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Abstract

Channel coding over arbitrarily-permuted parallel channels was first studied by Willems et al. (2008). This paper

introduces capacity-achieving polar coding schemes for arbitrarily-permuted parallel channels where the component

channels are memoryless, binary-input and output-symmetric.

I. INTRODUCTION

Parallel channels are used to serve as a model for a time-varying communication channel. In this model, each

one of the parallel channels corresponds to a possible stateof the time-varying channel, and the communication

takes place over one of these parallel channels according tothe instantaneous state of the time-varying channel.

The model ofarbitrarily-permuted parallel channelswas introduced in [1] where each message is encoded into a

number (sayS) of code-sequences with a common block length, each one of the S code-sequences is transmitted

over a different parallel channel where the assignment of codewords to channels is known to the receiver, and

it is modeled by an arbitrary permutationπ of the set{1, . . . , S} where code-sequence no.s ∈ {1, . . . , S} is

transmitted over the parallel channel no.r = π(s). Finally, the receiver estimates the transmitted message based on

the knowledge of this permutation and the received outputs from theS parallel channels. This model of parallel

channels can be viewed as a special case of the classical compound channel setting [2].

Channel coding over arbitrarily-permuted parallel channels was studied in [1] and more recently in [3], where

it was assumed that all these parallel channels have an identical input alphabet. In the case where all the parallel

channels have the same capacity-achieving input distribution, it was proved in [1, Theorem 1] that the capacity of

the system is equal to the sum of the capacities of the parallel channels. Furthermore, [1] also addresses the case

where the parallel channels have different capacity-achieving input distributions, and it determines the capacity of

the system also in this case (see [1, Theorem 2]).

This research was supported by the Israel Science Foundation (grant no. 1070/07), and by the European Commission in the framework of
the FP7 Network of Excellence in Wireless Communications (NEWCOM++).
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Arbitrarily-permuted parallel channels may be of interestwhen analyzing, e.g., networking applications, OFDM

and BICM systems. For example, the channel frequency bands or the bits may not be allocated at the transmitter

level, and though this allocation is fixed, it takes the form of a random permutation that is selected once per

transmission. In the setting of transmission of data through packets, these packets can be viewed as being transmitted

over a set of parallel channels where each packet goes through one of the available parallel channels depending

on the higher level of the communication protocol. The transmission in this case is done in an interleaved manner

where consecutive bits are separated to different packets,the number of which is the cardinalityS of the set of

parallel channels. This, again, provides the model of arbitrarily-permuted parallel channels, though we do not deal

in this work with data flow issues (assuming that the system isat equilibrium as far as the data/ packet rate is

considered). It is also noted that these channels may be actually serial in time where a time frame ofS consecutive

symbols is interpreted as the time frame of a super-symbol. The mix in this case may result due to the random

availability of the channels, which stays fixed for the wholecodeword transmission.

The coding schemes suggested in [1] are based on random coding and decoding by joint typicality. One of the

main contributions of [1] is the introduction of a concatenation of rate-matching codes with parallel copies of a fully

random block code. A rate-matching code is a device that encodes a single message into a set of codewords, and

it creates the required dependence between the codewords for the parallel channels. It was shown in [1] that under

specific structural conditions on the rate-matching code, asequential decoding procedure can achieve the capacity

of the considered channel model. Moreover, it was shown thatsuch rate-matching codes can be constructed from a

set of maximum-distance separable (MDS) codes. In [3], space-time modulation was considered for the particular

case of arbitrarily-permuted parallel Gaussian channels.

In this work, we consider the construction of polar codes as channel codes for arbitrarily-permuted parallel

channels. Polar codes were recently proposed in [4], where it was demonstrated that this class of codes can

achieve the capacity of a symmetric DMC with low encoding anddecoding complexity. We propose two polar

coding schemes in this work, and show that they achieve the capacity of arbitrarily-permuted parallel channels

where each of these components is assumed to be a memoryless,binary-input and output-symmetric channel. Two

simplifications of these schemes are also discussed in two special cases. The first simplification addresses the case

where the communication is over two or three parallel channels, and the second simplification refers to the case of

communication over parallel (stochastically) degraded channels.

The polar code framework is shown to suit well as a coding technique in the setting of arbitrarily-permuted

parallel channels. The construction of the rate-matching codes in [1, Section 6] via the use of MDS codes suggests

that they can also play an instrumental role when polar codesare used as channel codes for the considered setting

of parallel channels. However, in order to use polar codes inthe parallel channel setting, the concept of the fixed

bits in the original polar codes [4] need to be slightly generalized. In [4], the values of these fixed bits can be

chosen arbitrarily, independently of the transmitted message. In the proposed schemes for the arbitrarily-permuted

parallel channels, some of the concerned bits need to incorporate an algebraic structure of the MDS codes, and they

actually depend on the transmitted message in a manner similar to the rate-matching code in [1]. Another unique

feature of the proposed scheme is that the successive cancellation techniques are applied in a parallel fashion on

the channels.

This rest of the paper is structured as follows. Section II provides some preliminary material. The proposed

parallel polar coding schemes are introduced and analyzed in Section III with some technicalities that are relegated

to the appendix. Finally, Section IV concludes this work.



HOF ET AL.: CAPACITY-ACHIEVING POLAR CODES FOR ARBITRARILY-PERMUTED PARALLEL CHANNELS 3

encoder π

x1

x2

x3

x
π(1)

channel 1

channel 2

channel 3

decoder
x
π(2)

x
π(3)

xm x̂m

Fig. 1: Communication over an arbitrarily-permuted parallel channel with S = 3 in this example (taken from [1]).

II. PRELIMINARIES

A. Arbitrarily Permuted Parallel Channels

Consider the communication model depicted in Figure 1. A messagexm is transmitted over a set ofS parallel

memoryless channels. The notation[S] , {1, . . . , S} is used in this paper. All channels are assumed to have a

common input alphabetX , and possibly different output alphabetsYs, s ∈ [S]. The transition probability function

of each channel is denoted byPs(ys|x), whereys ∈ Ys, s ∈ [S], and x ∈ X . The encoding operation maps

the messagexm into a set ofS codewords{xs ∈ X n}S
s=1. Each of these codewords is of lengthn, and it is

transmitted over a different channel. The assignment of codewords to channels is done by an arbitrary permutation

π : [S] → [S] (note thatπ is fixed during the entire block transmission). The permutation π is a part of the

communication channel model, the encoder has no control or information on the arbitrary permutation chosen

during the codeword transmission. The set of possibleS channels are known at both the encoder and decoder. In

addition, the decoder knows the specific chosen permutation. Formally, the channel is defined by the following

family of transition probabilities:
{

P
(

Y|X;π
)

: Y ∈ {Y1 × Y2 × · · · × YS}
n, X ∈ X s×n, π : [S] → [S]

}∞

n=1

whereX = (x1,x2, . . . ,xS) are the transmitted codewords,Y = (y1,y2, . . . ,yS) are the received vectors,

P
(

Y|X;π
)

=
S
∏

s=1

Ps

(

ys|xπ(s)

)

(1)

is the probability law of the parallel channels, andπ : [S] → [S] is the arbitrary permutation mapping of codewords

to channels. The decoder produces the estimated messagex̂m based on the received vectorsY and the permutation

π. The case where the decoded message is different from the transmitted message,̂xm 6= xm, is a block error event.

