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Abstract

Channel coding over arbitrarily-permuted parallel chdsmes first studied by Willems et al. (2008). This paper
introduces capacity-achieving polar coding schemes foitrarily-permuted parallel channels where the component
channels are memoryless, binary-input and output-synienetr

. INTRODUCTION

Parallel channels are used to serve as a model for a timégacpmmunication channel. In this model, each
one of the parallel channels corresponds to a possible state time-varying channel, and the communication
takes place over one of these parallel channels accorditigetinstantaneous state of the time-varying channel.
The model ofarbitrarily-permuted parallel channels/as introduced in [1] where each message is encoded into a
number (sayS) of code-sequences with a common block length, each oneed$ ttode-sequences is transmitted
over a different parallel channel where the assignment dewords to channels is known to the receiver, and
it is modeled by an arbitrary permutation of the set{1,...,S} where code-sequence ne.c {1,...,S5} is
transmitted over the parallel channel mo= 7(s). Finally, the receiver estimates the transmitted messagecon
the knowledge of this permutation and the received outpuats fthe S parallel channels. This model of parallel
channels can be viewed as a special case of the classicabooghghannel setting [2].

Channel coding over arbitrarily-permuted parallel chasneas studied in [1] and more recently in [3], where
it was assumed that all these parallel channels have anddeimput alphabet. In the case where all the parallel
channels have the same capacity-achieving input disipibbuit was proved in [1, Theorem 1] that the capacity of
the system is equal to the sum of the capacities of the phdlbnels. Furthermore, [1] also addresses the case
where the parallel channels have different capacity-aafgeinput distributions, and it determines the capacity of
the system also in this case (see [1, Theorem 2]).

This research was supported by the Israel Science Foundafiant no. 1070/07), and by the European Commission inrdmadwork of
the FP7 Network of Excellence in Wireless CommunicationE\WWCOM++).
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Arbitrarily-permuted parallel channels may be of intenebien analyzing, e.g., networking applications, OFDM
and BICM systems. For example, the channel frequency bantlseediits may not be allocated at the transmitter
level, and though this allocation is fixed, it takes the forfnaorandom permutation that is selected once per
transmission. In the setting of transmission of data thinqpeckets, these packets can be viewed as being transmitted
over a set of parallel channels where each packet goes throng of the available parallel channels depending
on the higher level of the communication protocol. The traission in this case is done in an interleaved manner
where consecutive bits are separated to different pacttetspnumber of which is the cardinality of the set of
parallel channels. This, again, provides the model of amliliy-permuted parallel channels, though we do not deal
in this work with data flow issues (assuming that the systeratisquilibrium as far as the data/ packet rate is
considered). It is also noted that these channels may balgcserial in time where a time frame 6f consecutive
symbols is interpreted as the time frame of a super-symbw. fix in this case may result due to the random
availability of the channels, which stays fixed for the whotmleword transmission.

The coding schemes suggested in [1] are based on randongcadéhdecoding by joint typicality. One of the
main contributions of [1] is the introduction of a concattoa of rate-matching codes with parallel copies of a fully
random block code. A rate-matching code is a device thatde®a single message into a set of codewords, and
it creates the required dependence between the codewartiefparallel channels. It was shown in [1] that under
specific structural conditions on the rate-matching codseguential decoding procedure can achieve the capacity
of the considered channel model. Moreover, it was shownghelh rate-matching codes can be constructed from a
set of maximum-distance separable (MDS) codes. In [3], esfpiate modulation was considered for the particular
case of arbitrarily-permuted parallel Gaussian channels.

In this work, we consider the construction of polar codes lagnoel codes for arbitrarily-permuted parallel
channels. Polar codes were recently proposed in [4], whemas demonstrated that this class of codes can
achieve the capacity of a symmetric DMC with low encoding aledoding complexity. We propose two polar
coding schemes in this work, and show that they achieve tpaciy of arbitrarily-permuted parallel channels
where each of these components is assumed to be a memohjtesy-input and output-symmetric channel. Two
simplifications of these schemes are also discussed in teiaases. The first simplification addresses the case
where the communication is over two or three parallel chiEn@ad the second simplification refers to the case of
communication over parallel (stochastically) degradeanciels.

The polar code framework is shown to suit well as a codingriggke in the setting of arbitrarily-permuted
parallel channels. The construction of the rate-matchodes in [1, Section 6] via the use of MDS codes suggests
that they can also play an instrumental role when polar cadgesised as channel codes for the considered setting
of parallel channels. However, in order to use polar codaténparallel channel setting, the concept of the fixed
bits in the original polar codes [4] need to be slightly gafized. In [4], the values of these fixed bits can be
chosen arbitrarily, independently of the transmitted ragesIn the proposed schemes for the arbitrarily-permuted
parallel channels, some of the concerned bits need to incag an algebraic structure of the MDS codes, and they
actually depend on the transmitted message in a manneasitoithe rate-matching code in [1]. Another unique
feature of the proposed scheme is that the successive taimetechniques are applied in a parallel fashion on
the channels.

This rest of the paper is structured as follows. Section dvjates some preliminary material. The proposed
parallel polar coding schemes are introduced and analyz&ection Il with some technicalities that are relegated
to the appendix. Finally, Section IV concludes this work.
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Fig. 1: Communication over an arbitrarily-permuted parallel aredrwith S = 3 in this example (taken from [1]).

