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Concentration of Measures - Introduction

Concentration of Measures

In many situations, the statistical properties of random fluctuations of
functions of many random variables are of interest.
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Concentration of Measures - Introduction

Concentration of Measures

In many situations, the statistical properties of random fluctuations of
functions of many random variables are of interest.

Roughly speaking, the concentration of measure phenomenon can be
stated in the following simple way: “A random variable that depends
in a smooth way on many independent random variables (but not too
much on any of them) is essentially constant” (Talagrand, 1996).

Concentration of measure has far-reaching consequences in
◮ Pure and applied probability,
◮ High-dimensional statistics,
◮ Functional analysis,
◮ Computer science,
◮ Machine learning,
◮ Statistical physics,
◮ Complex graphs and networks,
◮ Information theory, communication and coding theory.
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Concentration of Measures - Introduction

Concentration Inequalities

Let X1, . . . ,Xn be (possibly dependent) random variables taking
values in some set X .

Let f : X n → R, and

Z = f(X1, . . . ,Xn).

Question: How large are typical deviations of Z from its expected value
(E[Z]) or median ?
We seek upper bounds for

P{Z ≥ E[Z] + t}, P{Z ≤ E[Z]− t}

for t > 0.
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Concentration of Measures - Introduction

Various Approaches for Proving Concentration Inequalities

1 The martingale approach: Hoeffding (1963), Azuma (1967), Milman
and Schechtman (1986), Shamir and Spencer (1987) and McDiarmid
(1989, 1998), Sipser and Spielman (1996), Richardson and Urbanke
(2001), and other contributions.

2 Talagrand’s inequalities for product measures: Talagrand (1996).

3 The entropy method and logarithmic Sobolev inequalities: Ledoux
(1996), Massart (1998), Lugusi et al. (1999, 2001), etc.

4 Transportation-cost inequalities: Ahlswede, Gács and Körner (1976),
Marton (1986, 1996, 1997), Dembo (1997), Villani (2003, 2008), etc.

5 Stein’s method (a.k.a. the method of exchangeable pairs): Chatterjee
(2007), Chatterjee and Dey (2010), Goldstein et al. (2011, 2014), etc.
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Concentration of Measures - Introduction

Main Focus of this Tutorial

This tutorial is mainly focused on the following issues:

1 The foundations of concentration of measure inequalities.

2 The interplay between concentration of measures and Shannon theory.

3 Applications to information theory, communications and coding.
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Preliminaries - Martingales

Definition - Conditional Expectation with Respect to a σ-Algebra

Let

(Ω,F , P ) be a probability space.

X : Ω → R
n be a random vector defined on that probability space.

G ⊆ F be a sub-σ algebra of F .

Then, a conditional expectation of X given G , denoted by E[X|G ], is a
G -measurable function (Ω → R

n) which satisfies:

E[E[X|G ] 1G(X)] = E[X 1G(X)], ∀G ∈ G

where 1G is the indicator function of the subset G ⊆ Ω (i.e., 1G(x) = 1 if
x ∈ G, and 1G(x) = 0 if x ∈ Ω \G).
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Preliminaries - Martingales

Existence and Uniqueness of the Conditional Expectation

The conditional expectation exists and is unique up to a set of
probability 0 (by the Radon-Nikodym theorem).

The following relation holds between the conditional expectation and
the Radon-Nikodym derivative:

E[X|G ] =
dP |G
dP

where P |G is the restriction of P to events in the sub σ-algebra G .
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Preliminaries - Martingales

The tower property for conditional expectations

Let X be a random variable with finite mean, and let G1 ⊆ G2 be two
sub-algebras. Then, with probability 1,

E[E[X|G2] |G1] = E[X|G1].

That is, conditioning first on G2 and then on G1 is equivalent to
conditioning just on the smaller sub σ-algebra G1.
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Preliminaries - Martingales

Concentration via the Martingale Approach

Definition - [Discrete-Time Martingales]

Let (Ω,F ,P) be a probability space.

Let F0 ⊆ F1 ⊆ . . . be a filtration, i.e., a sequence of sub σ-algebras
of F .

A sequence X0,X1, . . . of RVs is a martingale (w.r.t. this filtration) if

1 Xi : Ω → R is Fi-measurable for every i, i.e.,

{ω ∈ Ω: Xi(ω) ≤ a} ∈ Fi ∀ i ∈ {0, 1, . . .}, a ∈ R.

2 E[|Xi|] <∞ for all i.

3 Xi = E[Xi+1|Fi] almost surely for all i ∈ {0, 1, . . .}.
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Preliminaries - Martingales

Concentration via the Martingale Approach

Definition - [Discrete-Time Martingales]

Let (Ω,F ,P) be a probability space.

Let F0 ⊆ F1 ⊆ . . . be a filtration, i.e., a sequence of sub σ-algebras
of F .

A sequence X0,X1, . . . of RVs is a martingale (w.r.t. this filtration) if

1 Xi : Ω → R is Fi-measurable for every i, i.e.,

{ω ∈ Ω: Xi(ω) ≤ a} ∈ Fi ∀ i ∈ {0, 1, . . .}, a ∈ R.

2 E[|Xi|] <∞ for all i.

3 Xi = E[Xi+1|Fi] almost surely for all i ∈ {0, 1, . . .}.

A Simple Example: Random walk

Xn =
∑n

i=0 Ui where P(Ui = +1) = P(Ui = −1) = 1
2 are i.i.d. RVs.
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Preliminaries - Martingales

Martingales

Fact 1

Since {Fi}ni=0 is a filtration, it follows that

Xj = E[Xi|Fj ], ∀ i > j.

Also
E[Xi] = E

[

E[Xi|Fi−1]
]

= E[Xi−1]

so, the expected value of a martingale sequence is constant.
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Preliminaries - Martingales

Martingales

Fact 1

Since {Fi}ni=0 is a filtration, it follows that

Xj = E[Xi|Fj ], ∀ i > j.

Also
E[Xi] = E

[

E[Xi|Fi−1]
]

= E[Xi−1]

so, the expected value of a martingale sequence is constant.

Fact 2

Given a RV X ∈ L
1(Ω,F ,P) and a filtration {Fi}, let

Xi = E[X|Fi] i ∈ {0, 1, . . .}.

Then, the sequence {Xi} forms a martingale.
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Preliminaries - Martingales

Martingales (Cont.)

Fact 3

Choose F0 = {Ω, ∅} and Fn = F , then Fact 2 gives a martingale
sequence with the following first and last terms:

X0 = E[X|F0] = E[X] (F0 provides no information about X).

Xn = E[X|Fn] = X a.s. (Fn provides full information about X).

Interpretation

1 At the beginning, we don’t know anything about X, so the first guess
is that X is equal to its expected value.

2 As time evolves, we get more and more information on X (due to the
conditioning on sub σ-algebras that form a filtration).

3 At the end, we are provided with full information about X.
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Preliminaries - Martingales

Super and Sub Martingales

To define sub- and super-martingales, we keep the first two conditions of
the martingale, and

E[Xi|Fi−1] ≥ Xi−1 holds a.s. for sub-martingales.

E[Xi|Fi−1] ≤ Xi−1 holds a.s. for super-martingales.

Generalization:
From the tower property for conditional expectations, for sub-martingales

E[Xi|Fj ] ≥ Xj , ∀ i > j

and, for super-martingales,

E[Xi|Fj ] ≤ Xj , ∀ i > j.
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The Efron-Stein-Steele Inequalities

Setting

Let X1, . . . ,Xn be n independent RVs, getting values in the set X .

Let f : X n → R be an arbitrary function.

Let X = (X1, . . . ,Xn), and Z = f(X).

Let

X
(k)

= (X1, . . . ,Xk−1,Xk+1, . . . ,Xn), ∀ k ∈ {1, . . . , n}.

Lemma

Let

ξk = E[Z |X1, . . . ,Xk]− E[Z |X1, . . . ,Xk−1], ∀ k ∈ {1, . . . , n}.

Then,

Var(Z) =
n
∑

k=1

E[ξ2k]. (1)
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The Efron-Stein-Steele Inequalities

Proof

By the smoothing theorem

E[ξl |X1, . . . ,Xk] = 0, ∀ l > k.

so {ξk}nk=1 is a martingale-difference sequence w.r.t. the natural
filtration {Fk} where

Fk = σ(X1, . . . ,Xk), ∀ k ∈ {0, 1, . . . , n}.

From Doob’s martingale decomposition

Z − E[Z] =

n
∑

k=1

ξk.
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The Efron-Stein-Steele Inequalities

Martingale Representation: the Variance

Consequently, we have

Var(Z) = E





(

n
∑

k=1

ξk

)2


 =

n
∑

k=1

E[ξ2k] + 2
∑

l>k

E[ξl ξk].

For l > k

E[ξlξk] = E
[

E[ξlξk |X1, . . . ,Xk]
]

= E
[

ξk E[ξl |X1, . . . ,Xk]
]

= E[ξk · 0] = 0

thus proving the claim.
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The Efron-Stein-Steele Inequalities

First Efron-Stein-Steele Inequality

Var(Z) ≤ E

[

n
∑

k=1

Var
(

Z |X(k))
]

. (2)

Proof

Since X1, . . . ,Xn are independent, then

ξk = E[Z |X1, . . . ,Xk]− E[Z |X1, . . . ,Xk−1]

= E[Z |X1, . . . ,Xk]− E[E[Z |X(k)
] |X1, . . . ,Xk]

= E[Z − E[Z |X(k)
] |X1, . . . ,Xk].