Definition 1 (Achievable rates and channel capacity). A rate R > 0 is achievable for communication over a set

of S arbitrarily-permuted parallel channels if there exists a sequence of encoders and decoders such that for any

δ > 0 and sufficiently large block lengthn

1

n
log2 M ≥ R − δ (2)

P
(π)
e (n) ≤ δ, for all S! permutationsπ : [S] → [S] (3)

where M is the number of possible messages andP
(π)
e (n) is the average block error probability for a fixed

permutationπ and block lengthn. The capacityCΠ is the maximum of such achievable rates.

The capacityCΠ of this channel model can be derived as a particular case of the compound channel (see, e.g.,
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[2] and reference therein). Specifically, if there exists aninput distribution that achieves capacity for all the parallel

channels, then the capacityCΠ is given by

CΠ =

S
∑

s=1

Cs

whereCs is the capacity of thes-th channel,s ∈ [S]. Two capacity-achieving schemes were provided in [1]:

1) A random coding scheme with decoding by joint typicality over product channels. The notion of product

channels is defined in (1) where each possible permutationπ provides a different product channel. Conse-

quently, there areS! possible product channels. A properly chosen random code was shown to achieve the

capacityCΠ with decoding by joint typicality for all possible permutations π.

2) A rate-matching code together with random codebook generation and sequential decoding by joint typicality.

The construction technique for rate-matching codes in [1, Section 6C], based on MDS codes, provided an important

intuition for the parallel polar schemes introduced in the next section.

For the binary coding schemes provided in this paper, it is assumed without any loss of generality that the

messagexm is provided in terms of binary information (referred to as information bits or message bits). For

the non-binary scheme, it is assumed that the message is provided in terms of information symbols, or message

information symbols over a suitable non-binary finite field.

B. Polar Codes

The following basic definitions and results on polar codes (mainly extracted from [4] and [5]) are essential for

the construction given in the next section. For a DMC, polar codes achieve the mutual information between an

equiprobable input and the channel output.

Definition 2 (Symmetric binary-input channels). A DMC with a transition probabilityp, a binary-input alphabet

X = {0, 1}, and an output alphabetY is said to be symmetric if there exists a permutationT overY such that

1) The inverse permutationT −1 is equal toT , i.e.,

T −1(y) = T (y), ∀ y ∈ Y.

2) The transition probabilityp satisfies

p(y|0) = p(T (y)|1), ∀ y ∈ Y.

Polar codes are defined in [4] using a recursive channel synthesizing operation which is referred to as channel

combining. An alternative recursive algebraic construction is also provided in [4]. Afteri ≥ 1 recursive steps, a

n × n matrix Gn, wheren = 2i is defined. The matrixGn is refereed to as the polar generator matrix of sizen.

Let An ⊆ [n], and denote byAc
n the complementary set ofAn (i.e.,Ac

n = [n] \An). Given a setAn and a polar

generator matrix of sizen, Gn, a class of block codes of block lengthn and code-rate1
n
|An| are formed1. The

setAn is referred to as the information set. Polar codes are constructed by a specific choice of the information set

An.

The encoding of|An| information bits to a codewordx ∈ {0, 1}n is carried in two steps. First, a binary length-n

vectorw is defined. Over the indices specified byAn, the components ofw are set according to the information

bits. The rest of the|Ac
n| bits of w are predetermined and fixed according to a particular code design (these bits

1These codes can be shown to be coset codes.
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are denoted as “frozen bits” in [4]). Next, a codeword is evaluated according to

x = wGn . (4)

Let p be a transition probability function of a binary-input DMC with an input-alphabetX = {0, 1} and an

output-alphabetY. The equivalent synthesized channel construction, afteri ≥ 1 recursive steps, provides a channel

denoted bypn, n = 2i, whose input is a binary vector in{0, 1}n and output inYn. The channelpn is noted as the

combined channel in [4], and it can be shown to satisfy the equality

pn(y|w) = p(y|wGn) ∀ y ∈ Yn andw ∈ Xn . (5)

Channel splitting is another important operation that is introduced in [4] for polar codes. The split channels

{p
(l)
n }n

l=1, all with a binary input alphabetX = {0, 1} and output alphabetsYn × X l−1, l ∈ [n], are defined

according to

p(l)
n (y,w|x) ,

1

|X |n−1

∑

c∈Xn−l

pn

(

y|(w, x, c)
)

(6)

wherey ∈ Yn, w ∈ X l−1, andx ∈ X . The importance of channel splitting is due to its role in thesuccessive

cancellation decoding procedure that is provided in [4]. Define

fdec(p
(l)
n ,y,w) , arg max

x∈X
p(l)

n (y,w|x) (7)

wherep
(l)
n is a split channel defined in (6),y ∈ Yn, w ∈ X l−1 and ties may be settled arbitrarily. For the particular

case wherel = 1, the parameterw is dropped from the notation. The decoding rulef defined in (7) may be

interpreted as an optimal detection rule for a bit transmitted over the corresponding split channel. The decoding

procedure for polar codes iterates over the indexl ∈ [n]. If l ∈ Ac
n, then the bitwl is a predetermined and known

bit. Otherwise, we decode the bitwl according tofn(p, l,y, (w1, . . . , wl−1)) wherey is the received vector and

w1, . . . , wl−1 are the already decoded bits. It is shown in [4] that the described successive cancellation decoding

procedure may be accomplished with a complexity ofO(n log n).

Lemma 1 (Channel polarization properties [5]). Let p be a binary-input symmetric DMC whose capacity is

given byC and fix a rateR < C and some0 < β < 1
2 . Then, there exists an information index set sequenceAn

such that

1) Rate:|An| ≥ nR.

2) Performance: Assume that the information bitswt, t ∈ An, are chosen in a uniform manner over all possible

options in{0, 1}|An | and fix an arbitrary choice of the predetermined and fixed bitswt, t ∈ Ac
n. For every

index l ∈ An the following upper bound is satisfied:

Pr
(

El(p)
)

≤ 2−nβ

where

El(p) ,

{

p(l)
n

(

y, (w1, w2, . . . , wl−1) |wl

)

≤ p(l)
n

(

y, (w1, w2, . . . , wl−1) |wl + 1
)

}

(8)

and the additionwl + 1 on the right-hand side of (8) is carried modulo-2.

Remark 1 (On the symmetry assumption in Lemma 1).The symmetry of the channel in Lemma 1 is required

in order to provide an arbitrary choice of the predeterminedand fixed bitswt, t ∈ Ac
n. In the general case where

the parallel channels are not necessarily output-symmetric, this vector can not be chosen arbitrarily (though the
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results are satisfied for some choice).

