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The Plan

1. Prelude: The Chernoff bound

2. The entropy method

3. Logarithmic Sobolev inequalities

4. Transportation cost inequalities

5. Some applications



Given:

I X1, X2, . . . , Xn: independent random variables

I Z = f(Xn), for some real-valued f

Problem: derive sharp bounds on the deviation probabilities

P[Z − EZ ≥ t], for t ≥ 0

Benchmark:

I X1, . . . , Xn
i.i.d.∼ N(0, σ2)

I Z = f(Xn) = 1
n (X1 + . . .+Xn) — sample mean

P[Z ≥ t] ≤ exp

(
− nt

2

2σ2

)
Goal:

I extend to other distributions besides Gaussians

I extend to nonlinear f



Prelude: The Chernoff Bound



Review: The Chernoff Bound

Define:

I logarithmic moment-generating function ψ(λ) , logE[eλ(Z−EZ)]

I its Legendre dual ψ∗(t) , sup
λ≥0
{λt− ψ(λ)}

P[Z − EZ ≥ t] = P[eλ(Z−EZ) ≥ eλt]
≤ e−λtE[eλ(Z−EZ)] Markov’s inequality

= e−{λt−ψ(λ)}

Optimize over λ: P[Z − EZ ≥ t] ≤ e−ψ∗(t)

Sanity check:

Z ∼ N(0, σ2) ψ(λ) =
λ2σ2

2
ψ∗(t) =

t2

2σ2

P[Z ≥ t] ≤ e−t
2/2σ2



Chernoff Bound: Subgaussian Random Variables

Definition. A real-valued r.v. Z is σ2-subgaussian if

ψ(λ) ≤ λ2σ2

2

Immediate: if Z is σ2-subgaussian, then

ψ∗(t) = sup
λ≥0
{λt− ψ(λ)}

≥ sup
λ≥0

{
λt− λ2σ2/2

}
= t2/2σ2

giving the Gaussian tail bound

P[Z − EZ ≥ t] ≤ e−t2/2σ2

How do we establish subgaussianity?



Review: Hoeffding’s Lemma

Any almost surely bounded r.v. is
subgaussian:

If there exist −∞ < a ≤ b <∞ such that
Z ∈ [a, b] a.s., then

ψ(λ) ≤ λ2(b− a)2

8
.

Corollary. If Z ∈ [a, b] a.s., then

P[Z − EZ ≥ t] ≤ exp

(
− 2t2

(b− a)2

)
Wassily Hoeffding

Proof (of Corollary). By Hoeffding’s lemma, Z is subgaussian
with σ2 = (b− a)2/4.



Hoeffding’s Lemma: An Alternative Proof

1. Assume without loss of generality that EZ = 0.

2. Compute the first two derivatives of ψ:

ψ′(λ) =
E[ZeλZ ]

E[eλZ ]
ψ′′(λ) =

E[Z2eλZ ]

E[eλZ ]
−
(
E[ZeλZ ]

E[eλZ ]

)2

3. Tilted distribution:

P = L(Z) 7−→ Q
dQ

dP
(Z) =

eλZ

EP [eλZ ]
.

Then ψ′(λ) = EQ[Z], ψ′′(λ) = VarQ[Z].

4. Z ∈ [a, b] P -a.s. =⇒ Z ∈ [a, b] Q-a.s. =⇒ VarQ[Z] ≤ (b−a)2

4

5. Calculus:

ψ(λ) =

∫ λ

0

∫ τ

0
ψ′′(ρ) dρdτ ≤ λ2(b− a)2

8
. �



The Entropy Method



Exponential Tilting and (Relative) Entropy

Back to our setting:

I Z = f(X), X an arbitrary r.v.

I Want to prove subgaussianity of Z, so need to analyze

ψ(λ) = logE[eλ(Z−EZ)] = logE[eλ(f(X)−Ef(X))].

I Let P = L(X), introduce tilted distribution P λf :

dP λf

dP
(X) =

eλf(X)

E[eλf(X)]
.

I We will relate ψ(λ) to the relative entropy D(P λf‖P ).



Exponential Tilting and (Relative) Entropy

I Tilting of P = L(X):

dP λf

dP
(X) =

eλf(X)

E[eλf(X)]
≡ eλ(f(X)−Ef(X))

eψ(λ)
.

I Relative entropy:

D(P λf‖P ) =

∫
dP λf log

dP λf

dP

=

∫
dP λf (λ(f − EP f)− ψ(λ))

=
λEP [(f − EP f)eλ(f−EP f)]

eψ(λ)
− ψ(λ)

= λψ′(λ)− ψ(λ)

I With a bit of foresight,

λψ′(λ)− ψ(λ) = λ2

(
ψ′(λ)

λ
− ψ(λ)

λ2

)
= λ2 d

dλ

(
ψ(λ)

λ

)



The Herbst Argument

I Tilting of P = L(X):
dP λf

dP
(X) =

eλf(X)

E[eλf(X)]
I Relative entropy:

D(P λf‖P ) = λ2 d

dλ

(
ψ(λ)

λ

)
I Since lim

λ→0
ψ(λ)/λ = 0 (by l’Hôpital), we have

ψ(λ) = λ

∫ λ

0

D(P ρf‖P )

ρ2
dρ.

I Suppose now that P = L(X) and f are such that

D(P ρf‖P ) ≤ ρ2σ2

2
, ∀ρ ≥ 0

for some σ2. Then

ψ(λ) ≤ λ
∫ λ

0

ρ2σ2

2ρ2
dρ =

λ2σ2

2
.



The Herbst Argument

Lemma (Herbst, 1975). Suppose that
Z = f(X) is such that

D(P λf‖P ) ≤ λ2σ2

2
, ∀λ ≥ 0.

Then Z is σ2-subgaussian, and so

P[f(X)− Ef(X) ≥ t] ≤ e−t2/2σ2
, ∀t ≥ 0. Ira Herbst

For the sake of completeness, we ... prove a theorem which states
roughly that the potential of an intrinsically hypercontractive
Schrödinger operator must increase at least quadratically at
infinity. ... [I]ts complete proof requires information in an
unpublished letter of 1975 from I. Herbst to L. Gross. [C]ertain
steps in the argument ... can be written down abstractly.

— from a 1984 paper by B. Simon and E.B. Davies



The Herbst Converse

Lemma (R. van Handel, 2014). Suppose Z = f(X) is
σ2/4-subgaussian. Then

D(Pλf‖P ) ≤ λ2σ2

2
, ∀λ ≥ 0.

Proof. Let Ẽ[·] , EPλf [·].

D(Pλf‖P ) = Ẽ
[
log

dPλf

dP

]
(Jensen)

≤ log Ẽ
[

dPλf

dP

]
= log Ẽ

[
eλ(f(X)−Ef(X))

E[eλ(f(X)−Ef(X))]

]
= logE

[
e2λ(f−Ef)

]
− log

{
E[eλ(f−Ef)]︸ ︷︷ ︸

≥1

}2

≤ (2λ)2σ2/4

2
=
λ2σ2

2
�



The Herbst Argument: What Is It Good For?

