is

y1 = x1 + n1, y2 = cx1 + x2 + n2,

has the same capacity region as the degraded Gaussian IFC

y1 = x1 +
x2

c
+ n1, y2 = cx1 + x2 + n2.

In both casesn1, n2 are Gaussian random variables with zero mean and unit variance, and the same power constraints
are imposed on the transmitted signalsx1,x2 for the two channels. The degraded Gaussian IFC above is the standard
form of the IFC which was depicted in [5, Fig. 6(d)]. Later, wewill rely on the equivalence between one-sided
and degraded Gaussian IFCs, and derive an exact expression for the sum-rate capacities of both channels.
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The capacity region of a Gaussian IFC with strong interference was independently determined by Han and
Kobayashi [9, Theorem 5.2] and Sato [14]. The capacity region of the Gaussian IFC with very strong interference
was determined by Carleial [2]. For the latter case of a Gaussian IFC with very strong interference (which is
characterized by the inequalities:a12 ≥ 1 + P1 and a21 ≥ 1 + P2), it was surprisingly demonstrated in [2] that
the interferencedoes not harm the capacity region. However, the capacity region of the Gaussian IFC was not
determined yet if eithera12 or a21 lie in the open interval(0, 1). The complete characterization of the capacity
region of a one-sided Gaussian IFC whose non-vanishing interference coefficient is between zero and unity is also
still unknown. For interference parameters in the interval(0, 1), weak and moderate interference are defined in the
symmetric case as follows: Ifa12 = a21 = a andP1 = P2 = P in (2) and (3), respectively, then by treating the
interfering signals as an additive gaussian noise, one can achieve a total rate oflog2

(

1 + P
1+aP

)

bits per channel
use. On the other hand, if time or frequency division multiplexing (TDM/ FDM) are applied, then the maximal
achievable total rate is independent of the interference coefficients and equals12 log2(1 + 2P ) bits per channel use.
Weak/ moderate interference is defined as the range of valuesof a between zero and unity for which the former/
latter approach yields a larger value of maximal achievabletotal rate. Following this definition, one obtains that
weak interference in a two-user, symmetric Gaussian IFC refers to the condition:0 < a <

√
1+2P−1

2P
, and moderate

interference refers to the complementary condition, i.e.,
√

1+2P−1
2P

≤ a < 1. For a two-user Gaussian IFC with
weak or moderate interference, the gap between the reportedupper and lower bounds on the sum-rate capacity is
rather large (see [10]), though it tends to zero in the case where a → 0 (i.e., no interference) ora → 1 (i.e., a
Gaussian MAC).

3. NEW RESULTS

Theorem 1 (A Computable Achievable Rate Region for the Two-User Gaussian Interference Channel): The set of
rate pairs

D =
⋃

α,β,λ∈[0,1]







(R1, R2) :
R1 ≤ λ · γ

(

αP1

λ

)

+ (1 − λ) · min
{

γ
(

(1−α)P1

1−λ+a12(1−β)P2

)

, γ
(

a21(1−α)P1

1−λ+(1−β)P2

)}

R2 ≤ (1 − λ) · γ
(

(1−β)P2

1−λ

)

+ λ · min
{

γ
(

βP2

λ+a21αP1

)

, γ
(

a12βP2

λ+αP1

)}







(4)

where
γ(x) ,

1

2
log2(1 + x), (5)

is achievable for the standard two-user Gaussian IFC (2) under the power constraints in (3). The rate regionD in
Eq. (4) is included in the general Han and Kobayashi (HK) achievable rate region (see [9, Theorem 3.2]).

If 0 ≤ a12, a21 < 1, thenD has the following properties:
1) It includes the straight line which connects the two points

(R1, R2) =

(

γ(P1), γ

(

a12P2

1 + P1

))

, (R1, R2) =

(

γ

(

a21P1

1 + P2

)

, γ(P2)

)

. (6)

2) It includes the achievable rate region by TDM/ FDM, but in both cases, the maximal achievable total rate
stays the same.

3) In the symmetric case wherea12 = a21 , a, andP1 = P2 , P :
• The calculation of the achievable rate region in (4) can be simplified, so that it only involves the two

parameters(β, λ) ∈ [0, 1] × [0, 1].
• For moderate interference (i.e., if

√
1+2P−1

2P
< a < 1), the regionD includes the particular achievable

sub-regionG′ of the full HK achievable rate region (see [9], Eq. (5.9)). The maximal total rate which is
achieved by the regionD is also strictly larger than the one achieved byG′.

• For weak interference, the maximal total rate which is achieved by G′ is strictly larger than the one
achieved by the regionD (with an equality ifa =

√
1+2P−1

2P
).

Theorem 2 (Sum-Capacity of Degraded and One-Sided Gaussian Interference Channels): For adegraded Gaus-
sian IFC which is expressed in the standard form (2) with the power constraints (3), the sum-rate capacity is

max(R1 + R2) =











γ(P1) + γ
(

P2

1+a21P1

)

if a12 ≥ 1

γ(P2) + γ
(

P1

1+a12P2

)

if a21 ≥ 1.

(7)
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For a one-sided Gaussian IFC, the sum-rate capacity for the case wherea12 = 0 is

max(R1 + R2) =























γ(P1) + γ
(

P2

1+a21P1

)

if 0 ≤ a21 ≤ 1

γ(a21P1 + P2) if 1 ≤ a21 ≤ 1 + P2

γ(P1) + γ(P2) if a21 ≥ 1 + P2

(8)

with a similar expression for the case wherea21 = 0 (by switching the indices of users 1 and 2).

Corollary 1: For a one-sided Gaussian IFC with weak or moderate interference (i.e., when the interference
coefficient is not above unity), the sum-rate capacity is achieved if the transmitter which is not interfered sends
its data at the maximal achievable rate of a single-user, andthe second transmitter sends its data at the maximal
possible rate where the interfering signal is treated as an additive Gaussian noise.