The channel polarization phenomenon onq-ary channels has been considered in [8] and [9], where several

sufficient conditions on the kernels have been derived for ensuring the occurrence of the channel polarization

phenomenon. In the case whereq is a power of 2, an explicit construction was provided in [8] in terms of an

n×n generator polarization matrixGn over GF(2m) and an information index set sequenceAn. Encoding of|An|

message symbols to a codewordx ∈ GF(2m) is carried according to (4) where the operations are carriedover the

finite field GF(2m), w = (w1, . . . , wn) ∈ GF(2m), the symbolwl is an information symbol for everyl ∈ An, and

it is predetermined and fixed for everyl 6∈ An. Split channels and successive cancellation decoding procedures are

defined similarly as in (6) and (7), except that the input alphabetX is no longer binary.

C. MDS codes

Some basic properties of MDS codes are provided. For complete details and proofs, the reader is referred, e.g.,

to [6] or [7].

Definition 3. An (n, k) linear block codeC whose minimum distance isd is called a maximum distance separable

(MDS) code ifd = n − k + 1.

Since the minimum distance of an MDS code isn − k + 1, it follows that it can tolerate up ton − k erasures,

or in other words, anyk symbols in a codeword completely determine the other symbols.

Example 1 (MDS codes). The (n, 1) repetition code,(n, n − 1) single parity-check (SPC) code, and the whole

space of vectors over a finite field are all MDS codes.

In the following, we explain how to construct an MDS code of a block lengthS and a dimensionk ∈ [S]. Let

S > 0 be an integer number, and fix an integerm > 0 such that2m − 1 ≥ S. For everyk ∈ [2m − 1], there

exists a(2m − 1, k) Reed-Solomon (RS) code over the Galois field GF(2m). Every RS code is an MDS code [7,

Proposition 4.2]. To obtain an(S, k) MDS code, two alternatives are suggested:

1) Punctured RS codes:Consider a(2m − 1, k) RS code over the Galois field GF(2m). Deleting2m − 1 − S

columns from the generator matrix of the considered code results in an (S, k) linear block code over the

same alphabet. The resulting code is an(S, k) MDS code over GF(2m).

2) Generalized RS (GRS) codes:GRS codes are MDS codes which can be constructed over GF(2m) for every

block lengthS and dimensionk (as long as2m − 1 ≥ S).

III. T HE PROPOSEDCODING SCHEMES

We first provide a simplified version of the proposed scheme that is suitable forS = 3 parallel channels, relying

on binary polar codes and binary MDS codes (note that the scheme for S = 2 can be directly obtained from the

studied case whereS = 3). For S > 3, this scheme must be generalized to utilize non-binary MDS codes. Two

alternative schemes are therefore proposed: a scheme basedon non-binary polar codes and a scheme based on

binary interleaved polar codes. For the special case where the channels are stochastically degraded, a simplification

is possible based on non-binary MDS codes and binary (non-interleaved) polar codes.

A. A Simplified Coding Scheme forS = 3

Let A(1)
n , A(2)

n andA(3)
n be three information bit sets, and letkn , |A

(1)
n |+ |A

(2)
n |+ |A

(3)
n |. The polar encoding

is preceded by mappingkn information bits to three length-n binary vectorsws = (ws,1, ws,2, . . . , ws,n) ∈ {0, 1}n,

for s = 1, 2, 3, as follows:
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1) Thekn bits of w1, w2 andw3, referring to the set unionA(1)
n ∪A

(2)
n ∪A

(3)
n , are set to the values of thekn

information bits.

2) For everyl ∈ [n], consider the binary triple(w1,l, w2,l, w3,l) and fill the remaining bits as follows:

a) If none of the bits in(w1,l, w2,l, w3,l) are information bits, they are set to some arbitrarily fixed values,

whose values are made known to both the encoder and the decoder.

b) If one (and only one) bit in(w1,l, w2,l, w3,l) is an information bit, the remaining two bits are set to the

same value as this information bit.

c) If two (and only two) of the bits in(w1,l, w2,l, w3,l) are information bits, the remaining bit is set to the

exclusive-or value of the two information bits.

Finally, the codewordsx1, x2, andx3 are calculated via the equality

xs , wsGn, s ∈ [3]

whereGn is the generator matrix of the polar code.

The codewordxπ(s) is then transmitted over the symmetric channelPs (see Definition 2),s ∈ [3], as depicted

in Figure 1. The split channels defined in (6) are therefore evaluated with respect to the permuted indices of the

transmitted vectors as well. Specifically, letys denotes the length-n observation vector received at the output of

the channelPs, s ∈ [3], and the corresponding split channels are evaluated with respect to the binary vectorwπ(s),

s ∈ [3]. Given previously decoded bitswπ(s),1, wπ(s),2, . . . , wπ(s),l−1 for somes ∈ [3] and l ∈ [n], the bitwπ(s),l is

decoded based on the split channel

P (l)
s,n

(

ys, wπ(s),1, . . . , wπ(s),l−1|w
)

=
1

2n−1

∑

c∈{0,1}n−l

Ps

(

ys|(wπ(s),1, . . . , wπ(s),l−1, w, c)Gn

)

(9)

wherew ∈ {0, 1} is the binary input to the considered split channel.

The l-th symbol (forl = 1, 2, . . . , n) in each codeword is decoded sequentially as follows:

1) If l ∈ A
(s)
n for everys ∈ [3], then decode

wπ(s),l = fdec
(

P (l)
s,n,y, (wπ(s),1, wπ(s),2, . . . , wπ(s),l−1)

)

, s ∈ [3] (10)

wherefdec is the decoding rule in (7), andP (l)
s,n, s ∈ [3] are the split channels in (9).

2) Otherwise, ifl ∈ A
(s)
n and l ∈ A

(s′)
n for some1 ≤ s < s′ ≤ 3, then decodewπ(s),l as in (10) andwπ(s′),l as

in (10) with s replaced bys′. Furthermore, set the remaining bitwπ(s∗),l (wheres∗ 6= s, s′ ands∗ ∈ [3]) to

wπ(s),l + wπ(s′),l.

3) Otherwise, ifl ∈ A
(s)
n for a singles ∈ [3], decodewπ(s),l as in (10). Then, set the remaining two bitswπ(s′),l

andwπ(s′′),l (wheres′ 6= s ands′′ 6= s) to wπ(s),l.

Note that at each decoding stage, all the triples that precede the current stage are already determined, matching

the evaluation requirement of the corresponding split channels as given in (9).

Proposition 1. The parallel binary polar coding scheme forS = 3 achieves the capacityCΠ of the arbitrarily-

permuted parallel channels where these three channels are memoryless, binary-input and output-symmetric.

Proof: Fix an arbitrary rate triple(R1, R2, R3) satisfyingRs < Cs for s = 1, 2, 3, and some0 < β < 1
2 . The

error probabilityPe of the provided decoding procedure is upper bounded, via theunion bound, by

Pe ≤
∑

s∈[3]

∑

l∈A(s)
n

Pr
(

El(Ps)
)

(11)
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whereEl(Ps) in (8) is the error event that a decision on a bit in the split channel is incorrect. According to Lemma 1,

there exists index set sequencesA
(s)
n , s ∈ [3], such that the number of information bitskn satisfies

kn ≥ n(R1 + R2 + R3)

while assuring that for symmetric channels (see Remark 1) the decoding error probabilityPe in (11) is upper

bounded by

Pe ≤ n2−nβ

.