Hence, from Jensen’s inequality,

ξ2k ≤ E
[

(Z − E[Z |X(k)
])2 |X1, . . . ,Xk

]

, ∀ k ∈ {1, . . . , n}.
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The Efron-Stein-Steele Inequalities

First Efron-Stein-Steele Inequality (Proof - Cont.)

For all k ∈ {1, . . . , n}, due to the independence of X1, . . . ,Xn,

E[ξ2k] ≤ E

[

E
[

(Z − E[Z |X(k)
])2 |X1, . . . ,Xk

]

]

= E[(Z − E[Z |X(k)
])2]

= E
X

(k)

[

EXk
(Z − E[Z |X(k)

])2
]

= E
X

(k)

[

Var(Z |X(k)
)
]

= E
[

Var(Z |X(k)
)
]

.

Finally, from (1) and the last inequality, we have

Var(Z) =

n
∑

k=1

E[ξ2k] ≤ E

[

n
∑

k=1

Var
(

Z |X(k))
]

.
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The Efron-Stein-Steele Inequalities

Second Efron-Stein-Steele Inequality

Let X ′
1, . . . ,X

′
n be independent copies of X1, . . . ,Xn, and let

Z ′
k = f(X1, . . . ,Xk−1,X

′
k,Xk+1, . . . ,Xn), ∀ k ∈ {1, . . . , n}.

Then,

Var(Z) ≤ 1

2

n
∑

k=1

E[(Z − Z ′
k)

2]. (3)

Proof

If X,Y are independent copies (i.i.d.), then Var(X) = 1
2 E[(X − Y )2].

Due to the independence of X1, . . . ,Xn, given X
(k)

, the RVs Z,Z ′
k

are independent copies. Hence, Var(Z|X(k)
) = 1

2 E[(Z − Z ′
k)

2].

Now, it follows from the first Efron-Stein-Steele inequality.
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The Efron-Stein-Steele Inequalities

Sum of independent RVs

If Z =
∑n

k=1Xk then the second Efron-Stein-Steele inequality is satisfied
with equality.

Conclusion

Sums of independent RVs are the least concentrated of all functions.
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The Efron-Stein-Steele Inequalities

Third Efron-Stein-Steele Inequality

Let
Zk = fk(X1, . . . ,Xk−1,Xk+1, . . . ,Xn), ∀ k ∈ {1, . . . , n}

for arbitrary functions fk : X n−1 → R for all k ∈ {1, . . . , n}. Then,

Var(Z) ≤ E

[

n
∑

k=1

(Z − Zk)
2

]

. (4)

Proof

Var(X) ≤ E[(X − a)2] for all a ∈ R with equality if a = E[X].

Hence, Var(Z |X(k)
) ≤ E[(Z − Zk)

2 |X(k)
] for all k.

From the first Efron-Stein-Steele inequality in (2), we have

Var(Z) ≤ E

[

n
∑

k=1

E

[

(Z − Zk)
2 |X(k)

]

]

=

n
∑

k=1

E[(Z − Zk)
2].
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The Efron-Stein-Steele Inequalities

In statistics, kernel density estimation is a non-parametric way to estimate
the probability density function of a random variable.

Example: Kernel Density Estimation (KDE)

Let X1, . . . ,Xn be i.i.d. RVs drawn from an unknown pdf φ.

Let K be a kernel, i.e., an arbitrary non-negative real-valued
integrable function over R satisfying the following requirements:

1

∫

∞

−∞

K(u) du = 1,

2 K(u) = K(−u) for all u ∈ R.
3 limh→0

1

h
K
(

x−u

h

)

= δ(x − u) where δ is the Dirac function at zero.

These requirements are satisfied, e.g., by a Gaussian N (0, 1) pdf.

Let h > 0 be fixed (h is called a smoothing parameter).

The KDE is given by

φn(x) =
1

nh

n
∑

k=1

K

(

x−Xk

h

)

, ∀x ∈ R.
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The Efron-Stein-Steele Inequalities

KDE Convergence

E[φn(x)] =
1

nh

n
∑

k=1

∫ ∞

−∞
K

(

x− u

h

)

φ(u) du

=
1

h

∫ ∞

−∞
K

(

x− u

h

)

φ(u) du

⇒ lim
h→0

E[φn(x)] =

∫ ∞

−∞
δ(x − u)φ(u) du = φ(x), ∀x ∈ R.

L1 Error of the KDE

Zn = f(X1, . . . ,Xn) ,

∫ ∞

−∞
|φn(x)− φ(x)| dx.

In the following, we invoke the second Efron-Stein-Steele inequality (3) to
provide a rigorous simple bound for the variance of Zn.
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The Efron-Stein-Steele Inequalities

L1 Error of the KDE (Cont.)

∣

∣f(x1, . . . , xk−1, xk, xk+1, . . . , xn)− f(x1, . . . , xk−1, x
′
k, xk+1, . . . , xn)

∣

∣

≤ 1

nh

∫ ∞

−∞

∣

∣

∣

∣

K

(

x− xk

h

)

−K

(

x− x′k
h

)
∣

∣

∣

∣

dx

≤ 1

nh

[
∫ ∞

−∞
K

(

x− xk

h

)

dx+

∫ ∞

−∞
K

(

x− x′k
h

)

dx

]

=
2

n
.

From the second Efron-Stein-Steele inequality in (3), it follows that
(Devroye, 1991)

Var(Zn) ≤
1

2

n
∑

k=1

(

2

n

)2

=
2

n
.
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The Efron-Stein-Steele Inequalities

L1 Error of the KDE (Cont.)

It is known that (Devroye - 1991)

lim
n→∞

√
nEZn = +∞. (5)

By Chebyshev’s inequality, it follows that for every ε > 0

P

(
∣

∣

∣

∣

Zn

E[Zn]
− 1

∣

∣

∣

∣

≥ ε

)

≤ Var(Zn)

ε2
(

E[Zn]
)2 ≤ 2

nε2
(

E[Zn]
)2 . (6)

Hence, from (5) and (6),

lim
n→∞

P

(∣

∣

∣

∣

Zn

E[Zn]
− 1

∣

∣

∣

∣

≥ ε

)

= 0, ∀ ε > 0

so Zn

E[Zn]
→ 1 in probability.
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The Efron-Stein-Steele Inequalities

Weakly Self-Bounding Functions

A function f : X n → [0,∞) is called a weakly (a, b) self-bounding function
if there exist n functions fk : X n−1 → R, for k ∈ {1, . . . , n}, such that

n
∑

k=1

(

f(x)− fk(x
(k))
)2 ≤ a f(x) + b, ∀x ∈ X n.

Proposition

If f is a weakly (a, b) self-bounding function, then

Var
(

f(X)
)

≤ aE
[

f(X)
]

+ b. (7)

Proof

Take Z = f(X), and Zk = fk(X
(k)

) for k ∈ {1, . . . , n} in the third
Efron-Stein-Steele inequality (4).
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The Efron-Stein-Steele Inequalities

Weakly Self-Bounding Functions (Cont.)

Corollary

If
0 ≤ f(x)− fk(x

(k)) ≤ 1, ∀x ∈ X n, k ∈ {1, . . . , n}
and

n
∑

k=1

(

f(x)− fk(x
(k))
)

≤ f(x), ∀x ∈ X n

then,
Var
(

f(X)
)

≤ E
[

f(X)
]

.

Proof

The last proposition is satisfied with a = 1, b = 0.
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The Efron-Stein-Steele Inequalities

Before we proceed to an information-theoretic example, we introduce:

Han’s Inequality for the Shannon Entropy

Let X1, . . . ,Xn be (possibly dependent) RVs, and let

X = (X1, . . . ,Xn), X
(k) = (X1, . . . ,Xk−1,Xk+1, . . . ,Xn)

Then,
n
∑

k=1

(

H(X)−H(X(k))
)

≤ H(X). (8)

Proof
n
∑

k=1

(

H(X)−H(X(k))
)

=
n
∑

k=1

H(Xk |X(k))

≤
n
∑

k=1

H(Xk |X1, . . . ,Xk−1)

= H(X).
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The Efron-Stein-Steele Inequalities

Han’s Inequality (Equivalent Form)

1

n

n
∑

k=1

H(X(k)) ≤ H(X) ≤ 1

n− 1

n
∑

k=1

H(X(k)).

Proof

The LHS is trivial since

H(X(k)) ≤ H(X), ∀ k ∈ {1, . . . , n}.

The RHS is an equivalent form of (8).
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The Efron-Stein-Steele Inequalities

Definition

A finite set of points in the plane is said to be in convex position if the
interior of the polygon whose vertices are these points forms a convex set.

Combinatorial Entropies

Consider the following problem:

Let X1, . . . ,Xn be independent points in R
2 (not necessarily i.i.d.).

Let N be the number of subsets of {X1, . . . ,Xn} that are in convex
position.

Based on the last corollary for weakly self-bounding functions, we prove
that

Var[log2N ] ≤ E[log2N ].
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The Efron-Stein-Steele Inequalities

Combinatorial Entropies (Cont.)