Theorem 3 (Achievable Sum-Rate for the Gaussian Interference Channel): Consider a two-user symmetric Gaus-
sian IFC in the standard form (2) wherea12 = a21 , a, andP1 = P2 , P is the common power constraint in
Eq. (3). Then, for large enough values ofP , the sum-rate capacity is larger than the maximal total ratewhich is
achieved by TDM/ FDM.
In particular, leta = a0 be thesingle root of the polynomial equation

P 2a4 + 2P (P + 1)a3 + (2P + 1)a2 − 2Pa − (1 + P ) = 0 (9)

which lies in the interval
√

4P+1−1
2P

≤ a ≤ 1 (i.e., it is included in the range of values of moderate interference).
Then, if P ≥ 17 dB, the maximal total rate which is attained by this sub-region is a decreasing function of
a ∈ [a0, 1]; it decreases from its maximal value ata = a0, which is at least

log2

(

a0 + a0P + a2
0P

1 − a0 + a2
0(Pa0 + 1)

)

(10)

to the value1
2 log2(1 + 2P ) at a = 1 (i.e., the maximal total rate that is achieved by TDM/ FDM).

Corollary 2: For a symmetric Gaussian IFC with moderate interference, TDM or FDM are not optimal in the
high power regime or in thenarrow band regime.

4. PROOFS OF THENEW RESULTS

A. Proof of Theorem 1

In [12, Theorem 5], Sato has proved that the following rate-region is achievable for a general two-user channel:

GB = convex hull
{

GB1
∪ GB2

}

where

GB1
= convex hull

⋃

PX1
,PX2

{

(R1, R2) :
0 ≤ R1 ≤ I(X1;Y1|X2),
0 ≤ R2 ≤ min{I(X2;Y1), I(X2;Y2)}

}

(11)

and

GB2
= convex hull

⋃

PX1
,PX2

{

(R1, R2) :
0 ≤ R1 ≤ min{I(X1;Y2), I(X1;Y1)},
0 ≤ R2 ≤ I(X2;Y2|X1)

}

. (12)

As was noted in Corollary 3.3 of [9], the achievable rate regions (11) and (12) form particular cases of the general
Han and Kobayashi achievable rate region.
For a two-user Gaussian IFC in standard form (2) with the power constraints in Eq. (3), consider the situation
where during a fractionλ of the transmission time, the symbols ofx1 andx2 are Gaussian distributed with zero
mean, and variancesαP1

λ
and βP2

λ
, respectively:

x1,i ∼ N(0,
αP1

λ
), x2,i ∼ N(0,

βP2

λ
), 0 ≤ α, β ≤ 1, i = 1, 2, . . . , nλ (13)
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and during the remaining fractionλ , 1 − λ of the transmission time, the symbols ofx1 and x2 are Gaussian
distributed with zero mean, and variancesαP1

λ
and βP2

λ
, respectively:

x1,i ∼ N(0,
αP1

λ
), x2,i ∼ N(0,

βP2

λ
), i = nλ + 1, nλ + 2, . . . , n. (14)

It can be easily verified that the two input codewords to the Gaussian IFC (2) satisfy the power constraints in
Eq. (3):

1

n
E[||x1||2] = λ · αP1

λ
+ λ · αP1

λ
= P1,

1

n
E[||x2||2] = λ · βP2

λ
+ λ · βP2

λ
= P2.

Consider now two modes of work: In the first mode, receiver 1 first decodes the message of the second sender, and
then uses it as side information for decoding his message (inthe Gaussian IFC model (2), receiver 1 subtracts from
the received signaly1, a scaled version ofx2). On the other hand, receiver 2 directly decodes his message(x2),
based on his received signal (y2). This mode of work corresponds to the achievable rate region in Eq. (11), and will
be used here a fractionλ of the transmission time with inputs to the Gaussian IFC which are Gaussian distributed
according to Eq. (13). In the second mode (which is dual to thefirst mode), we refer to the mode of work which
corresponds to the achievable rate region in Eq. (12), and assume that it is used during the remaining fractionλ of
the transmission time. We will assume here that during the second mode, the two inputs to the Gaussian IFC (2)
are Gaussian distributed according to Eq. (14). LetR

(i)
1 andR

(i)
2 be the transmission rates in mode no.i. Hence,

by time-sharing, the transmission rates of the two users are

(R1, R2) = λ(R
(1)
1 , R

(1)
2 ) + λ(R

(2)
1 , R

(2)
2 ) (15)

where from Eqs. (11)–(14), and the definition of the functionγ in (5):

0 ≤ R
(1)
1 ≤ γ

(

αP1

λ

)

, 0 ≤ R
(1)
2 ≤ min

{

γ

(

a12βP2

λ

1 + αP1

λ

)

, γ

(

βP2

λ

1 + a21αP1

λ

)}

(16)

and

0 ≤ R
(2)
1 ≤ min







γ





αP1

λ

1 + a12βP2

λ



 , γ





a21αP1

λ

1 + βP2

λ











, 0 ≤ R
(2)
2 ≤ γ

(

βP2

λ

)

. (17)

The combination of Eqs. (15)–(17) provides the achievable rate region in Eq. (4).
If 0 ≤ a12, a21 < 1, thenD in (4) is simplified to

D =
⋃

α,β,λ∈[0,1]







(R1, R2) :
R1 ≤ λ · γ

(

αP1

λ

)

+ λ · γ
(

a21αP1

λ+βP2

)

R2 ≤ λ · γ
(

βP2

λ

)

+ λ · γ
(

a12βP2

λ+αP1

)







. (18)

Though the achievable rate region (18) extends the one whichcorresponds to TDM/ FDM (since the latter region
is a particular case of the region (18) for the particular case whereα = 1 andβ = 0), unfortunately, the former
rate region does not increase the maximal total rate which isachievable by TDM/ FDM. From Eq. (18), and from
the simple identityγ

(

x
y

)

+ γ
(

z
x+y

)

= γ
(

x+z
y

)

which is valid for all positive values ofx, y andz, we obtain that

R1 + R2 ≤ λ

2
· log2

(

1 +
αP1 + a12βP2

λ

)

+
λ

2
· log2

(

1 +
βP2 + a21αP1

λ

)

.