Taking the block lengthn large enough concludes the proof.

It is clear that the repetition and exclusive-or operation are essentially the encoding operations for the binary

(3, 1) and (3, 2) MDS codes, respectively. The information bits and the fixed bits in the polar code framework

naturally lead to the application of symbol-level MDS codes. For S > 3, because the appropriate MDS codes only

exist for larger alphabets, the coding operations are not exactly performed on the single bit level. However, as we

shall discuss next, this difficulty can be solved by using non-binary polar codes or an interleaving technique.

B. Coding forS > 3 Using Non-Binary Polar Codes

For S > 3, the binary MDS codes applied in Section III-A must be replaced by MDS codes of block lengthS.

The only binary MDS codes are the trivial codes (repetition,single parity-check and the whole space). As MDS

codes of additional dimensions are required (forS > 3), we must turn to larger alphabets. For eachk ∈ [S], an

(S, k) MDS codes over the Galois field GF(2m) is chosen, which is denoted byCk (see Section II-C for possible

constructions based on RS and GRS codes). A singleton set, whose sole member is an arbitrary and fixed length-S

binary vector is also chosen. This singleton set is denoted by the codebookC0.

In order to apply the non-binary polarization coding scheme, a new set of parallel channels{Ws}
S
s=1 is defined

according to

Ws(y|x) ,

m
∏

i=1

Ps(yi|bi)

wherey = (y1, . . . , ym) ∈ Ys, x ∈ GF(2m), s ∈ [S],
(

b1(x), . . . , bm(x)
)

is the binarym-length vector represen-

tation of the symbolx ∈ GF(2m) and Ps, s ∈ [S] are the binary-input symmetric parallel DMC over which the

communication takes place. The corresponding split channels are denoted byW (l)
s,n, l ∈ [n]. A coding scheme for

the parallel channelsWs, s ∈ [S] is equivalent to a coding scheme for the original binary parallel channels where

the transmission of a symbolx over a channelWs is replaced withm transmissions over the channelPs, s ∈ [S].

With some abuse of notations, the information index set sequence for each of the non-binary channelsWs, s ∈ [S],

is also denoted byA(s)
n . For everyl ∈ [n] define

kl , |{s : l ∈ A(s)
n }|. (12)

The encoding of the parallel non-binary polarization scheme is carried as follows:

1) For every channel indexs ∈ [S] and every information indexl ∈ A
(s)
n , denote bya(l)

s the symbol in GF(2m)

corresponding tom information bits.

2) For everyl ∈ [n], choose the unique codewordc(l) = (c
(l)
1 , c

(l)
2 , . . . , c

(l)
S ) ∈ Ckl

, satisfyingc
(l)
s′ = a

(l)
s′ for every

s′ ∈ {s : l ∈ A
(s)
n }.

3) ComputeS polar codewordsxs, for s ∈ [S], according to

xs =
(

c(1)
s , c(2)

s , . . . , c(n)
s

)

· Gn
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Fig. 2: Illustration of the non-binary parallel polar encoding procedure in the particular case ofS = 4. The grid of rectangles illustrates the
symbolsc(l)

s , for 1 ≤ l ≤ 8 ands ∈ [4], as are defined in the encoding procedure. Each row of squaresrepresents the vector(c(1)
s , c

(2)
s , ...c

(8)
s ),

s ∈ [4], where each of the squares represents a symbol. A filled square represents a symbolc
(l)
s for which l ∈ A

(s)
n , s ∈ [4]. For the depicted

grid, A
(1)
n ∩ [8] = {2, 3, 4, 7, 8}, A

(2)
n ∩ [8] = {2, 6, 7, 8}, A

(3)
n ∩ [8] = {3, 6, 7, 8} and A

(4)
n ∩ [8] = {2, 3, 5, 6, 7, 8}. According to the

decoding procedure, the symbols represented by the filled squares are set to the message symbols. An empty square represents the opposite
case wherel 6∈ A

(s)
n , s ∈ [4]. The symbols represented by the empty squares are determined such that each column forms an MDS codeword.

The 4 vertical rectangles mark 4 of these codewords:c
(1), c

(4), c
(6) and c

(8). Codewordsc(1) and c
(8) belong to codes of dimensions 0

and 4, respectively (a constant vector and the whole space).Accordingly, in c
(1) all 4 squares are empty to represent 4 predetermined and

fixed symbols while inc(8) all 4 squares are filled squares, representing 4 arbitrary information symbols (an arbitrary vector in the whole
space). The codewordc(4) belongs to a code of dimension 1, accordinglyc

(1)
2 = c

(1)
3 = c

(1)
4 = c

(1)
1 (the empty squares equal to the value

of the single filled square). The codewordc(6) belongs to a code of dimension 3 where the 3 filled squares completely determine the value
of the single empty square according toc

(6)
1 = −c

(6)
2 − c

(6)
3 − c

(6)
4 .

whereGn is the polar generator matrix, and arithmetic is carried over GF(2m).

The encoding procedure is further detailed in Figure 2 via anillustrative example. The codewordxs, where

s ∈ [S], is transmitted over the channelWs, and letys denote the vector received at the output of the channelWs.

The l-th symbol (forl = 1, 2, . . . , n) of each codeword is decoded sequentially as follows:

1) For everys ∈ [S] such thatl ∈ A
(s)
n , let c

(l)
π(s) = fdec(W

(l)
s,n,ys, c

(1)
π(s), c

(2)
π(s), . . . , c

(l−1)
π(s) ).

2) Find the unique codewordc = (c1, c2, . . . , cS) in Ckl
satisfyingc

(l)
π(s′) = cπ(s′) for everys′ ∈ {s : l ∈ A

(s)
n }.

The decoding procedure is further detailed in Figure 3. via an illustrative example.

Proposition 2. The parallel non-binary polar coding scheme achieves the capacity of the considered model.