I Subgaussianity of Z = f(X) is equivalent to
D(P λf‖P ) = O(λ2), but what does that give us?

I Recall: we are interested in high-dimensional settings

Z = f(Xn) = f(X1, . . . , Xn)

X1, . . . , Xn — independent r.v.’s

Thus, P is a product measure:

P = P1 ⊗ P2 ⊗ . . .⊗ Pn, Pi , L(Xi)

I The relative entropy tensorizes!! — we can break the
(hard) n-dimensional problem into n (hopefully) easier
1-dimensional problems.



Tensorization

X1, . . . , Xn — independent r.v.’s

P = L(Xn) = P1 ⊗ . . .⊗ Pn, Pi = L(Xi)

I Recall the Efron–Stein–Steele inequality:

VarP [f(Xn)] ≤
n∑
i=1

E
[
VarP [f(Xn)|X̄i]

]
— tensorization of variance

I Tensorization of relative entropy: for an arbitrary
probability measure Q on Xn,

D(Q‖P ) ≤
n∑
i=1

D(QXi|X̄i‖PXi|X̄i |QX̄i)︸ ︷︷ ︸
conditional divergence

— independence of the Xi’s is key



Tensorization: A Quick Proof
D(Q‖P )

=

n∑
i=1

D(QXi|Xi−1‖PXi|Xi−1 |QXi−1) (chain rule)

=

n∑
i=1

EQ
[
log

dQXi|Xi−1

dPXi|Xi−1

]

=

n∑
i=1

EQ

[
log

dQXi|Xi−1

dQXi|X̄i

]
+

n∑
i=1

EQ
[
log

dQXi|X̄i

dPXi|Xi−1

]

= −
n∑
i=1

EQ
[
log

dQXi|X̄i

dQXi|Xi−1

]
+

n∑
i=1

EQ

[
log

dQXi|X̄i

dPXi|X̄i

]
(independence)

= −
n∑
i=1

D(QXi|X̄i‖QXi|Xi−1 |QX̄i) +

n∑
i=1

D(QXi|X̄i‖PXi |QX̄i)

≤
n∑
i=1

D(QXi|X̄i‖PXi |QX̄i)

≡ D−(Q‖P ) — erasure divergence (Verdú–Weissman, 2008)



Tensorization and Tilting

I Recall: we are interested in D(Q‖P ), where

P = P1 ⊗ . . .⊗ Pn, dQ =
eλf

EP [eλf ]
dP

I Then

dQX̄i

dPX̄i
(x̄i) =

∫
X

Pi(dxi)
eλf(x1,...,xi−1,xi,xi+1,...,xn)

EP [eλf(Xn)]

=
EP [eλf(Xn)|X̄i = x̄i]

EP [eλf(Xn)]

therefore

dQXi|X̄i=x̄i

dPXi
(xi) =

eλf(x1,...,xi−1,xi,xi+1,...,xn)

EP [eλf(x1,...,xi−1,Xi,xi+1,...,xn)]

— remember, x̄i is fixed.



Tensorization and Tilting

dP λf
Xi|X̄i=x̄i

dPXi
(xi) =

eλf(x1,...,xi−1,xi,xi+1,...,xn)

EPi [eλf(x1,...,xi−1,Xi,xi+1,...,xn)]

I For a fixed x̄i, define the function

fi(·|x̄i) : X→ R
fi(xi|x̄i) = f(x1, . . . , xi−1, xi, xi+1, . . . , xn)

= fi(xi) (just shorthand, always remember x̄i)

I Now observe that QXi|X̄i=x̄i is the tilting of Pi ≡ PXi :

dQXi|X̄i=x̄i =
eλfi

EPi [eλfi ]
dPi



Tensorization and Tilting
Lemma. If X1, . . . , Xn are independent r.v.’s with joint law
P = P1 ⊗ . . .⊗ Pn, where Pi = L(Xi), then for any f : Xn → R

D(P λf‖P ) ≤
n∑
i=1

Ẽ
[
D(P λfii ‖Pi)

]
,

where Ẽ[·] , EPλf [·] and fi(·) = fi(·|X̄i) for each i.

Proof.

D(Pλf‖P ) ≤
n∑
i=1

D(Pλf
Xi|X̄i

‖PXi |P
λf
X̄i

)

=

n∑
i=1

Ẽ

log
dPλf

Xi|X̄i

dPXi


=

n∑
i=1

Ẽ

[
log

dPλfii

dPi

]
=

n∑
i=1

Ẽ
[
D(Pλfii ‖Pi)

]
�



The Entropy Method: Divide and Conquer

I Want to derive a subgaussian tail bound

P[f(Xn)− Ef(Xn) ≥ t] ≤ e−t
2/2σ2

, ∀t ≥ 0

where X1, . . . , Xn are independent r.v.’s.

I Suppose we can prove there exist constants c1, . . . , cn, such that

(?) D(Pλfii ‖Pi) ≤
λ2c2i

2
, i ∈ {1, . . . , n}.

Then

D(Pλf‖P )
(tensor.)

≤
λ2
∑n
i=1 c

2
i

2

(Herbst)
=⇒ σ2 =

n∑
i=1

c2i

Now we “just” need to prove (?)!!



Logarithmic Sobolev Inequalities



Log-Sobolev in a Nutshell

I Goal: control the relative entropy D(P λf‖P ).
I A log-Sobolev inequality ties together:

(i) the underlying probability measure P
(ii) a function class A (containing f of interest)

(iii) an “energy” functional E : A → R such that

E(αf) = αE(f), ∀f ∈ A, α ≥ 0

and looks like this:

D(P f‖P ) ≤ c

2
E2(f), ∀f ∈ A.

I In that case, if E(f) ≤ L, then

D(P λf‖P ) ≤ c

2
E2(λf) =

c

2
λ2E2(f) ≤ λ2cL2

2

I The name comes from an analogy with Sobolev inequalities
in functional analysis.



The Bernoulli Log-Sobolev Inequality
Theorem (Gross, 1975). Let X1, . . . , Xn be
i.i.d. Bern(1/2) random variables. Then, for
any function f : {0, 1}n → R,

D(P f‖P ) ≤ 1

8

E[|Df(Xn)|2ef(Xn)]

E[ef(Xn)]
,

where

Df(xn) ,

√√√√ n∑
i=1

|f(xn)− f(xn ⊕ ei︸ ︷︷ ︸
flip ith bit

)|2,

and E[·] is w.r.t. P = (Bern(1/2))⊗n.

Leonard Gross

Remarks:

I This is not the original form of the inequality from Gross’ 1975
paper, but they are equivalent.

I Note that D(λf) = λD(f) for all λ ≥ 0.



Bernoulli LSI: Proof Sketch

I Consider first n = 1 and f : {0, 1} → R with a = f(0) and
b = f(1).