The maximal value of the right-hand side above is achieved by

λ =
αP1 + a12βP2

(α + a21α)P1 + (β + a12β)P2

,

which yields that the maximal total rate satisfies the inequality

R1 + R2 ≤ 1
2 log2

(

1 + (α + a21α)P1 + (β + a12β)P2

)

≤ 1
2 log2(1 + P1 + P2)
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with equality if α = 1 andβ = 0. Since the maximal value here is also the maximal total rate which is achievable
by optimal TDM/ FDM, it follows that the maximal total rate ofthe achievable rate region (18) is equal to the
one which corresponds to TDM/ FDM. However, in contrast to the achievable rate region by TDM/ FDM, the
substitutionα = β = λ reveals that the rate region (18) also includes the achievable rate pairs

(R1, R2) =

(

γ(P1), γ

(

a21P1

1 + P2

))

, (R1, R2) =

(

γ

(

a12P2

1 + P1

)

, γ(P2)

)

and the straight line which connects these two points. This shows that the achievable rate region (18) necessarily
extends the achievable rate region of TDM/ FDM.

For the symmetric case whereP1 = P2 , P anda12 = a21 , a, the achievable rate region in (18) is simplified
under the assumption of weak or moderate interference (i.e., 0 ≤ a ≤ 1) to

D =
⋃

α,β,λ∈[0,1]







(R1, R2) :
R1 ≤ λ · γ

(

αP
λ

)

+ (1 − λ) · γ
(

a(1−α)P
1−λ+(1−β)P

)

R2 ≤ (1 − λ) · γ
(

(1−β)P
1−λ

)

+ λ · γ
(

aβP
λ+αP

)







. (19)

The simplification in (19) also suggests a simplification in the numerical calculation of the achievable rate region
in (4). For values ofR2 betweenγ

(

P
1+aP

)

andγ(P ), calculate for any pair of(β, λ) ∈ [0, 1]× [0, 1], the value of
α which satisfies the equation

(1 − λ) · γ
(

(1 − β)P

1 − λ

)

+ λ · γ
(

aβP

λ + αP

)

= R2

which is given in closed form as

α , α(β, λ) = aβ

[

exp
{2

λ
·
[

R2 − (1 − λ) γ
((1 − β)P

1 − λ

)]}

− 1

]−1

− λ

P
, (20)

and then to choose the maximal value of the function

R1 , R1(β, λ) = λ · γ
(

αP

λ

)

+ (1 − λ) · γ
(

a(1 − α)P

1 − λ + (1 − β)P

)

over those values of(β, λ) ∈ [0, 1] × [0, 1] for which α(β, λ) in Eq. (20) is located inside the interval[0, 1]. This
procedure suggests a simplification in the calculation of the boundary of the achievable rate region (4) under the
assumption above (we note that based on Eq. (18), a similar procedure can be done under the assumption that
0 ≤ a12, a21 ≤ 1, even without the further symmetry assumption above.) Straightforward (though tedious) algebra
shows that for moderate interference (i.e., when

√
1+2P−1

2P
< a < 1), the sub-regionG′ which is given in Eqs. (4.1)–

(4.9) and Eq. (5.9) of [9] (with the special setting in Section 5A of [9]) is strictly included in the achievable rate
region in (19) (as is also exemplified later in Section 5). However, in the case of weak interference (i.e., when
0 < a <

√
1+2P−1

2P
), then we have already proved that the maximal total rate which corresponds to the achievable

rate region in (4) is equal to that of TDM/ FDM, but on the otherhand, the maximal total rate of the regionG′

exceeds this common value. The reason for the latter statement is attributed to the fact that since the achievable
rate regionG′ includes the achievable rate region where the interfering signal is regarded as an additive Gaussian
noise, and also in the latter case, the total rate is equal tolog2

(

1 + P
1+aP

)

, then for weak interference (i.e., if

0 < a <
√

1+2P−1
2P

), it exceeds the total rate of optimal TDM/ FDM which is equalto 1
2 log2(1 + 2P ). It then

follows directly that for weak interference, the maximal total rate of the achievable rate regionG′ is strictly larger
than the maximal total rate which is obtained by the achievable rate region in (18).

B. Proof of Theorem 2

The sum-rate capacity of a degraded Gaussian IFC is obtainedas a consequence of the analysis by Sato in [13].
By referring to [13, Fig. 1], the pointA1 in this figure was shown to be on the boundary of the capacity region of
degraded Gaussian IFCs (by showing that this point lies on the boundary of some inner and outer bounds on this
capacity region). Relying on observations in [13], we show that the pointA1 in [13, Fig. 1] achieves the sum-rate
capacity of this channel (note that the capacity region of a degraded Gaussian IFC is unknown yet). To verify this
claim, we refer to the curve connecting pointsA1 andA3 in [13, Fig. 1], which together with the linesR1 = C1
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andR2 = C2 forms an outer bound on the capacity region of a degraded Gaussian IFC [13]. The pointA1 achieves
the maximal total rate w.r.t. this outer bound (and hence, since it also lies on the boundary of the inner bound,
it also obtains the sum-rate capacity). The reason for the claim thatA1 indeed achieves the maximal total rate of
the outer bound follows from [13, Eq. (11)] where it yields that for points on the curve which connects the points
A1 and A3 in [13, Fig. 1], the inequality−1 ≤ dR2

dR1

< 0 is satisfied. Hence, in the considered case where the
outputY2 is degraded w.r.t. the outputY1, the pointA1 achieves the maximal value ofR1 + R2 on this curve. By
symmetry, if the outputY1 is degraded w.r.t.Y2, then the point which achieves the sum-rate capacity is the one
which is symmetric to the pointA1 w.r.t. to the lineR1 = R2.