Proof: The ability to choose a unique codeword inCkl
, l ∈ [n], follows directly from the fact that an(S, kl)

MDS code can correct up toS − kl erasures. For a DMCW with an input alphabetX and output alphabetY,

define the events

Ed
l (W ) ,

{

(w,y) ∈ X n×Yn : W (l)
n

(

y, (w1, . . . , wl−1)|wl

)

≤ W (l)
n

(

y, (w1, . . . , wl−1)|wl +d
)

}

, l ∈ [n], d ∈ X

(13)

whereW
(l)
n , l ∈ [n] are the split channels ofW . The error probabilityPe for the non-binary decoding procedure

is upper bounded by

Pe ≤
∑

s∈[S]

∑

l∈A(s)
n

∑

d∈X\{0}

Pr
(

Ed
l (Ws)

)

. (14)

It follows from [8] and [9] that the probability of the eventEd
l (Ws) can be made exponentially low as the block length

increase while having the cardinality of the information sets arbitrarily close to the capacity of the corresponding

DMC. Hence, the error probability in (14) can be made arbitrarily low. Detailed inspection of the results in [8]
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c
(1)
1

c
(1)
2

c
(1)
3

c
(1)
4

c
(4)
1

c
(4)
2

c
(4)
3

c
(4)
4

c
(2)
1 c

(3)
1 c

(5)
1 c

(6)
1

c
(6)
2

c
(6)
3

c
(6)
4

c
(8)
1

c
(8)
2

c
(8)
3

c
(8)
4

c
(8)

c
(6)

c
(4)

c
(1)

c
(7)
1

s = 1

s = 2

s = 3

s = 4

Fig. 3: Illustration of the non-binary parallel polar decoding procedure in the particular case ofn = 8 andS = 4. The grid of rectangles
refers to Figure 2 with the difference that, due to the transmission permutationπ, codewordx1 is transmitted over channelP3, codeword
x3 is transmitted over channelP1, and codewordsx2 and x4 are transmitted over channelsP2 and P4, respectively. All the symbols in
c
(1) (empty squares) are predetermined and fixed, so the first decoding stage is redundant. Due to the channel permutation, some fixed

symbols may be decoded via (7). Such fixed symbols are represented by empty squares filled with an x-mark (e.g.,c
(4)
3 , note that4 ∈ A

(1)
n ).

As another consequence of the channel permutation, some information symbols cannot by decoded via (7). Such information symbols are
represented by filled and rotated squares (e.g.,c

(4)
1 , note that4 6∈ A

(3)
n ). Consequently, at the forth decoding stage, even though the message

symbol isc
(4)
1 (represented by a filled rotated square), due to the transmission permutation only the symbolc(4)

3 that is represented by an
empty x-marked square can be decoded via (7). Nevertheless,due to the MDS structure in the columns, the two symbols are equal. At the
sixth stage of the decoding, the message symbolc

(6)
3 is the rotated square andc(6)

1 is now x-marked (as6 6∈ A
(1)
n and 6 ∈ A

(3)
n ). The

message symbols (filled squares)c
(6)
2 andc

(6)
4 can be decoded via (7) butc

(6)
3 cannot. Nevertheless, the non-message symbol (filled x-marked

square)c(6)
1 is decoded via (7) and due to the MDS structure of columns, themessage symbol (rotated square)c

(6)
3 = −c

(6)
1 − c

(6)
2 − c

(6)
4 .

All the symbols (filled squares) inc(8) are decoded via (7) as8 ∈ A
(s)
n for everys ∈ [4].

and [9] reveal the lack of the symmetry property in Remark 1 which is crucial for the provided scheme. This

property is therefore provided for non-binary polar codes in Appendix A. The symmetry ofWs, s ∈ [S] according

to Definition 4 for non-binary channels is imposed directly from the symmetry of the binary-input channelsPs,

s ∈ [S] according to Definition 2.

Remark 2 (Coding for non-binary parallel symmetric channels). The coding scheme provided in this section can

be easily adapted to parallel, output-symmetric and memoryless channels where the cardinality of the input alphabet

is a power of a prime (the symmetry condition in the non-binary case is stated in Definition 4 of Appendix A).

C. A Binary Interleaved Polar Coding Scheme

The scheme provided in this section is based onm > 1 binary interleaved polar codes for every binary-input

symmetric DMCPs, s ∈ [S]. Them interleaved polar codes for each channelPs, s ∈ [S], are defined based on the

same information set sequenceA(s)
n . As in Section III-B, letCk denote an MDS code over GF(2m) of dimension

k, and letkl be defined as in (12). The encoding process is carried as follows:

1) For every information indexl ∈ A
(s)
n , and every channel indexs ∈ [S]: Pick m information bits, denoted by

u
(s)
(l−1)m+g

, 1 ≤ g ≤ m.

2) For every l ∈ [n], choose the unique codewordc(l) = (c
(l)
1 , c

(l)
2 , . . . , c

(l)
S ) ∈ Ckl

for which the binary

representation ofc(l)
s′ ∈ GF(2m) is equal to

(

u
(s)
(l−1)m+1, . . . , u

(s)
(l−1)m+m

)

for everys′ ∈ {s : l ∈ A
(s)
n }.
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3) For everys ∈ [S] and indexl 6∈ A
(s)
n , define the length-m binary vector

(

u
(s)
(l−1)m+1, u

(s)
(l−1)m+2, . . . , u

(s)
(l−1)m+m

)

∈ {0, 1}m

as the binary representation of the symbolc
(k)
s .

4) Compute them · S polar codewordsxg,s ∈ {0, 1}n, g ∈ [m], s ∈ [S] where

xg,s =
(

u(s)
g , u

(s)
m+g, . . . , u

(s)
(n−1)m+g

)

· Gn

andGn is the binary polar generator matrix.

5) For every channel indexs ∈ [S], construct a codewordx(s) based on the concatenation

x(s) = (x1,s,x2,s, . . . ,xm,s).

The concatenated codewordx(π(s)) is transmitted over the channelPs, s ∈ [S], and lety(s) = (y
(s)
1 , ..., y

(s)
mn) denote

the received vector at the output of this channel.

Assuming that the bitsu(s)
m(l′−1)+g

(s ∈ [S], g ∈ [m] and l′ ≤ l − 1) were already decoded, the bitsu
(s)
m(l−1)+g

are decoded sequentially at thel-th stage (forl = 1, . . . , n) as follows:

1) For everys ∈ [S] such thatl ∈ A
(s)
n , decode

u
(π(s))
(l−1)m+g

= fdec

(

P (l)
s,n,
(

y
(s)
1+(g−1)n, y

(s)
2+(g−1)n, . . . , y(s)

gn

)

,
(

u(π(s))
g , u

(π(s))
m+g , . . . , u

(π(s))
(l−1)m+g

)

)

, g ∈ [m]

wherefdec andP
(l)
s,n are defined in (7) and (9), respectively.

2) Find the unique codewordc = (c1, c2, . . . , cS) ∈ Ckl
for which the symbolcπ(s′) is equal to

(

u
(π(s′))
(l−1)m+1, u

(π(s′))
(l−1)m+2, . . . , u

(π(s′))
lm

)

for everys′ ∈ {s : l ∈ A
(s)
n }.

3) For everys ∈ [S] for which l 6∈ A
(s)
n , the bits

(

u
(π(s′))
(l−1)m+1, u

(π(s′))
(l−1)m+2, . . . , u

(π(s′))
lm

)

are set according to the

binary representation of the symbolcπ(s′) ∈ GF(2m).

Proposition 3. The parallel binary-interleaved parallel polar coding scheme achieves the capacity of the considered

model of parallel channels.

Proof: The ability to choose unique codewords inCkl
, l ∈ [n], follows directly from the fact that an(S, kl)

MDS code can correct up toS − kl erasures. For every channels ∈ [S], m interleaved polar codes of block length

n are applied. Hence, the code rateRn of the parallel binary-interleaved polar scheme is given by

Rn =

S
∑

s=1

m |A
(s)
n |

m n
=

1

n

S
∑

s=1

|A(s)
n |.

