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Abstract

This paper gives upper and lower bounds on the minimum error probability of Bayesian M -ary hypothesis
testing in terms of the Arimoto-Rényi conditional entropy of an arbitrary order α. The improved tightness of
these bounds over their specialized versions with the Shannon conditional entropy (α = 1) is demonstrated. In
particular, in the case where M is finite, we show how to generalize Fano’s inequality under both the conventional
and list-decision settings. As a counterpart to the generalized Fano’s inequality, allowing M to be infinite, a
lower bound on the Arimoto-Rényi conditional entropy is derived as a function of the minimum error probability.
Explicit upper and lower bounds on the minimum error probability are obtained as a function of the Arimoto-
Rényi conditional entropy for both positive and negative α. Furthermore, we give upper bounds on the minimum
error probability as functions of the Rényi divergence. In the setup of discrete memoryless channels, we analyze
the exponentially vanishing decay of the Arimoto-Rényi conditional entropy of the transmitted codeword given
the channel output when averaged over a random-coding ensemble.
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I. INTRODUCTION

In Bayesian M -ary hypothesis testing, we have:

• M possible explanations, hypotheses or models for the Y-valued data {PY |X=m,m ∈ X} where the set
of model indices satisfies |X | =M ; and

• a prior distribution PX on X .

The minimum probability of error of X given Y , denoted by εX|Y , is achieved by the maximum-a-posteriori
(MAP) decision rule. Summarized in Sections I-A and I-C, a number of bounds on εX|Y involving Shannon
information measures or their generalized Rényi measures have been obtained in the literature. As those works
attest, there is considerable motivation for the study of the relationships between error probability and information
measures. The minimum error probability of Bayesian M -ary hypothesis testing is rarely directly computable,
and the best lower and upper bounds are information theoretic. Furthermore, their interplay is crucial in the
proof of coding theorems.
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A. Existing bounds involving Shannon information measures

1) Fano’s inequality [24] gives an upper bound on the conditional entropy H(X|Y ) as a function of εX|Y
when M is finite.

2) Shannon’s inequality [71] (see also [83]) gives an explicit lower bound on εX|Y as a function of H(X|Y ),
also when M is finite.

3) Tightening another bound by Shannon [70], Poor and Verdú [57] gave a lower bound on εX|Y as a
function of the distribution of the conditional information (whose expected value is H(X|Y )). This bound
was generalized by Chen and Alajaji [14].

4) Baladová [6], Chu and Chueh [15, (12)], and Hellman and Raviv [38, (41)] showed that

εX|Y ≤ 1
2 H(X|Y ) bits (1)

when M is finite. It is also easy to show that (see, e.g., [25, (21)])

εX|Y ≤ 1− exp
(
−H(X|Y )

)
. (2)

Tighter and generalized upper bounds on εX|Y were obtained by Kovalevsky [48], Tebbe and Dwyer [76],
and Ho and Verdú [39, (109)].

5) Based on the fundamental tradeoff of a certain auxiliary binary hypothesis test, Polyanskiy et al. [55] gave
the meta-converse implicit lower bound on εX|Y , which for some choice of auxiliary quantities is shown
to be tight in [82].

6) Building up on [38], Kanaya and Han [45] showed that in the case of independent identically distributed
(i.i.d.) observations, εX|Y n and H(X|Y n) vanish exponentially at the same speed, which is governed by
the Chernoff information between the closest hypothesis pair. In turn, Leang and Johnson [51] showed that
the same exponential decay holds for those cost functions that have zero cost for correct decisions.

7) Birgé [9] gave an implicit lower bound on the minimax error probability (εX|Y maximized over all possible
priors) as a function of the pairwise relative entropies among the various models.

8) Generalizing Fano’s inequality, Han and Verdú [34] gave lower bounds on the mutual information I(X;Y )

as a function of εX|Y .
9) Grigoryan et al. [33] and Sason [67] obtained error bounds, in terms of relative entropies, for hypothesis

testing with a rejection option. Such bounds recently proved useful in the context of an almost-fixed size
hypothesis decision algorithm, which bridges the gap in performance between fixed-sample and sequential
hypothesis testing [49].

B. Rényi’s information measures

In this paper, we give upper and lower bounds on εX|Y not in terms of H(X|Y ) but in terms of the Arimoto-
Rényi conditional entropy Hα(X|Y ) of an arbitrary order α. Loosening the axioms given by Shannon [69] as a
further buttress for H(X), led Rényi [62] to the introduction of the Rényi entropy of order α ∈ [0,∞], Hα(X), as
well as the Rényi divergence Dα(P‖Q). Rényi’s entropy and divergence coincide with Shannon’s and Kullback-
Leibler’s measures, respectively, for α = 1. Among other applications, Hα(X) serves to analyze the fundamental
limits of lossless data compression [13], [16], [19]. Unlike Shannon’s entropy, Hα(X) with α 6= 1 suffers from
the disadvantage that the inequality Hα(X1, X2) ≤ Hα(X1) +Hα(X2) does not hold in general. Moreover, if
we mimic the definition of H(X|Y ) and define conditional Rényi entropy as

∑
y∈Y PY (y)Hα(X|Y = y), we

find the unpleasant property that the conditional version may be larger than Hα(X). To remedy this situation,
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Arimoto [5] introduced a notion of conditional Rényi entropy, which in this paper we denote as Hα(X|Y ), and
which is indeed upper bounded by Hα(X). The corresponding α-capacity max

X
{Hα(X)−Hα(X|Y )} yields a

particularly convenient expression for the converse bound found by Arimoto [4] (see also [56]). The Arimoto-
Rényi conditional entropy has also found applications in guessing and secrecy problems with side information
([2], [10], [35], [36] and [75]), sequential decoding [2], task encoding with side information available to both the
task-describer (encoder) and the task-performer [11], and the list-size capacity of discrete memoryless channels
in the presence of noiseless feedback [12]. In [65], the joint range of H(X|Y ) and Hα(X|Y ) is obtained when
the random variable X is restricted to take its values on a finite set with a given cardinality. Although outside
the scope of this paper, Csiszár [19] and Sibson [74] proposed implicitly other definitions of conditional Rényi
entropy, which lead to the same value of the α-capacity and have found various applications ([19] and [85]).
The quantum generalizations of Rényi entropies and their conditional versions ([35], [36], [37], [43], [47], [54],
[61], [77]) have recently served to prove strong converse theorems in quantum information theory ([36], [52]
and [86]).

C. Existing bounds involving Rényi’s information measures and related measures

In continuation to the list of existing bounds involving the conditional entropy and relative entropy in
Section I-A, bounds involving Rényi’s information measures and related measures include:
10) For Bayesian binary hypothesis testing, Hellman and Raviv [38] gave an upper bound on εX|Y as a function

of the prior probabilities and the Rényi divergence of order α ∈ [0, 1] between the two models. The special
case of α = 1

2 yields the Bhattacharyya bound [44].
11) In [21] and [81], Devijver and Vajda derived upper and lower bounds on εX|Y as a function of the quadratic

Arimoto-Rényi conditional entropy H2(X|Y ).
12) In [17], Cover and Hart showed that if M is finite, then

εX|Y ≤ Ho(X|Y ) ≤ εX|Y
(
2− M

M−1 εX|Y

)
(3)

where

Ho(X|Y ) = E

[∑
x∈X

PX|Y (x|Y )
(
1− PX|Y (x|Y )

)]
(4)

is referred to as conditional quadratic entropy. The bounds in (3) coincide if X is equiprobable on X , and
X and Y are independent.

13) One of the bounds by Han and Verdú [34] in Item 8) was generalized by Polyanskiy and Verdú [56] to
give a lower bound on the α-mutual information ([74], [85]).

14) In [73], Shayevitz gave a lower bound, in terms of the Rényi divergence, on the maximal worst-case miss-
detection exponent for a binary composite hypothesis testing problem when the false-alarm probability
decays to zero with the number of i.i.d. observations.

15) Tomamichel and Hayashi studied optimal exponents of binary composite hypothesis testing, expressed in
terms of Rényi’s information measures ([37], [78]). A measure of dependence was studied in [78] (see also
Lapidoth and Pfister [50]) along with its role in composite hypothesis testing.

16) Fano’s inequality was generalized by Toussiant in [80, Theorem 2] (see also [22] and [43, Theorem 6]) not
with the Arimoto-Rényi conditional entropy but with the average of the Rényi entropies of the conditional
distributions (which, as we mentioned in Section I-B, may exceed the unconditional Rényi entropy).

17) A generalization of the minimax lower bound by Birgé [9] in Item 7) to lower bounds involving f -
divergences has been studied by Guntuboyina [32].
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D. Main results and paper organization

It is natural to consider generalizing the relationships between εX|Y and H(X|Y ), itemized in Section I-A,
to the Arimoto-Rényi conditional entropy Hα(X|Y ). In this paper we find pleasing counterparts to the bounds
in Items 1), 4), 6), 10), 11), and 13), resulting in generally tighter bounds. In addition, we enlarge the scope of
the problem to consider not only εX|Y but the probability that a list decision rule (which is allowed to output a
set of L hypotheses) does not include the true one. Previous work on extending Fano’s inequality to the setup
of list decision rules includes [1, Section 5], [46, Lemma 1], [59, Appendix 3.E] and [84, Chapter 5].

Section II introduces the basic notation and definitions of Rényi information measures. Section III finds bounds
for the guessing problem in which there are no observations; those bounds, which prove to be instrumental in
the sequel, are tight in the sense that they are attained with equality for certain random variables. Section IV
contains the main results in the paper on the interplay between εX|Y and Hα(X|Y ), giving counterparts to a
number of those existing results mentioned in Sections I-A and I-C. In particular:

18) An upper bound on Hα(X|Y ) as a function of εX|Y is derived for positive α (Theorem 3); it provides an
implicit lower bound on εX|Y as a function of Hα(X|Y );

19) Explicit lower bounds on εX|Y are given as a function of Hα(X|Y ) for both positive and negative α

(Theorems 5, 6, and 7);
20) The lower bounds in Items 18) and 19) are generalized to the list-decoding setting (Theorems 8, 9, and 10);
21) As a counterpart to the generalized Fano’s inequality, we derive a lower bound on Hα(X|Y ) as a function

of εX|Y capitalizing on the Schur concavity of Rényi entropy (Theorem 11);
22) Explicit upper bounds on εX|Y as a function of Hα(X|Y ) are obtained (Theorem 12);

Section V gives explicit upper bounds on εX|Y as a function of the error probability of associated binary tests
(Theorem 14) and of the Rényi divergence (Theorems 13 and 15) and Chernoff information (Theorem 15).

Section VI analyzes the exponentially vanishing decay of the Arimoto-Rényi conditional entropy of the
transmitted codeword given the channel output when averaged over a code ensemble (Theorems 17 and 18).
Concluding remarks are given in Section VII.

II. RÉNYI INFORMATION MEASURES: DEFINITIONS AND BASIC PROPERTIES

Definition 1: [62] Let PX be a probability distribution on a discrete set X . The Rényi entropy of order
α ∈ (0, 1) ∪ (1,∞) of X , denoted by Hα(X) or Hα(PX), is defined as

Hα(X) =
1

1− α
log
∑
x∈X

PαX(x) (5)

=
α

1− α
log ‖PX‖α (6)

where ‖PX‖α =
(∑

x∈X P
α
X(x)

) 1

α . By its continuous extension,

H0(X) = log
∣∣suppPX ∣∣, (7)

H1(X) = H(X), (8)

H∞(X) = log
1

pmax
(9)

where suppPX = {x ∈ X : PX(x) > 0} is the support of PX , and pmax is the largest of the masses of X .
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When guessing the value of X in the absence of an observation of any related quantity, the maximum
probability of success is equal to pmax; it is achieved by guessing that X = x0 where x0 is a mode of PX , i.e.,
PX(x0) = pmax. Let

εX = 1− pmax (10)

denote the minimum probability of error in guessing the value of X . From (9) and (10), the minimal error
probability in guessing X without side information is given by

εX = 1− exp
(
−H∞(X)

)
. (11)

Definition 2: For α ∈ (0, 1)∪(1,∞), the binary Rényi entropy of order α is the function hα : [0, 1]→ [0, log 2]

that is defined, for p ∈ [0, 1], as

hα(p) = Hα(Xp) =
1

1− α
log
(
pα + (1− p)α

)
, (12)

where Xp takes two possible values with probabilities p and 1 − p. The continuous extension of the binary
Rényi entropy at α = 1 yields the binary entropy function:

h(p) = p log
1

p
+ (1− p) log 1

1− p
(13)

for p ∈ (0, 1), and h(0) = h(1) = 0.
In order to put forth generalizations of Fano’s inequality and bounds on the error probability, we consider