The sum-rate capacity of a one-sided Gaussian IFC follows from the observation which was made by Costa [5]
regarding the equivalence between one-sided and degraded Gaussian IFCs (see also Section 2 of this paper). Based
on this equivalence, the part of Eq. (8) which provides the sum-rate capacity of a one-sided Gaussian IFC with
weak or moderate interference follows from Eq. (7) (which refers to the sum-rate capacity of a degraded Gaussian
IFC). The part of Eq. (8) which provides the maximal total rate of a one-sided Gaussian IFC with strong or very
strong interference is a known result (and it is included in (8) for the sake of completeness; it follows directly
from the discussion in [14, Section 3]). we refer the reader to Remarks 3 and 4 in Section 6 where we discuss a
consequence of Theorem 2.

C. Proof of Theorem 3

Based on Theorem 6 in [3], the following rate region is achievable for the two-user Gaussian IFC in the standard
form (2)

R1 ≤ min











γ
(

δ1P1

1+(α1+β1)P1+a12P2

)

+ γ
(

(α1+β1)P1

1+a12α2P2

)

,

γ
(

a21(δ1+β1)P1

1+a21α1P1+(α2+β2)P2

)

+ γ
(

α1P1

1+a12α2P2

)











R2 ≤ min











γ
(

δ2P2

1+(α2+β2)P2+a21P1

)

+ γ
(

(α2+β2)P2

1+a21α1P1

)

,

γ
(

a12(δ2+β2)P2

1+a12α2P2+(α1+β1)P1

)

+ γ
(

α2P2

1+a21α1P1

)











(21)

whereαi, βi, δi (wherei = 1, 2) are non-negative numbers so thatαi +βi +δi = 1, and the functionγ is introduced
in (5). We note that the interference coefficientsa12 anda21 in the standard form (2) are flipped as compared to
the notation in [3].

In our case, since we assume that the two-user Gaussian IFC issymmetric (i.e.,a12 = a21 , a andP1 = P2 , P ),
then it follows that the maximal value ofR1 + R2 in the achievable rate region (21) is attained in the symmetric
case whereα1 = α2 , α, β1 = β2 , β, δ1 = δ2 , δ, andα, β and δ are non-negative numbers whose sum is 1
(i.e., α + β + δ = 1.).
We intend to show that for values ofP which areabove a certain threshold, the maximal total rate which is achieved
by Carleial’s region (21) is above the maximal total rate which is achieved by optimal TDM/ FDM (where the latter
value is equal to12 log2(1+2P ) bits per channel use). To this end, we will simplify the calculation by showing that
for high enough values ofP , then even for the particular case whereβ = 0 in (21), the corresponding maximal
total rate of the latter achievable rate region exceeds the maximal total rate which is obtained by optimal TDM/
FDM. Under the assumption thatβ = 0, one obtains thatδ = α , 1 − α, which yields that the maximization
of R1 + R2 for the special case of the achievable rate region (21) whereβ = 0 is performed by maximizing the
function

f(α) , min

{

log2

(

1 +
αP

1 + αP + aP

)

, log2

(

1 +
aαP

1 + aαP + αP

)}

+ log2

(

1 +
αP

1 + aαP

)

(22)

over the interval0 ≤ α ≤ 1.
The ratio between the two arguments of the functionlog2(1 + x) inside the minimization in the right-hand side

of (22) is
aαP

1+aαP+αP

αP
1+αP+aP

=
a + a2P + aαP

1 + αP + aαP
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so if a + a2P ≤ 1 (i.e., if 0 ≤ a ≤
√

1+4P−1
2P

), then it follows (since alsoα ≥ 0) that

f(α) = log2

(

1 +
aαP

1 + aαP + αP

)

+ log2

(

1 +
αP

1 + aαP

)

= log2

(

1 +
aαP + αP

1 + aαP

)

.

Sincea + a2P ≤ 1, then the maximum of the functionf(α) over the intervalα ∈ [0, 1] is achieved forα = 1, and

it is equal tolog2

(

1 + P
1+aP

)

. The latter value corresponds to the maximal total rate which is achieved when the
interfering signal is Gaussian distributed, and when the detector treats it as part of the additive Gaussian noise of
the received signal (in addition to the AWGN of the channel).
If on the other handa + a2P ≥ 1 anda ≤ 1 (i.e.,

√
1+4P−1

2P
≤ a ≤ 1), then we can separate the latter condition

into two sub-cases: If1 ≤ a + a2P ≤ 1 + αP , then same as we had before

f(α) = log2

(

1 +
aαP + αP

1 + aαP

)

.

Otherwise, if1 ≤ 1 + αP ≤ a + a2P , then it follows from Eq. (22) that

f(α) = log2

(

1 +
αP

1 + αP + aP

)

+ log2

(

1 +
αP

1 + aαP

)

.

Let α0 , a+a2P−1
P

(so that0 ≤ α0 ≤ 1, and1 + α0P = a + a2P ), then short calculation shows that the maximal
total rate which is achieved by the rate region (21) is at least equal to

f(α0) = log2

(

a + aP + a2P

1 − a + a2(aP + 1)

)

.

Let us define the function

g(a) ,
a + aP + a2P

1 − a + a2(aP + 1)
,

√
1 + 4P − 1

2P
≤ a ≤ 1. (23)

From the monotonicity of the logarithm function, the maximal value of the total rate in the achievable rate region
(21) is lower bounded by the logarithm ofg(a) for all values ofa within the interval

√
1+4P−1

2P
≤ a ≤ 1. We

intend to find the maximum ofg on the latter interval, and also to find a range of values fora, so that the lower
bound on the total rate(R1 + R2) exceeds the value of the total rate which is obtained by optimal TDM/ FDM
(i.e., 1

2 log2(1 + 2P )).

It can be shown that the derivative ofg is a monotonic decreasing function in the interval
√

1+4P−1
2P

≤ a ≤ 1,
and it has opposite signs at the endpoints of this interval. Therefore, there exits a single point inside this interval
where the derivative ofg is equal to zero, which also achieves the maximal value ofg inside this interval. By
differentiating the functiong, and setting the derivative to zero, straightforward algebra shows that the maximal
value ofg inside this interval can be calculated by solving the polynomial equation (9). Leta = a0 be the proper
solution of the polynomial equation (9) (see Theorem 3). Then, a lower bound on the maximal total rate which is
attained by the achievable region (21) is above the value which corresponds to TDM/ FDM if

log2

(

a0 + a0P + a2
0P

1 − a0 + a2
0(a0P + 1)

)

≥ 1

2
log2(1 + 2P ) (24)

where it can be verified numerically that inequality (24) is satisfied for values ofP above 17 dB.