The proof goes as follows:

Let x = (x1, . . . , xn) be an arbitrary vector of points in the plane.

Let N be the number of subsets of {xk}nk=1 in convex position (N is
a deterministic function of x).

Draw uniformly at random one of these N subsets. By assumption, it
is in convex position.

For such a subset, let {Yk}nk=1 be an n-length binary sequence where
Yk = 1 if xk is one of the vertices in the chosen subset.

Let f : X n → R and fk : X n−1 → R be defined to satisfy

f(x) = H(Y1, . . . , Yn),

fk(x
(k)) ≥ H(Y1, . . . , Yk−1, Yk+1, . . . , Yn), ∀ k ∈ {1, . . . , n}.
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The Efron-Stein-Steele Inequalities

Combinatorial Entropies (Cont.)

Since the subset is chosen uniformly at random among N possible
subsets, the random vector (Y1, . . . , Yn) has a uniform distribution on
a size-N subset of {0, 1}n. Hence,

f(x) =H(Y1, . . . , Yn) = log2N.

Checking the first condition of the corollary, for all k ∈ {1, . . . , n},

f(x)− fk(x
(k))

≤ H(Y1, . . . , Yn)−H(Y1, . . . , Yk−1, Yk+1, . . . , Yn)

= H(Yk |Y1, . . . , Yk−1, Yk+1, . . . , Yn)

⇒ 0 ≤ f(x)− fk(x
(k)) ≤ H(Yk) ≤ 1, ∀x, k ∈ {1, . . . , n}

since Yk is a binary RV.
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The Efron-Stein-Steele Inequalities

Combinatorial Entropies (Cont.)

Checking the second condition of the corollary, from Han’s inequality

n
∑

k=1

(

f(x)− f(x(k))
)

=

n
∑

k=1

(

H(Y1, . . . , Yn)−H(Y1, . . . , Yk−1, Yk+1, . . . , Yn)
)

≤H(Y1, . . . , Yn)

= f(x).

Hence, it follows from the corollary that

Var
(

f(X)
)

≤ E
[

f(X)
]

.

Recall that f(x) = log2N , N = N(x). This completes the proof.
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The Efron-Stein-Steele Inequalities

Han’s Inequality for the Relative Entropy

Let Q = Q1 ⊗ . . .⊗Qn be a product probability distribution on X n,
and let P be an arbitrary probability distribution defined on X n.

For all k ∈ {1, . . . , n} and x(k) ∈ X n−1, let P (k) and Q(k) be the
marginals

P (k)(x(k)) = E
[

P (x1, . . . , xk−1,Xk, xk+1, . . . , xn)
]

,

Q(k)(x(k)) = E
[

Q(x1, . . . , xk−1,Xk, xk+1, . . . , xn)
]

=
∏

j 6=k

Qj(xj).

Then,
D(P‖Q) ≥ 1

n− 1

n
∑

k=1

D(P (k)‖Q(k)) (9)

or, equivalently,

D(P‖Q) ≤
n
∑

k=1

(

D(P‖Q)−D(P (k)‖Q(k))
)

. (10)
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The Efron-Stein-Steele Inequalities

Proof of Han’s Inequality for the Relative Entropy

Let X ∼ P , and X
(k)

= (X1, . . . ,Xk−1,Xk+1, . . . ,Xn).

From Han’s inequality for the Shannon entropy, we have

H(X) ≤ 1

n− 1

n
∑

k=1

H
(

X
(k))

which is equivalent to

∑

x∈Xn

P (x) log P (x) ≥ 1

n− 1

n
∑

k=1

∑

xk∈Xn−1

P (k)(x(k)) log P (k)(x(k)).

To complete the proof of (9), it suffices to prove that

∑

x∈Xn

P (x) logQ(x) =
1

n− 1

n
∑

k=1

∑

xk∈Xn−1

P (k)(x(k)) logQ(k)(x(k)).

M. Raginsky and I. Sason Tutorial T-AM-2, Hong-Kong, ISIT 2015 June 14, 2015. 34 / 99



The Efron-Stein-Steele Inequalities

Proof of Han’s Inequality for the Relative Entropy (Cont.)

Since Q is a product measure, then
logQ(x) = logQ(k)(xk) + logQ(xk) for all k ∈ {1, . . . , n}.
⇒
∑

x∈Xn

P (x) logQ(x)

=
1

n

n
∑

k=1

∑

x∈Xn

P (x)
(

logQ(k)(xk) + logQ(xk)
)

=
1

n

n
∑

k=1

∑

xk∈Xn−1

∑

xk∈X
P (x) logQ(k)(xk) +

1

n

∑

x∈Xn

P (x) logQ(x)

=
1

n

n
∑

k=1

∑

xk∈Xn−1

P (k)(x(k)) logQ(k)(xk) +
1

n

∑

x∈Xn

P (x) logQ(x)
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The Efron-Stein-Steele Inequalities

Proof of Han’s Inequality for the Relative Entropy (Cont.)

Rearranging terms in the last equality gives

∑

x∈Xn

P (x) logQ(x) =
1

n− 1

n
∑

k=1

∑

xk∈Xn−1

P (k)(x(k)) logQ(k)(x(k))

as required. This therefore completes the proof of (9).

Eq. (10) is an equivalent form of (9) (as it follows by rearranging
terms). This completes the proof of (10).
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Basic Concentration Inequalities with the Martingale Approach

Basic Concentration Inequalities with the Martingale Approach

We are interested in sharp bounds on the deviation probabilities

P (|U − EU | ≥ r) , ∀ r > 0

where U is a real-valued RV that may be a function of a large number n
of independent or weakly dependent RVs X1, . . . ,Xn.

In a nutshell, the martingale approach in establishing concentration has
two basic ingredients:

1 The martingale decomposition.

2 The Chernoff bounding technique.
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Basic Concentration Inequalities with the Martingale Approach

The Martingale Decomposition (Doob)

We first construct a suitable filtration {Fi}ni=0 on the probability
space (Ω,F ,P) that carries U , where F0 = {∅,Ω} is the trivial
σ-algebra, and Fn = F .

Then, we decompose the difference U − EU as

U − E[U ] = E[U |Fn]− E[U |F0]

=

n
∑

k=1

(E[U |Fk]− E[U |Fk−1]) . (11)

The idea is to choose the σ-algebras {Fk} in such a way that the
differences ξk = E[U |Fk]− E[U |Fk−1] are bounded in some sense,
e.g., almost surely (a.s.).

The following equality holds U − E[U ] =
∑n

k=1 ξk where, under the
above assumption, U − E[U ] is expressed as a sum of a bounded
martingale-difference sequence.
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Basic Concentration Inequalities with the Martingale Approach

The Chernoff Bounding Technique

Let
ψ(λ) , lnE

[

exp
(

λ(U − E[U ])
)

]

, ∀λ ≥ 0

designate the logarithmic moment-generating function of U .

Using Markov’s inequality, it follows that for non-negative λ

P(U − E[U ] ≥ t)

= P
[

exp
(

λ
(

U − E[U ]
)

≥ exp(λt)
)]

≤ exp(−λt)E
[

exp
(

λ
(

U − E[U ]
))]

≤ exp
(

−
(

λt− ψ(λ)
))

, ∀λ ≥ 0.

Let
ψ⋆(t) = sup

λ≥0

(

λt− ψ(λ)
)

be the Legendre dual of the logarithmic moment-generating function.
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Basic Concentration Inequalities with the Martingale Approach

The Chernoff Bounding Technique (Cont.)

An optimization over λ ≥ 0 gives

P(U − E[U ] ≥ t) ≤ exp
(

−ψ⋆(t)
)

, ∀ t ≥ 0.

Hence, the problem of bounding the deviation probability is reduced
to the analysis of the logarithmic moment-generating function.

Sanity check:

U ∼ N (m,σ2), ψ(λ) =
λ2 σ2

2
, ψ⋆(t) =

t2

2σ2

so, we get

P(U − E[U ] ≥ t) ≤ exp

(

− t2

2σ2

)

, ∀ t ≥ 0

which is asymptotically tight as t≫ 1 since

P(U − E[U ] ≥ t) = Q

(

t

σ

)

.
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Basic Concentration Inequalities with the Martingale Approach

The Chernoff Bounding Technique (Cont.)

To bound the probability of the lower tail, P(U − E[U ] ≤ −t), for
t ≥ 0, we follow the same steps, but with −U instead of U .

The success of the whole enterprise hinges on our ability to obtain
tight upper bounds on ψ(λ).

Exploiting the martingale decomposition (11), we write

ψ(λ) = lnE

[

n
∏

k=1

exp(λξk)

]

which allows focusing on the behavior of individual terms exp(tξk) (as
it is clarified later).

The logarithmic moment-generating function plays a key role in the
theory of large deviations, which can be thought of as an asymptotic
analysis of the concentration of measure phenomenon.
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Basic Concentration Inequalities with the Martingale Approach

Hoeffding’s Lemma

Let U be a real-valued random variable, such that U ∈ [a, b] a.s. for some
finite a < b. Then,

E
[

exp
(

t(U − EU)
)]

≤ exp

(

t2(b− a)2

8

)

, ∀ t ∈ R.
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Basic Concentration Inequalities with the Martingale Approach

Proof of Hoeffding’s Lemma

Define the function

Hp(λ) , ln
(

peλ(1−p) + (1− p)e−λp
)

where p ∈ [0, 1] and λ ∈ R.