Arimoto’s proposal for the conditional Rényi entropy (named, for short, the Arimoto-Rényi conditional entropy).
Definition 3: [5] Let PXY be defined on X ×Y , where X is a discrete random variable. The Arimoto-Rényi

conditional entropy of order α ∈ [0,∞] of X given Y is defined as follows:

• If α ∈ (0, 1) ∪ (1,∞), then

Hα(X|Y ) =
α

1− α
log E

(∑
x∈X

PαX|Y (x|Y )

) 1

α

 (14)

=
α

1− α
logE

[
‖PX|Y (·|Y )‖α

]
(15)

=
α

1− α
log

∑
y∈Y

PY (y) exp

(
1− α
α

Hα(X|Y = y)

)
, (16)

where (16) applies if Y is a discrete random variable.
• By its continuous extension, the Arimoto-Rényi conditional entropy of orders 0, 1, and ∞ are defined as

H0(X|Y ) = ess supH0

(
PX|Y (·|Y )

)
(17)

= log max
y∈Y

∣∣suppPX|Y (·|y)∣∣ (18)

= max
y∈Y

H0(X |Y = y), (19)

H1(X|Y ) = H(X|Y ), (20)

H∞(X|Y ) = log
1

E
[
max
x∈X

PX|Y (x|Y )
] (21)

where ess sup in (17) denotes the essential supremum, and (18) and (19) apply if Y is a discrete random
variable.
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Although not nearly as important, sometimes in the context of finitely valued random variables, it is useful
to consider the unconditional and conditional Rényi entropies of negative orders α ∈ (−∞, 0) in (5) and (14)
respectively. By continuous extension

H−∞(X) = log
1

pmin
, (22)

H−∞(X|Y ) = log E−1
[

min
x∈X :PX|Y (x|Y )>0

PX|Y (x|Y )

]
(23)

where pmin in (22) is the smallest of the nonzero masses of X , and E−1[Z] in (23) denotes the reciprocal of
the expected value of Z. In particular, note that if |X | = 2, then

H−∞(X|Y ) = log
1

1− exp (−H∞(X|Y ))
. (24)

Basic properties of Hα(X|Y ) appear in [27], and in [43], [77] in the context of quantum information theory.
Next, we provide two additional properties, which are used in the sequel.

Proposition 1: Hα(X|Y ) is monotonically decreasing in α throughout the real line.
The proof of Proposition 1 is given in Appendix A. In the special case of α ∈ [1,∞] and discrete Y , a proof

can be found in [8, Proposition 4.6].
We will also have opportunity to use the following monotonicity result, which holds as a direct consequence

of the monotonicity of the norm of positive orders.
Proposition 2: α−1

α Hα(X|Y ) is monotonically increasing in α on (0,∞) and (−∞, 0).
Remark 1: Unless X is a deterministic function of Y , it follows from (17) that H0(X|Y ) > 0; consequently,

lim
α↑0

α− 1

α
Hα(X|Y ) = +∞, (25)

lim
α↓0

α− 1

α
Hα(X|Y ) = −∞. (26)

It follows from Proposition 1 that if β > 0, then

Hβ(X|Y ) ≤ H0(X|Y ) ≤ H−β(X|Y ), (27)

and, from Proposition 2,

α− 1

α
Hα(X|Y ) ≤ β − 1

β
Hβ(X|Y ) (28)

if 0 < α < β or α < β < 0.
The third Rényi information measure used in this paper is the Rényi divergence. Properties of the Rényi

divergence are studied in [23], [68, Section 8] and [73].
Definition 4: [62] Let P and Q be probability measures on X dominated by R, and let their densities be

respectively denoted by p = dP
dR and q = dQ

dR . The Rényi divergence of order α ∈ [0,∞] is defined as follows:

• If α ∈ (0, 1) ∪ (1,∞), then

Dα(P‖Q) =
1

α− 1
logE

[
pα(Z) q1−α(Z)

]
(29)

=
1

α− 1
log

∑
x∈X

Pα(x)Q1−α(x) (30)

where Z ∼ R in (29), and (30) holds if X is a discrete set.



7

• By the continuous extension of Dα(P‖Q),

D0(P‖Q) = max
A:P (A)=1

log
1

Q(A)
, (31)

D1(P‖Q) = D(P‖Q), (32)

D∞(P‖Q) = log ess sup
p(Z)

q(Z)
(33)

with Z ∼ R.

Definition 5: For all α ∈ (0, 1) ∪ (1,∞), the binary Rényi divergence of order α, denoted by dα(p‖q) for
(p, q) ∈ [0, 1]2, is defined as Dα([p 1− p]‖[q 1− q]). It is the continuous extension to [0, 1]2 of

dα(p‖q) =
1

α− 1
log
(
pαq1−α + (1− p)α(1− q)1−α

)
. (34)

Used several times in this paper, it is easy to verify the following identity satisfied by the binary Rényi
divergence. If t ∈ [0, 1] and s ∈ [0, θ] for θ > 0, then

log θ − dα
(
t‖ sθ
)
=

1

1− α
log
(
tα s1−α + (1− t)α (θ − s)1−α

)
. (35)

By analytic continuation in α, for (p, q) ∈ (0, 1)2,

d0(p‖q) = 0, (36)

d1(p‖q) = d(p‖q) = p log
p

q
+ (1− p) log 1− p

1− q
, (37)

d∞(p‖q) = logmax

{
p

q
,
1− p
1− q

}
(38)

where d(·‖·) denotes the binary relative entropy. Note that if t ∈ [0, 1] and M > 1, then

logM − d(t ‖1− 1
M ) = t log(M − 1) + h(t). (39)

A simple nexus between the Rényi entropy and the Rényi divergence is

Dα(X‖U) = logM −Hα(X) (40)

when X takes values on a set of M elements on which U is equiprobable.
Definition 6: The Chernoff information of a pair of probability measures defined on the same measurable

space is equal to

C(P‖Q) = sup
α∈(0,1)

(1− α)Dα(P‖Q). (41)

Definition 7: ([74], [85]) Given the probability distributions PX and PY |X , the α-mutual information is
defined for α > 0 as

Iα(X;Y ) = min
QY

Dα(PXY ‖PX ×QY ). (42)

As for the conventional mutual information, which refers to α = 1, sometimes it is useful to employ the
alternative notation

Iα(PX , PY |X) = Iα(X;Y ). (43)
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In the discrete case, for α ∈ (0, 1) ∪ (1,∞),

Iα(X;Y ) =
α

1− α
E0

(
1

α
− 1, PX

)
, (44)

where

E0(ρ, PX) = − log
∑
y∈Y

(∑
x∈X

PX(x)P
1

1+ρ

Y |X(y|x)

)1+ρ

(45)

denotes Gallager’s error exponent function [29]. Note that, in general, Iα(X;Y ) does not correspond to the
difference Hα(X)−Hα(X|Y ), which is equal to

Hα(X)−Hα(X|Y ) =
α

1− α
E0

(
1

α
− 1, PXα

)
(46)

where PXα is the scaled version of PX , namely the normalized version of PαX . Since the equiprobable distribution
is equal to its scaled version for any α ≥ 0, if X is equiprobable on a set of M elements, then

Iα(X;Y ) = logM −Hα(X|Y ). (47)

III. UPPER AND LOWER BOUNDS ON Hα(X)

In this section, we obtain upper and lower bounds on the unconditional Rényi entropy of order α which are
tight in the sense that they are attained with equality for certain random variables.

A. Upper bounds

In this subsection we limit ourselves to finite alphabets.
Theorem 1: Let X and Y be finite sets, and let X be a random variable taking values on X . Let f : X → Y

be a deterministic function, and denote the cardinality of the inverse image by Ly = |f−1(y)| for every y ∈ Y .
Then, for every α ∈ [0, 1) ∪ (1,∞), the Rényi entropy of X satisfies

Hα(X) ≤ 1

1− α
log
∑
y∈Y

L1−α
y Pα[f(X) = y] (48)

which holds with equality if and only if either α = 0 or α ∈ (0, 1)∪ (1,∞) and PX is equiprobable on f−1(y)
for every y ∈ Y such that PX(f−1(y)) > 0.

Proof: It can be verified from (7) that (48) holds with equality for α = 0 (by assumption suppPX = X ,
and

∑
y∈Y

Ly = |X |).

Suppose α ∈ (0, 1) ∪ (1,∞). Let |X | = M < ∞, and let U be equiprobable on X . Let V = f(X) and
W = f(U), so (V,W ) ∈ Y2 and

PV (y) = P
[
f(X) = y

]
, (49)

PW (y) =
Ly
M

(50)
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for all y ∈ Y . To show (48), note that

Hα(X) = logM −Dα(X‖U) (51)

≤ logM −Dα(V ‖W ) (52)

= logM − 1

α− 1
log
∑
y∈Y

Pα
[
f(X) = y

](Ly
M

)1−α
(53)

=
1

1− α
log
∑
y∈Y

L1−α
y Pα[f(X) = y] (54)

where (51) is (40); (52) holds due to the data processing inequality for the Rényi divergence (see [23, Theorem 9
and Example 2]); and (53) follows from (30), (49) and (50).

From (51)–(54), the upper bound in (48) is attained with equality if and only if the data processing inequality
(52) holds with equality. For all α ∈ (0, 1) ∪ (1,∞),

Dα(X‖U) =
1

α− 1
log
∑
x∈X

PαX(x)M
α−1 (55)

=
1

α− 1
log

∑
y∈Y

LyM
α−1

∑
x∈f−1(y)

1

Ly
PαX(x)

 (56)

≥ 1

α− 1
log

∑
y∈Y

LyM
α−1

 1

Ly

∑
x∈f−1(y)

PX(x)

α (57)

=
1

α− 1
log
∑
y∈Y

PαV (y)

(
Ly
M

)1−α
(58)

= Dα(V ‖W ) (59)

where (55) is satisfied by the definition in (30) with U being equiprobable on X and |X | =M ; (56) holds by
expressing the sum over X as a double sum over Y and the elements of X that are mapped by f to the same
element in Y; inequality (57) holds since |f−1(y)| = Ly for all y ∈ Y , and for every random variable Z we
have E[Zα] ≥ Eα[Z] if α ∈ (1,∞) or the opposite inequality if α ∈ [0, 1); finally, (58)–(59) are due to (30),
(49) and (50). Note that (57) holds with equality if and only if PX is equiprobable on f−1(y) for every y ∈ Y
such that PX(f−1(y)) > 0. Hence, for α ∈ (0, 1)∪ (1,∞), (52) holds with equality if and only if the condition
given in the theorem statement is satisfied.

Corollary 1: Let X be a random variable taking values on a finite set X with |X | =M , and let L ⊆ X with
|L| = L. Then, for all α ∈ [0, 1) ∪ (1,∞),

Hα(X) ≤ 1

1− α
log
(
L1−α Pα[X ∈ L] + (M − L)1−α Pα[X /∈ L]

)
(60)

= logM − dα
(
P[X ∈ L]‖ LM

)
(61)

with equality in (60) if and only if X is equiprobable on both L and Lc.
Proof: Inequality (60) is a specialization of Theorem 1 to a binary-valued function f : X → {0, 1} such

that f−1(0) = L and f−1(1) = Lc. Equality (61) holds by setting θ =M , t = P[X ∈ L], and s = L in (35).
Moreover, specializing Corollary 1 to L = 1, we obtain:
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Corollary 2: Let X be a random variable taking values on a finite set X with |X | = M . Then, for all
α ∈ [0, 1) ∪ (1,∞),

Hα(X) ≤ min
x∈X

1

1− α
log
(
PαX(x) + (M − 1)1−α

(
1− PX(x)

)α) (62)

= logM −max
x∈X

dα
(
PX(x)‖ 1

M

)
(63)

with equality in (62) if and only if PX is equiprobable on X \ {x∗} where x∗ ∈ X attains the maximum in
(63).

Remark 2: Taking the limit α→ 1 in the right side of (62) yields

H(X) ≤ min
x∈X

{(
1− PX(x)

)
log(M − 1) + h

(
PX(x)

)}
(64)

with the same necessary and sufficient condition for equality in Corollary 2. Furthermore, choosing x ∈ X to
be a mode of PX gives

H(X) ≤
(
1− pmax

)
log(M − 1) + h

(
pmax

)
(65)

= εX log(M − 1) + h(εX) (66)

where (66) follows from (10), and the symmetry of the binary entropy function around 1
2 .