Discussion: We will now consider a generalization of the achievable rate region of Carleial considered above
(based on Theorem 6 in [3]), which also includes the two approaches of treating the weak signal as additive noise
(for weak interference) or the TDM/ FDM approach (for moderate interference). To this end, we will consider
the particular case of the achievable rate region of Han and Kobayashi [9] where the size of the alphabet of the
time-sharing parameterQ is four, the random variablesU1, U2,W1 andW2 are conditionally independent givenQ
(their distributions are given in Table I for every possiblevalue ofQ), and where the random variablesX1 andX2

are given by
X1 = U1 + W1, X2 = U2 + W2. (25)
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Time-sharing parameter U1 W1 U2 W2

Prob (Q = 0) = δ ∼ N(0, 2αδP ) ∼ N(0, 2αδP ) ∼ N(0, 2βδP ) ∼ N(0, 2βδP )

Prob (Q = 1) = δ ∼ N(0, 2βδP ) ∼ N(0, 2βδP ) ∼ N(0, 2αδP ) ∼ N(0, 2αδP )

Prob (Q = 2) = λ(1 − 2δ) ∼ N(0,
(1+2δ)P

λ
) 0 0 0

Prob (Q = 3) = λ(1 − 2δ) 0 0 ∼ N(0,
(1+2δ)P

λ
) 0

TABLE I
THE PARAMETERSQ, U1, W1, U2, W2 WHICH ARE USED TO DEFINE A PARTICULAR SUB-REGION OF THE ACHIEVABLE RATE REGION OF

HAN AND KOBAYASHI [9]. THE RANDOM VARIABLES U1, U2, W1 AND W2 ARE CONDITIONALLY INDEPENDENT GIVEN Q, AND THE

RANDOM VARIABLES X1 AND X2 ARE GIVEN IN EQ. (25). WE ASSUME HERE THAT0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ λ ≤ 1, AND 0 ≤ δ ≤ 1
2
.

Based on Table I and Eq. (25)

E[x2
1] = δ · 2δP + δ · 2δP + λ(1 − 2δ) · (1 + 2δ)P

λ
= P

and similarlyE[x2
2] = P , so both inputs of the two-user Gaussian IFC satisfy the common power constraint (3)

whereP1 = P2 , P . By symmetry considerations, it is clear that the maximal total rate of the considered achievable
rate region is achieved forλ = 1

2 .
The achievable rate region by TDM/ FDM results in as a particular case of the HK region with the setting

in Table I whenδ = 0. The special achievable rate region where the interfering signal is treated as an additive
Gaussian noise results in as a particular case of the HK region with the setting in Table I forδ = 1

2 andα = β = 1.
Finally, The particular achievable rate region of Carleial(see [3, Theorem 6]) for the symmetric two-user Gaussian
IFC results in from the setting in Table I whenδ = 1

2 (which is verified from the superposition in Eq. (25)). These
simple observations yield that the maximal total rate of theachievable rate region of Han and Kobayashi in the
setting of Table I is not below the maximal total rate which one obtains by treating the interfering signal as an
additive noise (in the case of weak interference), and it is also not below the maximal total rate which is obtained
by optimal TDM/ FDM (in the case of moderate interference). From the discussion above regarding Carleial’s
achievable rate region (21), we obtained that for high values of P , the maximal total rate of the latter region (and
hence, the maximal total rate which corresponds to the Han and Kobayashi (HK) region with the setting in Table I)
exceeds the maximal total rate which is obtained by the two aforementioned methods (for weak and moderate
interference). In the sequel, we will calculate the maximaltotal rate which corresponds to the HK region with
the specific setting in Table I, and numerical results of the resulting expression are presented in Section 5. The
discussion in [9] yields that the maximal total rate of the achievable rate region by Han and Kobayashi is given by

max(R1 + R2) = ρ12 (26)

where

ρ12 , σ12 + I(Y1;U1|W1,W2, Q) + I(Y2;U2|W1,W2, Q) (27)

and

σ12 , min
{

I(Y1;W1,W2|Q), I(Y2;W1W2|Q),

I(Y1;W1|W2, Q) + I(Y2;W2|W1, Q),

I(Y2;W1|W2, Q) + I(Y1;W2|W2, Q)
}

.

(28)

Based on the definition of the functionγ in Eq. (5), we obtain that forλ = 1
2

I(Y1;U1|W1,W2, Q) = I(Y2;U2|W1,W2, Q)

= δ · γ
(

2αδP

1 + 2aβδP

)

+ δ · γ
(

2βδP

1 + 2aαδP

)

+

(

1 − 2δ

2

)

· γ
(

2(1 + 2δ)P
)

,
(29)
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I(Y1;W1,W2|Q) = I(Y2;W1,W2|Q) = δ · γ
(

2αδP + 2aβδP

1 + 2αδP + 2aβδP

)

+ δ · γ
(

2βδP + 2aαδP

1 + 2βδP + 2aαδP

)

(30)

I(Y1;W1|W2, Q) = I(Y2;W2|W1, Q) = δ · γ
(

2αδP

1 + 2αδP + 2aβδP

)

+ δ · γ
(

2βδP

1 + 2βδP + 2aαδP

)

(31)

I(Y2;W1|W2, Q) = I(Y1;W2|W1, Q) = δ · γ
(

2aαδP

1 + 2aαδP + 2βδP

)

+ δ · γ
(

2aβδP

1 + 2αδP + 2aβδP

)

. (32)

By substituting Eqs. (27)–(32) in (26), we obtain that the maximal total rate of the achievable region that
corresponds to Table I is equal to the maximum of the function

ρ12 , ρ12(α, β, δ)

= 2δ · γ
(

2αδP

1 + 2aβδP

)

+ 2δ · γ
(

2βδP

1 + 2aαδP

)