Let ξ = U − EU , where ξ ∈ [a− EU, b− EU ].

Using the convexity of the exponential function, we have

exp(tξ) = exp

(

U − a

b− a
· t(b− EU) +

b− U

b− a
· t(a− EU)

)

≤
(

U − a

b− a

)

exp
(

t(b− EU)
)

+

(

b− U

b− a

)

exp
(

t(a− EU)
)

.

Taking expectations of both sides, we get E[exp(tξ)] ≤ exp
(

Hp(λ)
)

where p = EU−a
b−a

and λ = t(b− a).
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Basic Concentration Inequalities with the Martingale Approach

Proof (cont.)

Consequently, it suffices to prove that for every λ ∈ R

Hp(λ) ≤
λ2

8
, ∀ p ∈ [0, 1].

We have Hp(0) = H ′
p(0) = 0, and

H ′′
p (λ) =

1

4

peλ · (1− p)
(

peλ+(1−p)
2

)2 ≤ 1

4
, ∀λ ∈ R, p ∈ [0, 1]

where the last inequality holds since the geometric mean is less than
or equal to the arithmetic mean.

Hence, the upper bound follows from Taylor’s series expansion of on
Hp(λ) (around zero) with a remainder of order 2.
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Basic Concentration Inequalities with the Martingale Approach

Concentration via the Martingale Approach

Theorem - [Azuma-Hoeffding Inequality]

Let {Xk,Fk}nk=0 be a real-valued martingale sequence. Suppose that
there exist nonnegative reals d1, . . . , dn, such that |Xk −Xk−1| ≤ dk a.s.
for all k ∈ {1, . . . , n}. Then,

P(|Xn −X0| ≥ r) ≤ 2 exp

(

− r2

2
∑n

k=1 d
2
k

)

, ∀ r > 0. (12)

Ingredients of the Proof

1 Martingale decomposition

2 Chernoff’s bound

3 Hoeffding’s lemma
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Basic Concentration Inequalities with the Martingale Approach

Proof of the Azuma-Hoeffding Inequality

Let ξk , Xk −Xk−1 for k ∈ {1, . . . , n} denote the differences of the
martingale sequence. By hypothesis,

◮ |ξk| ≤ dk, ∀ k ∈ {1, . . . , n}
◮ E[ξk |Fk−1] = 0 a.s.

By the martingale decomposition, Xn −X0 =
∑n

k=1 ξk.

Invoking Chernoff’s bound gives

P(Xn −X0 ≥ r) ≤ exp(−tr)E
[

exp

(

t

n
∑

k=1

ξk

)]

, ∀ t ≥ 0.

By the tower property for conditional expectations,

E

[

exp

(

t

n
∑

k=1

ξk

)]

= E

[

exp

(

t

n−1
∑

k=1

ξk

)

E
[

exp(tξn) |Fn−1

]

]

which holds since exp
(

t
∑n−1

k=1 ξk
)

is Fn−1-measurable.
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Basic Concentration Inequalities with the Martingale Approach

Proof (Cont.)

We now apply Hoeffding’s lemma with the conditioning on Fn−1.
Since E[ξn|Fn−1] = 0 and ξn ∈ [−dn, dn] a.s., then

E
[

exp(tξn) |Fn−1

]

≤ exp

(

t2 d2n
2

)

.

Continuing recursively in a similar manner gives

E

[

exp

(

t

n
∑

k=1

ξk

)]

≤
n
∏

k=1

exp

(

t2 d2k
2

)

= exp

(

t2

2

n
∑

k=1

d2k

)

.

Substituting this bound into the Chernoff bound gives

P(Xn −X0 ≥ r) ≤ exp

(

−tr + t2

2

n
∑

k=1

d2k

)

, ∀ t ≥ 0.
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Basic Concentration Inequalities with the Martingale Approach

Proof (Cont.)

Optimization of the bound w.r.t. t ≥ 0 gives t = r
(
∑n

k=1 d
2
k

)−1
.

The substitution of the optimized t in the bound gives

P(Xn −X0 ≥ r) ≤ exp

(

− r2

2
∑n

k=1 d
2
k

)

, ∀ r > 0.

Since {Xk,Fk} is a martingale with bounded differences, so is
{−Xk,Fk} (with the same bounds on its differences).

This implies that the same bound is also valid for the probability
P(Xn −X0 ≤ −r).
Using these bounds, and the equality

P(|Xn −X0| ≥ r) = P(Xn −X0 ≥ r) + P(Xn −X0 ≤ −r), ∀ r > 0

completes the proof.
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Basic Concentration Inequalities with the Martingale Approach

Example

Let {Yi}∞i=0 be i.i.d. RVs where, for a fixed d > 0, P(Yi = ±d) = 1
2 .

Let Xk =
∑k

i=0 Yi for k ∈ {0, 1, . . . , }, and define the natural
filtration F0 ⊆ F1 ⊆ F2 . . . where

Fk = σ(Y0, . . . , Yk) , ∀ k ∈ {0, 1, . . . , }

is the σ-algebra generated by Y0, . . . , Yk.

Note that {Xk,Fk}∞k=0 is a martingale sequence, and

|Xk −Xk−1| = |Yk| = d, ∀ k ∈ N.

From the Azuma–Hoeffding inequality

P(|Xn −X0| ≥ α
√
n) ≤ 2 exp

(

− α2

2d2

)

, ∀α ≥ 0, n ∈ N.
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Basic Concentration Inequalities with the Martingale Approach

Example (Cont.)

From the Central Limit Theorem (CLT)

1√
n
(Xn −X0) =

1√
n

n
∑

k=1

Yk ⇒ N (0, d2).

⇒ lim
n→∞

P(|Xn −X0| ≥ α
√
n) = 2Q

(α

d

)

, ∀α ≥ 0.

where

Q(x) ,
1√
2π

∫ ∞

x

exp

(

− t
2

2

)

dt, ∀x ∈ R

is the complementary standard Gaussian CDF (a.k.a. the Q-function).

The Q-function satisfies the exponential bounds:

1√
2π

x

1 + x2
· exp

(

−x
2

2

)

< Q(x) <
1√
2π x

· exp
(

−x
2

2

)

, ∀x > 0.
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Basic Concentration Inequalities with the Martingale Approach

Example (Cont.)

The Azuma–Hoeffding inequality in the last example is exponentially
tight.

Nevertheless, the Azuma-Hoeffding inequality is not tight in general.

r >

n
∑

i=1

di ⇒ P(|Xn −X0| ≥ r) = 0.
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Refined Versions of the Azuma-Hoeffding Inequality

Theorem (Th. 2 – McDiarmid ’89)

Let {Xk,Fk}∞k=0 be a discrete-parameter real-valued martingale. Assume
that, for some constants d, σ > 0, the following two requirements hold a.s.

|Xk −Xk−1| ≤ d,

Var(Xk|Fk−1) = E
[

(Xk −Xk−1)
2 |Fk−1

]

≤ σ2

for every k ∈ {1, . . . , n}. Then, for every α ≥ 0,

P(|Xn −X0| ≥ αn) ≤ 2 exp

(

−nD
(

δ + γ

1 + γ

∣

∣

∣

∣

∣

∣

γ

1 + γ

))

where γ , σ2

d2
, δ , α

d
, and D(p||q) , p ln

(

p
q

)

+ (1− p) ln
(

1−p
1−q

)

.
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Refined Versions of the Azuma-Hoeffding Inequality

Corollary

Under the conditions of Theorem 2, for every α ≥ 0,

P(|Xn −X0| ≥ αn) ≤ 2 exp (−nf(δ))

where

f(δ) =

{

ln(2)
[

1− h2
(

1−δ
2

)

]

, 0 ≤ δ ≤ 1

+∞, δ > 1

and h2(x) , −x log2(x)− (1− x) log2(1− x) for 0 ≤ x ≤ 1.
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Refined Versions of the Azuma-Hoeffding Inequality

Corollary

Under the conditions of Theorem 2, for every α ≥ 0,

P(|Xn −X0| ≥ αn) ≤ 2 exp (−nf(δ))

where

f(δ) =

{

ln(2)
[

1− h2
(

1−δ
2

)

]

, 0 ≤ δ ≤ 1

+∞, δ > 1

and h2(x) , −x log2(x)− (1− x) log2(1− x) for 0 ≤ x ≤ 1.

Proof

Set γ = 1 in Theorem 2.
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Refined Versions of the Azuma-Hoeffding Inequality

Corollary

Under the conditions of Theorem 2, for every α ≥ 0,

P(|Xn −X0| ≥ αn) ≤ 2 exp (−nf(δ))

where

f(δ) =

{

ln(2)
[

1− h2
(

1−δ
2

)

]

, 0 ≤ δ ≤ 1

+∞, δ > 1

and h2(x) , −x log2(x)− (1− x) log2(1− x) for 0 ≤ x ≤ 1.

Proof

Set γ = 1 in Theorem 2.