For n sufficiently large, it follows from Lemma 1 thatRn can be made arbitrarily close to
∑S

s=1 Cs. The part of

the proof that refers the reliability of the provided decoding procedure is omitted as it follows from Lemma 1, and

it goes along similar steps as the proof of Proposition 1.

D. Coding for Stochastically Degraded Channels

The non-binary scheme provided in Section III-B can be simplified to include only binary polar codes if the

parallel channels are assumed to be stochastically degraded (without relying on binary interleavers as required

in Section III-C). The scheme is further simplified in terms of the decoding procedure. Instead of performing
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successive cancellation in parallel for all the received sequences simultaneously, the decoding procedure is performed

sequentially channel by channel. The simplification follows from the following technical property:

Corollary 1 (On monotonic information sets for stochastically degradedparallel channels). Consider a set

of S memoryless, binary-input and output-symmetric parallel channels{Ps}
S
s=1. Assume that the channels are

stochastically degraded, such thatPs′ is a degraded version ofPs for everys′ > s ∈ [S]. Let Cs be the capacity of

the channelPs, s ∈ [S]. Fix 0 < β < 1
2 and a set of ratesR1, . . . , R[s] such that0 ≤ Rs ≤ Cs for everys ∈ [S].

Then, there exists a sequence of information setsA
(s)
n ⊆ [n], s ∈ [S] and n = 2i where i ∈ N, satisfying the

following properties:

1) Rate:

|A(s)
n | ≥ nRs, ∀s ∈ [S]. (15)

2) Monotonicity:

A(S)
n ⊆ A(S−1)

n ⊆ · · · ⊆ A(1)
n . (16)

3) Performance:

Pr
(

El(Ps)
)

≤ 2−nβ

(17)

for all l ∈ A
(s)
n ands ∈ [S], and

El(p) ,

{

p(l)
n (y,w(l−1)|wl) ≤ p(l)

n (y,w(l−1)|wl + 1)
}

, l ∈ [n]

Proof: See Appendix B.

Let {Ps}
S
s=1 be a set of parallel channels as in Corollary 1, and letCk, 1 ≤ k ≤ S − 1 denote an MDS code

over GF(2m) of block lengthS and dimensionk. Define,k(s)
n , |A

(s)
n |, s ∈ [S], whereA(s)

n is the information

index set sequence of the channelPs, s ∈ [S], satisfying the properties in (15)-(17). In addition, define Ks−1 ,

(k
(s−1)
n − k

(s)
n )/m, s ∈ [S] (for the purpose of simplicity, it is assumed thatk

(s)
n are integral multiples ofm).

Prior to the stage of polar encoding,kn =
∑

s∈[S] k
(s)
n , information bits are mapped into a set of binary row

vectors{us,l}, s, l ∈ [S] where the vectorus,l is of lengthk
(S−l+1)
n − k

(S−l+2)
n bits. The vectorsus,1, s ∈ [S] and

us,2 =
(

us,2(1), us,2(2), . . . , us,2(kS−1 − kS)
)

, s ∈ [S − 1], are set to information bits. Next, the vectoruS,2 is

determined (the following steps are accompanied with the illustration in Figure 4):

1) Construct the(S − 1)×KS−1 matrix over GF(2m), C(2), from the row vectorsus,2 (s ∈ [S − 1]) where the

(i, j) element in this matrix is defined by them bits
(

ui,2

(

(j − 1)m + 1
)

,ui,2

(

(j − 1)m + 2
)

, . . . , ,ui,2

(

jm
)

)

, i ∈ [S − 1], j ∈ [KS−1]

(see Figure 4 where each vector is represented with a horizontal rectangle).

2) Find the unique codewords{cj : j ∈ [KS−1]} in CS−1, whose firstS − 1 symbols are the columns ofC(2)

(represented by the dashed vertical rectangles in Figure 4).

3) A KS−1–length vectorũS,2 over GF(2m) is defined using the last symbol of each of the codewordscj ,

j ∈ [KS−1] (the symbols are represented by filled black squares in Figure 4).

4) The vectoruS,2 is defined by the binary representation of the vectorũS,2.

Let 2 < l ≤ S, and assume that the vectorsus,l′, s ∈ [S], l′ < l, are already defined. The vectorsus,l, s ∈ [S]

are defined as follows:

1) The binary row vectorsus,l, 1 ≤ s ≤ S − (l − 1), are set to information bits.

2) Construct the(S − (l − 1)) × KS−(l−1) matrix C(l)over GF(2m) from the row vectors in step 1, where the
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C(2)

u1,2

u2,2

uS−1,2

ũS,2

c1 cj

m bits m bits

Fig. 4: Illustration of the construction of the vector̃uS,2. The vectorsuk,2, k ∈ [S − 1] defining the rows of the matrixC(2) are shown,
along with the columns defining the codewordscj , j ∈ [KS−1,S] in C

(S−1)
MDS .

(i, j) element ofC(l) is defined by them bits
(

ui,l

(

(j − 1)m + 1
)

,ui,l

(

(j − 1)m + 2
)

, . . . ,ui,2

(

jm
)

)

.

3) Find the unique codewordscj = (cj,1, cj,2, . . . , cj,S) ∈ CS−(l−1), j ∈ [KS−(l−1)], whose firstS − (l − 1)

symbols are the column ofC(l).

4) The vectorsus,l, s > S − (l − 1) are set to the binary representation ofũs,l.

Finally, the codewordsxπ(s) is transmitted over the channelPs, s ∈ [S], where

xs =

S
∑

l=1

us,lGn

(

A(S−(l−1))
n \ A(S−(l−2))

n

)

+ bGn

(

[n] \ A(1)
n

)

, s ∈ [S].

HereA(S+1)
n , ∅, b is a binary predetermined and fixed vector, andGn is the polar generator matrix.

The decoding process starts with the observations receivedfrom the channelP1. A polar successive cancellation

decoding, with respect to the information index setA
(1)
n , is applied to the received vector. This allows the decoding

of the vectorsuπ(1),l, l ∈ [S]. Next, the decoding proceeds to successive cancellation decoding procedure for the

vector received at the output of the channelP2 (i.e., the channel with the second largest capacity). This decoding

procedure is capable of decoding|A(2)
n | bits based onn − |A

(2)
n | predetermined and fixed bits. For the current

decoding procedure,n − |A
(1)
n | of these bits are the predetermined and fixed bits inb. The rest of|A(1)

n | − |A
(2)
n |

bits are based on the bits decoded at the previous decoding stage. Specifically, the bit vectoruπ(2),S can be evaluated

using the bit vectoruπ(1),S due to incorporated MDS codes. After the second decoding stage, all theS binary

vectorsuπ(2),s, s ∈ [S], are fully determined. Moreover, based on the codewordscj , j ∈ [K1,2], the vectorsuπ(s),S ,

are fully determined for alls ≥ 2 as well.
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TABLE I: The order of decoding the information bits for all possible assignments of codewords over a set of three
parallel and degraded channels.