[l. PRELIMINARIES
A. Arbitrarily Permuted Parallel Channels

Consider the communication model depicted in Figure 1. Asagezn, is transmitted over a set &f parallel
memoryless channels. The notatit#] = {1,...,S} is used in this paper. All channels are assumed to have a
common input alphabet’, and possibly different output alphabéls, s € [S]. The transition probability function
of each channel is denoted by (ys|z), wherey, € Vs, s € [S], andz € X. The encoding operation maps
the messagen into a set ofS codewords{x, € A"}J_,. Each of these codewords is of length and it is
transmitted over a different channel. The assignment obwodds to channels is done by an arbitrary permutation
7w : [S] — [S] (note thatr is fixed during the entire block transmission). The perniotatr is a part of the
communication channel model, the encoder has no controhformation on the arbitrary permutation chosen
during the codeword transmission. The set of possiblehannels are known at both the encoder and decoder. In
addition, the decoder knows the specific chosen permutafiormally, the channel is defined by the following
family of transition probabilities:

{P(Y\X;w) Y € (Vi x Vo x- x Vsl X € X, 7 [S] - [S]}OO_1
whereX = (x1,x2,...,xg) are the transmitted codeword¥, = (y1,y2,...,ys) are the received vectors,
s
P(YX;7) =[] Pe(yslxns)) 1)
s=1

is the probability law of the parallel channels, and [S] — [S] is the arbitrary permutation mapping of codewords
to channels. The decoder produces the estimated messdagsed on the received vectdfsand the permutation
7. The case where the decoded message is different from thenitied message, # xm, is a block error event.

Definition 1 (Achievable rates and channel capacity A rate R > 0 is achievable for communication over a set
of S arbitrarily-permuted parallel channels if there existseguence of encoders and decoders such that for any
0 > 0 and sufficiently large block length

%logQMZR—fs @
P (n) < 6, for all S! permutationsr : [S] — [S] )

where M is the number of possible messages al?éa)(n) is the average block error probability for a fixed
permutationt and block length:. The capacityCr is the maximum of such achievable rates.

The capacityCy; of this channel model can be derived as a particular caseeo€dmpound channel (see, e.g.,
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[2] and reference therein). Specifically, if there existdrgrut distribution that achieves capacity for all the plal
channels, then the capacify; is given by

whereC is the capacity of the-th channels € [S]. Two capacity-achieving schemes were provided in [1]:

1) A random coding scheme with decoding by joint typicalityeo product channels. The notion of product
channels is defined in (1) where each possible permutatipnovides a different product channel. Conse-
quently, there are! possible product channels. A properly chosen random codesivawn to achieve the
capacityCr; with decoding by joint typicality for all possible permutaits 7.

2) A rate-matching code together with random codebook geioer and sequential decoding by joint typicality.
The construction technique for rate-matching codes in ttiSn 6CJ, based on MDS codes, provided an important
intuition for the parallel polar schemes introduced in tlextrsection.

For the binary coding schemes provided in this paper, it sumed without any loss of generality that the
messager,, is provided in terms of binary information (referred to asommation bits or message bits). For
the non-binary scheme, it is assumed that the message iglgdoin terms of information symbols, or message
information symbols over a suitable non-binary finite field.

B. Polar Codes

The following basic definitions and results on polar codeaifty extracted from [4] and [5]) are essential for
the construction given in the next section. For a DMC, polades achieve the mutual information between an
equiprobable input and the channel output.

Definition 2 (Symmetric binary-input channels). A DMC with a transition probabilityp, a binary-input alphabet
X ={0,1}, and an output alphabgt is said to be symmetric if there exists a permutatiorover ) such that

1) The inverse permutatiod —! is equal to7, i.e.,
T Hy)=T(y), Yyed.
2) The transition probability satisfies

p(y|0) = p(T (y)|1), Yyel.

Polar codes are defined in [4] using a recursive channel sgiziing operation which is referred to as channel
combining. An alternative recursive algebraic constnarctis also provided in [4]. Aftei > 1 recursive steps, a
n X n matrix G,,, wheren = 2! is defined. The matrix3,, is refereed to as the polar generator matrix of size

Let A,, C [n], and denote byAS the complementary set of,, (i.e., A% = [n]\ A,). Given a set4,, and a polar
generator matrix of size, G, a class of block codes of block lengthand code-ratel |.4,,| are formed. The
setA,, is referred to as the information set. Polar codes are aaistt by a specific choice of the information set
A,

The encoding ofA,,| information bits to a codeword € {0,1}" is carried in two steps. First, a binary length-
vectorw is defined. Over the indices specified ly,, the components ofv are set according to the information
bits. The rest of the.A¢| bits of w are predetermined and fixed according to a particular codgdthese bits

These codes can be shown to be coset codes.
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are denoted as “frozen bits” in [4]). Next, a codeword is eagdd according to
x =wG,, . 4)

Let p be a transition probability function of a binary-input DMGitlv an input-alphabeft = {0,1} and an
output-alphabed’. The equivalent synthesized channel construction, afted recursive steps, provides a channel
denoted byp,,, n = 2¢, whose input is a binary vector if0, 1}" and output in)™. The channep,, is noted as the
combined channel in [4], and it can be shown to satisfy thealigu

m(ylw) =p(y|wG,) VyeY"andwe X" . (5)

Channel splitting is another important operation that igoiduced in [4] for polar codes. The split channels
{p,(f)}?zl, all with a binary input alphabet’ = {0,1} and output alphabe¥™ x X'~!, | € [n], are defined
according to

p£f><y,wrw>ém% S palyl(w, 7)) ®)

cexn-t
wherey € V", w € X!~!, andz € X. The importance of channel splitting is due to its role in thecessive
cancellation decoding procedure that is provided in [4]file

faedply) ¥, w) £ argmax p{l)(y, wlz) (7)
wherep,(f) is a split channel defined in (6), € )", w € X!~! and ties may be settled arbitrarily. For the particular
case wherd = 1, the parametes is dropped from the notation. The decoding ryledefined in (7) may be
interpreted as an optimal detection rule for a bit trangditbver the corresponding split channel. The decoding
procedure for polar codes iterates over the intlex(n]. If [ € AS, then the bitw; is a predetermined and known
bit. Otherwise, we decode the hit; according tof,(p,,y, (w1,...,w;—1)) wherey is the received vector and
wi,...,w;—1 are the already decoded bits. It is shown in [4] that the desdrsuccessive cancellation decoding
procedure may be accomplished with a complexityQgh logn).