I In that case, the log-Sobolev inequality reads

ea

ea + eb
log

2ea

ea + eb
+

eb

ea + eb
log

2eb

ea + eb
≤ 1

8
(b− a)2.

Proof: Elementary (but tedious) exercise in calculus.

I Tensorization:

D(P f‖P ) ≤
n∑
i=1

Ẽ[D(P fii ‖Pi)] where Ẽ[h(Xn)] =
E[h(Xn)ef(Xn)]

E[ef(Xn)]

≤ 1

8

n∑
i=1

Ẽ
[∣∣f(Xi−1, 0, Xn

i+1)− f(Xi−1, 1, Xn
i+1)

∣∣2]
=

1

8
Ẽ
[
|Df(Xn)|2

]
=

1

8

E[|Df(Xn)|2ef(Xn)]

E[ef(Xn)]
�



The Gaussian Log-Sobolev Inequality

Theorem (Gross, 1975). Let X1, . . . , Xn be
i.i.d. N(0, 1) random variables. Then, for
any smooth function f : Rn → R,

D(P f‖P ) ≤ 1

2

E
[
‖∇f(Xn)‖22 ef(Xn)

]
E[ef(Xn)]

,

where all expectations are w.r.t.
P = L(Xn) = N(0, In).

Leonard Gross

Remarks:

I This is not the original form of the inequality from Gross’ 1975 paper,
but they are equivalent.

I Equivalent forms of Gaussian LSI have been obtained independently
by A. Stam (1959) and by P. Federbush (1969).

I The contribution of Stam (via the entropy power inequality) was first
pointed out by E.A. Carlen in 1991.



Proof(s) of the Gaussian LSI

I There are many ways of proving the Gaussian log-Sobolev
inequality.

I Original proof by Gross: apply the Bernoulli LSI to

f

(
X1 + . . .+Xn − n/2√

n/4

)
, Xi

i.i.d.∼ Bern(1/2)

then use the Central Limit Theorem:

X1 + . . .+Xn − n/2√
n/4

 N(0, 1) as n→∞

I via Markov semigroups
I via hypercontractivity (E. Nelson)
I via Stam’s inequality for entropy power and Fisher info.
I via I-MMSE relation (cf. Raginsky and Sason)
I . . .



Application of Gaussian LSI

Theorem (Tsirelson–Ibragimov–Sudakov, 1976). Let
X1, . . . , Xn be independent N(0, 1) random variables. Let
f : Rn → R be a function which is L-Lipschitz:

|f(xn)− f(yn)| ≤ L‖xn − yn‖2, ∀xn, yn ∈ Rn.

Then Z = f(Xn) is L2-subgaussian:

logE[eλ(f(Xn)−Ef(Xn))] ≤ λ2L2

2
, ∀λ ≥ 0.

Remarks:

I The original proof did not rely on the Gaussian LSI.

I It is a striking result: f can be an arbitrary nonlinear
function, and the subgaussian constant is independent of
the dimension n.



Tsirelson–Ibragimov–Sudakov: Proof via LSI

I By an approximation argument, can assume that f is
differentiable. Since it is L-Lipschitz, ‖∇f‖2 ≤ L.

I By the Gaussian LSI, for any λ ≥ 0,

D(P λf‖P ) ≤ 1

2

E
[
‖λ∇f(Xn)‖22 eλf(Xn)

]
E
[
eλf(Xn)

]
=
λ2

2

E
[
‖∇f(Xn)‖22 eλf(Xn)

]
E
[
eλf(Xn)

]
≤ λ2L2

2
.

I By the Herbst argument,

logE
[
eλ(f(Xn)−Ef(Xn))

]
≤ λ2L2

2
. �



A Gaussian Concentration Bound

The Tsirelson–Ibragimov–Sudakov inequality gives us

Corollary. Let X1, . . . , Xn
i.i.d.∼ N(0, 1), and let f : Rn → R be

an L-Lipschitz function. Then

P [f(Xn)− Ef(Xn) ≥ t] ≤ e−t2/2L2
.

Proof. Use the Chernoff bound.

Remarks:

I This is an example of dimension-free concentration: the tail bound
does not depend on n.

I Applying the same result to −f and using the union bound, we get

P [|f(Xn)− Ef(Xn)| ≥ t] ≤ 2e−t
2/2L2

.



Deriving Log-Sobolev (1)

I Are there systematic ways to derive log-Sobolev?
I The usual (probabilistic) approach (a subtle art):

I Construct a continuous-time Markov process {Xt}t∈≥0 with
stationary distribution P and Markov generator

Lf(x) , lim
t↓0

E[f(Xt)|X0 = x]− f(x)

t

I Use the structure of L to obtain an inequality of the form

D(P f‖P ) ≤ c

2

E(ef , f)

EP [ef ]
,

where E(g, h) , −EP [f(X)Lg(X)] is the Dirichlet form.
I Extract Γ by looking for a bound of the form

E(ef , f) ≤ EP [|Γf(X)|2ef(X)]

I Different choices of L (for the same P ) will yield different
Γ’s, and hence different log-Sobolev inequalities.



Deriving Log-Sobolev (2)

I An alternative (information-theoretic) approach: based on
a recent paper of A. Maurer (2012).

I Exploits a representation of D(P λf‖P ) in terms of the
variance of f(X) under the tilted distributions

dP sf =
esf

EP [esf ]
dP.

I An interpretation in terms of statistical physics: think of
−f as energy and of s ≥ 0 as inverse temperature. Then

Varsf [f(X)] ,
EP [f2(X)esf(X)]

EP [esf(X)]
−

(
EP [f(X)esfX()]

EP [esf(X)]

)2

gives the “thermal fluctuations” of −f at temp. T = 1/s.

I Infinite-temperature limit (T →∞): recover VarP [f(X)].



Entropy via Thermal Fluctuations

Theorem (A. Maurer, 2012). Let X be a
random variable with law P . Then for any
real-valued function f and any λ ≥ 0

D(P λf‖P ) =

∫ λ

0

∫ λ

t
Varsf [f(X)] dsdt,

where Varsf [f(X)] is the variance of f(X)
under the tilted distribution P sf .

Andreas Maurer

Recall:

Varsf [f(X)] =
E[f2(X)esf(X)]

E[esf(X)]
−
(
E[f(X)esf(X)]

E[esf(X)]

)2

≡ ψ′′(s)

where ψ(s) = logE[es(f(X)−Ef(X))]



Proof

I Recall

D(Pλf‖P ) = λψ′(λ)− ψ(λ), where ψ(λ) = logE[eλ(f−Ef)].

I Since ψ(0) = ψ′(0) = 0, we have

λψ′(λ) =

∫ λ

0

ψ′(λ) dt

ψ(λ) =

∫ λ

0

ψ′(t) dt.