If we loosen Corollary 2 by, instead of minimizing the right side of (62), choosing x ∈ X to be a mode of
PX , we recover [7, Theorem 6]:

Corollary 3: Let X be a random variable taking M possible values, and assume that its largest mass is pmax.
Then, for all α ∈ [0, 1) ∪ (1,∞),

Hα(X) ≤ 1

1− α
log
(
pαmax + (M − 1)1−α

(
1− pmax

)α) (67)

= logM − dα
(
pmax‖ 1

M

)
(68)

with equality in (67) under the condition in the statement of Corollary 2 with x∗ being equal to a mode of PX .
Remark 3: In view of the necessary and sufficient condition for equality in (62), the minimization of the

upper bound in the right side of (62) for a given PX does not necessarily imply that the best choice of
x ∈ X is a mode of PX . For example, let X = {0, 1, 2}, PX(0) = 0.2, and PX(1) = PX(2) = 0.4. Then,
H2(X) = 1.474 bits, which coincides with its upper bound in (62) by choosing x = 0; on the other hand, (67)
yields H2(X) ≤ 1.556 bits.

B. Lower bound

The following lower bound provides a counterpart to the upper bound in Corollary 3 without restricting to
finitely valued random variables.

Theorem 2: Let X be a discrete random variable attaining a maximal mass pmax. Then, for α ∈ (0, 1)∪(1,∞),

Hα(X) ≥ 1

1− α
log

(⌊
1

pmax

⌋
pαmax +

(
1− pmax

⌊
1

pmax

⌋)α)
(69)

= log

(
1 +

⌊
1

pmax

⌋)
− dα

pmax

⌊
1

pmax

⌋∥∥∥∥
⌊

1
pmax

⌋
1 +

⌊
1

pmax

⌋
 (70)
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where, for x ∈ R, bxc denotes the largest integer that is smaller than or equal to x. Equality in (69) holds if
and only if PX has

⌊
1

pmax

⌋
masses equal to pmax, and an additional mass equal to 1− pmax

⌊
1

pmax

⌋
whenever

1
pmax

is not an integer.
Proof: For α ∈ (0, 1)∪(1,∞), the Rényi entropy of the distribution identified in the statement of Theorem 2

as attaining the condition for equality is equal to the right side of (69). Furthermore, that distribution majorizes
any distribution whose maximum mass is pmax. The result in (69) follows from the Schur-concavity of the
Rényi entropy in the general case of a countable alphabet (see [40, Theorem 2]). In view of Lemma 1 and
Theorem 2 of [40], the Schur concavity of the Rényi entropy is strict for any α ∈ (0, 1)∪ (1,∞) and therefore
(69) holds with strict inequality for any distribution other than the one specified in the statement of this result.
To get (70), let s =

⌊
1

pmax

⌋
, t = s pmax and θ = s+ 1 in (35).

Remark 4: Let X be a discrete random variable, and consider the case of α = 0. Unless X is finitely valued,
(7) yields H0(X) =∞. If X is finitely valued, then (7) and the inequality pmax | suppPX | ≥ 1 yield

H0(X) ≥ log
⌈

1
pmax

⌉
(71)

where, for x ∈ R, dxe denotes the smallest integer that is larger than or equal to x. The bound in (69) therefore
holds for α = 0 with the convention that 00 = 0, and it then coincides with (71). Equality in (71) holds if and
only if | suppPX | =

⌈
1

pmax

⌉
(e.g., if X is equiprobable).

Remark 5: Taking the limit α→ 1 in Theorem 2 yields

H(X) ≥ h
(
pmax

⌊
1

pmax

⌋)
+ pmax

⌊
1

pmax

⌋
log

⌊
1

pmax

⌋
(72)

= log

(
1 +

⌊
1

pmax

⌋)
− d

pmax

⌊
1

pmax

⌋∥∥∥∥
⌊

1
pmax

⌋
1 +

⌊
1

pmax

⌋
 (73)

with equality in (72) if and only if the condition for equality in Theorem 2 holds. Hence, the result in Theorem 2
generalizes the bound in (72), which is due to Kovalevsky [48] and Tebbe and Dwyer [76] in the special case
of a finitely-valued X (rediscovered in [25]), and to Ho and Verdú [39, Theorem 10] in the general setting of
a countable alphabet.

IV. ARIMOTO-RÉNYI CONDITIONAL ENTROPY AND ERROR PROBABILITY

Section IV forms the main part of this paper, and its results are outlined in Section I-D (see Items 18)–22)).

A. Upper bound on the Arimoto-Rényi conditional entropy: Generalized Fano’s inequality

The minimum error probability εX|Y can be achieved by a deterministic function (maximum-a-posteriori
decision rule) L∗ : Y → X :

εX|Y = min
L : Y→X

P[X 6= L(Y )] (74)

= P[X 6= L∗(Y )] (75)

= 1− E
[
max
x∈X

PX|Y (x|Y )

]
(76)

≤ 1− pmax (77)

≤ 1− 1

M
(78)
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where (77) is the minimum error probability achievable among blind decision rules that disregard the observations
(see (10)).

Fano’s inequality links the decision-theoretic uncertainty εX|Y and the information-theoretic uncertainty
H(X|Y ) through

H(X|Y ) ≤ logM − d
(
εX|Y ‖1− 1

M

)
(79)

= h(εX|Y ) + εX|Y log(M − 1) (80)

where the identity in (80) is (39) with t = εX|Y . Although the form of Fano’s inequality in (79) is not nearly as
popular as (80), it turns out to be the version that admits an elegant (although not immediate) generalization to
the Arimoto-Rényi conditional entropy. It is straightforward to obtain (80) by averaging a conditional version
of (66) with respect to the observation. This simple route to the desired result is not viable in the case of
Hα(X|Y ) since it is not an average of Rényi entropies of conditional distributions. The conventional proof of
Fano’s inequality (e.g., [18, pp. 38–39]), based on the use of the chain rule for entropy, is also doomed to failure
for the Arimoto-Rényi conditional entropy of order α 6= 1 since it does not satisfy the chain rule.

Before we generalize Fano’s inequality by linking εX|Y with Hα(X|Y ) for α ∈ (0,∞), note that for α =∞,
the following generalization of (11) holds in view of (21) and (76):

εX|Y = 1− exp
(
−H∞(X|Y )

)
. (81)

Theorem 3: Let PXY be a probability measure defined on X × Y with |X | =M <∞. For all α ∈ (0,∞),

Hα(X|Y ) ≤ logM − dα
(
εX|Y ‖1− 1

M

)
. (82)

Let L∗ : Y → X be a deterministic MAP decision rule. Equality holds in (82) if and only if, for all y ∈ Y ,

PX|Y (x|y) =


εX|Y

M − 1
, x 6= L∗(y),

1− εX|Y , x = L∗(y).
(83)

Proof: If in Corollary 3 we replace PX by PX|Y=y, then pmax is replaced by max
x∈X

PX|Y (x|y) and we obtain

Hα(X|Y = y) ≤ 1

1− α
log
((

1− εX|Y (y)
)α

+ (M − 1)1−α εαX|Y (y)
)

(84)

where we have defined the conditional error probability given the observation:

εX|Y (y) = 1−max
x∈X

PX|Y (x|y), (85)

which satisfies with Y ∼ PY ,

εX|Y = E[εX|Y (Y )]. (86)

For α ∈ (0, 1) ∪ (1,∞), (β, γ) ∈ (0,∞)2, define the function fα,β,γ : [0, 1]→ (0,∞):

fα,β,γ(u) = (γ(1− u)α + βuα)
1

α . (87)



13

If α > 1, then (16) allows us to bound a monotonically decreasing function of Hα(X|Y ):

exp

(
1− α
α

Hα(X|Y )

)
≥ E

[((
1− εX|Y (Y )

)α
+ β εαX|Y (Y )

) 1

α

]
(88)

= E
[
fα,β,1

(
εX|Y (Y )

)]
(89)

≥ fα,β,1
(
εX|Y

)
(90)

=
((

1− εX|Y
)α

+ (M − 1)1−α εαX|Y

) 1

α (91)

where β = (M − 1)1−α in (88)–(90); (88) follows from (16) and (84); (90) follows from (86) and Jensen’s
inequality, due to the convexity of fα,β,γ : [0, 1]→ (0,∞) for α ∈ (1,∞) and (β, γ) ∈ (0,∞)2 (see Lemma 1
following this proof); finally, (91) follows from (87). For α ∈ (1,∞), (82) follows from (88)–(91) and identity
(35) with (θ, s, t) = (M, M − 1, εX|Y ).

For α ∈ (0, 1), inequality (88) is reversed; and due to the concavity of fα,β,γ(·) on [0, 1] (Lemma 1),
inequality (90) is also reversed. The rest of the proof proceeds as in the case where α > 1.

The necessary and sufficient condition for equality in (82) follows from the condition for equality in the
statement of Corollary 3 when PX is replaced by PX|Y=y for y ∈ Y . Under (83), it follows from (74)–(78) and
(85) that εX|Y (y) = εX|Y for all y ∈ Y; this implies that inequalities (88) and (90) for α ∈ (1,∞), and the
opposite inequalities for α ∈ (0, 1), hold with equalities.

Lemma 1: Let α ∈ (0, 1)∪ (1,∞) and (β, γ) ∈ (0,∞)2. The function fα,β,γ : [0, 1]→ (0,∞) defined in (87)
is strictly convex for α ∈ (1,∞), and strictly concave for α ∈ (0, 1).

Proof: The second derivative of fα,β,γ(·) in (87) is given by

f ′′α,β,γ(u) = (α− 1)βγ
(
γ(1− u)α + βuα

) 1

α
−2(

u(1− u)
)α−2 (92)

which is strictly negative if α ∈ (0, 1), and strictly positive if α ∈ (1,∞) for any u ∈ [0, 1].
Remark 6: From (37), Fano’s inequality (see (79)–(80)) is recovered by taking the limit α→ 1 in (82).
Remark 7: A pleasing feature of Theorem 3 is that as α → ∞, the bound becomes tight. To see this, we

rewrite the identity in (81) as

H∞(X|Y ) = logM − log
1− εX|Y

1
M

(93)

= logM − d∞
(
εX|Y ‖1− 1

M

)
(94)

where (94) follows from (38) since εX|Y ≤ 1− 1
M (see (74)–(78)).

Remark 8: For α = 0, (82) also holds. To see this, it is useful to distinguish two cases:

• εX|Y = 0. Then, H0(X|Y ) = 0, and the right side of (82) is also equal to zero since d0(0‖q) = − log(1−q)
for all q ∈ [0, 1).

• εX|Y > 0. Then, the right side of (82) is equal to logM (see (36)) which is indeed an upper bound to
H0(X|Y ). The condition for equality in this case is that there exists y ∈ Y such that PX|Y (x|y) > 0 for
all x ∈ X .

Remark 9: Since dα
(
·‖1− 1

M

)
is monotonically decreasing in [0, 1− 1

M ], Theorem 3 gives an implicit lower
bound on εX|Y . Although, currently, there is no counterpart to Shannon’s explicit lower bound as a function of
H(X|Y ) [71], we do have explicit lower bounds as a function of Hα(X|Y ) in Section IV-B.
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Remark 10: If X and Y are random variables taking values on a set of M elements and X is equiprobable,
then [56, Theorem 5.3] shows that

Iα(X;Y ) ≥ dα(εX|Y ‖1− 1
M ), (95)

which, together with (47), yields (82). However, note that in Theorem 3 we do not restrict X to be equiprobable.
In information-theoretic problems, it is common to encounter the case in which X and Y are actually vectors of

dimension n. Fano’s inequality ensures that vanishing error probability implies vanishing normalized conditional
entropy as n→∞. As we see next, the picture with the Arimoto-Rényi conditional entropy is more nuanced.

Theorem 4: Let {Xn} be a sequence of random variables, with Xn taking values on Xn for n ∈ {1, 2, 3, . . .},
and assume that there exists an integer M ≥ 2 such that |Xn| ≤Mn for all n.1 Let {Yn} be an arbitrary sequence
of random variables, for which εXn|Yn → 0 as n→∞.

a) If α ∈ (1,∞], then Hα(Xn|Yn)→ 0;
b) If α = 1, then 1

n H(Xn|Yn)→ 0;
c) If α ∈ [0, 1), then 1

n Hα(Xn|Yn) is upper bounded by logM ; nevertheless, it does not necessarily tend to 0.