Lemma 1 (Channel polarization properties [5]). Let p be a binary-input symmetric DMC whose capacity is
given by C and fix a rateR < C and som&) < § < % Then, there exists an information index set sequefge
such that
1) Rate:|A,| > nR.
2) Performance: Assume that the information hits ¢ € A,,, are chosen in a uniform manner over all possible
options in{0, 1}~ and fix an arbitrary choice of the predetermined and fixed bjtst € AS. For every
index! € A,, the following upper bound is satisfied:

Pr(&(p) <27
where
&(p) = {pg) (v, (w1, w2, ..., w—1) |wy) < PP (v, (wi,we, ... wi—y) | w + 1)} 8)
and the additionu; + 1 on the right-hand side of (8) is carried modulo-2.

Remark 1 (On the symmetry assumption in Lemma 1).The symmetry of the channel in Lemma 1 is required
in order to provide an arbitrary choice of the predetermiaad fixed bitsw,, ¢t € AS. In the general case where
the parallel channels are not necessarily output-symepdtris vector can not be chosen arbitrarily (though the
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results are satisfied for some choice).

The channel polarization phenomenon @@ry channels has been considered in [8] and [9], where akver
sufficient conditions on the kernels have been derived faueng the occurrence of the channel polarization
phenomenon. In the case wherds a power of 2, an explicit construction was provided in [B]terms of an
n X n generator polarization matri&,, over GH2™) and an information index set sequendg. Encoding of|.A4,, |
message symbols to a codewotrd GF(2™) is carried according to (4) where the operations are caoied the
finite field GR2™), w = (wy,...,w,) € GF2™), the symbohy; is an information symbol for everyc A,,, and
it is predetermined and fixed for evely A,,. Split channels and successive cancellation decodingedtoes are
defined similarly as in (6) and (7), except that the input alpgt X’ is no longer binary.

C. MDS codes

Some basic properties of MDS codes are provided. For completails and proofs, the reader is referred, e.g.,
to [6] or [7].

Definition 3. An (n, k) linear block code” whose minimum distance i$is called a maximum distance separable
(MDS) code ifd =n — k + 1.

Since the minimum distance of an MDS codenis- k£ + 1, it follows that it can tolerate up te — & erasures,
or in other words, any symbols in a codeword completely determine the other sysabol

Example 1 (MDS codeg. The (n,1) repetition code(n,n — 1) single parity-check (SPC) code, and the whole
space of vectors over a finite field are all MDS codes.

In the following, we explain how to construct an MDS code oflack lengthS and a dimensiort € [S]. Let
S > 0 be an integer number, and fix an integer> 0 such that2™ — 1 > S. For everyk € [2"™ — 1], there
exists a(2™ — 1, k) Reed-Solomon (RS) code over the Galois field(&F. Every RS code is an MDS code [7,
Proposition 4.2]. To obtain a(S, k) MDS code, two alternatives are suggested:

1) Punctured RS codes:Consider a2 — 1, k) RS code over the Galois field GF*). Deleting2™ — 1 — S
columns from the generator matrix of the considered codelteegn an (S, k) linear block code over the
same alphabet. The resulting code is(&hk) MDS code over GR2™).

2) Generalized RS (GRS) codesGRS codes are MDS codes which can be constructed ovE&X"GFRor every
block lengthS and dimensiork (as long a2™ — 1 > S).

Ill. THE PROPOSEDCODING SCHEMES

We first provide a simplified version of the proposed scheraeithsuitable forS = 3 parallel channels, relying
on binary polar codes and binary MDS codes (note that thenseHer S = 2 can be directly obtained from the
studied case wher§ = 3). For S > 3, this scheme must be generalized to utilize non-binary Mb&es. Two
alternative schemes are therefore proposed: a scheme basedn-binary polar codes and a scheme based on
binary interleaved polar codes. For the special case wherehannels are stochastically degraded, a simplification
is possible based on non-binary MDS codes and binary (nenléaved) polar codes.

A. A Simplified Coding Scheme 6r= 3

Let ALY, AP and A be three information bit sets, and let £ |A§Ll)| + |A512)| + |A§L3)|. The polar encoding
is preceded by mapping, information bits to three length-binary vectorsw, = (ws 1, ws2, ..., ws,) € {0,1}",
for s =1,2,3, as follows:
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1) Thek, bits of wy, wy andwg, referring to the set uniom,(@l) U Af) U A,(f), are set to the values of thig,
information bits.
2) For everyl € [n], consider the binary tripl€éw; ;, w2, ws;) and fill the remaining bits as follows:

a) If none of the bits inw; ;, we;, ws;) are information bits, they are set to some arbitrarily fixatles,
whose values are made known to both the encoder and the aecode

b) If one (and only one) bit ifw; ;, w2, w3 ;) is an information bit, the remaining two bits are set to the
same value as this information bit.

c) If two (and only two) of the bits ifw; ;, ws,;, ws,;) are information bits, the remaining bit is set to the
exclusive-or value of the two information bits.

Finally, the codewords, x», andxs are calculated via the equality
xs = wG,, s€[3]

whereG,, is the generator matrix of the polar code.

The codeword, () is then transmitted over the symmetric chanfel(see Definition 2)s € [3], as depicted
in Figure 1. The split channels defined in (6) are thereforduated with respect to the permuted indices of the
transmitted vectors as well. Specifically, kgt denotes the length-observation vector received at the output of
the channel’, s € [3], and the corresponding split channels are evaluated wshe to the binary vector (),
s € [3]. Given previously decoded bits.() 1, Wr(s)2; - - - s Wr(s),—1 fOr SOMes € [3] and! € [n], the bitw, ) ; is
decoded based on the split channel

1
Ps(}’]?L (YS> Wr(s),15 -+ Wr(s),l—1 |w) = on—1 Z Py (ys|(w7r(s),1> sy Wr(s),l—1, W, C)Gn) (9)
cef{0,1}»!

wherew € {0,1} is the binary input to the considered split channel.
The [-th symbol (forl = 1,2,...,n) in each codeword is decoded sequentially as follows:

1) Ifle A% for everys € [3], then decode

Wr(s),l = fdeC(Pg(,lna Yy, (ww(s),b Wr(s),29 -+ >w7r(s),l—1))7 s € [3] (10)

where fyec is the decoding rule in (7), anBs(,lr)L, s € [3] are the split channels in (9).