I Substitute:

D(Pλf‖P ) =

∫ λ

0

(ψ′(λ)− ψ′(t)) dt

=

∫ λ

0

∫ λ

t

ψ′′(s) dsdt

=

∫ λ

0

∫ λ

t

Varsf [f(X)] dsdt. �



From Thermal Fluctuations to Log-Sobolev

Theorem. Let A be a class of functions of X, and suppose that there
is a mapping Γ : A → R, such that:

1. For all f ∈ A and α ≥ 0, Γ(αf) = αΓ(f).

2. There exists a constant c > 0, such that

Varλf [f(X)] ≤ c|Γ(f)|2, ∀f ∈ A, λ ≥ 0.

Then

D(Pλf‖P ) ≤ λ2c|Γ(f)|2

2
, ∀f ∈ A, λ ≥ 0.

Proof.

D(Pλf‖P ) ≤ c|Γ(f)|2
∫ λ

0

∫ λ

t

dsdt =
c|Γ(f)|2λ2

2
�



From Thermal Fluctuations to Log-Sobolev: Example 1
Let’s use Maurer’s method to derive the Bernoulli LSI.

I For any f : {0, 1} → R, define

Γ(f) , |f(0)− f(1)|.

I Since f is obviously bounded, for every s ≥ 0 we have

Varsf [f(X)] ≤ (f(0)− f(1))2

4
≡ |Γf |

2

4
.

I Finally,

D(P f‖P ) =

∫ 1

0

∫ 1

t

Varsf [f(X)] dsdt

≤ |Γ(f)2

4

∫ 1

0

∫ 1

t

dsdt

=
1

8
|Γf |2.

I For n > 1, use tensorization.



From Thermal Fluctuations to Log-Sobolev: Example 2
Let’s use Maurer’s method to derive McDiarmid’s inequality.

I We will use tensorization, so let’s first consider n = 1.

I We are interested in all functions f : X→ R, such that

sup
x∈X

f(x)− inf
x∈X

f(x) ≤ c

for some c <∞.

I Define Γ(f) , supx∈X f(x)− infx∈X f(x).

I Any f satisfies f(X) ∈ [inf f, sup f ]. If Γ(f) <∞, then
[inf f, sup f ] is a bounded interval.

I In that case, for any P ,

Varsf [f(X)] ≤ (sup f − inf f)2

4
=
|Γ(f)|2

4
.

Using the integral representation of the divergence, we get

D(Pλf‖P ) ≤ λ2c2

8
, if sup f − inf f ≤ c.



Proof of McDiarmid (cont.)

I So far, we have obtained

(?) D(P λf‖P ) ≤ λ2c2

8
, if sup f − inf f ≤ c.

I Let Xi ∼ Pi, 1 ≤ i ≤ n, be independent r.v.’s.

I Consider f : Xn → R that has bounded differences:

sup
x̄i

(
sup
xi
f(xi−1, xi, x

n
i+1)− inf

xi
f(xi−1, xi, x

n
i+1)

)
≤ ci

for all i, for some constants 0 ≤ c1, . . . , cn <∞.

I For each i, apply (?) to fi(·) ≡ f(xi−1, ·, xni+1):

D(P λfii ‖Pi) ≤
1

8

(
sup
xi
f(xi−1, xi, x

n
i+1)− inf

xi
f(xi−1, xi, x

n
i+1)

)2

[recall, fi(·) depends on x̄i].



Proof of McDiarmid (cont.)

I Now we tensorize: for P = P1 ⊗ . . .⊗ Pn,

D(P λf‖P )

≤
n∑
i=1

Ẽ
[
D(P λfii ‖Pi)

]
≤ λ2

8
Ẽ

[
n∑
i=1

(
sup
xi
f(Xi−1, xi, X

n
i+1)− inf

xi
f(Xi−1, xi, X

n
i+1)

)2

︸ ︷︷ ︸
=|Γ(f)(Xn)|2

]



Theorem. Let X1, . . . , Xn ∈ X be independent r.v.’s with joint law
P = P1 ⊗ . . .⊗ Pn. Then, for any function f : Xn → R,

D(P f‖P ) ≤ 1

8

∥∥|Γf |2∥∥∞ ,

where

Γf(xn) =

{
n∑
i=1

(
sup
xi

f(xi−1, xi, x
n
i+1)− inf

xi
f(xi−1, xi, x

n
i+1)︸ ︷︷ ︸

=Γif(x̄i)

)2
}1/2

Remarks:

I McDiarmid: if f has bounded differences with c1, . . . , cn, then

f(Xn) is

∑n
i=1 c

2
i

4
-subgaussian

I Since
∥∥|Γf |2∥∥∞ ≤∑n

i=1

∥∥|Γif |2∥∥∞, the above theorem is
stronger than McDiarmid.



Transportation-Cost Inequalities



Concentration and the Lipschitz Property
A common theme:

I Let f : Rn → R be 1-Lipschitz w.r.t. the Euclidean norm:

|f(xn)− f(yn)| ≤ ‖xn − yn‖2.

Let X1, . . . , Xn be i.i.d. N(0, 1) r.v.’s. Then

P [|f(Xn)− Ef(Xn)| ≥ t] ≤ 2e−t
2/2.

I Let f : Xn → R be 1-Lipschitz w.r.t. a weighted Hamming metric:

|f(xn)− f(yn)| ≤ dc(xn, yn), dc(xn, yn) ,
n∑
i=1

ci1{xi 6= yi}

(this is equivalent to bounded differences). Let X1, . . . , Xn be
independent r.v.’s. Then

P [|f(Xn)− Ef(Xn)| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.



The Setting: Probability in Metric Spaces

I Let (X, d) be a metric space.

I A function f : X→ R is L-Lipschitz (w.r.t. d) if

|f(x)− f(y)| ≤ Ld(x, y), ∀x, y ∈ X.

I Notation: LipL(X, d) – the class of all L-Lipschitz functions.

Question: What conditions does a probability measure P on X
have to satisfy, so that f(X), X ∼ P , is σ2-subgaussian for
every f ∈ Lip1(X, d)?



Some Definitions

I A coupling of two probability measures P and Q on X is
any probability measure π on X× X, such that

(X,Y ) ∼ π =⇒ X ∼ P, Y ∼ Q.

I Π(P,Q): family of all couplings of P and Q.

Definition. For p ≥ 1, the Lp Wasserstein distance between P
and Q is given by

Wp(P,Q) , inf
π∈Π(P,Q)

(Eπ[dp(X,Y )])1/p .

Kantorovich–Rubinstein formula. For any two P,Q,

W1(P,Q) = sup
f∈Lip1(X,d)

|EP [f ]− EQ[f ]| .



Optimal Transportation
Monge-Kantorovich Optimal Transportation
Problem. Given two probability measures P,Q
on a common space X and a cost function
c : X× X→ R+,

minimize Eπ[c(X,Y )]

over all couplings π ∈ Π(P,Q).

Interpretation:

I P and Q: initial and final distributions of some
material (say, sand) in space

I c(x, y): cost of transporting a grain of sand
from location x to location y

I π(dy|x): randomized strategy for transporting
from location x

I Wasserstein distances: transportation cost is
some power of a metric

Gaspard Monge

Leonid Kantorovich



Transportation Cost Inequalities

Definition. A probability measure P on a metric space (X, d)
satisfies an Lp transportation cost inequality with constant c,
or Tp(c) for short, if

Wp(P,Q) ≤
√

2cD(Q‖P ), ∀Q.