Observation (first set γ = 1, and then use Pinsker’s Inequality)

Theorem 2 ⇒ Corollary ⇒ Azuma-Hoeffding inequality.
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Refined Versions of the Azuma-Hoeffding Inequality
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Corollary 2:

Theorem 2: γ=1/8  1/4  1/2

f(δ)
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Refined Versions of the Azuma-Hoeffding Inequality

Proof Technique for Theorem 2

For an arbitrary α > 0,

P(|Xn −X0| ≥ αn) = P(Xn −X0 ≥ αn) + P(Xn −X0 ≤ −αn).
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Refined Versions of the Azuma-Hoeffding Inequality

Proof Technique for Theorem 2

For an arbitrary α > 0,

P(|Xn −X0| ≥ αn) = P(Xn −X0 ≥ αn) + P(Xn −X0 ≤ −αn).

Define Xn −X0 =
∑n

k=1 ξk where ξk , Xk −Xk−1.

M. Raginsky and I. Sason Tutorial T-AM-2, Hong-Kong, ISIT 2015 June 14, 2015. 55 / 99



Refined Versions of the Azuma-Hoeffding Inequality

Proof Technique for Theorem 2

For an arbitrary α > 0,

P(|Xn −X0| ≥ αn) = P(Xn −X0 ≥ αn) + P(Xn −X0 ≤ −αn).

Define Xn −X0 =
∑n

k=1 ξk where ξk , Xk −Xk−1.

|ξk| ≤ d, E
[

ξk |Fk−1

]

= 0, Var(ξk |Fk−1) ≤ γd2. The RV ξk is
Fk-measurable.
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Refined Versions of the Azuma-Hoeffding Inequality

Proof Technique for Theorem 2

For an arbitrary α > 0,

P(|Xn −X0| ≥ αn) = P(Xn −X0 ≥ αn) + P(Xn −X0 ≤ −αn).

Define Xn −X0 =
∑n

k=1 ξk where ξk , Xk −Xk−1.

|ξk| ≤ d, E
[

ξk |Fk−1

]

= 0, Var(ξk |Fk−1) ≤ γd2. The RV ξk is
Fk-measurable.

From Chernoff’s bound, for every α ≥ 0,

P (Xn −X0 ≥ nα) ≤ e−nαt
E

[

exp

(

t

n
∑

k=1

ξk

)]

, ∀ t ≥ 0.
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Refined Versions of the Azuma-Hoeffding Inequality

Proof Technique for Theorem 2

For an arbitrary α > 0,

P(|Xn −X0| ≥ αn) = P(Xn −X0 ≥ αn) + P(Xn −X0 ≤ −αn).

Define Xn −X0 =
∑n

k=1 ξk where ξk , Xk −Xk−1.

|ξk| ≤ d, E
[

ξk |Fk−1

]

= 0, Var(ξk |Fk−1) ≤ γd2. The RV ξk is
Fk-measurable.

From Chernoff’s bound, for every α ≥ 0,

P (Xn −X0 ≥ nα) ≤ e−nαt
E

[

exp

(

t

n
∑

k=1

ξk

)]

, ∀ t ≥ 0.

Since {Fi} forms a filtration, then for every t ≥ 0

E

[

exp

(

t

n
∑

k=1

ξk

)]

= E

[

exp

(

t

n−1
∑

k=1

ξk

)

E
[

exp(tξn) |Fn−1

]

]

.
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Refined Versions of the Azuma-Hoeffding Inequality

Proof Technique for Theorem 2 (Cont.)

For proving Theorem 2, the use of Bennett’s inequality gives

E [exp(tξk) |Fk−1] ≤
γ exp(td) + exp(−γtd)

1 + γ
.
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Refined Versions of the Azuma-Hoeffding Inequality

Proof Technique for Theorem 2 (Cont.)

For proving Theorem 2, the use of Bennett’s inequality gives

E [exp(tξk) |Fk−1] ≤
γ exp(td) + exp(−γtd)

1 + γ
.

In both cases, one gets exponential bounds with the free parameter t.

Optimization over t ≥ 0 & union bound to get two-sided inequalities.
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McDiarmid’s Inequality

A prominent application of the martingale approach is a powerful
inequality due to McDiarmid, a.k.a. the bounded-difference inequality.

McDiarmid’s Inequality

Setting:

Let X be a set.

Let f : X n → R satisfy the bounded difference assumption

sup
x1,...,xn,x

′
i∈X

∣

∣

∣
f(x1, . . . , xi−1, xi, xi+1 . . . , xn)

− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

∣

∣

∣
≤ di (13)

for all i ∈ {1, . . . , n}, where d1, . . . , dn are arbitrary nonnegative
constants.

This is equivalent to saying that, for every given i, the variation of the
function f with respect to its ith coordinate is upper bounded by di.
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McDiarmid’s Inequality

McDiarmid’s Inequality (Cont.)

Theorem (McDiarmid’s inequality)

Let {Xk}nk=1 be independent (though not necessarily i.i.d.) random
variables taking values in a set X . Consider a random variable U = f(Xn)
where f : X n → R is a measurable function that satisfies the bounded
difference assumption (13), and Xn , (X1, . . . ,Xn). Then, for every
r ≥ 0,

P
(
∣

∣U − EU
∣

∣ ≥ r
)

≤ 2 exp

(

− 2r2
∑n

k=1 d
2
k

)

. (14)
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McDiarmid’s Inequality

McDiarmid’s Inequality (Cont.)

Remark
1 The Azuma–Hoeffding inequality can be used for a derivation of a

concentration inequality in the considered setting.

2 The proof of McDiarmid’s Inequality, however, provides an
improvement by a factor of 4 in the exponent of the bound.
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McDiarmid’s Inequality

Example: The Azuma–Hoeffding and McDiarmid’s Inequality

Let g : {1, . . . , n} → {1, . . . , n} be chosen uniformly at random from
all nn such possible functions.

Let L(g) denote the number of values y ∈ {1, . . . , n} for which the
equation g(x) = y has no solution (i.e., g(x) 6= y for every
x ∈ {1, . . . , n}).
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McDiarmid’s Inequality

Example: The Azuma–Hoeffding and McDiarmid’s Inequality

Let g : {1, . . . , n} → {1, . . . , n} be chosen uniformly at random from
all nn such possible functions.

Let L(g) denote the number of values y ∈ {1, . . . , n} for which the
equation g(x) = y has no solution (i.e., g(x) 6= y for every
x ∈ {1, . . . , n}).
By the linearity of the expectation, we have

E[L(g)] = n

(

1− 1

n

)n

.

Consequently, for every n ∈ N,

n− 1

e
< E[L(g)] <

n

e
. (15)
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McDiarmid’s Inequality

Example: The Azuma–Hoeffding and McDiarmid’s Inequality

Let g : {1, . . . , n} → {1, . . . , n} be chosen uniformly at random from
all nn such possible functions.

Let L(g) denote the number of values y ∈ {1, . . . , n} for which the
equation g(x) = y has no solution (i.e., g(x) 6= y for every
x ∈ {1, . . . , n}).
By the linearity of the expectation, we have

E[L(g)] = n

(

1− 1

n

)n

.

Consequently, for every n ∈ N,

n− 1

e
< E[L(g)] <

n

e
. (15)

We wish to derive a concentration inequality for L(g) around its
expected value.
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McDiarmid’s Inequality

Example (Cont.): Invoking the Azuma-Hoeffding Inequality

Let us construct a martingale sequence {Xk,Fk}nk=0 by

Xk = E[L(g) |Fk], ∀ k ∈ {0, . . . , n}

with the natural filtration

Fk = σ
(

g(1), . . . , g(k)
)

, ∀ k ∈ {1, . . . , n}

which denotes the σ-algebra that is generated by the first k values of
the random function g.

F0 = {∅, {1, . . . , n}} is the minimal σ-algebra that only includes the
empty set and the probability space.

By construction, X0 = E[L(g)] and Xn = L(g).

Since a modification of one value of g cannot change L(g) by more
than 1, it follows that |Xk −Xk−1| ≤ 1 for every k ∈ {1, . . . , n}.
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McDiarmid’s Inequality

Example (Cont.): Invoking the Azuma-Hoeffding Inequality

From the Azuma-Hoeffding inequality and the bounds on E[L(g)]

P

(
∣

∣

∣
L(g)− n

e

∣

∣

∣
> α

√
n+ 1

)

≤ 2 exp

(

−α
2

2

)

, ∀α > 0. (16)
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McDiarmid’s Inequality

Example (Cont.): Invoking McDiarmid’s Inequality

This concentration result can be improved as follows:

Let f : {1, . . . , n}n → {1, . . . , n} be defined by
L(g) , f

(

g(1), . . . , g(n)
)

so, the function f maps the n-length vector
(g(1), . . . , g(n)) to the number of elements y ∈ {1, . . . , n} where
g(x) 6= y for every x ∈ {1, . . . , n}.
Since by assumption g(1), . . . , g(n) are independent random variables,
the variation of f with respect to each of its arguments (while all the
other n− 1 arguments of f are kept fixed) is no more than 1.