2) Otherwise, ifl € AL andl € AS" for somel < s < s' < 3, then decodev, ), as in (10) andw, s, as
in (10) with s replaced bys’. Furthermore, set the remaining hit .y, (Wheres* # s,s" ands* € [3]) to
Wr(s),l T Wr(s),1-

3) Otherwise, ifl € Agf) for a singles € [3], decodew,(,); as in (10). Then, set the remaining two bits ) ;
andw, ;1) (Wheres' # s ands” # s) 10 wy(y) ;-

Note that at each decoding stage, all the triples that peetiesl current stage are already determined, matching

the evaluation requirement of the corresponding split okémnas given in (9).

Proposition 1. The parallel binary polar coding scheme f8r= 3 achieves the capacitg; of the arbitrarily-
permuted parallel channels where these three channelsar®mryless, binary-input and output-symmetric.

Proof: Fix an arbitrary rate triplé R, R2, R3) satisfyingRs < C for s =1,2,3, and somé) < 3 < % The
error probability P, of the provided decoding procedure is upper bounded, viaittien bound, by

r<Y Y Pr(E(r) (1)

s€[3] 1Ay
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where&;(Ps) in (8) is the error event that a decision on a bit in the splératel is incorrect. According to Lemma 1,
there exists index set sequencég , s € [3], such that the number of information bitg satisfies

kn > n(Ry + R2 + R3)

while assuring that for symmetric channels (see Remark &)didcoding error probability’ in (11) is upper
bounded by
P < n2-"",

Taking the block lengtm large enough concludes the proof. [ |

It is clear that the repetition and exclusive-or operatioa @ssentially the encoding operations for the binary
(3,1) and (3,2) MDS codes, respectively. The information bits and the fixéd m the polar code framework
naturally lead to the application of symbol-level MDS codesr S > 3, because the appropriate MDS codes only
exist for larger alphabets, the coding operations are nattgxperformed on the single bit level. However, as we
shall discuss next, this difficulty can be solved by using-borary polar codes or an interleaving technique.

B. Coding forS > 3 Using Non-Binary Polar Codes

For S > 3, the binary MDS codes applied in Section IlI-A must be repthby MDS codes of block length.
The only binary MDS codes are the trivial codes (repetitisingle parity-check and the whole space). As MDS
codes of additional dimensions are required (for- 3), we must turn to larger alphabets. For edck [S], an
(S, k) MDS codes over the Galois field GF") is chosen, which is denoted I, (see Section II-C for possible
constructions based on RS and GRS codes). A singleton sesendole member is an arbitrary and fixed len§th-
binary vector is also chosen. This singleton set is denoyethé® codeboolC.

In order to apply the non-binary polarization coding scheanaew set of parallel channe{$V,}5_, is defined
according to

Wi(ylz) & T Po(uilbi)
i=1

wherey = (y1,...,ym) € Vs, * € GR2™), s € [S], (bi(z),...,bm(x)) is the binarym-length vector represen-
tation of the symbolk: € GF(2™) and Py, s € [S] are the binary-input symmetric parallel DMC over which the
communication takes place. The corresponding split cHarare denoted bWsn, € [n]. A coding scheme for
the parallel channel®, s € [S] is equivalent to a coding scheme for the original binary ferahannels where
the transmission of a symbel over a channelV; is replaced withm transmissions over the chann@l, s € [S].
With some abuse of notations, the information index set eegei for each of the non-binary chann#ls, s € [S],

is also denoted byASf). For every!l € [n] define

S {s: 1€ AP (12)

The encoding of the parallel non-binary polarization schéscarried as follows:

1) For every channel indexe [S] and every information indek e A, denote bya(l) the symbol in GF2™)
corresponding ton information bits.

2) For everyl € [n], choose the unique codewort) = (cgl),cg), e ,c§>) € Cy,, satisfyingcgl/) = agl/) for every
se{s: le Agf)}.

3) ComputeS polar codewordsg, for s € [S], according to

X5 = (cgl),cgz), e ,c(”)) -Gy,
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Fig. 2: lllustration of the non-binary parallel polar encoding gedure in the particular case 8f= 4. The grid of rectangles illustrates the
symbol&:ﬁ”, for1 <1 < 8ands € [4], as are defined in the encoding procedure. Each row of sqrepessents the vecthS), cf), ...cg”),

s € [4], where each of the squares represents a symbol. A filled sgepresents a symbej” for whichl € A, s € [4]. For the depicted
grid, ASY N [8] = {2,3,4,7,8}, AP N[8] = {2,6,7,8}, AP N [8] = {3,6,7,8} and ALY N [8] = {2,3,5,6,7,8}. According to the
decoding procedure, the symbols represented by the filledreg are set to the message symbols. An empty square représe opposite
case wheré ¢ AP s e [4]. The symbols represented by the empty squares are detersunk that each column forms an MDS codeword.
The 4 vertical rectangles mark 4 of these codeword®, ¢, ¢(® andc¢®. Codewordsct™ andc® belong to codes of dimensions 0
and 4, respectively (a constant vector and the whole spaceprdingly, inc™ all 4 squares are empty to represent 4 predetermined and
fixed symbols while inc® all 4 squares are filled squares, representing 4 arbitrdoyriration symbols (an arbitrary vector in the whole
space). The codeword® belongs to a code of dimension 1, accordinggf = cf,l) = cff) = cgl) (the empty squares equal to the value
of the single filled square). The codewartf’ belongs to a code of dimension 3 where the 3 filled squares lebefy determine the value

of the single empty square accordingd = —c® — (¥ — ¢{®.

where@,, is the polar generator matrix, and arithmetic is carriedr &@g(2™).

The encoding procedure is further detailed in Figure 2 viaillastrative example. The codeworl, where
s € [9], is transmitted over the channil, and lety, denote the vector received at the output of the chafinel

The I-th symbol (forl = 1,2,...,n) of each codeword is decoded sequentially as follows:
1) For everys € [S] such that Aﬁf), let cggs) = fdec(Ws(f%,ys,cfrl(l),cfrz(l), . ,cfrl(;)l)).

2) Find the unique codeword= (ci,ca,...,cs) in Cy, satisfyingcfrlgs/) = Cq(s) fOr everys’ € {s: l ¢ Aﬁf)}.
The decoding procedure is further detailed in Figure 3. widllastrative example.