Preview:

I We will be primarily concerned with T1(c) and T2(c)
inequalities.

I T1(c) is easier to work with, while T2(c) has strong
properties (dimension-free concentration).



Examples of TC Inequalities: 1

I X: arbitrary space with trivial metric d(x, y) = 1{x 6= y}
I Then

W1(P,Q) = inf
π∈Π(P,Q)

Eπ[1{X 6= Y }]

≡ inf
π∈Π(P,Q)

Pπ[X 6= Y ]

= ‖P −Q‖TV – total variation distance

(proof by explicit construction of optimal coupling)

I Any P satisfies T1(1/4):

‖P −Q‖TV ≤
√

1

2
D(Q‖P )

(Csiszár–Kemperman–Kullback–Pinsker)



Examples of TC Inequalities: 2

I X = {0, 1} with trivial metric d(x, y) = 1{x 6= y}
I P = Bern(p)

I Distribution-dependent refinement of Pinsker:

‖P −Q‖TV ≤
√

2c(p)D(Q‖P ),

where

c(p) =
p− p̄

2(log p− log p̄)
, p̄ , 1− p

(Ordentlich–Weinberger, 2005)

I Thus, P = Bern(p) satisfies T1(c(p)), and the constant is
optimal:

inf
Q

D(Q‖P )

‖Q− P‖2TV

=
1

2c(p)
.



Examples of TC Inequalities: 3

I X = Rn with d(x, y) = ‖x− y‖2
I The Gaussian measure
P = N(0, In) satisfies T2(1):

W2(P,Q) ≤
√

2D(Q‖P )

(Talagrand, 1996)

I Note: the constant is independent
of n!!

Michel Talagrand



Transportation and Concentration

Theorem (Bobkov–Götze, 1999). Let P be a probability
measure on a metric space (X, d). Then the following two
statements are equivalent:

1. f(X), X ∼ P , is σ2-subgaussian for every f ∈ Lip1(X, d).

2. P satisfies T1(c) on (X, d):

W1(P,Q) ≤
√

2σ2D(Q‖P ), ∀Q� P.

Sergey Bobkov Friedrich Götze

Remarks:

I Connection between concentration and
transportation inequalities was first
pointed out by Marton (1986).

I Remarkable result: concentration
phenomenon for Lipschitz functions can
be expressed purely in terms of
probabilistic and metric structures.



Proof of Bobkov–Götze
(Ultra-light version, due to R. van Handel)

I Statement 1 of the theorem is equivalent to

(?) sup
λ≥0

sup
f∈Lip1(X,d)

{
logEP

[
eλ(f−EP f)

]
− λ2σ2

2

}
≤ 0.

I Use Gibbs variational principle:

logEP [eh] = sup
Q
{EQ[h]−D(Q‖P )} , ∀h s.t. eh ∈ L1(P )

(supremum achieved by the tilted distribution Q = Ph).

I Then (?) is equivalent to

(??) sup
λ≥0

sup
f∈Lip1(X,d)

sup
Q

{
λ (EQ[f ]− EP [f ])−D(Q‖P )− λ2σ2

2

}
≤ 0



Proof of Bobkov–Götze (cont.)

(??) sup
λ≥0

sup
f∈Lip1(X,d)

sup
Q

{
λ (EQ[f ]− EP [f ])−D(Q‖P )− λ2σ2

2

}
≤ 0

I Interchange the order of suprema:

sup
λ≥0

sup
f∈Lip1(X,d)

sup
Q

[. . .] = sup
Q

sup
λ≥0

sup
f∈Lip1(X,d)

[...]

I Then

(??)⇐⇒ sup
Q

sup
λ≥0

{
λW1(P,Q)−D(Q‖P )− λ2σ2

2

}
≤ 0

(by Kantorovich–Rubinstein)

⇐⇒ sup
Q

{
W1(P,Q)

2σ2
−D(Q‖P )

}
≤ 0

(optimize over λ) �



Tensorization of Transportation Inequalities

I At first sight, all we have is another equivalent
characterization of concentration of Lipschitz functions.

I However, transportation inequalities tensorize!!

I Proof of tensorization is through a beautiful result on
couplings by Katalin Marton.



The Marton Coupling

Theorem (Marton, 1986). Let (Xi, Pi),
1 ≤ i ≤ n, be probability spaces. Let
wi : Xi × Xi → R+, 1 ≤ i ≤ n, be positive
weight functions, and let ϕ : R+ → R+ be a
convex function. Suppose that, for each i,

inf
π∈Π(Pi,Q)

ϕ (Eπ[wi(X,Y )]) ≤ 2σ2D(Q‖Pi), ∀Q.

Then the following holds for the product
measure P = P1 ⊗ . . .⊗ Pn on the product
space X = X1 ⊗ . . .⊗ Xn:

inf
π∈Π(P,Q)

n∑
i=1

ϕ (Eπ[wi(Xi, Yi)]) ≤ 2σ2D(Q‖P )

for every Q on X.

Katalin Marton

Proof idea: Chain rule for relative entropy + conditional coupling +

induction.



Tensorization of Transportation Cost Inequalities

Theorem. Let (Xi, Pi, di), 1 ≤ i ≤ n, be probability metric
spaces. If for some 1 ≤ p ≤ 2 each Pi satisfies Tp(c) on (Xi, di),
then the product measure P = P1 ⊗ . . .⊗ Pn on
X = X1 × . . .× Xn satisfies Tp(cn

2/p−1) w.r.t. the metric

dp(x
n, yn) ,

(
n∑
i=1

dpi (xi, yi)

)1/p

.

Remarks:

I If each Pi satisfies T1(c), then P = P1 ⊗ . . .⊗ Pn satisfies T1(cn)
with respect to the metric

∑
i di. Note: constant deteriorates

with n.

I If each Pi satisfies T2(c), then P satisfies T2(c) with respect to√∑
i d

2
i . Note: constant is independent of n.



Proof of Tensorization

I By hypothesis, for each i,

inf
π∈Π(Pi,Q)

(Eπ[dpi (X,Y )])
2/p

︸ ︷︷ ︸
W 2
p,di

(Pi,Q)

≤ 2cD(Q‖Pi), ∀Q.

I 1 ≤ p ≤ 2 =⇒ ϕ(u) = u2/p is convex. Take wi = dpi . Then

inf
π∈Π(Pi,Q)

ϕ (Eπ[wi(X,Y )]) ≤ 2cD(Q‖Pi), ∀Q.

I By Marton’s coupling,

(?) inf
π∈Π(P,Q)

n∑
i=1

(Eπ[dpi (Xi, Yi)])
2/p ≤ 2cD(Q‖P ), ∀Q.



Proof of Tensorization (cont.)