Channel P1 Channel P2 Channel P3

Transmitted Decoded Transmitted Decoded Transmitted Decoded
Codeword Information Codeword Information Codeword Information

x1 u1,1, u1,2, ur x2 u2,1, u2,2 x3 u3

x3 u3, u1,2 + u2,2 x2 u2,1

x2 u2,1, u2,2, ur x1 u1,1, u1,2 x3 u3

x3 u3, u1,2 + u2,2 x1 u1,1

x3 u3, u1,2 + u2,2, ur x1 u1,1, u1,2 x2 u2,1

x2 u2,1, u2,2 x1 u1,1

Next, the remainingS − 2 decoding stages are followed. Note that after the(s − 1)-th decoding stage, where

2 < s < S, the vectorsuπ(s′),l for either1 ≤ s′ < s and l ∈ [S], or s′ ≥ s andS − s + 3 ≤ l ≤ S, were decoded

at previous stages. At thes-th stage, the decoding is extended for the vectorsuπ(s),l for all l ∈ [S] and the vectors

uπ(s′),S−s+2 for all s′ ∈ [S]. In order to apply the polar successive cancellation decoding procedure to the vector

received over the channelPs, the bits inb and{uπ(s),l}l≥S−(s−2) must be known. The vectorb is clearly known.

In addition, the bits in{uπ(s),l}l≥S−(s−3) are already decoded in previous stages. It is left to determine the bits in

uπ(s),S−(s−2). Nevertheless, these bits are fully determined due to the algebraic constraints imposed by the MDS

codes (the determination ofuπ−1(s),S−(s−2) is also established along with the determination ofuπ−1(s′),S−(s−2) for

all s′ ≥ s).

The proof of the following proposition goes along similar steps as in Proposition 1, and it is therefore omitted.

Proposition 4. The provided parallel coding scheme achieves the capacity of the considered model of parallel and

degraded channels.

Example 2 (Coding for 3 stochastically degraded channels).The coding scheme described in this section is

exemplified for the particular case of three parallel degraded channelsP1, P2 and P3. It is assumed thatP3 is a

degraded version ofP2, andP2 is a degraded version ofP1. We first describe the encoding:

• The k1 information bits that are used to encodex1 are (arbitrarily) partitioned into three subsets:u1,1 ∈ X k3 ,

u1,2 ∈ X k2−k3 andur ∈ X k1−k2 .

• The k2 information bits used to encodex2 are (arbitrarily) partitioned into two subsets:u2,1 ∈ X k3 and

u2,2 ∈ X k2−k3 . In addition,ur (used for encodingx1) is also involved in the encoding ofx2.

• The codewordsx1 andx2 are defined as follows:

x1 = u1,1Gn

(

A(3)
n

)

+ u1,2Gn

(

A(2)
n \ A(3)

n

)

+ urGn

(

A(1)
n \ A(2)

n

)

+ bGb

(

[n] \ A(1)
n

)

x2 = u2,1Gn

(

A(3)
n

)

+ u2,2Gn

(

A(2)
n \ A(3)

n

)

+ urGn

(

A(1)
n \ A(2)

n

)

+ bGb

(

[n] \ A(1)
n

)

whereb ∈ X n−k is a predetermined and fixed vector.

• The encoding of the codewordx3 is based on the remainingk3 information bits, denoted byu3 ∈ X k3 :

x3 = u3Gn

(

A(3)
n

)

+ (u1,2 + u2,2)Gn

(

A(2)
n \ A(3)

n

)

+ urGn

(

A(1)
n \ A(2)

n

)

+ bGn

(

[n] \ A(1)
n

)

.

The order of decoding the information bits for all possible assignments of codewords over a set of three parallel

channels is provided in Table I.
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Remark 3 (On the order of successive cancellation). The parallel coding scheme provided in this section is

capable to decode sequentially the information bits from each channel, due to the monotonic sequence of index sets

{A
(s)
n }s∈[S] satisfying the conditions in Corollary 1. It is noted that the index sets inA(s)

n , s ∈ [S], are ‘good’ for all

the channelsPs′ wheres′ ≥ s. The problem of finding an index set which is ‘good’ for a set ofchannels is much

harder if the channels are not degraded. This problem is studied in [12] in the context of the compound capacity

of polar codes. Upper and lower bounds on the compound capacity of polar codes under successive cancellation

decoding are provided in [12]. Although the study in [12] concerns two channels, the techniques are suitable for

the case at hand. Specifically, it can be shown that if successive cancellation decoding is performed sequentially

as in this section (channel by channel), then the achievablerates are bounded below the channel capacity of the

general model (where the parallel channels are not ordered by stochastic degradation). Hence, the parallel progress

of the successive cancellation decoders applied in Sections III-A–III-C) is inevitable for the general case.

IV. SUMMARY AND CONCLUSIONS

Capacity-achieving parallel polar coding schemes are provided in this paper for reliable communications over a

set of arbitrarily-permuted parallel channels that are binary-input, output-symmetric and memoryless. These schemes

are based on the channel polarization method [4], combined with MDS codes of various dimensions. Two coding

alternatives are suggested in this paper, one is based on non-binary polar codes (see [8], [9]), and the second is

based on binary-interleaved polar codes.

The definition of polar codes includes a set of predeterminedand fixed bits, which are crucial to the decoding

process. In the original polarization scheme in [4], these predetermined and fixed bits may be chosen arbitrarily (in

the case of symmetric channels). For the proposed parallel coding schemes, on the other hand, the predetermined

and fixed bits are determined based on some algebraic coding constraints. The MDS coding, suggested in this paper

is similar to the rate-matching scheme in [1].

Successive cancellation decoding is applied in both the non-binary and the binary interleaved schemes. The

decoding must process in parallel the received observations from all the parallel channels. It is characterized as

parallel operations of the successive cancellation decoding procedures provided by a single channel in [4], while

exchanging information due to the algebraic constraints imposed by the incorporated MDS codes.

For the particular case of two or three parallel channels, binary channel polarization codes are suitable without

relying on interleavers. The same simplification is shown for the particular case of stochastically degraded parallel

channels. For the degraded parallel channel model, the decoding may progress in a serial manner, that is the

successive cancellation can be carried sequentially channel by channel.

The following topics are suggested for further research:

1) Symmetry condition: For symmetric channels, the predetermined and fixed bits may be chosen arbitrarily.

For non-symmetric channels, good predetermined and fixed bits (called also frozen bits in [4]) are shown to

exist, but their choice may not be arbitrary. It is an open question if there is a more general construction that

does not require the symmetry property of the parallel channels.

2) Generalized parallel polar coding such as in [13]-[15].

3) Generalized channel models: Arbitrarily-permuted parallel channels form just one particularization of the

compound setting. It is of interest to enlarge the family of parallel channels for which the studied coding

scheme may be applicable. Of specific interest is the case of parallel channels where a sum-rate constraint is

provided by the channel model characterization.