Proposition 2. The parallel non-binary polar coding scheme achieves thadity of the considered model.

Proof: The ability to choose a unique codeworddp, ! € [n], follows directly from the fact that aqs, k;)
MDS code can correct up t§ — k; erasures. For a DM@ with an input alphabef’ and output alphabey,
define the events

elmw) 2 {(wy) e x5y WOy, (wr. . wpy)w) < WOy, (i, wy)w+d) b, 1€ il dex
(13)
whereW,gl), [ € [n] are the split channels di/. The error probabilityP. for the non-binary decoding procedure

is upper bounded by
Pe< > > Y Pr(&f(wy)). (14)
s€[Sl1e Al deX\{0}

It follows from [8] and [9] that the probability of the eveﬁﬁ(Ws) can be made exponentially low as the block length
increase while having the cardinality of the informationssarbitrarily close to the capacity of the corresponding
DMC. Hence, the error probability in (14) can be made arbiljrdow. Detailed inspection of the results in [8]
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Fig. 3: lllustration of the non-binary parallel polar decoding edure in the particular case af= 8 and S = 4. The grid of rectangles
refers to Figure 2 with the difference that, due to the traesion permutationr, codewordx; is transmitted over channéd?s, codeword
x3 is transmitted over channdP,, and codewordsx, and x4 are transmitted over channel® and P,, respectively. All the symbols in
c¢® (empty squares) are predetermined and fixed, so the firsdilepstage is redundant. Due to the channel permutatione dored
symbols may be decoded via (7). Such fixed symbols are repgeesby empty squares filled with an x-mark (ecéf‘,) , hote thatd € Aill)).
As another consequence of the channel permutation, sorasmafion symbols cannot by decoded via (7). Such informasigmbols are
represented by filled and rotated squares (egé)., note that4 ¢ AS?)). Consequently, at the forth decoding stage, even thougimisssage
symbol i5c14 (represented by a filled rotated square), due to the trassmigpermutation only the symb@ﬁ4 that is represented by an
empty x-marked square can be decoded via (7). Neverthelassto the MDS structure in the columns, the two symbols atmledit the
sixth stage of the decoding, the message sym@ﬁdl is the rotated square amﬁ6 is now x-marked (a$ ¢ AL and6 e A(’)) The
message symbols (filled squareéﬁ)) andc4 can be decoded via (7) bug ) cannot. Nevertheless, the non- -message symbol (filled kedar
square)c{® is decoded via (7) and due to the MDS structure of columnsyrtssage symbol (rotated squar§) = —c!® — c{” — (%),
All the symbols (filled squares) in® are decoded via (7) a#&e AL for every s € [4].

and [9] reveal the lack of the symmetry property in Remark lictvhis crucial for the provided scheme. This
property is therefore provided for non-binary polar codeé&\ppendix A. The symmetry oWV, s € [S] according
to Definition 4 for non-binary channels is imposed directlgni the symmetry of the binary-input channéts,
s € [S] according to Definition 2. [

Remark 2 (Coding for non-binary parallel symmetric channels). The coding scheme provided in this section can
be easily adapted to parallel, output-symmetric and melassychannels where the cardinality of the input alphabet
is a power of a prime (the symmetry condition in the non-bynaase is stated in Definition 4 of Appendix A).

C. A Binary Interleaved Polar Coding Scheme

The scheme provided in this section is basednon- 1 binary interleaved polar codes for every binary-input
symmetric DMCP;, s € [S]. Them interleaved polar codes for each chanRgls € [S], are defined based on the
same information set sequenﬁéf). As in Section 1lI-B, letC;, denote an MDS code over GF") of dimension
k, and letk; be defined as in (12). The encoding process is carried asvillo

1) For every information indek € AY), and every channel indexe [S]: Pick m information bits, denoted by

W)
UG g L S g <M
2) For everyl € [n], choose the unique codeword) = (c&l), g),...,cg)) € Cy, for which the binary
representation oégl/) € GF(2™) is equal to
() ()
(u(l—l)m+1’ e ’u(l—l)m—i-m)

for everys' € {s: 1€ A}
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3) For everys € [S] and index! ¢ Aﬁf), define the lengthr binary vector

(s) (s) (s) m
<u(l—1)m+1’ Y tymt2r ’u(l—l)m-i-m) € {0,1}

as the binary representation of the symbﬁ?.
4) Compute then - S polar codewords, s € {0,1}", g € [m], s € [S] where

_ s (s) (s)
Xgs = (ug ),um+g, . ’u(n—l)m—i-g) -Gy,

andG,, is the binary polar generator matrix.
5) For every channel index € [S], construct a codeworg(®) based on the concatenation

X(S) = (x1,57 X259 7xm,s)-

The concatenated codewatd () is transmitted over the channg}, s € [S], and lety® = (3\*), .., y)) denote
the received vector at the output of this channel.
Assuming that the bits,*) 11 (5 €[S], g € [m] andl’ < I — 1) were already decoded, the bits’)

m(l'—1 m(l—1)+g
are decoded sequentially at théh stage (forl = 1,...,n) as follows:
1) For everys € [S] such that € A, decode
(r(s))  _ (., (s) s (s)) , (m(s)) (m(s))
U(i-1)ym+g = fdeC(Ps(,r)v (y1+(9—1)n’y2+(g—1)n’ e ,yén)), (Ué ( ))7um+g 7""u(l—1)m+g)>’ g € [m]

where fgec and PS(IT)L are defined in (7) and (9), respectively.
2) Find the unique codeword= (ci,ca,...,cs) € Cy, for which the symbok, . is equal to

(m(s)) (m(s)) (m(s))
(u(l—l)m—l—l’u(l—l)m—l—Z’ Uy )
for everys' € {s: 1 € AY}.
3) For everys € [S] for which I ¢ A%, the bits (ugf_(sl/));ﬂ,ugf_(sl/))r)mrz, ... 7u§;(s/))) are set according to the
binary representation of the symbe).,.y € GF(2™).
Proposition 3. The parallel binary-interleaved parallel polar codingestle achieves the capacity of the considered
model of parallel channels.