Proof:

a) For α ∈ (1,∞),

Hα(Xn|Yn) ≤ n logM − dα
(
εXn|Yn ‖ 1−M

−n) (96)

=
1

1− α
log
(
εαXn|Y n(M

n − 1)1−α +
(
1− εXn|Yn

)α)
, (97)

where (96) follows from (82) and |Xn| ≤ Mn; (97) holds due to (35) by setting the parameters θ = Mn,
s = Mn − 1 and t = εXn|Y n ; hence, Hα(Xn|Yn)→ 0 since α > 1 and εXn|Yn → 0. Item a) also holds for
α =∞ since Hα(Xn|Yn) is monotonically decreasing in α throughout the real line (Proposition 1).

b) For α = 1, from Fano’s inequality,

1
n H(Xn|Yn) ≤ εXn|Yn logM + 1

n h
(
εXn|Yn

)
→ 0. (98)

Hence, not only does 1
n H(Xn|Yn)→ 0 if εXn|Yn = o(1) but also H(Xn|Yn)→ 0 if εXn|Yn = o

(
1
n

)
.

c) Proposition 1 implies that if α > 0, then

Hα(Xn|Yn) ≤ Hα(Xn) (99)

≤ log |Xn| (100)

≤ n logM. (101)

A counterexample where εXn|Yn → 0 exponentially fast, and yet 1
nHα(Xn|Yn) 6→ 0 for all α ∈ [0, 1) is given

as follows.
Remark 11: In contrast to the conventional case of α = 1, it is not possible to strengthen Theorem 4c) to

claim that εXn|Yn → 0 implies that 1
nHα(Xn|Yn) → 0 for α ∈ [0, 1). By Proposition 1, it is sufficient to

consider the following counterexample: fix any α ∈ (0, 1), and let Yn be deterministic, Xn = {1, . . . ,Mn}, and
Xn ∼ PXn where

PXn =

[
1− β−n, β−n

Mn − 1
, . . . ,

β−n

Mn − 1

]
(102)

1Note that this encompasses the conventional setting in which Xn = An.
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with

β =M
1−α
2α > 1. (103)

Then,

εXn|Yn = β−n → 0, (104)

and

Hα(Xn|Yn) = Hα(Xn) (105)

=
1

1− α
log

((
1− β−n

)α
+ (Mn − 1)

(
β−n

Mn − 1

)α)
(106)

=
1

1− α
log
((

1− β−n
)α

+ (Mn − 1)1−αM−
n(1−α)

2

)
(107)

= 1
2 n logM +

1

1− α
log
(
(1− β−n)αM−

n(1−α)

2 + (1−M−n)1−α
)

(108)

where (105) holds since Yn is deterministic; (106) follows from (5) and (102); (107) holds due to (103).
Consequently, since α ∈ (0, 1), M ≥ 2, and β > 1, the second term in the right side of (108) tends to 0. In
conclusion, normalizing (105)–(108) by n, and letting n→∞ yields

lim
n→∞

1

n
Hα(Xn|Yn) = 1

2 logM. (109)

Remark 12: Theorem 4b) is due to [39, Theorem 15]. Furthermore, [39, Example 2] shows that Theorem 4b)
cannot be strengthened to H(Xn|Yn)→ 0, in contrast to the case where α ∈ (1,∞] in Theorem 4a).

B. Explicit lower bounds on εX|Y

The results in Section IV-A yield implicit lower bounds on εX|Y as a function of the Arimoto-Rényi conditional
entropy. In this section, we obtain several explicit bounds. As the following result shows, Theorem 3 readily
results in explicit lower bounds on εX|Y as a function of H 1

2
(X|Y ) and of H2(X|Y ).

Theorem 5: Let X be a discrete random variable taking M ≥ 2 possible values. Then,

εX|Y ≥
(
1− 1

M

)
1

ξ1

(
1−

√
ξ1 − 1

M − 1

)2

, (110)

εX|Y ≥
(
1− 1

M

)(
1−

√
ξ2 − 1

M − 1

)
(111)

where

ξ1 =M exp
(
−H 1

2
(X|Y )

)
, (112)

ξ2 =M exp
(
−H2(X|Y )

)
. (113)

Proof: Since 0 ≤ H2(X|Y ) ≤ H 1

2
(X|Y ) ≤ logM , (112)–(113) imply that 1 ≤ ξ1 ≤ ξ2 ≤ M . To prove

(110), setting α = 1
2 in (82) and using (35) with (θ, s, t) = (M,M − 1, εX|Y ) we obtain√

1− εX|Y +
√

(M − 1)εX|Y ≥ exp
(
1
2 H 1

2
(X|Y )

)
. (114)
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Substituting

v =
√
εX|Y , (115)

z = exp
(
1
2 H 1

2
(X|Y )

)
(116)

yields the inequality √
1− v2 ≥ z −

√
M − 1 v. (117)

If the right side of (117) is non-negative, then (117) is transformed to the following quadratic inequality in v:

Mv2 − 2
√
M − 1 zv + (z2 − 1) ≤ 0 (118)

which yields

v ≥ 1

M

(√
M − 1 z −

√
M − z2

)
. (119)

If, however, the right side of (117) is negative then

v >
z√

M − 1
(120)

which implies the satisfiability of (119) also in the latter case. Hence, (119) always holds. In view of (112),
(115), (116), and since ξ1 ∈ [1,M ], it can be verified that the right side of (119) is non-negative. Squaring both
sides of (119), and using (112), (115) and (116) give (110).

Similarly, setting α = 2 in (82) and using (35) with (θ, s, t) = (M,M − 1, εX|Y ) yield a quadratic inequality
in εX|Y , from which (111) follows.

Remark 13: Following up on this work, Renes [60] has generalized (110) to the quantum setting.
Remark 14: The corollary to Theorem 3 in (111) is equivalent to [21, Theorem 3].
Remark 15: Consider the special case where X is an equiprobable binary random variable, and Y is a discrete

random variable which takes values on a set Y . Following the notation in [44, (7)], let ρ ∈ [0, 1] denote the
Bhattacharyya coefficient

ρ =
∑
y∈Y

√
PY |X(y|0)PY |X(y|1) (121)

= 2
∑
y∈Y

PY (y)
√
PX|Y (0|y)PX|Y (1|y) (122)

where (122) holds due to Bayes’ rule which implies that PY |X(y|x) = 2PX|Y (x|y)PY (y) for all x ∈ {0, 1} and
y ∈ Y . From (14) and (122), we obtain

H 1

2
(X|Y ) = log(1 + ρ). (123)

Since X is a binary random variable, it follows from (112) and (123) that ξ1 = 2
1+ρ ; hence, the lower bound

on the minimal error probability in (110) is given by

εX|Y ≥ 1
2

(
1−

√
1− ρ2

)
(124)

recovering the bound in [44, (49)] (see also [79]).
Remark 16: The lower bounds on εX|Y in (110) and (111) depend on Hα(X|Y ) with α = 1

2 and α = 2,
respectively; due to their dependence on different orders α, none of these bounds is superseded by the other, and
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they both prove to be useful in view of their relation to the conditional Bayesian distance in [21, Definition 2]
and the Bhattacharyya coefficient (see Remarks 14 and 15).

Remark 17: Taking the limit M →∞ in the right side of (111) yields

εX|Y ≥ 1− exp
(
−1

2 H2(X|Y )
)

(125)

which is equivalent to [81, (8)] (see also [21, Theorem 2]), and its loosening yields [21, Corollary 1]. Theorem 7
(see also Theorem 10) tightens (125).

Remark 18: Arimoto [3] introduced a different generalization of entropy and conditional entropy parameter-
ized by a continuously differentiable function f : (0, 1]→ [0,∞) satisfying f(1) = 0:

Hf(X) = inf
Y

E [f(PY (X))] , (126)

Hf(X|Y ) = E
[
Hf(PX|Y (·|Y ))

]
, (127)

where the infimum is over all the distributions defined on the same set as X . Arimoto [3, Theorem 3] went on
to show the following generalization of Fano’s inequality:

Hf(X|Y ) ≤ min
θ∈(0,1)

{
P[X = Y ] f(1− θ) + P[X 6= Y ] f

(
θ

M − 1

)}
. (128)

A functional dependence can be established between the Rényi entropy and Hf(X) for a certain choice of f

(see [3, Example 2]); in view of (16), the Arimoto-Rényi conditional entropy can be expressed in terms of
Hf(X|Y ), although the analysis of generalizing Fano’s inequality with the Arimoto-Rényi conditional entropy
becomes rather convoluted following this approach.

For convenience, we assume throughout the rest of this subsection that

PX|Y (x|y) > 0, (x, y) ∈ X × Y. (129)

The following bound, which is a special case of Theorem 9, involves the Arimoto-Rényi conditional entropy of
negative orders, and bears some similarity to Arimoto’s converse for channel coding [4].

Theorem 6: Let PXY be a probability measure defined on X ×Y with |X | =M <∞, which satisfies (129).
For all α ∈ (−∞, 0),

εX|Y ≥ exp

(
1− α
α

[
Hα(X|Y )− log(M − 1)

])
. (130)

It can be verified that the bound in [64, (23)] is equivalent to (130). A different approach can be found in
the proof of Theorem 9.

Remark 19: By the assumption in (129), it follows from (27) that, for α ∈ (−∞, 0), the quantity in the
exponent in the right side of (130) satisfies

Hα(X|Y )− log(M − 1) ≥ H0(X|Y )− log(M − 1) (131)

= log
M

M − 1
. (132)

Hence, by letting α → 0, the bound in (130) is trivial; while by letting α → −∞, it follows from (23), (129)
and (130) that

εX|Y ≥ (M − 1)E
[
min
x∈X

PX|Y (x|Y )
]
. (133)

The α ∈ (−∞, 0) that results in the tightest bound in (130) is examined numerically in Example 2, which
illustrates the utility of Arimoto-Rényi conditional entropies of negative orders.
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Remark 20: For binary hypothesis testing, the lower bound on εX|Y in (130) is asymptotically tight by letting
α→ −∞ since, in view of (24) and (81),

εX|Y = exp
(
−H−∞(X|Y )

)
. (134)

Next, we provide a lower bound depending on the Arimoto-Rényi conditional entropy of orders greater than 1.
A more general version of this result is given in Theorem 10 by relying on our generalization of Fano’s inequality
for list decoding.

Theorem 7: Let PXY be a probability measure defined on X × Y which satisfies (129), with X being finite
or countably infinite. For all α ∈ (1,∞)

εX|Y ≥ 1− exp

(
1− α
α

Hα(X|Y )

)
. (135)

Proof: In view of the monotonicity property for positive orders in (28), we obtain that

H∞(X|Y ) ≥ α− 1

α
Hα(X|Y ). (136)

and the desired result follows in view of (81). (Note that for α ∈ (0, 1], the right side of (135) is nonpositive.)

Remark 21: The implicit lower bound on εX|Y given in (91) (same as (82)) is tighter than the explicit lower
bound in (135).

Remark 22: The lower bounds on εX|Y in Theorems 3 and 7, which hold for positive orders of Hα(X|Y ),
are both asymptotically tight by letting α → ∞. In contrast, the lower bound on εX|Y of Theorem 6, which
holds for negative orders of Hα(X|Y ), is not asymptotically tight by letting α → −∞ (unless X is a binary
random variable).

In the following example, the lower bounds on εX|Y in Theorems 3 and 7 are examined numerically in their
common range of α ∈ (1,∞).

Example 1: Let X and Y be random variables defined on the set X = {1, 2, 3}, and let

[
PXY (x, y)

]
(x,y)∈X 2 =

1

45

 8 1 6
3 5 7
4 9 2

 . (137)

It can be verified that εX|Y = 21
45 ≈ 0.4667. Note that although in this example the bound in (135) is only

slightly looser than the bound in (82) for moderate values of α > 1 (see Table I)2, both are indeed asymptotically
tight as α → ∞; furthermore, (135) has the advantage of providing a closed-form lower bound on εX|Y as a
function of Hα(X|Y ) for α ∈ (1,∞).

Example 2: Let X and Y be random variables defined on the set X = {1, 2, 3, 4}, and let

[
PXY (x, y)

]
(x,y)∈X 2 =

1

400


10 38 10 26
32 20 44 20
10 29 10 35
41 20 35 20

 . (138)

In this case εX|Y = 121
200 = 0.6050, and the tightest lower bound in (130) for α ∈ (−∞, 0) is equal to 0.4877

(obtained at α = −2.531). Although εX|Y can be calculated exactly when H∞(X|Y ) is known (see (81)), this
example illustrates that conditional Arimoto-Rényi entropies of negative orders are useful in the sense that (130)
gives an informative lower bound on εX|Y by knowing Hα(X|Y ) for a negative α.

2Recall that for α = 2, (82) admits the explicit expression in (111).
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α (82) (135)

2 0.4247 0.3508

4 0.4480 0.4406

6 0.4573 0.4562

8 0.4620 0.4613

10 0.4640 0.4635

50 0.4667 0.4667

TABLE I. LOWER BOUNDS ON εX|Y IN (82) AND (135) FOR EXAMPLE 1.

C. List decoding

In this section we consider the case where the decision rule outputs a list of choices. The extension of Fano’s
inequality to list decoding was initiated in [1, Section 5] (see also [59, Appendix 3.E]). It is useful for proving
converse results in conjunction with the blowing-up lemma [20, Lemma 1.5.4]. The main idea of the successful
combination of these two tools is that, given an arbitrary code, one can blow-up the decoding sets in such a
way that the probability of decoding error can be as small as desired for sufficiently large blocklengths; since
the blown-up decoding sets are no longer disjoint, the resulting setup is a list decoder with subexponential list
size.