I We have shown that if Pi satisfies Tp(c) w.r.t. di, for each i, then

(?) inf
π∈Π(P,Q)

n∑
i=1

(Eπ[dpi (Xi, Yi)])
2/p ≤ 2cD(Q‖P ), ∀Q.

I We will now prove LHS(?) ≥ n1−2/pW 2
p,dp

(P,Q).

I For any π ∈ Π(P,Q),(
Eπ

[
n∑
i=1

dpi (Xi, Yi)

])2/p

≤

(
n∑
i=1

Eπ[dpi (Xi, Yi)]

)2/p

(concavity of t 7→ t1/p)

≤ n2/p−1
n∑
i=1

(Eπ[dpi (Xi, Yi)])
2/p

(convexity of t 7→ t2/p)

Take infimum over all π ∈ Π(P,Q), and we are done. �



(Yet Another) Proof of McDiarmid’s Inequality

I Product probability space: (X1 × . . .× Xn, P1 ⊗ . . .⊗ Pn)

I Given c1, . . . , cn ≥ 0, equip Xi with dci(xi, yi) , ci1{xi 6= yi}.
I Then any Pi on Xi satisfies T1(c2i /4):

W1,dci
(Pi, Q) ≡ ci‖Pi −Q‖TV ≤

√
c2i
2
D(Q‖Pi)

(by rescaling Pinsker).

I By Marton coupling, P = P1 ⊗ . . .⊗Pn satisfies T1 with constant
(1/4)

∑n
i=1 c

2
i with respect to the metric

dc(xn, yn) ,
n∑
i=1

dci(xi, yi) =

n∑
i=1

ci1{xi 6= yi}.

I By Bobkov–Götze, this is equivalent to subgaussian property of
all f ∈ Lip1(X1 × . . .× Xn, dc):

P[|f(Xn)− Ef(Xn)| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
︸ ︷︷ ︸

McDiarmid

, ∀ f ∈ Lip1(dc)︸ ︷︷ ︸
bdd. diff.



Some Applications



The Blowing-Up Lemma

I Consider a product space Yn equipped with Hamming metric
d(yn, zn) =

∑n
i=1 1{yi 6= zi}

I For a set A ⊆ Yn and for r ∈ {0, 1, . . . , n}, define its r-blowup

[A]r ,

{
zn ∈ Yn : min

yn∈A
d(zn, yn) ≤ r

}
The following result, in a different (asymptotic) form was first proved
by Ahlswede–Gács–Körner (1976); a simple proof was given by
Marton (1986):

Let Y1, . . . , Yn be independent r.v.’s taking values in Y. Then for
every set A ⊆ Yn with PY n(A) > 0

PY n {[A]r} ≥ 1− exp

− 2

n

(
r −

√
n

2
log

1

PY n(A)

)2

+


Informally, any set in a product space can be “blown up” to engulf
most of the probability mass.



Marton’s Proof

I Let Pi = L(Yi), 1 ≤ i ≤ n; P = P1 ⊗ . . .⊗ Pn ≡ L(Y n).

I By tensorization, P satisfies the TC inequality

(?) W1(P,Q) ≤
√
n

2
D(Q‖P ), ∀Q ∈ P(Yn),

where

W1(P,Q) = inf
π∈Π(P,Q)

Eπ

[
n∑
i=1

1{Yi 6= Zi}

]
, Y n ∼ P, Zn ∼ Q

I For any B ⊆ Yn with P (B) > 0, consider conditional distribution

PB(·) , P (· ∩B)

P (B)
.

Then D(PB‖P ) = log 1
P (B) , and therefore

(??) W1(P, PB) ≤

√
n

2
log

1

P (B)
.



Marton’s Proof

I (??) W1(P, PB) ≤

√
n

2
log

1

P (B)

I Apply (??) to B = A and B = [A]cr:

W1(P, PA) ≤

√
n

2
log

1

P (A)
, W1(P, P[A]cr

) ≤

√
n

2
log

1

1− P ([A]r)

I Then√
n

2
log

1

P (A)
+

√
n

2
log

1

1− P ([A]r)
≥W1(PA, P ) +W1(P, P[A]cr

)

≥W1(PA, P[A]cr
) (triangle ineq.)

≥ min
yn∈A,zn∈[A]cr

d(yn, zn)

≥ r. (def. of [·]r)

I Rearrange to finish the proof. �



The Blowing-Up Lemma: Consequences

I Consider a DMC (X,Y, T ) with input alphabet X, output
alphabet Y, transition probabilities T (y|x), (x, y) ∈ X× Y

I (n,M, ε)-code C: encoder f : {1, . . . ,M} → Xn, decoder
g : Yn → {1, . . . ,M} with

max
1≤j≤M

P[g(Y n) 6= j|Xn = f(j)] ≤ ε.

Equivalently, C = {(uj , Dj)}Mj=1, where

I uj = f(j) ∈ Xn — codewords
I Dj = g−1(j) = {yn ∈ Yn : g(yn) = j} — decoding sets

Tn(Dj |uj) ≥ 1− ε, j = 1, . . . ,M.

Lemma. There exists δn > 0, such that

Tn
(

[Dj ]nδn

∣∣∣Xn = uj

)
≥ 1− 1

n
, j = 1, . . . ,M.



Proof

I Choose

δn =
1

n

⌈
n

(√
log n

2n
+

√
1

2n
log

1

1− ε

)⌉
I For each j, apply Blowing-Up Lemma to the product measure

Pj(y
n) =

n∏
i=1

T (yi|uj(i)), where uj = (uj(1), . . . , uj(n)) = f(j)︸ ︷︷ ︸
jth codeword

.

With r = nδn, this gives

Tn
(

[Dj ]nδn

∣∣∣Xn = uj

)
≥ 1− exp

− 2

n

(
nδn −

√
n

2
log

1

1− ε

)2

+


≥ 1− 1

n
. �



From Blowing-Up Lemma to Strong Converses

I Informally, the Blowing-Up Lemma shows that “any bad code
contains a good subcode” (Ahlswede and Dueck, 1976).

I Consider an (n,M, ε)-code C = {(uj , Dj)}Mj=1.

I Each decoding set Dj can be “blown up” to a set D̃j ⊆ Yn with

Tn(D̃j |uj) ≥ 1− 1

n
.

I The object C̃ = {(uj , D̃j)}Mj=1 is not a code (since the sets D̃j are
no longer disjoint), but a random coding argument can be used
to extract an (n,M ′, ε′) “subcode” with M ′ slightly smaller than
M and ε′ < ε. Then one can apply the usual (weak) converse to
the subcode.

I Similar ideas can be used in multiterminal settings (starting with
Ahlswede–Gács–Körner).



Example: Capacity-Achieving Channel Codes

The set-up

I DMC (X,Y, T ) with capacity

C = C(T ) = max
PX

I(X;Y )

I (n,M)-code: C = (f, g) with encoder f : {1, . . . ,M} → Xn

and decoder g : Yn → {1, . . . ,M}

Capacity-achieving codes:

A sequence {Cn}∞n=1, where each Cn is an (n,Mn)-code, is
capacity-achieving if

lim
n→∞

1

n
logMn = C.