Proof: The ability to choose unique codewordsdp, | € [n], follows directly from the fact that aQs, k;)
MDS code can correct up t6 — k; erasures. For every channet [S], m interleaved polar codes of block length
n are applied. Hence, the code rdtg of the parallel binary-interleaved polar scheme is given by

s (s) S
N mlA] ] ()
Ry=3 — —ﬁgmn .

s=1
For n sufficiently large, it follows from Lemma 1 thak,, can be made arbitrarily close @le Cs. The part of
the proof that refers the reliability of the provided decwprocedure is omitted as it follows from Lemma 1, and
it goes along similar steps as the proof of Proposition 1. |

D. Coding for Stochastically Degraded Channels

The non-binary scheme provided in Section IlI-B can be difiegl to include only binary polar codes if the
parallel channels are assumed to be stochastically dedjyr@déhout relying on binary interleavers as required
in Section 1lI-C). The scheme is further simplified in termitibe decoding procedure. Instead of performing
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successive cancellation in parallel for all the receiveglisaces simultaneously, the decoding procedure is pegfibrm
sequentially channel by channel. The simplification foklofrom the following technical property:

Corollary 1 (On monotonic information sets for stochastically degradedparallel channelg. Consider a set
of S memoryless, binary-input and output-symmetric parallermels{P,}5_,. Assume that the channels are
stochastically degraded, such that is a degraded version df; for everys’ > s € [S]. Let C; be the capacity of
the channelP;, s € [S]. Fix 0 < 8 < % and a set of ratef,, ..., Ry, such thatd < R, < C; for everys € [S].
Then, there exists a sequence of information st C [n], s € [S] andn = 2¢ wherei € N, satisfying the
following properties:

1) Rate:
AP| > nR,, Vs e [S). (15)
2) Monotonicity:
AP c A=) ..o A, (16)
3) Performance:
Pr(&§(Py)) <27 (17)

for all 1 € A% ands € [S], and
6i(p) 2 {p(y WD) < o0y WOV + 1)}, 1o

Proof: See Appendix B. |

Let {Ps}f:1 be a set of parallel channels as in Corollary 1, andCletl < k < S — 1 denote an MDS code
over GR2™) of block lengthS and dimensiork. Define, k) 2 \Aﬁf)\, s € [9], where A is the information
index set sequence of the chandg| s € [9], satisfying the properties in (15)-(17). In addition, defifi,_; =
(k:ﬁf_l) - k,(f))/m, s € [S] (for the purpose of simplicity, it is assumed thaf are integral multiples ofn).
Prior to the stage of polar encoding, = Zse[s] k,(f), information bits are mapped into a set of binary row
vectors{u,;}, s,l € [S] where the vecton, is of Iengthkﬁls_l“) — k57 bits. The vectorsi, 1, s € [S] and
o = (us2(1),us2(2),. .., us2(ks—1 — ks)), s € [S — 1], are set to information bits. Next, the vectag, is
determined (the following steps are accompanied with tstiation in Figure 4):

1) Construct theS — 1) x Ks_; matrix over GF2™), C?), from the row vectorsi, » (s € [S — 1]) where the

(7,7) element in this matrix is defined by the bits
(ui,Z((j - 1)m + 1)7ui,2((j - 1)m + 2)7 v 77ui72(jm)>7 (&S [S - 1]7 ] € [KS—l]

(see Figure 4 where each vector is represented with a hoaizerctangle).

2) Find the unique codewordg:; : j € [Ks_1]} in Cs_1, whose firstS — 1 symbols are the columns ¢f®
(represented by the dashed vertical rectangles in Figure 4)

3) A Ks_1-length vectorug, over GK2™) is defined using the last symbol of each of the codewards
j € [Ks—1] (the symbols are represented by filled black squares in &igur

4) The vectorug is defined by the binary representation of the vedtgp.

Let2 <! < S, and assume that the vectars;, s € [S], I’ < [, are already defined. The vectass;, s € [S]
are defined as follows:

1) The binary row vectorsi;;, 1 < s < .S — (I — 1), are set to information bits.

2) Construct the(S — (I — 1)) x Kg__1) matrix CWover GR2™) from the row vectors in step 1, where the
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m bits m_bits
—> —>

U9
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_

Fig. 4: lllustration of the construction of the vectérs ». The vectorsuy 2, k € [S — 1] defining the rows of the matrix’® are shown,
along with the columns defining the codewords j € [Ks_1,5] in Cf,,%gl).

(i,7) element ofC") is defined by then bits

<u2-71((j —Dm A1), u (G- Dm+2),... wis (jm)).

3) Find the unique codewords; = (cj1,¢52,---,¢5) € Cs_g—1), J € [Kg—q—1)], whose firstS — (I — 1)
symbols are the column af'®).
4) The vectorsu,,, s > S — (I — 1) are set to the binary representationif;.

Finally, the codewordxﬂ(s) is transmitted over the channgl, s € [S], where
S
xo = uy,Gy <A§f‘“‘1>) \,4,35—0—2”) +bG, ([n] \,4,9) . sels).
1=1

HereASLSH) £ (), b is a binary predetermined and fixed vector, a@hg is the polar generator matrix.

The decoding process starts with the observations recéigadthe channeP;. A polar successive cancellation
decoding, with respect to the information index séi), is applied to the received vector. This allows the decoding
of the vectorsu,(;);, | € [S]. Next, the decoding proceeds to successive cancellationdiey procedure for the
vector received at the output of the chans®l(i.e., the channel with the second largest capacity). Teoding
procedure is capable of decodimgg)\ bits based om — \Ag)\ predetermined and fixed bits. For the current
decoding procedure; — |A$Ll)| of these bits are the predetermined and fixed bitb.iThe rest of|,4$})| - |A%2)|
bits are based on the bits decoded at the previous decodige. Specifically, the bit vectar, ) 5 can be evaluated
using the bit vectom, ) ¢ due to incorporated MDS codes. After the second decodingestall the S binary
vectorsu,(y) 5, s € [S], are fully determined. Moreover, based on the codewosds € K o], the vectorai, ) s,
are fully determined for alk > 2 as well.
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TABLE I: The order of decoding the information bits for all ggible assignments of codewords over a set of three
parallel and degraded channels.