A generalization of Fano’s inequality for list decoding of size L is [84]3

H(X|Y ) ≤ logM − d
(
PL‖1− L

M

)
, (139)

where PL denotes the probability of X not being in the list. As we noted before, averaging a conditional version
of (48) with respect to the observation is not viable in the case of Hα(X|Y ) with α 6= 1 (see (14)). A pleasing
generalization of (139) to the Arimoto-Rényi conditional entropy does indeed hold as the following result shows.

Theorem 8: Let PXY be a probability measure defined on X × Y with |X | =M . Consider a decision rule4

L : Y →
(X
L

)
, and denote the decoding error probability by

PL = P
[
X /∈ L(Y )

]
. (140)

Then, for all α ∈ (0, 1) ∪ (1,∞),

Hα(X|Y ) ≤ logM − dα
(
PL‖1− L

M

)
(141)

=
1

1− α
log
(
L1−α (1− PL)α + (M − L)1−α PαL

)
(142)

with equality in (141) if and only if

PX|Y (x|y) =


PL

M − L
, x /∈ L(y)

1− PL
L

, x ∈ L(y).
(143)

Proof: Instead of giving a standalone proof, for brevity, we explain the differences between this and the
proof of Theorem 3:

3See [46, Lemma 1] for a weaker version of (139).
4(X
L

)
stands for the set of all the subsets of X with cardinality L, with L ≤ |X |.
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• Instead of the conditional version of (67), we use a conditional version of (60) given the observation
Y = y;

• The choices of the arguments of the function fα,β,γ in (88)–(90) namely, β = (M − 1)1−α and γ = 1,
are replaced by β = (M − L)1−α and γ = L1−α;

• (142) follows from (35) with (θ, s, t) = (M,M − L,PL);
• Equality in (141) holds if and only if the condition for equality in the statement of Corollary 1, conditioned

on the observation, is satisfied; the latter implies that, given Y = y, X is equiprobable on both L(y) and
Lc(y) for all y ∈ Y .

Next, we give the fixed list-size generalization of Theorem 6.
Theorem 9: Let PXY be a probability measure defined on X ×Y with |X | =M <∞, which satisfies (129),

and let L : Y →
(X
L

)
. Then, for all α ∈ (−∞, 0), the probability that the decoding list does not include the

correct decision satisfies

PL ≥ exp

(
1− α
α

[
Hα(X|Y )− log(M − L)

])
. (144)

Proof: Let ξ : X × Y → {0, 1} be given by the indicator function

ξ(x, y) = 1
{
x /∈ L(y)

}
. (145)

Let u : X × Y → [0,∞), and β > 1. By Hölder’s inequality,

E
[
ξ(X,Y )u(X,Y )

]
≤ E

1

β

[
ξβ(X,Y )

]
E
β−1

β

[
u

β

β−1 (X,Y )
]
. (146)

Therefore,

PL = E
[
ξβ(X,Y )

]
(147)

≥ Eβ
[
ξ(X,Y )u(X,Y )

]
E1−β[u β

β−1 (X,Y )
]
. (148)

Under the assumption in (129), we specialize (148) to

u(x, y) =
1

PX|Y (x|y)

(∑
x′∈X

P
1

1−β

X|Y (x
′|y)

)1−β

(149)

for all (x, y) ∈ X × Y . From (14), (145) and (149), we have

E
[
ξ(X,Y )u(X,Y )

]
= E

[
E
[
ξ(X,Y )u(X,Y )

∣∣Y ]] (150)

= E

[∑
x∈X

PX|Y (x|Y )u(x, Y ) ξ(x, Y )

]
(151)

= E

(∑
x′∈X

P
1

1−β

X|Y (x
′|Y )

)1−β ∑
x∈X

ξ(x, Y )

 (152)

= E

(∑
x′∈X

P
1

1−β

X|Y (x
′|Y )

)1−β

|Lc(Y )|

 (153)

= (M − L) exp
(
−β H 1

1−β
(X|Y )

)
(154)
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and

E
[
u

β

β−1 (X,Y )
]
= E

[
E
[
u

β

β−1 (X,Y )
∣∣Y ]] (155)

= E

[∑
x∈X

PX|Y (x|Y )u
β

β−1 (x, Y )

]
(156)

= E

(∑
x∈X

P
1

1−β

X|Y (x|Y )

)1−β
 (157)

= exp
(
−β H 1

1−β
(X|Y )

)
. (158)

Assembling (148), (154) and (158) and substituting α = 1
1−β results in (144).

The fixed list-size generalization of Theorem 7 is the following.
Theorem 10: Let PXY be a probability measure defined on X ×Y which satisfies (129), with X being finite

or countably infinite, and let L : Y →
(X
L

)
. Then, for all α ∈ (1,∞),

PL ≥ 1− exp

(
1− α
α

[
Hα(X|Y )− logL

])
. (159)

Proof: From (142), for all α ∈ (1,∞),

Hα(X|Y ) ≤ 1

1− α
log
(
L1−α (1− PL)α

)
(160)

= logL+
α

1− α
log(1− PL) (161)

which gives the bound in (159).
Remark 23: The implicit lower bound on εX|Y given by the generalized Fano’s inequality in (141) is tighter

than the explicit lower bound in (159) (this can be verified from the proof of Theorem 10).

D. Lower bounds on the Arimoto-Rényi conditional entropy

The major existing lower bounds on the Shannon conditional entropy H(X|Y ) as a function of the minimum
error probability εX|Y are:

1) In view of [39, Theorem 11], (1) (shown in [6, Theorem 1], [15, (12)] and [38, (41)] for finite alphabets)
holds for a general discrete random variable X . As an example where (1) holds with equality, consider a Z-
channel with input and output alphabets X = Y = {0, 1}, and assume that PX(0) = 1−PX(1) = p ∈

(
0, 12
]
,

and

PY |X(0|0) = 1, PY |X(0|1) =
p

1− p
. (162)

It can be verified that εX|Y = p, and H(X|Y ) = 2p bits.
2) Due to Kovalevsky [48], Tebbe and Dwyer [76] (see also [25]) in the finite alphabet case, and to Ho and

Verdú [39, (109)] in the general case,

φ
(
εX|Y

)
≤ H(X|Y ) (163)

where φ : [0, 1)→ [0,∞) is the piecewise linear function that is defined on the interval t ∈
[
1− 1

k , 1−
1

k+1

)
as

φ(t) = t k(k + 1) log

(
k + 1

k

)
+ (1− k2) log(k + 1) + k2 log k (164)
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where k is an arbitrary positive integer. Note that (163) is tighter than (1) since φ(t) ≥ 2t log 2.

In view of (81), since Hα(X|Y ) is monotonically decreasing in α, one can readily obtain the following
counterpart to Theorem 7:

Hα(X|Y ) ≥ log
1

1− εX|Y
(165)

for α ∈ [0,∞] with equality if α =∞.
Remark 24: As a consequence of (165), it follows that if α ∈ [0,∞) and {Xn} is a sequence of discrete

random variables, then Hα(Xn|Yn) → 0 implies that εXn|Yn → 0, thereby generalizing the case α = 1 shown
in [39, Theorem 14].

Remark 25: Setting α = 2 in (165) yields [21, Theorem 1], and setting α = 1 in (165) yields (2). Recently,
Prasad [58, Section 2.C] improved the latter bound in terms of the entropy of tilted probability measures, instead
of Hα(X|Y ).

The next result gives a counterpart to Theorem 3, and a generalization of (163).
Theorem 11: If α ∈ (0, 1) ∪ (1,∞), then

α

1− α
log gα(εX|Y ) ≤ Hα(X|Y ), (166)

where the piecewise linear function gα : [0, 1) → Dα, with Dα = [1,∞) for α ∈ (0, 1) and Dα = (0, 1] for
α ∈ (1,∞), is defined by

gα(t) =
(
k(k + 1)

1

α − k
1

α (k + 1)
)
t+ k

1

α
+1 − (k − 1)(k + 1)

1

α (167)

on the interval t ∈
[
1− 1

k , 1−
1

k+1

)
for an arbitrary positive integer k.

Proof: For every y ∈ Y such that PY (y) > 0, Theorem 2 and (85) yield

Hα(X |Y = y) ≥ sα
(
εX|Y (y)

)
(168)

where sα : [0, 1)→ [0,∞) is given by

sα(t) =
1

1− α
log

(⌊
1

1− t

⌋
(1− t)α +

(
1− (1− t)

⌊
1

1− t

⌋)α)
. (169)

In the remainder of the proof, we consider the cases α ∈ (0, 1) and α ∈ (1,∞) separately.

• α ∈ (0, 1). Define the function fα : [0, 1)→ [1,∞) as

fα(t) = exp

(
1− α
α

sα(t)

)
. (170)

The piecewise linear function gα(·) in (167) coincides with the monotonically increasing function fα(·)
in (170) at tk = 1 − 1

k for every positive integer k (note that fα(tk) = gα(tk) = k
1

α
−1). It can be also

verified that gα(·) is the lower convex envelope of fα(·) (i.e., gα(·) is the largest convex function for
which gα(t) ≤ fα(t) for all t ∈ [0, 1)). Hence,

Hα(X|Y ) ≥ α

1− α
logE

[
fα
(
εX|Y (Y )

)]
(171)

≥ α

1− α
logE

[
gα
(
εX|Y (Y )

)]
(172)

≥ α

1− α
log gα(εX|Y ) (173)
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where (171) follows from (16), (168), (170), and since fα : [0, 1)→ [1,∞) is a monotonically increasing
function for α ∈ (0, 1); (172) follows from fα ≥ gα; (86) and Jensen’s inequality for the convex function
gα(·) result in (173).

• α ∈ (1,∞). The function fα(·) in (170) is monotonically decreasing in [0, 1), and the piecewise linear
function gα(·) in (167) coincides with fα(·) at tk = 1− 1

k for every positive integer k. Furthermore, gα(·)
is the smallest concave function that is not below fα(·) on the interval [0, 1). The proof now proceeds as
in the previous case, and (171)–(173) continue to hold for α > 1.

Remark 26: The most useful domain of applicability of Theorem 11 is εX|Y ∈ [0, 12 ], in which case the lower
bound specializes to (k = 1)

α

1− α
log
(
1 +

(
2

1

α − 2
)
εX|Y

)
≤ Hα(X|Y ) (174)

which yields (1) as α→ 1.
Remark 27: Theorem 11 is indeed a generalization of (163) since for all τ ∈ [0, 1],

lim
α→1

α

1− α
log gα(τ) = φ(τ), (175)

with φ defined in (164).
Remark 28: As α→∞, (166) is asymptotically tight: from (167),

lim
α→∞

gα(t) = 1− t (176)

so the right side of (166) converges to log 1
1−εX|Y which, recalling (81), proves the claim.

Remark 29: It can be shown that the function in (167) satisfies

gα(t)

≤ (1− t)1−
1

α , α ∈ (1,∞]

≥ (1− t)1−
1

α , α ∈ (0, 1).
(177)

Moreover, if t = 1− 1
k , for k ∈ {1, 2, 3, . . .}, then

gα(t) = (1− t)1−
1

α . (178)

Therefore, Theorem 11 gives a tighter bound than (165), unless εX|Y ∈
{
1
2 ,

2
3 ,

3
4 , . . .

M−1
M

}
(M is allowed to

be ∞ here) in which case they are identical, and independent of α as it is illustrated in Figure 1.
The following proposition applies when M is finite, but does not depend on M . It is supported by Figure 1.
Proposition 3: Let M ∈ {2, 3, . . .} be finite, and let the upper and lower bounds on Hα(X|Y ) as a function

of εX|Y , as given in Theorems 3 and 11, be denoted by uα,M (·) and lα(·), respectively. Then,

a) these bounds coincide if and only if X is a deterministic function of the observation Y or X is equiprobable
on the set X and independent of Y ;

b) the limit of the ratio of the upper-to-lower bounds when εX|Y → 0 is given by

lim
εX|Y→0

uα,M (εX|Y )

lα(εX|Y )
=


∞, α ∈ (0, 1),

1

2− 2
1

α

, α ∈ (1,∞).
(179)

Proof: See Appendix B.
Remark 30: The low error probability limit of the ratio of upper-to-lower bounds in (179) decreases mono-

tonically with α ∈ (1,∞) from ∞ to 1.
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Fig. 1. Upper and lower bounds on Hα(X|Y ) in Theorems 3 and 11, respectively, as a function of εX|Y ∈ [0, 1 − 1
M
] for α = 1

4
(solid lines) and α = 4 (dash-dotted lines) with M = 8.