Consequently, from McDiarmid’s inequality,

P

(∣

∣

∣
L(g)− n

e

∣

∣

∣
> α

√
n+ 1

)

≤ 2 exp
(

−2α2
)

, ∀α > 0, (17)

which implies that the exponent of the concentration inequality is
improved by a factor of 4.
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Application 1 - Concentration of Martingales in Coding Theory

Concentration Phenomena for Codes Defined on Graphs

Motivation & Background

The performance analysis of a particular code is difficult, especially
for codes of large block lengths.
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Concentration Phenomena for Codes Defined on Graphs

Motivation & Background

The performance analysis of a particular code is difficult, especially
for codes of large block lengths.

Does the performance concentrate around the average performance of
the ensemble ?

The existence of such a concentration validates the use of the density
evolution technique as an analytical tool to assess performance of
long enough codes (e.g., LDPC codes) and to assess their asymptotic
gap to capacity.
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Application 1 - Concentration of Martingales in Coding Theory

Concentration Phenomena for Codes Defined on Graphs

Motivation & Background

The performance analysis of a particular code is difficult, especially
for codes of large block lengths.

Does the performance concentrate around the average performance of
the ensemble ?

The existence of such a concentration validates the use of the density
evolution technique as an analytical tool to assess performance of
long enough codes (e.g., LDPC codes) and to assess their asymptotic
gap to capacity.

The current concentration results for codes defined on graphs, which
mainly rely on the Azuma-Hoeffding inequality, are weak since in
practice concentration is observed at much shorter block lengths.
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Application 1 - Concentration of Martingales in Coding Theory

Bit-Flipping Decoding Algorithms for Expander Codes

Expansion Properties of Random Regular Bipartite Graphs

Theorem (Sipser and Spielman, 1996)

Let G be a bipartite graph that is chosen uniformly at random from the
ensemble of bipartite graphs with n vertices on the left, a left degree l,
and a right degree r. Let α ∈ (0, 1) and δ > 0 be fixed numbers. Then,
with probability at least 1− exp(−δn), all sets of αn vertices on the left
side of G are connected to at least

n

[

l
(

1− (1− α)r
)

r
−
√

2lα
(

h(α) + δ
)

]

(18)

vertices (neighbors) on the right side of G, where h is the binary entropy
function to base e (i.e., h(x) = −x ln(x)− (1− x) ln(1− x), x ∈ [0, 1]).
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Application 1 - Concentration of Martingales in Coding Theory

The proof starts by looking at the expected number of neighbors, and then
exposing one neighbor at a time to bound the probability that the number
of neighbors deviates significantly from this mean.

Proof

Let V denote a given set of nα vertices on the left side of the selected
bipartite graph G. The set V has nαl outgoing edges in G.
Let X(G) be a RV which denotes the number of neighbors of V on
the right side of G.
Let E[X(G)] be the expected value of neighbors of V where all the
bipartite graphs are chosen uniformly at random from the ensemble.

This expected number is equal to E[X(G)] = nl
(

1−(1−α)r
)

r
since, for

each of the nl
r
vertices on the right side of G, the probability that it

has at least one edge in the subset of nα chosen vertices on the left
side of G is 1− (1− α)r.
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Application 1 - Concentration of Martingales in Coding Theory

Proof (Cont.)

Let us form a martingale sequence to estimate, via the
Azuma–Hoeffding inequality, the probability that the actual number
of neighbors deviates by a certain amount from its expected value.

The set of nα vertices in V has nαl outgoing edges.

Let us reveal the destination of each of these edges one at a time.
More precisely, let Si be the random variable denoting the vertex on
the right side of G which the i-th edge is connected to, where
i ∈ {1, . . . , nαl}.
Let us define, for i ∈ {0, . . . , nαl},

Xi = E[X(G)|S1, . . . , Si−1].

Note that this forms a martingale sequence where X0 = E[X(G)] and
Xnαl = X(G).
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Application 1 - Concentration of Martingales in Coding Theory

Proof (Cont.)

For every i ∈ {1, . . . , nαl}, we have |Xi −Xi−1| ≤ 1 since every time
only one connected vertex on the right side of G is revealed, so the
number of neighbors of the chosen set V cannot change by more
than 1 at every single time.

From the one-sided Azuma–Hoeffding inequality, it follows that

P

(

E[X(G)] −X(G) ≥ λ
√
lαn
)

≤ exp

(

−λ
2

2

)

, ∀λ > 0. (19)

Since there are
(

n
nα

)

choices for the set V, the event that there exists

a set of size nα with fewer than E[X(G)] − λ
√
lαn neighbors occurs

with probability at most
(

n
nα

)

exp
(

−λ2

2

)

, by the union bound.

Since
(

n
nα

)

≤ enh(α), we get the upper bound exp
(

nh(α)− λ2

2

)

.

Choosing λ =
√

2n
(

h(α) + δ
)

in (19) gives the bound in (18).
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Application 1 - Concentration of Martingales in Coding Theory

Performance under Message-Passing Decoding

Theorem I - [Concentration of performance under iterative
message-passing decoding (Richardson and Urbanke, 2001)]

Let C, a code chosen uniformly at random from the ensemble
LDPC(n, λ, ρ), be used for transmission over a memoryless binary-input
output-symmetric (MBIOS) channel. Assume that the decoder performs l
iterations of message-passing decoding, and let Pb(C, l) denote the
resulting bit error probability. Then, for every δ > 0, there exists an α > 0
where α = α(λ, ρ, δ, l) (independent of the block length n) such that

P
(

|Pb(C, l)− ELDPC(n,λ,ρ)[Pb(C, l)]| ≥ δ
)

≤ e−αn

Proof

The proof applies Azuma’s inequality to a martingale sequence with
bounded differences (IEEE Trans. on IT, Feb. 2001).
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Application 1 - Concentration of Martingales in Coding Theory

Conditional Entropy of LDPC code ensembles

Theorem II - [Concentration of Conditional Entropy of LDPC
code ensembles (Méasson et al. 2008)]

Let C be chosen uniformly at random from the ensemble LDPC(n, λ, ρ).
Assume that the transmission of the code C takes place over an MBIOS
channel. Let H(X|Y) designate the conditional entropy of the
transmitted codeword X given the received sequence Y from the channel.
Then, for any ξ > 0,

P
(

|H(X|Y)− ELDPC(n,λ,ρ)[H(X|Y)]| ≥ √
n ξ
)

≤ 2 exp(−Bξ2)

where B , 1
2(dmax

c +1)2(1−Rd)
, dmax

c is the maximal check-node degree, and

Rd is the design rate of the ensemble.
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Application 1 - Concentration of Martingales in Coding Theory

Concentration of Martingales in Coding Theory

Selected Papers Applying the Martingale Approach for LDPC Code
Ensembles

M. Sipser and D. A. Spielman, ”Expander codes,” IEEE Trans. on
Information Theory, vol. 42, no. 6, pp. 1710-1722, November 1996.

M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi and D.A. Spielman,
”Efficient erasure correcting codes”, IEEE Trans. on Information
Theory, vol. 47, no. 2, pp. 569-584, February 2001.

T. Richardson and R. Urbanke, ”The capacity of low-density parity
check codes under message-passing decoding.” IEEE Trans. on
Information Theory, vol. 47, pp. 599–618, February 2001.

A. Kavcic, X. Ma and M. Mitzenmacher, ”Binary intersymbol
interference channels: Gallager bounds, density evolution, and code
performance bounds,” IEEE Trans. on Information Theory, vol. 49,
no. 7, pp. 1636-1652, July 2003.
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Application 1 - Concentration of Martingales in Coding Theory

(Cont.)

A. Montanari, ”Tight bounds for LDPC and LDGM codes under MAP
decoding,” IEEE Trans. on Information Theory, vol. 51, no. 9,
pp. 3247–3261, September 2005.

C. Méasson, A. Montanari and R. Urbanke, ”Maxwell construction:
The hidden bridge between iterative and maximum a-posteriori
decoding,” IEEE Trans. on Information Theory, vol. 54,
pp. 5277–5307, December 2008.

L.R. Varshney, ”Performance of LDPC codes under faulty iterative
decoding,” IEEE Trans. on Information Theory, vol. 57, no. 7,
pp. 4427–4444, July 2011.

R. Eshel and I. Sason, “On concentration of measures for LDPC code
ensembles,” Proc. of ISIT 2011, pp. 1273–1277, August 2011.

M. Raginsky and I. Sason, Concentration of Measure Inequalities in
Information Theory, Communications and Coding, FnT in Comm. and
IT, 2nd Edition, pp. 1–250, NOW Publishers, September 2014.
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Talagrand’s Inequality for Product Spaces

Talagrand’s Inequality for Product Spaces

We consider in the following a powerful concentration technique for
product spaces, which was introduced by Michel Talagrand in his
Landmark paper:

M. Talagrand, “Concentration of measure and isoperimetric inequalities in
product spaces,” Publications Mathématique de l’Institute des Hautes
Études Scientifiques, vol. 81, no. 1, pp. 73–205, 1995.
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Talagrand’s Inequality for Product Spaces

Distances

Let Ω1, . . . ,Ωn be n sample spaces, and let x, y ∈∏n
k=1Ωk.

The Hamming distance between x and y is the sum of the number of
coordinates where x and y are different, i.e., dH(x, y) =

∑n
k=1 1{xk 6= yk}

where 1{·} denotes the indicator function.