Channel P; Channel P, Channel P

Transmitted Decoded Transmitted Decoded Transmitted Decoded
Codeword Information Codeword Information Codeword | Information

X1 up1, up2, U X2 Uz 1, U2 X3 us

X3 us, U;2 + U292 X2 us 1

X2 uz1, Uz2, U X1 up g, U2 X3 us

X3 us, U;2 + U292 X1 uj

X3 us, U2 + U292, Ur X1 ujp 1, U2 X2 us 1

X2 ug 1, U22 X1 up 1

Next, the remainingS — 2 decoding stages are followed. Note that after the- 1)-th decoding stage, where
2 < s < S, the vectorsu, ), for either1 < s <sandle[S],ors >sandS—s+3<1<S, were decoded
at previous stages. At theth stage, the decoding is extended for the vectgys) ; for all [ € [S] and the vectors
U, (5),5—s+2 fOr all s € [S]. In order to apply the polar successive cancellation degpgrocedure to the vector
received over the channél, the bits inb and {u, ) };>5—(s—2) Must be known. The vectds is clearly known.
In addition, the bits in{u, () }i>5-(s—3) are already decoded in previous stages. It is left to deterrtie bits in
U (s),5—(s—2)- Nevertheless, these bits are fully determined due to thebahic constraints imposed by the MDS
codes (the determination af () 5_(,_2) is also established along with the determinatiorugf. ) ¢_(s_2) for
all s" > s).

The proof of the following proposition goes along similagfst as in Proposition 1, and it is therefore omitted.

Proposition 4. The provided parallel coding scheme achieves the capatttyeocconsidered model of parallel and
degraded channels.

Example 2 (Coding for 3 stochastically degraded channels)The coding scheme described in this section is
exemplified for the particular case of three parallel degdadhannels?;, P, and Ps. It is assumed thaPs is a
degraded version of,, and P, is a degraded version df;. We first describe the encoding:

« Thek; information bits that are used to encadgare (arbitrarily) partitioned into three subsets;; € X",
up o € Xk2=ks andu, € AR h,

« The k, information bits used to encode, are (arbitrarily) partitioned into two subsets; ; € A*: and
U9 € Xk2=Fs_|n addition,u, (used for encoding;) is also involved in the encoding of;.

o The codewords; andxs are defined as follows:

xi = 1 G (AP) + 126Gy (AP AD) 4+ w Gy (AP AP +bGy ([n]\ AD)
x3 = 1 G (AP ) + 122G (AP AD) 4wy (AP AP +bGy ([n]\ AL

whereb € X" % is a predetermined and fixed vector.
« The encoding of the codeword is based on the remainirg information bits, denoted by € A'*s:

x3 = UgGy (AD) + (w2 + 122) G (AP VAP ) + G (AD\AP) + G (0] \ AD).

The order of decoding the information bits for all possibdsignments of codewords over a set of three parallel
channels is provided in Table I.
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Remark 3 (On the order of successive cancellatign The parallel coding scheme provided in this section is
capable to decode sequentially the information bits froohednannel, due to the monotonic sequence of index sets
{Aﬁf)}se[g] satisfying the conditions in Corollary 1. It is noted thag ihdex sets ind'), s e [S], are ‘good’ for all

the channeld’s, wheres’ > s. The problem of finding an index set which is ‘good’ for a sethannels is much
harder if the channels are not degraded. This problem idgestud [12] in the context of the compound capacity
of polar codes. Upper and lower bounds on the compound dgpafcpolar codes under successive cancellation
decoding are provided in [12]. Although the study in [12] cems two channels, the techniques are suitable for
the case at hand. Specifically, it can be shown that if suseesancellation decoding is performed sequentially
as in this section (channel by channel), then the achievalés are bounded below the channel capacity of the
general model (where the parallel channels are not orderestidchastic degradation). Hence, the parallel progress
of the successive cancellation decoders applied in Sectlbd—III-C) is inevitable for the general case.

IV. SUMMARY AND CONCLUSIONS

Capacity-achieving parallel polar coding schemes areigealvin this paper for reliable communications over a
set of arbitrarily-permuted parallel channels that arabjsinput, output-symmetric and memoryless. These scheme
are based on the channel polarization method [4], combindd MDS codes of various dimensions. Two coding
alternatives are suggested in this paper, one is based ocbinary polar codes (see [8], [9]), and the second is
based on binary-interleaved polar codes.

The definition of polar codes includes a set of predetermanadi fixed bits, which are crucial to the decoding
process. In the original polarization scheme in [4], thesslptermined and fixed bits may be chosen arbitrarily (in
the case of symmetric channels). For the proposed paraltbhg schemes, on the other hand, the predetermined
and fixed bits are determined based on some algebraic codirggraints. The MDS coding, suggested in this paper
is similar to the rate-matching scheme in [1].

Successive cancellation decoding is applied in both thebmoary and the binary interleaved schemes. The
decoding must process in parallel the received obsenafimm all the parallel channels. It is characterized as
parallel operations of the successive cancellation degodiocedures provided by a single channel in [4], while
exchanging information due to the algebraic constrainizoised by the incorporated MDS codes.

For the particular case of two or three parallel channelsatyi channel polarization codes are suitable without
relying on interleavers. The same simplification is showntlfi@ particular case of stochastically degraded parallel
channels. For the degraded parallel channel model, thedderanay progress in a serial manner, that is the
successive cancellation can be carried sequentially @idynchannel.

The following topics are suggested for further research:

1) Symmetry condition: For symmetric channels, the preddteed and fixed bits may be chosen arbitrarily.
For non-symmetric channels, good predetermined and fixsd(¢dlled also frozen bits in [4]) are shown to
exist, but their choice may not be arbitrary. It is an openstjoe if there is a more general construction that
does not require the symmetry property of the parallel cebnn

2) Generalized parallel polar coding such as in [13]-[15].