Capacity-Achieving Channel Codes

Capacity-achieving input and output distributions:

P ∗X ∈ arg max
PX

I(X;Y ) (may not be unique)

P ∗X
T−−−−−−−−→ P ∗Y (always unique)

Theorem (Shamai–Verdú, 1997). Let {Cn} be any
capacity-achieving code sequence with vanishing error
probability. Then

lim
n→∞

1

n
D
(
P

(Cn)
Y n

∥∥∥P ∗Y n) = 0,

where P
(Cn)
Y n is the output distribution induced by the code

Cn when the messages in {1, . . . ,Mn} are equiprobable.



Capacity-Achieving Channel Codes

lim
n→∞

1

n
D(PY n‖P ∗Y n) = 0

Main message: channel output sequences induced by good code
“resemble” i.i.d. sequences drawn from the CAOD P ∗Y

Useful implications: estimate performance characteristics of good
channel codes by their expectations w.r.t. P ∗Y n = (P ∗Y )n

I often much easier to compute explicitly

I bound estimation accuracy using large-deviation theory (e.g.,
Sanov’s theorem)

Question: what about good codes with nonvanishing error

probability?



Codes with Nonvanishing Error Probability

Y. Polyanskiy and S. Verdú, “Empirical distribution of good channel
codes with non-vanishing error probability” (2012)

1. Let C = (f, g) be any (n,M, ε)-code for T :

max
1≤j≤M

P
[
g(Y n) 6= j

∣∣Xn = f(j)
]
≤ ε.

Then D
(
P

(C)
Y n

∥∥P ∗Y n) ≤ nC − logM + o(n).∗

2. If {Cn}∞n=1 is a capacity-achieving sequence, where each Cn is an
(n,Mn, ε)-code for some fixed ε > 0, then

lim
n→∞

1

n
D
(
P

(Cn)
Y n

∥∥∥P ∗Y n) = 0.

∗ In some cases, the o(n) term can be improved to O(
√
n).



Relative Entropy at the Output of a Code
Consider a DMC T : X→ Y with T (·|·) > 0, and let

c(T ) = 2 max
x∈X

max
y,y′∈Y

∣∣∣∣log
T (y|x)

T (y′|x)

∣∣∣∣
Theorem (Raginsky–Sason, 2013). Any (n,M, ε)-code C for T , where
ε ∈ (0, 1/2), satisfies

D
(
P

(C)
Y n

∥∥∥P ∗Y n) ≤ nC − logM + log
1

ε
+ c(T )

√
n

2
log

1

1− 2ε

Remark:

I Polyanskiy and Verdú show that

D
(
P

(C)
Y n

∥∥∥P ∗Y n) ≤ nC − logM + a
√
n

for some constant a = a(ε).



Proof Sketch (1)

Fix xn ∈ Xn and study concentration of the function

hxn(yn) = log
dPY n|Xn=xn

dP
(C)
Y n

(yn)

around its expectation w.r.t. PY n|Xn=xn :

E[hxn(Y n)|Xn = xn] = D
(
PY n|Xn=xn

∥∥∥P (C)
Y n

)
Step 1: Because T (·|·) > 0, the function hxn(yn) is 1-Lipschitz
w.r.t. scaled Hamming metric

d(yn, ȳn) = c(T )

n∑
i=1

1{yi 6= ȳi}



Proof Sketch (2)

Step 1: Because T (·|·) > 0, the function hxn(yn) is 1-Lipschitz w.r.t.
scaled Hamming metric

d(yn, ȳn) = c(T )

n∑
i=1

1{yi 6= ȳi}

Step 2: Any product probability measure µ on (Yn, d) satisfies

logEµ
[
etf(Y n)

]
≤ nc(T )2t2

8

for any f with Eµf = 0 and ‖F‖Lip ≤ 1.

Proof: Tensorization of T1 (Pinsker), followed by appeal to

Bobkov–Götze.



Proof Sketch (3)

hxn(yn) = log
dPY n|Xn=xn

dP
(C)
Y n

(yn)

E[hxn(Y n)|Xn = xn] = D
(
PY n|Xn=xn

∥∥∥P (C)
Y n

)
Step 3: For any xn, µ = PY n|Xn=xn is a product measure, so

P
(
hxn(Y n) ≥ D

(
PY n|Xn=xn

∥∥∥P (C)
Y n

)
+ r
)
≤ exp

(
− 2r2

nc(T )2

)

Use this with r = c(T )
√

n
2 log 1

1−2ε :

P

(
hxn(Y n) ≥ D

(
PY n|Xn=xn

∥∥∥P (C)
Y n

)
+ c(T )

√
n

2
log

1

1− 2ε

)
≤ 1− 2ε

Remark: Polyanskiy–Verdú show Var[hxn(Y n)|Xn = xn] = O(n).



Proof Sketch (4)

Recall:

P

(
hxn(Y n) ≥ D

(
PY n|Xn=xn

∥∥∥P (C)
Y n

)
+ c(T )

√
n

2
log

1

1− 2ε

)
≤ 1− 2ε

Step 4: Same as Polyanskiy–Verdú, appeal to Augustin’s strong
converse (1966) to get

logM ≤ log
1

ε
+D

(
PY n|Xn

∥∥∥P (C)
Y n

∣∣∣P (C)
Xn

)
+ c(T )

√
n

2
log

1

1− 2ε

D
(
P

(C)
Y n

∥∥∥P ∗Y n)
= D

(
PY n|Xn

∥∥∥P ∗Y n ∣∣∣P (C)
Xn

)
−D

(
PY n|Xn

∥∥∥P (C)
Y n

∣∣∣P (C)
Xn

)
≤ nC − logM + log

1

ε
+ c(T )

√
n

2
log

1

1− 2ε
�



Relative Entropy at the Output of a Code

Theorem (Raginsky–Sason, 2013). Let (X,Y, T ) be a DMC with
C > 0. Then, for any 0 < ε < 1, any (n,M, ε)-code C for T satisfies

D
(
P

(C)
Y n

∥∥P ∗Y n) ≤ nC − logM

+
√

2n (log n)3/2

(
1 +

√
1

log n
log

(
1

1− ε

)) (
1 +

log |Y|
log n

)
+ 3 log n+ log

(
2|X||Y|2

)
.

Proof idea:

I Apply Blowing-Up Lemma to the code, then extract a good subcode.

Remark:

I Polyanskiy and Verdú show that

D
(
P

(C)
Y n

∥∥P ∗Y n) ≤ nC − logM + b
√
n log3/2 n

for some constant b > 0.



Concentration of Lipschitz Functions

Theorem (Raginsky–Sason, 2013). Let (X,Y, T ) be a DMC with
c(T ) <∞. Let d : Yn × Yn → R+ be a metric, and suppose that
PY n|Xn=xn , xn ∈ Xn, as well as P ∗Y n , satisfy T1(c) for some c > 0.