E. Explicit upper bounds on εX|Y
In this section, we give counterparts to the explicit lower bounds on εX|Y given in Section IV-B by capitalizing

on the bounds in Section IV-D.
The following result is a consequence of Theorem 11:
Theorem 12: Let k ∈ {1, 2, 3, . . .}, and α ∈ (0, 1) ∪ (1,∞). If log k ≤ Hα(X|Y ) < log(k + 1), then

εX|Y ≤
exp

(
1−α
α Hα(X|Y )

)
− k

1

α
+1 + (k − 1)(k + 1)

1

α

k(k + 1)
1

α − k
1

α (k + 1)
. (180)

Furthermore, the upper bound on εX|Y as a function of Hα(X|Y ) is asymptotically tight in the limit where
α→∞.

Proof: The left side of (166) is equal to log k when εX|Y = 1 − 1
k for k ∈ {1, 2, 3, . . .}, and it is also

monotonically increasing in εX|Y . Hence, if εX|Y ∈
[
1 − 1

k , 1 −
1

k+1

)
, then the lower bound on Hα(X|Y ) in

the left side of (166) lies in the interval [log k, log(k + 1)). The bound in (180) can be therefore verified to be
equivalent to Theorem 11. Finally, the asymptotic tightness of (180) in the limit where α→∞ is inherited by
the same asymptotic tightness of the equivalent bound in Theorem 11.

Remark 31: By letting α→ 1 in the right side of (180), we recover the bound by Ho and Verdú [39, (109)]:

εX|Y ≤
H(X|Y ) + (k2 − 1) log(k + 1)− k2 log k

k(k + 1) log
(
k+1
k

) (181)

if log k ≤ H(X|Y ) < log(k + 1) for an arbitrary k ∈ {1, 2, 3, . . .}. In the special case of finite alphabets, this
result was obtained in [25], [48] and [76]. In the finite alphabet setting, Prasad [58, Section 5] recently refined
the bound in (181) by lower bounding H(X|Y ) subject to the knowledge of the first two largest posterior
probabilities rather than only the largest one; following the same approach, [58, Section 6] gives a refinement
of Fano’s inequality.
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Example 1 (cont.) Table II compares the asymptotically tight bounds in Theorems 3 and 12 for three values
of α.

α lower bound εX|Y upper bound

1 0.4013 0.4667 0.6061

10 0.4640 0.4667 0.4994

100 0.4667 0.4667 0.4699

TABLE II. UPPER AND LOWER BOUNDS ON εX|Y IN (82) AND (180) FOR EXAMPLE 1.

As the following example illustrates, the bounds in (82) and (180) are in general not monotonic in α.
Example 3: Suppose X and Y are binary random variables with joint distribution[

PXY (x, y)
]
(x,y)∈{0,1}2 =

(
0.1906 0.3737
0.4319 0.0038

)
. (182)

In this case εX|Y = 0.1944, and its upper and lower bounds are shown in Figure 2 as a function of α.

↵

"X|Y

0.1

0.2

0.3

10.01 0.1 10 100

Fig. 2. Upper (Theorem 12) and lower (Theorem 3) bounds on εX|Y as a function of α in Example 3.

V. UPPER BOUNDS ON εX|Y BASED ON BINARY HYPOTHESIS TESTING

In this section, we give explicit upper bounds on εX|Y by connecting the M -ary hypothesis testing problem
for finite M with the associated

(
M
2

)
binary hypothesis testing problems. The latter bounds generalize the binary

hypothesis testing upper bound on εX|Y by Hellman and Raviv [38, Theorem 1] to any number of hypotheses,
including the tightening of the upper bound by Kanaya and Han [45], and Leang and Johnson [51].

Hellman and Raviv [38, Theorem 1] generalized the Bhattacharyya bound to give an upper bound on the
error probability for binary hypothesis testing in terms of the Rényi divergence between both models P0 and
P1 (with prior probabilities P[H0], and P[H1] respectively):

εX|Y ≤ inf
α∈(0,1)

Pα[H1]P1−α[H0] exp
(
(α− 1)Dα(P1‖P0)

)
. (183)
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To generalize (183) to any number of hypotheses (including infinity), it is convenient to keep the same notation
denoting the models by

Pi = PY |X=i (184)

with prior probabilities P[Hi] for i ∈ {1, . . . ,M}, and let

P[Hi] = 1− P[Hi], (185)

P i =
∑
j 6=i

P[Hj ]
P[Hi]

Pj . (186)

Theorem 13:

εX|Y ≤ min
i 6=k

inf
α∈(0,1)

Pα[Hi]P1−α[Hk] exp
(
(α− 1)Dα

(
P i
∥∥P k)) . (187)

Proof: Let

Y ∼ PY =

M∑
m=1

P[Hm]Pm (188)

and, for m ∈ {1, . . . ,M}, denote the densities

pm =
dPm
dPY

, pm =
dPm
dPY

. (189)

For α ∈ (0, 1) and for all i, k ∈ {1, . . . ,M} with i 6= k,

εX|Y = 1− E
[

max
m∈{1,...,M}

P[Hm|Y ]

]
(190)

= E

 min
m∈{1,...,M}

∑
j 6=m

P[Hj ] pj(Y )

 (191)

= E
[

min
m∈{1,...,M}

P[Hm] pm(Y )

]
(192)

≤ E
[
min

{
P[Hi] pi(Y ), P[Hk] pk(Y )

}]
(193)

≤ E
[
Pα[Hi] pαi (Y ) P1−α[Hk] p

1−α
k (Y )

]
(194)

= Pα[Hi]P1−α[Hk] exp
(
(α− 1)Dα

(
P i
∥∥P k)) (195)

where

• (191) follows from Bayes’ rule:

1− P[Hm|Y ] =
∑
j 6=m

P[Hj |Y ] =
∑
j 6=m

P[Hj ] pj(Y ), (196)

• (192) follows from the definition in (186),
• (194) follows from min{t, s} ≤ tαs1−α if α ∈ [0, 1] and t, s ≥ 0,
• (195) follows from (29).

Minimizing the right side of (195) over all (i, k) with i 6= k gives (187).
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We proceed to generalize Theorem 13 along a different direction. We can obtain upper and lower bounds on
the Bayesian M -ary minimal error probability in terms of the minimal error probabilities of the

(
M
2

)
associated

binary hypothesis testing problems. For that end, denote the random variable X restricted to {i, j} ⊆ X , i 6= j,
by Xij , namely,

P[Xij = i] =
P[Hi]

P[Hi] + P[Hj ]
, (197)

P[Xij = j] =
P[Hj ]

P[Hi] + P[Hj ]
. (198)

Guessing the hypothesis without the benefit of observations yields the error probability

εXij = min{P[Xij = i],P[Xij = j]} (199)

=
min{P[Hi],P[Hj ]}
P[Hi] + P[Hj ]

. (200)

The minimal error probability of the binary hypothesis test

Hi : Yij ∼ PY |Xij=i = PY |X=i = Pi, (201)

Hj : Yij ∼ PY |Xij=j = PY |X=j = Pj (202)

with the prior probabilities in (197) and (198) is denoted by εXij |Yij , and it is given by

εXij |Yij = E [min{P[Hi|Yij ], P[Hj |Yij ]}] , (203)

with

Yij ∼ PYij = P[Xij = i]Pi + P[Xij = j]Pj , (204)

and

P[Hi|Yij = y] = P[Xij = i]
dPi
dPYij

(y). (205)

The error probability achieved by the Bayesian M -ary MAP decision rule can be upper bounded in terms of
the error probabilities in (203) of the 1

2 M(M −1) binary hypothesis tests in (201)–(202), with 1 ≤ i < j ≤M ,
by means of the following result.

Theorem 14:

εX|Y ≤
∑

1≤i<j≤M
E [min{P[Hi|Y ],P[Hj |Y ]}] (206)

=
∑

1≤i<j≤M
(P[Hi] + P[Hj ]) εXij |Yij (207)

where Y ∼ PY with PY in (188), and Yij ∼ PYij in (204).
Proof: Every probability mass function (q1, . . . , qM ) satisfies

1−max{q1, . . . , qM} ≤
∑

1≤i<j≤M
min{qi, qj} (208)
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because, due to symmetry, if without any loss of generality q1 attains the maximum in the left side of (208), then
the partial sum in the right side of (208) over the M − 1 terms that involve q1 is equal q2 + . . .+ qM = 1− q1
which is equal to the left side of (208). Hence,

εX|Y =

∫
εX|Y=y dPY (y) (209)

=

∫
(1−max {P[H1|Y = y], . . . ,P[HM |Y = y]}) dPY (y) (210)

≤
∫ ∑

1≤i<j≤M
min{P[Hi|Y = y], P[Hj |Y = y]} dPY (y) (211)

=
∑

1≤i<j≤M
E [min{P[Hi|Y ],P[Hj |Y ]}] (212)

where (211) follows from (208) with qi ← P[Hi|Y = y] for i ∈ {1, . . . ,M} and y ∈ Y . This proves (206).
To show (207), note that for all i, j ∈ {1, . . . ,M} with i 6= j,

(P[Hi] + P[Hj ]) εXij |Yij

= (P[Hi] + P[Hj ])
∫

min
{
P[Hi|Yij = y],P[Hj |Yij = y]

}
dPYij (y) (213)

= (P[Hi] + P[Hj ])
∫

min
{
P[Xij = i] dPi(y), P[Xij = j] dPj(y)

}
(214)

=

∫
min

{
P[Hi] dPi(y), P[Hj ] dPj(y)

}
(215)

= E [min{P[Hi|Y ],P[Hj |Y ]}] (216)

where (213) and (214) hold due to (203) and (205), respectively; (215) follows from (197) and (198); (216)
follows from the equality P[Hi|Y = y] = P[Hi] dPi

dPY
(Y = y). Finally, (207) follows from (206) and (213)–(216).

The following immediate consequence of Theorem 14 is the bound obtained in [51, (3)].
Corollary 4:

εX|Y ≤ 1
2M(M − 1) max

i 6=j
εXij |Yij . (217)

We proceed to give upper bounds on εX|Y based on Rényi divergence and Chernoff information.
Theorem 15:

εX|Y ≤
∑

1≤i<j≤M
inf

α∈(0,1)
Pα[Hi]P1−α[Hj ] exp

(
(α− 1)Dα(Pi‖Pj)

)
(218)

≤ (M − 1) exp
(
−min

i 6=j
C(Pi‖Pj)

)
. (219)

Proof: Consider the binary hypothesis test in (201)–(202) with its minimal error probability εXij |Yij .
Substituting the prior probabilities in (197)–(198) into the Hellman-Raviv bound (183), we obtain

(P[Hi] + P[Hj ]) εXij |Yij

≤ (P[Hi] + P[Hj ]) inf
α∈(0,1)

{
Pα[Xij = i]P1−α[Xij = j] exp

(
(α− 1)Dα(Pi‖Pj)

)}
(220)

= inf
α∈(0,1)

Pα[Hi]P1−α[Hj ] exp
(
(α− 1)Dα(Pi‖Pj)

)
(221)
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which, upon substitution in (207), yields (218). To show (219), note that for all t, s ≥ 0 and α ∈ (0, 1)

tα s1−α ≤ max{t, s} ≤ t+ s. (222)

Hence, we get

εX|Y ≤
∑

1≤i<j≤M
(P[Hi] + P[Hj ]) inf

α∈(0,1)
exp
(
(α− 1)Dα(Pi‖Pj)

)
(223)

=
∑

1≤i<j≤M
(P[Hi] + P[Hj ]) exp

(
−C(Pi‖Pj)

)
(224)

≤ exp
(
−min

i 6=j
C(Pi‖Pj)

) ∑
1≤i<j≤M

(P[Hi] + P[Hj ]) (225)

where (223) holds due to (218) and (222) with t← P[Hi] and s← P[Hj ]; (224) holds by the definition in (41)
with P ← Pi and Q← Pj . The sum in the right side of (225) satisfies∑

1≤i<j≤M
(P[Hi] + P[Hj ]) = 1

2

∑
i 6=j

(P[Hi] + P[Hj ]) (226)

= 1
2

M∑
i=1

M∑
j=1

(P[Hi] + P[Hj ])−
M∑
i=1

P[Hi] (227)

=M − 1. (228)

The result in (219) follows from (223)–(228).
Remark 32: The bound on εX|Y in (219) can be improved by relying on the middle term in (222), which

then gives that for t, s ≥ 0 and α ∈ (0, 1)

tα s1−α ≤ max{t, s} = 1
2(t+ s+ |t− s|). (229)

Following the analysis in (223)–(228), we get

εX|Y ≤

M−1
2 + 1

2

∑
1≤i<j≤M

∣∣P[Hi]− P[Hj ]
∣∣ exp

(
−min

i 6=j
C(Pi‖Pj)

)
, (230)

which yields an improvement over (219) by a factor of at most 1
2 , attained when X is equiprobable.