Generalization & normalization: Let a ∈ R
n
+ with ‖a‖2 = 1, i.e.,

a = (a1, . . . , an), s.t. ak ≥ 0, ∀ k ∈ {1, . . . , n},
n
∑

k=1

a2k = 1.

Then, define

da(x, y) =
n
∑

k=1

ak 1{xk 6= yk} =
∑

k : xk 6=yk

ak.

Special case: Let a =
(

1√
n
, . . . , 1√

n

)

, then dH(x, y) =
√
n da(x, y).
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Talagrand’s Inequality for Product Spaces

Distances (Cont.)

Let A ⊆∏n
k=1Ωk. Define

da(x,A) = min
y∈A

da(x, y)

and define

d(x,A) = max
{

da(x,A) : a ∈ R
n
+, ‖a‖2 = 1

}

where the maximum always exists.
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Talagrand’s Inequality for Product Spaces

Distances (Cont.)

Let A ⊆∏n
k=1Ωk and x ∈∏n

k=1Ωk.

Define

UA(x) =
{

s ∈ {0, 1}n : ∃ y ∈ A s.t. sk = 0 ⇒ xk = yk

}

=
{

s ∈ {0, 1}n : ∃ y ∈ A s.t. sk ≥ 1{xk 6= yk}, ∀ k ∈ {1, . . . , n}
}

.

Note that UA(x) is a finite set whose cardinality is at most 2n.

Fact 1

For all a ∈ R
n
+ with ‖a‖2 = 1

da(x,A) = min
t∈UA(x)

(t, a)

where (t, a) =
∑n

k=1 tkak is the scalar product.
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Talagrand’s Inequality for Product Spaces

Distances (Cont.)

Define
VA(x) = Convex hull UA(x).

Fact 2

d(x,A) = dE(0, VA(x))

where dE(0, VA(x)) denotes the Euclidean distance of the convex set
VA(x) to the origin.

Example

Let x = (a, b), A =
{

(a, a), (b, b)
}

with a 6= b. Then, by definition,

UA(x) =
{

(1, 0), (0, 1), (1, 1)
}

, and VA(x) is the triangle in the plane

whose vertices are the points (1, 0), (0, 1), (1, 1).
The Euclidean distance of VA(x) to the origin is 1√

2
, so d(x,A) = 1√

2
.
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Talagrand’s Inequality for Product Spaces

Talagrand’s Theorem

Let A be a measurable, non-empty subset of Ω =
∏n

k=1Ωk. Then, for
every product probability measure P on Ω

E

[

exp

(

d(X,A)2

4

)]

≤ 1

P (A)
(20)

where X ∼ P . Furthermore,

P
(

d(X,A) ≥ r
)

≤ 1

P (A)
· exp

(

−r
2

4

)

, ∀ r ≥ 0. (21)
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Talagrand’s Inequality for Product Spaces

Proof of Talagrand’s Theorem

The original proof of (20) is by induction on the number of coordinates
together with geometric arguments involving projections and sections to
lower dimensions.
Inequality (21) follows easily from (20) and Markov’s inequality:

P
(

d(X,A) ≥ r
)

= P

(

exp

(

d(X,A)2

4

)

≥ exp

(

r2

4

))

≤ exp

(

−r
2

4

)

E

[

exp

(

d(X,A)2

4

)]

≤ 1

P (A)
· exp

(

−r
2

4

)

.
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Talagrand’s Inequality for Product Spaces

Talagrand’s Inequality for Lipschitz Functions

Consider a function F : Ω → R on the product space Ω =
∏n

k=1Ωk.

Assume that, for every x ∈ Ω, there exists a = a(x) ∈ R
n
+ with

‖a‖2 = 1 such that

F (x) ≤ F (y) + σ da(x, y), ∀ y ∈ Ω

for some σ > 0.

Due to the symmetry property where da(x, y) = da(y, x), we have

∣

∣F (x)− F (y)
∣

∣ ≤ σ da(x, y), ∀x, y ∈ Ω

where a is as above.

This function is called a Lipschitz function.
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Talagrand’s Inequality for Product Spaces

Talagrand’s Inequality for Lipschitz Functions (Cont.)

Let A ⊆ Ω be defined as

A =
{

y ∈ Ω: F (y) ≤ m
}

where m ∈ R is arbitrary. For brevity, we will write A = {F ≤ m}.
From the Lipschitz property, for every x ∈ Ω there exists a ∈ R

n
+ with

‖a‖2 = 1 such that

F (x) ≤ m+ σ da(x, y), ∀ y ∈ A.

⇒ F (x) ≤ m+ σ min
y∈A

da(x, y)

= m+ σ da(x,A).

Recall that, in general, a depends on x.
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Talagrand’s Inequality for Product Spaces

Talagrand’s Inequality for Lipschitz Functions (Cont.)

By taking a supremum over a, we get

F (x) ≤ m+ σ sup
{

da(x,A) : a ∈ R
n
+, ‖a‖2 = 1

}

= m+ σ d(x, {F ≤ m}), ∀m ∈ R, x ∈ Ω.

Let r ≥ 0 be arbitrary. If F (x) ≥ m+ r, then d
(

x, {F ≤ m}
)

≥ r
σ
, so

P(F (X) ≥ m+ r) ≤ P

(

d(X, {F ≤ m}) ≥ r

σ

)

, ∀ r ≥ 0, m ∈ R.

Combining it with Talagrand’s inequality, with A = {F ≤ m}, gives:
Theorem: Talagrand’s Inequality for Lipschitz Functions

For a Lipschitz Function F : Ω → R, and X ∼ P for a product measure P ,

P
(

F (X) ≤ m
)

P
(

F (X) ≥ m+ r
)

≤ exp

(

− r2

4σ2

)

, ∀ r ≥ 0, m ∈ R.
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Talagrand’s Inequality for Product Spaces

From Talagrand’s Inequality to Concentration Around the Median

Define the median of F by

mF , inf
{

m : P
(

F (X) ≤ m
)

≥ 1

2

}

, X ∼ P.

Due to the σ-additivity of a probability measure

P
(

F (X) ≤ mF

)

≥ 1

2
, P

(

F (X) ≥ mF

)

≥ 1

2
.

Picking m = mF and m = mF − r, for r ≥ 0, give for a Lipschitz
function with constant σ > 0

P
(

F (X) ≥ mF + r
)

≤ 2 e−
r2

4σ2

P
(

F (X) ≤ mF − r
)

≤ 2 e−
r2

4σ2

⇒P
(

|F (X)−mF | ≥ r
)

≤ 4 e−
r2

4σ2 , ∀ r ≥ 0.
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Talagrand’s Inequality for Product Spaces

Bound on the Distance Between the Median and the Expected Value

For a Lipschitz Function with constant σ > 0, and X ∼ P where P is a
product measure

∣

∣mF − E[F (X)]
∣

∣

≤ E
[∣

∣mF − F (X)
∣

∣

]

=

∫ ∞

0
P
(
∣

∣F (X)−mF

∣

∣ ≥ r
)

dr

≤
∫ ∞

0
4 e−

r2

4σ2 dr

= 4
√
π σ.

Talagrand’s Inequality to Concentration Around the Expected Value

P
(

|F (X)− E[F (X)]| ≥ r
)

≤ 4 e−
(r−4

√
π σ)2

4σ2 , ∀ r ≥ 4
√
π σ.
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Application 2: Longest Increasing Subsequence

Example: Longest Increasing Subsequence

Let X1, . . . ,Xn be i.i.d. and uniformly distributed on [0, 1].

Let Ln = L(X1, . . . ,Xn) be the longest increasing subsequence of
X1, . . . ,Xn (i.e., it is the largest integer p where there exist indices
1 ≤ i1 < . . . < ip ≤ n such that Xi1 < . . . < Xip).

It is possible to show that for some constants c1, c2

c1
√
n < Ln < c2

√
n almost surely.

In the following, we consider the concentration of Ln.

A Concentration Inequality by Invoking McDiarmid’s inequality

Since a change of one value in the sequence x1, . . . , xn may modify Ln by
at most 1, McDiarmid’s inequality yields that

P
(

|Ln − E[Ln]| ≥ α
√
n
)

≤ 2 exp(−2α2), ∀α > 0.

This is not particularly useful since E[Ln] is itself of the order of
√
n.
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Application 2: Longest Increasing Subsequence

A Concentration Inequality by Invoking Talagrand’s inequality

The function L(x) = L(x1, . . . , xn) is not Lipschitz, though it possesses
the following property:

Lemma

Let x, y ∈ [0, 1]n. If for some m, r ≥ 0

L(x) ≥ m+ r, L(y) ≤ m

then there exists a = a(x) = (a1, . . . , an) with a ∈ R
n
+ and ‖a‖2 = 1 s.t.

da(x, y) ≥
r√
m+ r

.

⇒ P(L(X) ≥ m+ r) ≤ P

(

d(X, {L ≤ m}) ≥ r√
m+ r

)

.
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Application 2: Longest Increasing Subsequence

A Concentration Inequality by Invoking Talagrand’s inequality (Cont.)