+ (1 − 2δ) · γ
(

2(1 + 2δ)P
)

+ min

{

δ · γ
(

2αδP + 2aβδP

1 + 2αδP + 2aβδP

)

+ δ · γ
(

2βδP + 2aαδP

1 + 2βδP + 2aαδP

)

,

2δ · γ
(

2αδP

1 + 2αδP + 2aβδP

)

+ 2δ · γ
(

2βδP

1 + 2βδP + 2aαδP

)

,

2δ · γ
(

2aαδP

1 + 2aαδP + 2βδP

)

+ 2δ · γ
(

2aβδP

1 + 2αδP + 2aβδP

)

}

(33)

where the functionγ is defined in Eq. (5), and the maximization ofρ12 is carried over the parameters(α, β, δ)
where0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and0 ≤ δ ≤ 1

2 .
Corollary 2 follows directly from the scaling of the input signals in order to obtain the standard form (2) for the

two-user Gaussian IFC.

5. NUMERICAL RESULTS

We present here numerical results which illustrate the theorems in Section 3, regarding achievable rate regions
and bounds on the sum-rate capacity of a two-user Gaussian IFC.

Fig. 1 compares the achievable rate region for a two-user Gaussian IFC wherea12 = a21 = 0.5 in the standard
form (2), and under the common power constraintP1 = P2 = 6 in (3). As expected from Theorem 1, the achievable
rate region by TDM/ FDM (curve 1) is included in the rate region which is achieved by Theorem 1 (curve 4),
but the maximal total rate in both cases stays the same. Basedon Theorem 1, the achievable rate region whose
boundary is curve 2 is included in the achievable rate regionwhich is obtained in Theorem 1. Since in our setting
P = 6, a = 0.5, anda >

√
1+2P−1

2P
= 0.2171, then it follows from Theorem 1 that the particular achievable rate

regionG′ (see curve 3) is included in the achievable rate region of Theorem 1 (see curve 4), as is illustrated in
Fig. 1. Moreover, the maximal achievable total rate in the former region is strictly smaller than the one which
corresponds to the latter achievable rate region.

Fig. 2 compares upper and lower bounds on the sum-rate capacity of a two-user symmetric Gaussian IFC. We
consider here the symmetric case where in the standard form,P1 = P2 , P , anda12 = a21 , a (wherea designates
the square of the magnitude of the interference coefficient in (2), and it is the horizontal axis in Fig. 2). As an
example, for the case whereP = 30 dB, it follows thata0 = 0.0821 is the appropriate solution of the polynomial
equation in Theorem 3. As can be verified from Fig. 2, if the common value ofa12 anda21 (under the symmetry
assumption) is between 0.0821 and 1, then the maximal total rate which is achieved by curve 5 is strictly larger
than the achievable region by TDM/ FDM (curve 2). In particular, if a12 = a21 = 0.0821, the values of the maximal
total rate which are achieved by curves 2 and 5 are 5.483 and 5.911 bits per channel use, respectively (furthermore,
the latter value coincides with the lower bound on the maximal total rate which is given in Eq. (10), as compared
to an upper bound of 6.774 bits per channel use, which followsfrom Kramer’s upper bound [10] and is depicted
in curve 1 of Fig. 2). Moreover, the solution of inequality (24) (wherea0 in (24) is now replaced with the arbitrary
common value of the interference coefficienta) yields that0.0448 ≤ a ≤ 0.1382. Clearly, as reflected in Fig. 2, it
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Fig. 1. Achievable rates for the two-user Gaussian IFC with weak/ moderate interference coefficients. Curve 1 is the boundary of the
achievable rate region by TDM/ FDM. Curve 2 is the boundary ofthe achievable rate region which is obtained by time-sharing between
the two rate pairs where one of the transmitters sends its data reliably at the maximal possible rate (i.e., the maximal rate it can achieve
in the absence of interference), and the other transmitter decreases its data rate to the point where both receivers can reliably decode its
message. The boundary of curve 2 includes the straight line that connects the two rate pairs specified in Eq. (6). Curve 3 isthe boundary
of the achievable rate regionG′ which was derived by Han and Kobayashi as a particular case oftheir general achievable rate region (see
Eqs. (4.1)–(4.9), (5.9), and the setting in Section 5.A of [9]). Curve 4 is the achievable rate region in Theorem 1 which inthe symmetric
case whereP1 = P2 anda12 = a21, it is simplified to the rate region in Eq. (19).

is a partial interval as compared to the interval for which curve 5 in Fig. 2 gets values above the horizontal line
in curve 2 (where the latter corresponds to the maximal totalrate which is obtained by TDM/ FDM). The reason
for this observation is related to the simplifications whichfinally led to the derivation of inequality (24), referring
to a looser achievable rate region as compared to one which corresponds to the particular Han and Kobayashi rate
region with the setting in Table I and Eq. (25). However, it isinteresting to note the lower bound toa (i.e., 0.0448)
approximates well the lower limit ofa, for which the total rate in curves 3, 4, and 5 is above the value which
corresponds to curve 2 (see Fig. 2). This phenomenon was verified also for other values ofP above 17 dB. This
value is the threshold onP for which there exists a bump in Fig. 2 which in turn signals a total rate above the
maximal total rate which is obtained by TDM/FDM.