Remark 33: Using the identity

(1− α)Dα(P‖Q) = αD1−α(Q‖P ) (231)

for all α ∈ (0, 1) and probability measures P and Q, it is easy to check that Theorems 13 and 15 result in the
same bound for binary hypothesis testing.

Remark 34: Kanaya and Han [45] and Leang and Johnson [51] give a weaker bound with 1
2M(M − 1) in

lieu of M − 1 in (219).
Remark 35: In the absence of observations, the bound in (187) is tight since εX|Y = 1−maxi P[Hi]. On the

other hand, (217) and (218) need not be tight in that case, and in fact may be strictly larger than 1.
Numerical experimentation with Examples 1–3 and others shows that, in general, the Arimoto-Rényi condi-

tional entropy bounds are tighter than (187) and (218).
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VI. ARIMOTO-RÉNYI CONDITIONAL ENTROPY AVERAGED OVER CODEBOOK ENSEMBLES

In this section we consider the channel coding setup with a code ensemble C, over which we are interested in
averaging the Arimoto-Rényi conditional entropy of the channel input given the channel output. We denote such
averaged quantity by EC

[
Hα(X

n|Y n)
]

where Xn = (X1, . . . , Xn) and Y n = (Y1, . . . , Yn). Some motivation
for this study arises from the fact that the normalized equivocation 1

nH(Xn|Y n) as a reliability measure was
used by Shannon [69] in his proof that reliable communication is impossible at rates above channel capacity;
furthermore, the asymptotic convergence to zero of the equivocation H(Xn|Y n) at rates below capacity was
studied by Feinstein [26, Section 3].

We can capitalize on the convexity of dα(·‖q) for α ∈ [0, 1] (see [23, Theorem 11] and [23, Section 6.A]) to
claim that in view of Theorem 3, for any ensemble C of size-M codes and blocklength n,

EC
[
Hα(X

n|Y n)
]
≤ logM − dα

(
ε ‖1− 1

M

)
(232)

where α ∈ [0, 1] and ε is the error probability of the maximum-likelihood decoder averaged over the code
ensemble, or an upper bound thereof which does not exceed 1 − 1

M (for such upper bounds see, e.g., [66,
Chapters 1–4]). Analogously, in view of Theorem 8 for list decoding with a fixed list size L, the same convexity
argument implies that

EC
[
Hα(X

n|Y n)
]
≤ logM − dα

(
PL ‖1− L

M

)
(233)

where PL denotes the minimum list decoding error probability averaged over the ensemble, or an upper bound
thereof which does not exceed 1− L

M (for such bounds see, e.g., [28], [30, Problem 5.20], [42, Section 5] and
[53]).

In the remainder of this section, we consider the discrete memoryless channel (DMC) model

PY n|Xn(yn|xn) =
n∏
i=1

PY |X(yi|xi), (234)

an ensemble C of size-M codes and blocklength n such that the M messages are assigned independent
codewords, drawn i.i.d. with per-letter distribution PX on the input alphabet

PXn(xn) =

n∏
i=1

PX(xi). (235)

In this setting, Feder and Merhav show in [25] the following result for the Shannon conditional entropy.
Theorem 16: [25, Theorem 3] For a DMC with transition probability matrix PY |X , the conditional entropy

of the transmitted codeword given the channel output, averaged over a random coding selection with per-letter
distribution PX such that I(PX , PY |X) > 0, is bounded by

EC
[
H(Xn|Y n)

]
≤ inf

ρ∈(0,1]

(
1 +

1

ρ

)
exp

(
−nρ

(
I 1

1+ρ
(PX , PY |X)−R

))
log e (236)

≤
(
1 +

1

ρ∗(R,PX)

)
exp
(
−nEr(R,PX)

)
log e (237)

with

R = 1
n logM ≤ I(PX , PY |X), (238)



31

where Er in the right side of (237) denotes the random-coding error exponent, given by (recall (44))

Er(R,PX) = max
ρ∈[0,1]

ρ
(
I 1

1+ρ
(PX , PY |X)−R

)
, (239)

and the argument that maximizes (239) is denoted in (237) by ρ∗(R,PX).
Remark 36: Since Hα(X

n|Y n) is monotonically decreasing in α (see Proposition 1), the upper bounds in
(236)–(237) also apply to EC

[
Hα(X

n|Y n)
]

for α ∈ [1,∞].
We are now ready to state and prove the main result in this section.
Theorem 17: The following results hold under the setting in Theorem 16:

1) For all α > 0, and rates R below the channel capacity C,

lim sup
n→∞

− 1

n
logEC

[
Hα(X

n|Y n)
]
≤ Esp(R), (240)

where Esp(·) denotes the sphere-packing error exponent

Esp(R) = sup
ρ≥0

ρ

(
max
QX

I 1

1+ρ
(QX , PY |X)−R

)
(241)

with the maximization in the right side of (241) over all single-letter distributions QX defined on the input
alphabet.

2) For all α ∈ (0, 1),

lim inf
n→∞

− 1

n
logEC

[
Hα(X

n|Y n)
]
≥ αEr(R,PX)− (1− α)R, (242)

provided that

R < Rα(PX , PY |X) (243)

where Rα(PX , PY |X) is the unique solution r ∈ (0, I(PX , PY |X)) to

Er(r, PX) =

(
1

α
− 1

)
r. (244)

3) The rate Rα(PX , PY |X) is monotonically increasing and continuous in α ∈ (0, 1), and

lim
α↓0

Rα(PX , PY |X) = 0, (245)

lim
α↑1

Rα(PX , PY |X) = I(PX , PY |X). (246)

Proof: In proving the first two items we actually give an asymptotic lower bound and a non-asymptotic
upper bound, which yield the respective results upon taking lim sup

n→∞
− 1
n log(·) and lim inf

n→∞
− 1
n log(·), respectively.

1) From (174) and the sphere-packing lower bound [72, Theorem 2] on the decoding error probability, the
following inequality holds for all rates R ∈ [0, C) and α ∈ (0, 1) ∪ (1,∞),

EC
[
Hα(X

n|Y n)
]
≥ α

1− α
log
(
1 +

(
2

1

α − 2
)
exp
(
−n[Esp(R− o1(n)) + o2(n)]

))
(247)

where o1(n) and o2(n) tend to zero as n → ∞. Note that (174) holds when the error probability of the
optimal code lies in [0, 12 ], but this certainly holds for all R < C and sufficiently large n (since this error
probability decays exponentially to zero).

2) Note that Er(R,PX) > 0 since, for α ∈ (0, 1),

R < Rα(PX , PY |X) < I(PX , PY |X), (248)
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where the left inequality in (248) is the condition in (243), and the right inequality in (248) holds by the
definition of Rα(PX , PY |X) in (244) (see its equivalent form in (255)). In view of the random coding
bound [29], let

εn = εn(R,PX) , min
{
exp
(
−nEr(R,PX)

)
, 1− exp(−nR)

}
(249)

be an upper bound on the decoding error probability of the code ensemble C, which does not exceed 1− 1
M

with M = exp(nR). From (232), for all α ∈ (0, 1),

EC
[
Hα(X

n|Y n)
]

≤ nR− dα
(
εn ‖ 1− exp(−nR)

)
(250)

= 1
1−α log

(
(1− εn)α +

(
exp(nR)− 1

)1−α
εαn

)
(251)

≤ 1
1−α log

(
(1− εn)α + exp

(
n(1− α)R

)
εαn

)
(252)

≤ 1
1−α log

((
1− exp

(
−nEr(R,PX)

))α
+ exp

(
−n
[
αEr(R,PX)− (1− α)R

]))
, (253)

where equality (251) follows from (35) by setting (θ, s, t) = (exp(nR), exp(nR)− 1, εn); the inequality
in (253) holds with equality for all sufficiently large n such that εn = exp

(
−nEr(R,PX)

)
(see (249)).

The result in (242) follows consequently by taking lim inf
n→∞

− 1
n log(·) of (250)–(253). To that end, note that

the second exponent in the right side of (253) decays to zero whenever

R < Rα(PX , PY |X) (254)

= sup
{
r ∈ [0, I(PX , PY |X)) : Er(r, PX) >

(
1
α − 1

)
r
}
. (255)

It can be verified that the representation of Rα(PX , PY |X) in (255) is indeed equivalent to the way it is
defined in (244) because Er(r, PX) is monotonically decreasing and continuous in r (see [30, (5.6.32)]),
the right side of (244) is strictly monotonically increasing and continuous in r for α ∈ (0, 1), and the left
and right sides of (244) vanish, respectively, at r = I(PX , PY |X) and r = 0. The equivalent representation
of Rα(PX , PY |X) in (255) yields the uniqueness of the solution r = Rα(PX , PY |X) of (244) in the interval
(0, I(PX , PY |X)) for all α ∈ (0, 1), and it justifies in particular the right inequality in (248).

3) From (244), for α ∈ (0, 1), r = Rα(PX , PY |X) is the unique solution r ∈ (0, I(PX , PY |X)) to

1
r Er(r, PX) =

1
α − 1. (256)

Since Er(r, PX) is positive and monotonically decreasing in r on the interval (0, I(PX , PY |X)), so is the
left side of (256) as a function of r. Since also the right side of (256) is positive and monotonically
decreasing in α ∈ (0, 1), it follows from (256) that r = Rα(PX , PY |X) is monotonically increasing in
α. The continuity of Rα(PX , PY |X) in α on the interval (0, 1) holds due to (256) and the continuity of
Er(·, PX) (see [30, p. 143]). The limits in (245) and (246) follow from (244): (245) holds since we have
lim
r↓0

Er(r, PX) = Er(0, PX) ∈ (0,∞), whereas lim
α↓0

(
1
α − 1

)
= +∞; (246) holds since Er(R,PX) is equal

to zero at R = I(PX , PY |X), and it is positive if R < I(PX , PY |X) (see [30, p. 142]).

Remark 37: For α = 1, Theorem 17 strengthens the result in Theorem 16 by also giving the converse in
Item 1). This result enables to conclude that if PX is the input distribution which maximizes the random-coding
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error exponent

Er(R) = max
Q

Er(R,Q), (257)

then

lim
n→∞

− 1

n
logEC

[
H(Xn|Y n)

]
= Er(R) (258)

at all rates between the critical rate Rc and channel capacity C of the DMC, since for all R ∈ [Rc, C] [30,
Section 5.8]

Er(R) = Esp(R) (259)

where Esp(·) is given in (241).
Remark 38: With respect to (259), recall that although the random-coding error exponent is tight for the

average code [31], it coincides with the sphere-packing error exponent (for the optimal code) at the high-rate
region between the critical rate and channel capacity. As shown by Gallager in [31], the fact that the random
coding error exponent is not tight for optimal codes at rates below the critical rate of the DMC stems from the
poor performance of the bad codes in this ensemble rather than a weakness of the bounding technique in [29].

Remark 39: The result in Theorem 17 can be extended to list decoding with a fixed size L by relying on
(233), and the upper bound on the list decoding error probability in [30, Problem 5.20] where

PL = min

{
exp
(
−nEL(R,PX)

)
, 1− L

M

}
(260)

with M = exp(nR), and

EL(R,PX) = max
ρ∈[0,L]

ρ
(
I 1

1+ρ
(PX , PY |X)−R

)
. (261)

This result can be further generalized to structured code ensembles by relying on upper bounds on the list
decoding error probability in [42, Section 5].

The following result is obtained by applying Theorem 17 in the setup of communication over a memoryless
binary-input output-symmetric channel with a symmetric input distribution. The following rates, specialized to
the considered setup, are required for the presentation of our next result.