4) Studying the impact of improved list based decoding strategies [16] of polar codes on permuted channels.
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APPENDIX

A. On the symmetry property of non-binary polarization

Definition 4 (Non-binary symmetry). A DMC which is characterized by a transition probabilityp, an input-output

alphabetX and a discrete output alphabetY is symmetricif there exists a functionT : Y×X → Y which satisfies

the following properties:

1) For everyx ∈ X , the functionT (·, x) : Y → Y is bijective.

2) For everyx1, x2 ∈ X andy ∈ Y, the following equality holds:

p
(

y|x1

)

= p
(

T (y, x2 − x1)|x2

)

.

Lemma 2 (Message independence property for non-binary symmetric-channel polarization). Let p be a

symmetric DMC and0 be then-length all-zero vector overX . Denote byPe(E
d
l |u) the probability of the event

Ed
l in (13), assuming thatw = u in (5). Then,

Pe(E
d
l (p)|u) = Pe(E

d
l (p)|0)

for everyu ∈ X n and l ∈ [n].

Proof: Let T be the corresponding function in Definition 4. With abuse of notation, the operation ofT on

vectorsy ∈ Yn andx ∈ X n is defined by

T (y,x) ,
(

T (y1, x1), T (y2, x2), . . . ,T (yn, xn)
)

.

Subtraction of a vector is also defined item-wise, that is−(x1, . . . , xn) = (−x1, . . . xn). Based on the symmetry

property of that channel, for everyl ∈ [n], y ∈ Yn, w ∈ X l−1, w ∈ X anda ∈ X n, we have

p(l)
n

(

y, (w1, . . . , wl−1)|wl

)

(a)
=

1

|X |n−1

∑

c∈Xn−l

n
∏

t=1

p
(

yt|
(

(w1, . . . , wl, c)Gn

)

t

)

(b)
=

1

|X |n−1

∑

c∈Xn−l

n
∏

t=1

p

(

T
(

yt,
(

aGn

)

t

)

|
(

(w, wl, c)Gn

)

t
+
(

aGn

)

t

)

where(x)t denotes thet-th element of a vectorx = (x1, . . . , xn), (a) follows for memoryless channels from (5)

and (6) and (b) follows from the symmetry property of the channel. Consequently, it follows that

p(l)
n

(

y, (w1, . . . , wl−1)|wl

)

= p(l)
n

(

T
(

y,aGn, (w1, . . . , wl−1) + (a1, . . . , al−1)
)

|wl + al

)

. (18)

From (13) and (18) it follows for every pair(w,y) ∈ X n × Yn and everya ∈ X n that

(

w,y
)

∈ Ed
l (p) ⇐⇒

(

a + w,T (y,a · Gn)
)

∈ Ed
l (p). (19)
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Next, let 1Ed
l
(p)(u,y) denote the indicator of the eventEd

l (p). For everyu ∈ X n it follows that

Pe(E
d
l (p)|u)

=
∑

y∈Yn

pn(y|u)1Ed
l (p)(u,y)

(a)
=
∑

y∈Yn

p(y|uGn)1Ed
l
(p)(u,y)

(b)
=
∑

y∈Yn

p(T (y,−uGn)|0)1Ed
l
(p)(0,T (y,−uGn))

=
∑

y∈Yn

pn(y|0)1Ed
l (p)(0,y)

= Pe(E
d
l (p)|0)

where (a) follows from (5), (b) follows from (19) by plugginga = u, and (c) follows sinceT (y, x) is a bijective

function of y ∈ Y for every fixed symbolx ∈ X .

B. Stochastically degraded parallel channels

Definition 5 (Stochastically degraded channels). Consider two memoryless channels with a common input

alphabetX , transition probability functionsP1 and P2, and two output alphabetsY1 and Y2, respectively. The

channelP2 is a stochastically degraded version of channelP1 if there exists a channelD with an input alphabet

Y1 and an output alphabetY2 such that

P2(y2|x) =
∑

y1∈Y1

P1(y1|x)D(y2|y1), ∀x ∈ X , y2 ∈ Y2.

Lemma 3 (On the degradation of split channels). Let P1 andP2 be two transition probability functions with a

common binary input alphabetX = {0, 1} and two output alphabetsY1 andY2, respectively. For a block length

n, the split channels ofP1 and P2 are denoted byP (l)
1,n and P

(l)
2,n, respectively, for alll ∈ [n]. Assume that the

channelP2 is a stochastically degraded version of channelP1. Then, for everyl ∈ [n] the split channelP (l)
2,n is a

stochastically degraded version of the split channelP
(l)
1,n.

Proof: The proof follows by induction (see [10], [11]).

Definition 6 (Stochastically degraded parallel channels). Let {Ps}
S
s=1 be a set ofS parallel memoryless channels.

The channels{Ps}
S
s=1 are stochastically degraded if there exists a sequence of unique indicess1, s2, . . . sS , si ∈ [S]

for every i ∈ [S], such that the channelPsi+1
is a stochastically degraded version ofPsi

for every i ∈ [S − 1].

Proof of Corollary 1: From [5], it follows that there exists a sequence of sets{A
(S)
n } satisfying|A(s)

n | ≥ nRs

andPr
(

El(Ps)
)

≤ 2−nβ

. These are the rate and performance properties in (15) and (17) for the particular case of

s = S. Fix an s′ ∈ [S − 1] and assume that the set sequences{A
(s)
n }, s > s′, can be chosen such the following

properties are met:

1) The rate and performance properties in (15) and (17) are satisfied for everys > s′.

2) For every block lengthn, the setsA(s)
n , s > s′, are monotonic:

A(S)
n ⊆ A(S−1)

n ⊆ · · · ⊆ A(s′+1)
n . (20)

An information index set{A(s′)
n } is next constructed. From [5], it follows that there exists asequence of sets{An}

satisfying |An| ≥ nRs′ andPr
(

El(Ps′)
)

≤ 2−nβ

. These are the rate and performance properties in (15) and (17)



18 ACCEPTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY,NOVEMBER 2012. LAST UPDATED: AUGUST 15, 2012.

for the particular case ofs = s′. Choose an arbitrary indexl ∈ A
(s′+1)
n . SincePs′+1 is a degraded version ofPs′ ,

then according to Lemma 3, the split channelP
(l)
s′+1,n is a degraded version of the split channelP

(l)
s′,n. It is clearly

suboptimal to first degrade the observation vectory ∈ Ys′ to create a vector̃y ∈ Ys′+1, and only then decode the

corresponding information bit. Consequently,El(p) ⊆ El+1(p) which implies that ifP (l)
s′+1,n satisfies (17), so does

P
(l)
s′,n. It follows that l is a valid index forA(s′)

n in terms of the performance property. That is, for everyl ∈ A
(s′+1)
n

it follows that Pr
(

El(Ps′)
)

≤ 2−nβ

. Therefor we setA(s′)
n = A

(s′+1)
n ∪ An. As a results, the set sequences{As

n},

s ≥ s′ satisfy the following properties:

1) The rate and performance properties in (15) and (17) are satisfied for everys ≥ s′

2) Monotonicity property:A(S)
n ⊆ A

(S−1)
n ⊆ · · · ⊆ A

(s′+1)
n ⊆ A

(s′)
n .

The proof follows by induction.
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