3) Generalized channel models: Arbitrarily-permuted [parahannels form just one particularization of the
compound setting. It is of interest to enlarge the family afgilel channels for which the studied coding
scheme may be applicable. Of specific interest is the casarafl@l channels where a sum-rate constraint is
provided by the channel model characterization.

4) Studying the impact of improved list based decoding styias [16] of polar codes on permuted channels.
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APPENDIX

A. On the symmetry property of non-binary polarization

Definition 4 (Non-binary symmetry). A DMC which is characterized by a transition probabilityan input-output
alphabett’ and a discrete output alphaltis symmetridf there exists a functio : Y x X — Y which satisfies
the following properties:

1) For everyz € &, the function7 (-,z) : Y — ) is bijective.
2) For everyz;,zo € X andy € ), the following equality holds:

p(ylz1) = p(T(y, 22 — z1)|z2).

Lemma 2 (Message independence property for non-binary symmetricttannel polarization). Let p be a
symmetric DMC and) be then-length all-zero vector ove’. Denote byP.(£flu) the probability of the event
&L in (13), assuming that = u in (5). Then,

Pe(£f'(p)Ju) = Pe(&](p)[0)
for everyu € X" and! € [n].

Proof: Let 7 be the corresponding function in Definition 4. With abuse ofation, the operation of on
vectorsy € Y™ andx € X" is defined by

T(y,x) £ (T(yhéﬂl), T (y2,x2), ---»T(yn,:ﬂn))-

Subtraction of a vector is also defined item-wise, that-{s1,...,z,) = (—z1,...z,). Based on the symmetry
property of that channel, for evelyc [n], y € Y, w € X~1, w € X anda € X", we have

p,(f)(y, (wi, ..., wi—1)|w)

. |X|n T 2 Hp(yt w1, €)Ga) )

ceXxn—tt=1
©)
‘X,n > Hp( (41: (aG), ) (w01, €)Ga), + (aan)t>
cexXn—-tt=1
where (x); denotes the-th element of a vectox = (z1,...,z,), () follows for memoryless channels from (5)

and (6) and (b) follows from the symmetry property of the aelnConsequently, it follows that
pg) (Y7 (wla v ,wl_1)|’(Ul) = ngl) (T(Y> aGTL7 (wla v 7wl—1) + (a17 s ,(I[_l)) |UJ[ + al) . (18)
From (13) and (18) it follows for every paiw,y) € X™ x Y™ and everya € X" that

(w,y) €&l(p) <= (a+w,T(y,a-Gn)) € & (p). (19)
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Next, let1gq(,) (u,y) denote the indicator of the evefit (p). For everyu € X™ it follows that

Pe(£(p)|u)
= > paylw)lgsgy(u,y)

yeyn

&S pyluG) e (u,y)
yeyn

23" p(T(y, —uGn)[0)Les () (0, T (y, —uGy))

yeY"

= Z pn(yyo)lff‘(p)(()a}’)
yeY"

= Po(&'(p)|0)

where (a) follows from (5), (b) follows from (19) by pluggirg= u, and (c) follows sinceZ (y, x) is a bijective
function of y € ) for every fixed symbok € X. |

B. Stochastically degraded parallel channels

Definition 5 (Stochastically degraded channe)s Consider two memoryless channels with a common input
alphabetX’, transition probability functiond®, and P, and two output alphabef®; and )», respectively. The
channelP; is a stochastically degraded version of chanRglf there exists a channdD with an input alphabet
Y1 and an output alphabét, such that

Py(yslz) = > Paiyrlo)D(yalyr), Va € X,y2 € M.
Y1EV
Lemma 3 (On the degradation of split channeld. Let P, and P, be two transition probability functions with a
common binary input alphabet = {0,1} and two output alphabets; and )%, respectively. For a block length
n, the split channels of’, and P, are denoted b)Pl(f,)l and PZ(QL respectively, for all € [n]. Assume that the

channelP; is a stochastically degraded version of chanRel Then, for everyi € [n] the split channePQ(fZL is a
stochastically degraded version of the split chanﬂ%ﬂ.

Proof: The proof follows by induction (see [10], [11]). [ |

Definition 6 (Stochastically degraded parallel channels Let { P }5_, be a set of5 parallel memoryless channels.
The channel§ P, }5_, are stochastically degraded if there exists a sequence@i@indicess, so, . . . 55, 5; € [S]
for everyi € [S], such that the channél;, . is a stochastically degraded versionf for everyi € [S — 1].

i+1
Proof of Corollary 1: From [5], it follows that there exists a sequence of s{ealéﬁ} satisfying\ASf)] > nRs
and Pr(Sl(Ps)) < 27"’ These are the rate and performance properties in (15) afdidqfl the particular case of
s = 8. Fix ans’ € [S — 1] and assume that the set sequen@éés)}, s > s, can be chosen such the following
properties are met:
1) The rate and performance properties in (15) and (17) dified for everys > s'.
2) For every block length, the setsAgf), s > ', are monotonic:

A%S) C AgS—l) C...C Agls’-l-l). (20)

An information index se{Agf/)} is next constructed. From [5], it follows that there existseguence of setsA,, }
satisfying|.A4,,| > nRy and Pr(El(PS/)) < 27"’ These are the rate and performance properties in (15) afjd (1
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for the particular case of = s’. Choose an arbitrary indexe A s+ . Since P/, is a degraded version df,,

then according to Lemma 3, the split chamﬁéjﬂ,n is a degraded version of the split chanméj?n. It is clearly
suboptimal to first degrade the observation vegtar ), to create a vectoy € )V, 1, and only then decode the
corresponding information bit. Consequentlytp) C &.1(p) which implies that ifP(,l) satisfies (17), so does

+1,n
Ps(f?n. It follows that! is a valid index forAﬁf in terms of the performance property. That is, for evbeyA(S )

it follows that Pr(&(Py)) < 2-"° Therefor we setd’;) = AY TV U A,. As a results, the set sequendes§ },
s > s’ satisfy the following properties:

1) The rate and performance properties in (15) and (17) disfied for everys > s’
2) Monotonicity property:A%Y) ¢ A%~ C AFTY ¢ A,
The proof follows by induction. [ |
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