The sum-rate capacity of a degraded or a one-sided Gaussian IFC are provided in Eqs. (7) and (8), respectively.
The sum-rate capacity of a one-sided Gaussian IFC is shown inFig. 3, where we assume a common power constraint
of P = 6. It is a monotonic decreasing function of the interference coefficient (a) in the range0 ≤ a ≤ 1, and
a monotonic increasing function ofa for strong interference (i.e., for1 ≤ a ≤ 1 + P ) [14]. For very strong
interference, the sum-rate capacity stays constant because the interference does not harm, as was demonstrated by
Carleial [2]. The two limit cases in Fig. 3 wherea = 0 anda = 1 correspond to two separate AWGN channels
and to a Gaussian multiple-access channel, and therefore, the sum-rate capacity is equal tolog2(1 + P ) = 2.807
and 1

2 log2(1 + 2P ) = 1.850 bits per channel use, respectively (see Fig. 3).
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Fig. 2. Upper and lower bounds on the sum-rate capacity for the two-user Gaussian IFC. The curves which are depicted in Fig. 2 correspond
to the following bounds: Curve 1 is Kramer’s upper bound on the maximal achievable total rate [10, Theorem 2]. Curve 2 is the simple
version of Carleial’s lower bound [3] which treats the interfering signal as an additive Gaussian noise for weak interference, and which relies
on the TDM/ FDM approach for moderate interference. Curve 3 is the maximal total rate which is achieved with the particular sub-region of
Han and Kobayashi (G′) in Section 5.A of [9] (where in the latter case, time-sharing is not performed). Curves 4 and 5 refer to the maximal
total rates which are obtained for the particular cases of the general achievable rate region of Han and Kobayashi [9] with the specific setting
in Table I and in Eq. (25); curve 4 refers to the case whereδ = 1

2
in Table I (so, the time-sharing parameterQ is binary), and curve 5 of

Fig. 2 corresponds to the case where the maximization of the total rate is carried over the additional parameterδ ∈ [0, 1
2
] (so, in the latter

case,Q is a random variable whose alphabet is of size four). Curves 4and 5 are therefore calculated by the maximization of the right-hand
side of Eq. (33) where for the calculation of curve 4, we setδ = 1

2
and maximizeρ12 over the parameters(α, β) ∈ [0, 1] × [0, 1], and the

calculation of curve 5 is performed by the numerical maximization of ρ12 in (33) over the three parametersα, β andδ (where0 ≤ δ ≤ 1
2
).

6. CONCLUDING REMARKS

1) In [9, Theorem 3.1], Han and Kobayashi derived an achievable rate region for a general discrete memoryless
IFC. It is the best reported achievable rate region, and it yields as particular cases all the previously reported
achievable rate regions by Sato, Carleial and others (including the achievable rate region that is specified
in Theorem 1 here). However, it is in general prohibitively complex to calculate the HK rate region. For
a two-user Gaussian IFC with weak or moderate interference,the calculation of the achievable region in
[9, Theorem 3.1] does not seem to be feasible. The achievablerate regionD in Theorem 1 is feasible for
calculation, and for a two-user Gaussian IFC withmoderate interference (i.e., if

√
1+2P−1

2P
< a ≤ 1), it

includes the particular rate regionG′ which was derived by Han and Kobayashi in [9, Section V-A] (note
that, as opposed to their full achievable rate region, the particular rate regionG′ is feasible for calculation, and
it also coincides with the capacity region of a two-user Gaussian IFC withstrong interference). For moderate
interference, the maximal total rate which is achieved by the rate regionD in Theorem 1 is strictly larger
than the maximal total rate which corresponds toG′. We note that although for a two-user Gaussian IFC with
weak interference (i.e., for0 < a <

√
1+2P−1

2P
), the maximal total rate which is obtained byG′ is strictly
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Fig. 3. The sum-rate capacity of a one-sided Gaussian IFC with a common power constraintP1 = P2 = 6.

larger than the one which corresponds to the achievable rateregion D in Theorem 1, the regionD is not
necessarily included inG′ for the case of weak interference; on the hand, Theorem 1 ensures thatG′ ⊂ D

for a two-user Gaussian IFC with moderate interference.
2) It is not clear whether the sum-rate capacity should be a decreasing function of the common interference

coefficient when its value varies between zero and unity (since there is no co-operation between the receivers).
Nonetheless, we believe that the bump which is observed in curves 3, 4 and 5 of Fig. 2 is an artifact of
the inner bounds on the capacity region: for one-sided or degraded Gaussian IFC, the sum-rate capacity is a
monotonic decreasing function in the range of weak/ moderate interference (as follows from Theorem 2, and
exemplified in Fig. 3), it is likely to be the case in general for a two-user Gaussian IFC.

3) It is noted that the sum-capacity of a one-sided Gaussian IFC with is provided in Eq. (8) implies the upper
bound on the sum-rate capacity of a two-user Gaussian IFC in [10, Theorem 1]. To see that, let us consider a
two-user Gaussian IFC in the standard form (see (2)) where the power constraints on the first and second inputs
are P1 and P2, respectively. We will consider in the following the case where the interference coefficients
a12 anda21 in the standard form (2) are between zero and one, though the bound follow in the same way for
all the other cases. If one of the interferences between the two senders in canceled (i.e., if we seta12 = 0 or
a21 = 0), then the capacity region of the resulting one-sided Gaussian IFC does not shrink as compared to the
capacity region of the original Gaussian IFC. Hence, the minimal value among the two sum-rate capacities
of the two resulting one-sided Gaussian IFCs forms an upper bound on the sum-rate capacity of the original
Gaussian IFC (whose interference coefficientsa12 and a21 are both nonzero). From the expression for the
exact sum-rate capacity of a one-sided Gaussian IFC in (8), it follows that the sum-rate capacity of the original
Gaussian IFC satisfies the inequality

R1 + R2 ≤ min

{

γ(P1) + γ
( P2

1 + a21P1

)

, γ(P2) + γ
( P1

1 + a12P2

)

}

. (34)

Sinceγ(x) = 1
2 log2(1 + x) and we examine here the case where0 ≤ a12, a21 ≤ 1, then it follows that

γ(P1) + γ
( P2

1 + a21P1

)

=
1

2
log2

(

(P2 + a21P1 + 1)
( P1 + 1

min{1, a21}P1 + 1

))

(35)
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and
γ(P2) + γ

( P1

1 + a12P2

)

=
1

2
log2

(

(P1 + a12P2 + 1)
( P2 + 1

min{1, a12}P2 + 1

))

(36)

so the combination of (34)–(36) provides the upper bound on the sum-rate capacity of a two-user Gaussian
IFC which appears in [10, Theorem 1]. It also proves that the upper bound on the sum-rate capacity in [10,
Theorem 2] is always better than the one in [10, Theorem 1], aswas demonstrated in [10, Theorem 3]. It is
here that our notation for the interference coefficients in (2) are consistent with those in the paper by Han
and Kobayashi (see [9, Eqs. (5.3), (5.4)]), buta12 anda21 in [10] need to be reversed to be consistent with
the notation used here.