Then, for any ε ∈ (0, 1/2), any (n,M, ε)-code C for T , and any
function f : Yn → R we have

P
(C)
Y n

(
|f(Y n)− E[f(Y ∗n)]| ≥ r

)
≤ 4

ε
exp

(
nC − lnM + a

√
n− r2

8c‖f‖2Lip

)
, ∀ r ≥ 0

where Y ∗n ∼ P ∗Y n , and a , c(T )
√

1
2 ln 1

1−2ε .



Proof Sketch

Step 1: For each xn ∈ Xn, let φ(xn) , E[f(Y n)|Xn = xn]. Then, by
Bobkov–Götze,

P
(
|f(Y n)− φ(xn)| ≥ r

∣∣∣Xn = xn
)
≤ 2 exp

(
− r2

2c‖f‖2Lip

)

Step 2: By restricting to a subcode C′ with codewords xn ∈ Xn

satisfying φ(xn) ≥ E[f(Y ∗n)] + r, we can show that

r ≤ ‖f‖Lip

√
2c

(
nC − logM ′ + a

√
n+ log

1

ε

)
,

with M ′ = MP
(C)
Xn

(
φ(Xn) ≥ E[f(Y ∗n)] + r

)
. Solve to get

P
(C)
Xn

(
|φ(Xn)− E[f(Y ∗n)]| ≥ r

)
≤ 2e

nC−logM+a
√
n+log 1

ε−
r2

2c‖f‖2
Lip

Step 3: Apply union bound. �



Empirical Averages at the Code Output

I Equip Yn with the Hamming metric

d(yn, ȳn) =

n∑
i=1

1{yi 6= ȳi}

I Consider functions of the form

f(yn) =
1

n

n∑
i=1

fi(yi),

where |fi(yi)− fi(ȳi)| ≤ L1{yi 6= ȳi} for all i, yi, ȳi. Then
‖f‖Lip ≤ L/n.

I Since PY n|Xn=xn for all xn and P ∗Y n are product measures on
Yn, they all satisfy T1(n/4) (by tensorization)

I Therefore, for any (n,M, ε)-code and any such f we have

P
(C)
Y n

(
|f(Y n)− E[f(Y ∗n)]| ≥ r

)
≤ 4

ε
exp

(
nC − logM + a

√
n− nr2

2L2

)



Concentration of Measure
Information-Theoretic Converse

I Concentration phenomenon in a nutshell: if a subset of a
metric probability space does not have too small of a
probability mass, then its blowups will eventually take up
most of the probability mass.

I Question: given a set whose blowups eventually take up
most of the probability mass, how small can this set be?

This question was answered by Kontoyiannis (1999) as a
consequence of a general information-theoretic converse.



Converse Concentration of Measure: The Set-Up

I Let X be a finite set, together with a distortion function
d : X× X→ R+ and a mass function M : X→ (0,∞).

I Extend to product space Xn:

dn(xn, yn) ,
n∑
i=1

d(xi, yi)

Mn(xn) ,
n∏
i=1

M(xi)

Mn(A) ,
∑
xn∈A

Mn(xn), ∀A ⊆ Xn

I Blowups:

A ⊆ Xn −→ [A]r ,

{
xn ∈ Xn : min

yn∈A
dn(xn, yn) ≤ r

}



Converse Concentration of Measure

I Let P be a probability measure on X. Define

Rn(δ) , min
PXnY n

{
I(Xn;Y n) + E logMn(Y n) :

PXn = P⊗n, E[dn(Xn, Y n)] ≤ nδ
}

Theorem (Kontoyiannis). Let An ⊆ Xn be an arbitrary set. Then

1

n
logMn(An) ≥ R(δ),

where

δ ,
1

n
E
[

min
yn∈An

dn(Xn, yn)

]
and R(δ) , lim

n→∞

Rn(δ)

n
≡ R1(δ).

Remark:

I It can be shown that R1(δ) = infn≥1
Rn(δ)
n .



Proof

I Define the mapping ϕn : Xn → Xn via

ϕn(xn) , arg min
yn∈An

dn(xn, yn)

and let Y n = ϕn(Xn), Qn = L(Y n).

I Then

logMn(An) = log
∑

yn∈An

Mn(yn)

≥ log
∑

yn∈An:Qn>0

Qn(yn)
Mn(yn)

Qn(yn)

≥
∑

yn∈An

Qn(yn) log
Mn(yn)

Qn(yn)

= −
∑

yn∈An

Qn(yn) logQn(yn) +
∑

yn∈An

Q(yn) logMn(yn)

= H(Y n) + E logM(Y n)

= I(Xn;Y n) + E logM(Y n)

≥ Rn(δ). �



Converse Concentration of Measure

I Consider a sequence of sets {An}∞n=1 with

(?) P⊗n ([An]nδ)
n→∞−−−−→ 1.

I Apply Kontoyiannis’ converse to the mass function M = P , to
get the following:

Corollary. If the sequence {An} satisfies (?), then

lim inf
n→∞

1

n
logP⊗n(An) ≥ R(δ),

where the “concentration exponent” is

R(δ) = min
PXY

{
I(X;Y ) + E logP (Y ) : PX = P, E[d(X,Y )] ≤ δ

}
≡ −max

PXY

{
H(Y |X) +D(PY ‖P ) : PX = P, E[d(X,Y )] ≤ δ

}
.



Example of The Concentration Exponent

Theorem (Raginsky–Sason, 2013). Let P = Bern(p). Then

R(δ)

{
≤ −ϕ(p)δ2 − (1− p)h

(
δ

1−p

)
, if δ ∈ [0, 1− p]

= log p, if δ ∈ [1− p, 1]

where

ϕ(p) =
1

1− 2p
log

1− p
p

and h(·) is the binary entropy function.

Remarks:

I The upper bound is not tight, but in this case R(δ) can be
evaluated numerically (cf. Kontoyiannis, 2001).

I The proof is by a coupling argument.



Summary

I Three related methods for obtaining sharp concentration
inequalities in high dimension:

1. The entropy method
2. Log-Sobolev inequalities
3. Transportation-cost inequalities

I All three methods crucially rely on tensorization:
I Breaking the original high-dimensional problem into

low-dimensional pieces, exploiting low-dimensional structure
to control entropy locally, assembling local information into
a global bound.

I Tensorization is a consequence of independence.

I Applications to information theory:
I Exploit the problem structure to isolate independence (e.g.,

output distribution of a DMC for any fixed input block).



What We Had to Skip

I Log-Sobolev inequalities and hypercontractivity

I Log-Sobolev inequalities when Herbst fails (e.g., Poisson
measures)

I Connections to isoperimetric inequalities

I HWI inequalities: tying together relative entropy,
Wasserstein distance, Fisher information

I Concentration inequalities for functions of dependent
random variables

For this and more, consult our monograph: M. Raginsky and
I. Sason, Concentration of Measure Inequalities in Info.
Theory, Comm. and Coding, FnT, 2nd edition, 2014.
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