1) The cutoff rate is given by

R0 = E0(1, P
∗
X) (262)

= 1− log
(
1 + ρY |X

)
bits (263)

where in the right side of (262), E0(ρ, P
∗
X) is given in (45) with the symmetric binary input distribution

P ∗X =
[
1
2

1
2

]
, and ρY |X ∈ [0, 1] in the right side of (263) denotes the Bhattacharyya constant given by

ρY |X =
∑
y∈Y

√
PY |X(y|0)PY |X(y|1) (264)

with an integral replacing the sum in the right side of (264) if Y is a non-discrete set.
2) The critical rate is given by

Rc = E′0(1, P
∗
X) (265)

where the differentiation of E0 in the right side of (265) is with respect to ρ at ρ = 1.
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3) The channel capacity is given by

C = I(P ∗X , PY |X). (266)

In general, the random coding error exponent is given by (see [30, Section 5.8])

Er(R) =

{
R0 −R, 0 ≤ R ≤ Rc

Esp(R), Rc ≤ R ≤ C,
(267)

and

0 ≤ Rc ≤ R0 ≤ C. (268)

Consequently, Er(R) in (267) is composed of two parts: a straight line at rates R ∈ [0, Rc], starting from R0

at zero rate with slope −1, and the sphere-packing error exponent at rates R ∈ [Rc, C].
Theorem 18: Let PY |X be the transition probability matrix of a memoryless binary-input output-symmetric

channel, and let P ∗X =
[
1
2

1
2

]
. Let Rc, R0, and C denote the critical and cutoff rates and the channel capacity,

respectively, and let5

αc =
Rc

R0
∈ (0, 1). (269)

The rate Rα = Rα(P
∗
X , PY |X), as introduced in Theorem 17–2) with the symmetric input distribution P ∗X , can

be expressed as follows:

a) for α ∈ (0, αc],

Rα = αR0; (270)

b) for α ∈ (αc, 1), Rα ∈ (Rc, C) is the solution to

Esp(r) =

(
1

α
− 1

)
r; (271)

Rα is continuous and monotonically increasing in α ∈ [αc, 1) from Rc to C.

Proof: For every memoryless binary-input output-symmetric channel, the symmetric input distribution P ∗X
achieves the maximum of the error exponent Er(R) in the right side of (257). Consequently, (270) and (271)
readily follow from (244), (259), (267) and (269). Due to Theorem 17-3), Rα is monotonically increasing and
continuous in α ∈ (0, 1). From (269) and (270)

Rαc
= Rc, (272)

and (246) and (266) yield

lim
α↑1

Rα = I(P ∗X , PY |X) = C. (273)

Consequently, Rα is monotonically increasing in α ∈ [αc, 1) from Rc to C.

5In general αc ∈ [0, 1] (see (268)); the cases αc = 0 and αc = 1 imply that Theorem 18-a) or b) are not applicable, respectively.
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Example 4: Let PY |X(0|0) = PY |X(1|1) = 1 − δ, PY |X(0|1) = PY |X(1|0) = δ, and PX(0) = PX(1) =
1
2 .

In this case, it is convenient to express all rates in bits; in particular, it follows from (262)–(266) that the cutoff
rate, critical rate and channel capacity are given, respectively, by (see, e.g., [30, p. 146])

R0 = 1− log
(
1 +

√
4δ(1− δ)

)
, (274)

Rc = 1− h

( √
δ√

δ +
√
1− δ

)
, (275)

C = I(PX , PY |X) = 1− h(δ). (276)

The sphere-packing error exponent for the binary symmetric channel is given by (see, e.g., [30, (5.8.26)–(5.8.27)])

Esp(R) = d
(
δGV(R) ‖ δ

)
(277)

where the normalized Gilbert-Varshamov distance (see, e.g., [63, Theorem 4.10]) is denoted by

δGV(R) = h−1(1−R) (278)

with h−1 : [0, log 2]→
[
0, 12
]

standing for the inverse of the binary entropy function.
In view of Theorem 18, Figure 3 shows Rα with α ∈ (0, 1) for the case where the binary symmetric

channel has capacity 1
2 bit per channel use, namely, δ = h−1

(
1
2

)
= 0.110, in which case αc = 0.5791 and

Rαc
= Rc = 0.1731 bits per channel use (see (275)).
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Fig. 3. The rate Rα for α ∈ (0, 1) for a binary symmetric channel with crossover probability δ = 0.110.

VII. CONCLUSIONS

The interplay between information-theoretic measures and the analysis of hypothesis testing has been a fruitful
area of research. Along these lines, we have shown new bounds on the minimum Bayesian error probability
εX|Y of arbitrary M -ary hypothesis testing problems as a function of information measures. In particular, our
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major focus has been the Arimoto-Rényi conditional entropy of the hypothesis index given the observation. We
have seen how changing the conventional form of Fano’s inequality from

H(X|Y ) ≤ h(εX|Y ) + εX|Y log(M − 1) (279)

= logM − d
(
εX|Y ‖1− 1

M

)
(280)

to the right side of (280), where d(·‖·) is the binary relative entropy, allows a natural generalization where the
Arimoto-Rényi conditional entropy of an arbitrary positive order α is upper bounded by

Hα(X|Y ) ≤ logM − dα
(
εX|Y ‖1− 1

M

)
(281)

with dα(·‖·) denoting the binary Rényi divergence.
Likewise, thanks to the Schur-concavity of Rényi entropy, we obtain a lower bound on Hα(X|Y ) in terms

of εX|Y , which holds even if M =∞. Again, we are able to recover existing bounds by letting α→ 1.
In addition to the aforementioned bounds on Hα(X|Y ) as a function of εX|Y , it is also of interest to give

explicit lower and upper bounds on εX|Y as a function of Hα(X|Y ). As α → ∞, these bounds converge to
εX|Y .

The list decoding setting, in which the hypothesis tester is allowed to output a subset of given cardinality
and an error occurs if the true hypothesis is not in the list, has considerable interest in information theory. We
have shown that our techniques readily generalize to that setting and we have found generalizations of all the
Hα(X|Y )–εX|Y bounds to the list decoding setting.

We have also explored some facets of the role of binary hypothesis testing in analyzing M -ary hypothesis
testing problems, and have shown new bounds in terms of Rényi divergence.

As an illustration of the application of the Hα(X|Y )–εX|Y bounds, we have analyzed the exponentially
vanishing decay of the Arimoto-Rényi conditional entropy of the transmitted codeword given the channel output
for discrete memoryless channels and random coding ensembles.

APPENDIX A
PROOF OF PROPOSITION 1

We prove that Hα(X|Y ) ≤ Hβ(X|Y ) in three different cases:

• 1 < β < α

• 0 < β < α < 1

• β < α < 0.

Proposition 1 then follows by transitivity, and the continuous extension of Hα(X|Y ) at α = 0 and α = 1. The
following notation is handy.

θ =
β − 1

α− 1
> 0, (282)

ρ =
αθ

β
> 0. (283)
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Case 1: If 1 < β < α, then (ρ, θ) ∈ (0, 1)2, and

exp
(
−Hα(X|Y )

)
= E

βρ

β−1

(∑
x∈X

PαX|Y (x|Y )

) 1

α

 (284)

≥ E
β

β−1

(∑
x∈X

PαX|Y (x|Y )

) ρ

α

 (285)

= E
β

β−1

(∑
x∈X

PX|Y (x|y)Pα−1X|Y (x|Y )

) θ

β

 (286)

≥ E
β

β−1

(∑
x∈X

PX|Y (x|y)P
(α−1)θ
X|Y (x|Y )

) 1

β

 (287)

= E
β

β−1

(∑
x∈X

P βX|Y (x|Y )

) 1

β

 (288)

= exp
(
−Hβ(X|Y )

)
. (289)

where the outer expectations are with respect to Y ∼ PY ; (284) follows from (14) and the equality βρ
β−1 = α

α−1
(see (282) and (283)); (285) follows from β

β−1 > 0, 1
β > 0, Jensen’s inequality and the concavity of tρ on

[0,∞); (286) follows from (283) and (282); (287) holds due to the concavity of tθ on [0,∞) and Jensen’s
inequality; (288) follows from (282); (289) follows from (14).

Case 2: If 0 < β < α < 1, then (ρ, θ) ∈ (1,∞)2, and both tρ and tθ are convex. However, (285) and (287)
continue to hold since now β

β−1 < 0.
Case 3: If β < α < 0, then ρ ∈ (0, 1) and θ ∈ (1,∞). Inequality (285) holds since tρ is concave on [0,∞)

and β
β−1 > 0; furthermore, although tθ is now convex on [0,∞), (287) also holds since 1

β < 0.

APPENDIX B
PROOF OF PROPOSITION 3

Proof of Proposition 3a): We need to show that the lower bound on Hα(X|Y ) in (166) coincides with its
upper bound in (82) if and only if εX|Y = 0 or εX|Y = 1 − 1

M . This corresponds, respectively, to the cases
where X is a deterministic function of the observation Y or X is equiprobable on the set X and independent
of Y . In view of (35), (82) and (166), and by the use of the parameter t = εX|Y ∈

[
0, 1− 1

M

]
, this claim can

be verified by proving that

• if α ∈ (0, 1) and k ∈ {1, . . . ,M − 1}, then[
(1− t)α + (M − 1)1−αtα

] 1

α

>
[
k(k + 1)

1

α − k
1

α (k + 1)
]
t+ k

1

α
+1 − (k − 1)(k + 1)

1

α (290)

for all t ∈ [1− 1
k , 1−

1
k+1) with the point t = 0 excluded if k = 1;

• the opposite inequality in (290) holds if α ∈ (1,∞).

Let the function vα :
[
0, 1− 1

M

]
→ R be defined such that for all k ∈ {1, . . . ,M − 1}

vα(t) = vα,k(t), t ∈
[
1− 1

k , 1−
1

k+1

)
(291)
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where vα,k :
[
1− 1

k , 1−
1

k+1

)
→ R is given by

vα,k(t) =
[
(1− t)α + (M − 1)1−αtα

] 1

α −
[
k(k + 1)

1

α − k
1

α (k + 1)
]
t− k

1

α
+1 + (k − 1)(k + 1)

1

α . (292)

Note that vα,k(t) is the difference between the left and right sides of (290). Moreover, let vα(·) be continuously
extended at t = 1− 1

M ; it can be verified that vα(0) = vα
(
1− 1

M

)
= 0. We need to prove that for all α ∈ (0, 1)

vα(t) > 0, ∀ t ∈
(
0, 1− 1

M

)
, (293)

together with the opposite inequality in (293) for α ∈ (1,∞). To that end, we prove that
a) for α ∈ (0, 1) ∪ (1,∞), vα(·) is continuous at all points

tk =
k
k+1 , k ∈ {0, . . . ,M − 1}. (294)

To show continuity, note that the right continuity at t0 = 0 and the left continuity at tM−1 = 1− 1
M follow

from (291); for k ∈ {1, . . . ,M − 2}, the left continuity of vα(·) at tk is demonstrated by showing that

lim
t↑tk

vα,k(t) = vα,k+1(tk), (295)

and its right continuity at tk is trivial from (291), (292) and (294);
b) for all k ∈ {0, 1, . . . ,M − 1}

vα(tk) =

[
1 + (M − 1)1−αkα

] 1

α − (k + 1)
1

α

k + 1
, (296)

which implies that vα(·) is zero at the endpoints of the interval
[
0, M−1M

]
, and if M ≥ 3

vα(tk) > 0, α ∈ (0, 1), (297)

vα(tk) < 0, α ∈ (1,∞) (298)

for all k ∈ {1, . . . ,M − 2};
c) the following convexity results hold:

• for α ∈ (0, 1), the function vα(·) is strictly concave on [tk, tk+1] for all k ∈ {0, . . . ,M − 1};
• for α ∈ (1,∞), the function vα(·) is strictly convex on [tk, tk+1] for all k ∈ {0, . . . ,M − 1}.

These properties hold since, due to the linearity in t of the right side of (290), vα(·) is convex or concave
on
[
tk, tk+1] for all k ∈ {0, 1, . . . ,M − 1} if and only if the left side of (290) is, respectively, a convex

or concave function in t; due to Lemma 1, the left side of (290) is strictly concave as a function of t if
α ∈ (0, 1) and it is strictly convex if α ∈ (1,∞).

Due to Items a)–c), (293) holds for α ∈ (0, 1) and the opposite inequality holds for α ∈ (1,∞). In order to prove
(293) for α ∈ (0, 1), note that

[
0, 1− 1

M

]
=
⋃M−1
i=1 [ti−1, ti] where vα(t0) = vα(tM−1) = 0 and vα(tk) > 0

for every k ∈ {1, . . . ,M − 2}, vα(·) is continuous at all points tk for k ∈ {0, . . . ,M − 1}, and vα is strictly
concave on [tk, tk+1] for all k ∈ {0, . . . ,M − 2}, yielding the positivity of vα(·) on the interval (0, 1 − 1

M ).
The justification for the opposite inequality of (293) if α ∈ (1,∞) is similar, yielding the negativity of vα(·)
on (0, 1− 1

M ).
Proof of Proposition 3b): In view of (35), (82) and (174), for all εX|Y ∈ [0, 12) and α ∈ (0, 1) ∪ (1,∞):

uα,M (εX|Y ) =
1

1− α
log
(
(1− εX|Y )α + (M − 1)1−αεαX|Y

)
, (299)

lα(εX|Y ) =
α

1− α
log
(
1 + (2

1

α − 2)εX|Y

)
. (300)

Equality (179) follows by using L’Hôpital’s rule for the calculation of the limit in the left side of (179).
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properties,” Journal of Mathematical Physics, vol. 54, paper no. 122203, pp. 1–20, December 2013.
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