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{
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)
−H

(
f(X)|X

)}
= max

f
I
(
X; f(X)

)
with max. over all functions mapping a set of cardinality n to a set of
cardinality m < n.

Useful in the context of data clustering.
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Motivation

Motivation (Cont.)

Rényi measures are very useful, so how about ...

Generalizing this question to Hα

(
f(X)

)
for any α > 0 (not trivial).
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Motivation

Motivation (Cont.)

Rényi measures are very useful, so how about ...

Generalizing this question to Hα

(
f(X)

)
for any α > 0 (not trivial).

Possible Applications:

I Guessing (Arikan ’96);

I Lossless compression problems (Campbell ’65).
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Rényi Entropy

The Rényi Entropy

Let PX be a probability distribution on a discrete set X . The Rényi
entropy of order α ∈ (0, 1) ∪ (1,∞) of X is defined as

Hα(X) =
1

1− α
log
∑
x∈X

PαX(x)

By its continuous extension, H1(X) = H(X) where

H(X) = −
∑
x∈X

PX(x) logPX(x)

is the Shannon entropy.
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Bounds on the Rényi Entropy of a Function of a Discrete RV

Setting

Let

α > 0;

X and Y be finite sets of cardinalities

|X | = n, |Y| = m, n > m ≥ 2;

without any loss of generality, let

X = {1, . . . , n}, Y = {1, . . . ,m};

Pn (n ≥ 2) be the set of probability mass functions (pmf) on X ;

X be a RV taking values on X with a pmf PX ∈ Pn;

Fn,m be the set of deterministic functions f : X → Y;

f ∈ Fn,m is not one-to-one since m < n.
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Bounds on the Rényi Entropy of a Function of a Discrete RV

Bad News

For an arbitrary α > 0, the maximization problem

max
f∈Fn,m

Hα

(
f(X)) (2 ≤ m < n)

is strongly NP-hard.

Unless P = NP, there is no poly. time algorithm which, for any ε > 0,
computes an admissible deterministic function fε ∈ Fn,m such that

Hα

(
fε(X)

)
≥ (1− ε) max

f∈Fn,m
Hα

(
f(X)).

I. Sason Technion, Haifa August 19th, 2019 6 / 28



Bounds on the Rényi Entropy of a Function of a Discrete RV

Good News

We can efficiently construct (by the use of Huffman algorithm) an
admissible function f∗ ∈ Fn,m s.t.

Hα

(
f∗(X)

)
≥ max

f∈Fn,m
Hα

(
f(X)

)
−v(α), α > 0

where

v(α) :=


log

(
α− 1

2α − 2

)
− α

α− 1
log

(
α

2α − 1

)
, α 6= 1,

log

(
2

e ln 2

)
≈ 0.08607 bits, α = 1.

v : (0,∞)→ (0, log 2) is monotonically increasing, continuous, and

lim
α↓0

v(α) = 0, lim
α→∞

v(α) = log 2 (1 bit).
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Bounds on the Rényi Entropy of a Function of a Discrete RV

Plot
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Figure: A plot of v(α) as a function of α > 0.
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Bounds on the Rényi Entropy of a Function of a Discrete RV

Upper Bounding max
f∈Fn,m

Hα

(
f(X)

)
Let

X be a discrete RV with pmf PX , which takes n possible values, and
assume that

PX(1) ≥ PX(2) ≥ . . . ≥ PX(n).

f ∈ Fn,m;

QX be the pmf of f(X); assume that

QX(1) ≥ PX(2) ≥ . . . ≥ QX(m),

QX(m+ 1) = . . . = QX(n) = 0.

Then, PX is majorized by QX :

PX ≺ QX

(
k∑
i=1

PX(i) ≤
k∑
i=1

QX(i), ∀ k ∈ {1, . . . , n}

)
.
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Bounds on the Rényi Entropy of a Function of a Discrete RV

Upper Bounding max
f∈Fn,m

Hα

(
f(X)) (Cont.)

Since the Rényi entropy is Schur-concave, it follows that

Hα(X) = Hα(PX) ≥ Hα(QX) = Hα

(
f(X)

)
.
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Upper Bounding max
f∈Fn,m

Hα

(
f(X)) (Cont.)

Since the Rényi entropy is Schur-concave, it follows that

Hα(X) = Hα(PX) ≥ Hα(QX) = Hα

(
f(X)

)
.