4) In continuation to item 3, it is noted that the upper boundson the sum-rate capacity of a two-user Gaussian
IFC which are presented in [10] coincide asymptotically in the limit where we letP tend to infinity. For
simplicity, it is shown in the symmetric case wherea12 = a21 = a andP1 = P2 = P . In this case, the upper
bounds on the sum-rate capacity of a two-user Gaussian IFC are

R1 + R2 ≤ 1

2
log2(1 + P ) +

1

2
log2

(

1 +
P

1 + aP

)

(37)

and

R1 + R2 ≤ log2

(

1 +
−(1 + a) +

√

(1 + a)2 + 4a(1 + a)P

2a

)

(38)

so, it can be verified that the ratio of the right-hand sides of(37) and (38) tends to 1 as we letP tend
to infinity. For finite P , as was mentioned in [10] and in item 3 above, the upper bound on the same-rate
capacity in (38) is always tighter than the upper bound in (37).

5) For a two-user Gaussian IFC, it was stated in [5, Theorem 1]that if one of the senders is transmitting at
its maximal possible rate (i.e., the maximal rate which is achievable for a single-user, in the absence of
interference), then the other sender is obliged to decreaseits data rate to the point where both receivers can
reliably decode its message. The implication of the proof ofthis converse theorem is that these two rate-pairs
form the corner points of the capacity region of a two-user Gaussian IFC. For a two-user Gaussian IFC with
strong interference whose characterization of its capacity region is completely known (see [9, Theorem 5.2]
and [14]), this is indeed the case, as the capacity region in the latter case is the intersection of the capacity
regions of the two Gaussian multiple-access channels whichare induced by the two-user Gaussian IFC.
Unfortunately, it is not clear whether in general these are the two corner points of the capacity region of
a two-user Gaussian IFC due to a problem in a certain step of the proof to the converse theorem in [5,
Appendix B] (which was confirmed by the author of [5], though we could not fix this problematic step in
the proof). By restating this step as a mathematical problem, it considers the following issue: LetX and
Y be two n-dimensional random vectors, whereX is a Gaussian random vector with i.i.d. components of
zero mean and varianceσ2. The differential entropy ofX attains its maximal value under the above power
constraint, and it is equal to

h(X) =
n

2
log(2πeσ2).

Let Y be ann-dimensional random vector whose components satisfy the following constraints:

E[Yi] = 0,
1

n

n
∑

i=1

(Yi)
2 ≤ σ2. (39)

Unlike X, the components ofY may be correlated, andY may not be Gaussian. However,Y is considered
to be ”almost Gaussian” in the sense that

h(X) − h(Y ) ≤ nε (40)

for some positiveε (we note that under the conditions in (39), the left-hand side of (40) is necessarily non-
negative.) We introduce now an arbitraryn-dimensional random vectorZ where in probability 1, the vector
Z is inside a sphere of radius

√
nP for a positive constantP , i.e.,

1

n

n
∑

i=1

(zi)
2 ≤ P (41)
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and Z is known to be statistically independent ofX and Y . The question is if under the assumptions in
(39)–(41), one can prove an inequality of the form

h(Y + Z) − h(X + Z) ≤ δ(ε, P ) · n

whereδ(ε, P ) → 0 asε → 0 ?
In essence, the proof in [5, Appendix B] shows that

D(PY ||PX) ≤ nε,

where PX and PY designate the probability distributions ofX and Y , respectively, andD(P ||Q) stands
for the divergence between the probability distributionsP andQ. Then, by the data processing theorem, it
follows that

D(PY +Z ||PX+Z) ≤ D(PY ||PX) ≤ nε.

The proof in [5, Appendix B] relies on Pinsker’s inequality which forms a lower bound on the divergence in
terms of theL1 distance between the two probability measures. The problematic issue in this proof is related
to the link between theL1 distance and the difference between the two differential entropies. Specifically,
[5] utilizes a parameterβ which depends exponentially inn, but is treated after [5, Eq. (B.11)] as if it was
a constant. This yields thatlog(β) in Eq. (B.14) of [5] grows linearly inn, and hence the right-hand side of
(B.14) grows liken

3

2 (and not linearly, as desired).
6) One possible direction in trying to fix the problematic issue which is addressed in item 5 relied on some

recent refinements of Pinsker’s inequality [8]. One of theserefinements (see [8, Theorem 7]) states that

D(P ||Q) ≥ 1

2
V 2 +

1

36
V 4 +

1

270
V 6 +

221

340, 200
V 8 (42)

whereV designates theL1 distance betweenP andQ, i.e.,

V ,

∫ ∞

−∞
|P (x) − Q(x)| dx.

Inequality (42) enables to reduce the power ofn in the right hand-side of [5, Inequality (B.14)]) from32 to
9
8 . A further refinement of Pinsker’s inequality (see [8, Section 4]) enables to further reduce the power ofn

to 49
48 , but it is still not the desiredlinear dependence in n which is required to complete the proof in [5].

Solving this problem has a direct implication on the characterization of the two corner points of the capacity
region of a general Gaussian interference channel (it is likely that the two rate pairs which were specified in
Theorem 1 of [5] are indeed the two corner points of the capacity region of a two-user Gaussian IFC.)

7) The derivation of an achievable rate region for the two-user Gaussian IFC refers to vanishingaverage decoding
error probability. The maximal-error and average-error capacity regions arenot necessarily identical for
general multi-user channels; In [7], Dueck has shown by examples that for two-way channels and for multiple-
access channels, the capacity regions depend on the error concept used. Though these two capacity regions
are identical for a general broadcast channel ([6], [16]), this is not necessarily the case for general multi-
user channels. In particular, these two capacity regions are not necessarily identical for interference channels
(otherwise, this would also be the case for the multiple-access channel, in contradiction to [7]).
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