From Talagrand’s theorem and the last inequality, it follows that

P
(

L(X) ≤ m
)

P
(

L(X) ≥ m+ r
)

≤ P
(

L(X) ≤ m
)

P

(

d(X, {L ≤ m}) ≥ r√
m+ r

)

≤ exp

(

− r2

4(m+ r)

)

, ∀m, r ≥ 0. (22)

Note that if m < 0, the bound is trivial (since P
(

L(X) ≤ m
)

= 0).
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Application 2: Longest Increasing Subsequence

A Concentration Inequality by Invoking Talagrand’s inequality (Cont.)

From Talagrand’s theorem and the last inequality, it follows that

P
(

L(X) ≤ m
)

P
(

L(X) ≥ m+ r
)

≤ P
(

L(X) ≤ m
)

P

(

d(X, {L ≤ m}) ≥ r√
m+ r

)

≤ exp

(

− r2

4(m+ r)

)

, ∀m, r ≥ 0. (22)

Note that if m < 0, the bound is trivial (since P
(

L(X) ≤ m
)

= 0).

Let mn be the median of Ln, then P(Ln ≥ mn) ≥ 1
2 , P(Ln ≤ mn) ≥ 1

2 .
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Application 2: Longest Increasing Subsequence

A Concentration Inequality by Invoking Talagrand’s inequality (Cont.)

From Talagrand’s theorem and the last inequality, it follows that

P
(

L(X) ≤ m
)

P
(

L(X) ≥ m+ r
)

≤ P
(

L(X) ≤ m
)

P

(

d(X, {L ≤ m}) ≥ r√
m+ r

)

≤ exp

(

− r2

4(m+ r)

)

, ∀m, r ≥ 0. (22)

Note that if m < 0, the bound is trivial (since P
(

L(X) ≤ m
)

= 0).

Let mn be the median of Ln, then P(Ln ≥ mn) ≥ 1
2 , P(Ln ≤ mn) ≥ 1

2 .
Substituting m = mn and m = mn − r (r ≥ 0) in (22) gives, respectively,

P
(

Ln ≥ mn + r
)

≤ 2 e
− r2

4(mn+r) ,

P
(

Ln ≤ mn

)

≤ 2 e−
r2

4mn .

∀ r > 0.
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Application 2: Longest Increasing Subsequence

A Concentration Inequality by Invoking Talagrand’s inequality (Cont.)

⇒ P
(

|Ln −mn| ≥ r
)

≤ 4 e
− r2

4(mn+r) , ∀ r > 0 (23)

or, by letting r = α
√
mn for α > 0, we get

P
(

|Ln −mn| ≥ α
√
mn

)

≤ 4 e
− α2 mn

4(mn+α
√
mn)

≤ 4 e
− α2

4(1+α) , ∀α > 0 (24)

where the last inequality holds since Ln ≥ 1 ⇒ mn ≥ 1.
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Application 2: Longest Increasing Subsequence

A Concentration Inequality by Invoking Talagrand’s inequality (Cont.)

A concentration result for Ln around E[Ln] can be further obtained from
(23) and a derivation of an upper bound on |E[Ln]−mn|.
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Application 2: Longest Increasing Subsequence

A Concentration Inequality by Invoking Talagrand’s inequality (Cont.)

A concentration result for Ln around E[Ln] can be further obtained from
(23) and a derivation of an upper bound on |E[Ln]−mn|. From (23),

|E[Ln]−mn| ≤ E
[

|Ln −mn|
]

=

∫ ∞

0
P
(

|Ln −mn| ≥ r
)

dr

≤
∫ ∞

0
4 e

− r2

4(mn+r) dr

≤ 4

∫ mn

0
e
− r2

8mn dr + 4

∫ mn

0
e−

r
8 dr

= 4
√
2πmn + 32.
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Application 2: Longest Increasing Subsequence

Conclusion

The expected value and median scale like
√
n almost surely.

Talagrand’s inequality gives a concentration result for deviations that
scale like 4

√
n.

McDiarmid’s inequality gives a concentration result for deviations that
scale like

√
n.

Hence, Talagrand’s inequality provides a stronger concentration result than
McDiarmid’s inequality.

Further Analysis

A much stronger result determining the precise asymptotic distribution of
Ln has been obtained by Baik, Deift and Johansson (1999) using deep
analytical tools.
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Application 3: Concentration for OFDM Signals

Orthogonal Frequency Division Multiplexing (OFDM)

The OFDM modulation converts a high-rate data stream into a
number of low-rate steams that are transmitted over parallel
narrow-band channels.

One of the problems of OFDM is that the peak amplitude of the
signal can be significantly higher than the average amplitude.

⇒ Sensitivity to non-linear devices in the communication path (e.g.,
digital-to-analog converters, mixers and high-power amplifiers).

⇒ An increase in the symbol error rate and also a reduction in the
power efficiency as compared to single-carrier systems.
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Application 3: Concentration for OFDM Signals

OFDM (Cont.)

Given an n-length codeword {Xi}n−1
i=0 , a single OFDM baseband

symbol is described by

s(t;X0, . . . ,Xn−1) =
1√
n

n−1
∑

i=0

Xi exp
(j 2πit

T

)

, 0 ≤ t ≤ T.

Assume that X0, . . . ,Xn−1 are i.i.d. complex RVs with |Xi| = 1.
Since the sub-carriers are orthonormal over [0, T ], then a.s. the power
of the signal s over this interval is 1.

The CF of the signal s, composed of n sub-carriers, is defined as

CFn(s) , max
0≤t≤T

|s(t)|.

The CF scales with high probability like
√

log(n) for large n.
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Application 3: Concentration for OFDM Signals

Assumption

Consider the case where {Xj}n−1
j=0 are independent complex-valued random

variables with magnitude 1, attaining the M points of an M -ary PSK
constellation with equal probability.

A concentration inequality (Litsyn and Wunder, 2006)

For every c ≥ 2.5

P

(

∣

∣

∣
CFn(s)−

√

log(n)
∣

∣

∣
<
c log log(n)
√

log(n)

)

= 1−O

(

1
(

log(n)
)4

)

.

Concentration Inequalities

In the following, we invoke McDiarmid and Talagrand’s inequalities for
obtaining concentration results for the crest factor of OFDM signals.
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Application 3: Concentration for OFDM Signals

Application of McDiarmid’s inequality

McDiarmid’s inequality implies that

P(|CFn(s)− E[CFn(s)]| ≥ α) ≤ 2 exp
(

−α
2

2

)

, ∀α ≥ 0.

The exponent improves by factor 4 in comparison to Azuma’s inequality.

Note

The same kind of concentration result can be applied to QAM-modulated
OFDM signals, since the independent RVs {Xj} are bounded.
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Application 3: Concentration for OFDM Signals

Establishing Concentration via Talagrand’s Inequality

Let x0, y0, . . . , xn−1, yn−1 have all absolute value of 1.

max
0≤t≤T

∣

∣ s(t;x0, . . . , xn−1)
∣

∣− max
0≤t≤T

∣

∣ s(t; y0, . . . , yn−1)
∣

∣

≤ max
0≤t≤T

∣

∣ s(t;x0, . . . , xn−1)− s(t; y0, . . . , yn−1)
∣

∣

≤ 1√
n

∣

∣

∣

∣

∣

n−1
∑

i=0

(xi − yi) exp
(j 2πit

T

)

∣

∣

∣

∣

∣

≤ 1√
n

n−1
∑

i=0

|xi − yi|

≤ 2√
n

n−1
∑

i=0

1{xi 6= yi} = 2da(x, y)

where a ,
(

1√
n
, . . . , 1√

n

)

.
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Application 3: Concentration for OFDM Signals

Establishing Concentration via Talagrand’s Inequality (Cont.)

Talagrand’s inequality for Lipschitz functions with constant σ = 2
yields that

P(|CFn(s)−mn| ≥ α) ≤ 4 exp

(

−α
2

16

)

, ∀α > 0, ∀α ≥ 0 (25)

where mn is the median of the crest factor for OFDM signals that are
composed of n sub-carriers.

This inequality demonstrates the concentration of this measure
around its median.
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Application 3: Concentration for OFDM Signals

Establishing Concentration via Talagrand’s Inequality (Cont.)

Corollary

The median and expected value of the crest factor differ by at most a
constant, independently of the number of sub-carriers n.

Proof: From Talagrand’s inequality in (25)

|E[CFn(s)]−mn|
≤ E |CFn(s)−mn|

=

∫ ∞

0
P(|CFn(s)−mn| ≥ α) dα

≤
∫ ∞

0
4 exp

(

−α
2

16

)

dα

= 8
√
π.
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Summary

Summary

The area of concentration of measure has seen enormous growth and
tremendous activity since the early ’90s.

This part of the tutorial focused on establishing concentration results
via

◮ The martingale approach
◮ Talagrand’s convex-hull distance inequality for product measures.

The introduction of these two approaches was exemplified by some
potential applications in information theory, communications and
modern coding techniques.
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Summary

Summary (Cont.)

The second part of this tutorial continues this path while introducing
more approaches that have their roots in information theory: the
entropy method, and transportation-cost inequalities.

Some more material is available in our recent monograph:
M. Raginsky and I. Sason, Concentration of Measure Inequalities in
Information Theory, Communications and Coding, Foundations and
Trends in Communications and Information Theory, Second Edition,
pp. 1–250, NOW Publishers, Delft, the Netherlands, September 2014.

This tutorial also includes material that was not presented there.
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