Let Pn (n ≥ 2) be the set of prob. mass functions (pmfs) on X
(|X | = n). Since the pmf of f(X) majorizes the pmf of X, then

max
f∈Fn,m

Hα

(
f(X)

)
≤ max

Q∈Pm:PX≺Q
Hα(Q).

The max. in the right side of the last ineq. is explicitly calculated.

A function f∗ ∈ Fn,m is efficiently constructed such that

Hα

(
f∗(X)

)
≥ max

Q∈Pm:PX≺Q
Hα(Q)− v(α) ≥ max

f∈Fn,m
Hα

(
f(X)

)
− v(α).
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Bounds on the Rényi Entropy of a Function of a Discrete RV

Solving the Maximum Rényi Entropy Problem

max
Q∈Pm:PX≺Q

Hα(Q)

with X ∈ {1, . . . , n}, m < n, and α > 0.

Solution: Rm(PX)

If PX(1) < 1
m , then Rm(PX) is the equiprobable dist. on {1, . . . ,m};

Otherwise, Rm(PX) := QX ∈ Pm with

QX(i) =


PX(i), i ∈ {1, . . . , n∗},

1

m− n∗
n∑

j=n∗+1

PX(j), i ∈ {n∗ + 1, . . . ,m},

where n∗ is the max. integer i s.t. PX(i) ≥ 1
m−i

∑n
j=i+1 PX(j).
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Bounds on the Rényi Entropy of a Function of a Discrete RV

The Algorithm by Huffman Coding

1 Start from the pmf PX ∈ Pn with PX(1) ≥ . . . ≥ PX(n);

2 Merge successively pairs of probability masses by applying the
Huffman algorithm;

3 Stop the process in Step 2 when a probability mass function Q ∈ Pm
is obtained (with Q(1) ≥ . . . ≥ Q(m));

4 Construct the deterministic function f∗ ∈ Fn,m by setting
f∗(k) = j ∈ {1, . . . ,m} for all probability masses PX(k), with
k ∈ {1, . . . , n}, being merged in Steps 2–3 into the node of Q(j).

Property - Link to the Next Auxiliary Result

Let i ∈ {0, . . . ,m− 1} the max. index s.t. PX(j) = Q(j) for all j ≤ i.
Then,

Q(i+ 1) ≤ 2Q(m).
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Notation

Notation for an Auxiliary Result

Let

P be a probability mass function defined on a finite set X ,

pmax and pmin be the max. and min. positive masses of P ,

GP (k) be the sum of the k largest masses of P for k ∈ {1, . . . , |X |},
Pn(ρ), for ρ ≥ 1 and integer n ≥ 2, be the subset of all P ∈ Pn s.t.

pmax

pmin
≤ ρ.
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A Tight Lower Bound on the Rényi Entropy

Theorem (an Auxiliary Result)

For ρ > 1 and α > 0, let

c(n)
α (ρ) := log n− min

P∈Pn(ρ)
Hα(P ), n = 2, 3, . . .

with c
(1)
α (ρ) := 0. Then, for every n ∈ N,

0 ≤ c(n)
α (ρ) ≤ log ρ,

c(n)
α (ρ) ≤ c(2n)

α (ρ),

and c
(n)
α (ρ) is monotonically increasing in α ∈ [0,∞].

The following limit exists for all α > 0 and ρ > 1:

c(∞)
α (ρ) := lim

n→∞
c(n)
α (ρ).
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A Tight Lower Bound on the Rényi Entropy

Theorem (Cont.)

Let ρ > 1, α > 0, n ≥ 2 be an integer, and β ∈
[

1
1+(n−1)ρ ,

1
n

]
:= Γ

(n)
ρ .

Let Qβ ∈ Pn(ρ) be defined on X = {1, . . . , n} as follows:

Qβ(j) =


ρβ, j ∈ {1, . . . , iβ},
1− (n+ iβ ρ− iβ − 1)β, j = iβ + 1,

β, j ∈ {iβ + 2, . . . , n}

where iβ :=
⌊

1−nβ
(ρ−1)β

⌋
. Then, for every α > 0,

c(n)
α (ρ) = logn− min

β∈Γ
(n)
ρ

Hα(Qβ).
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A Tight Lower Bound on the Rényi Entropy

Theorem (Cont.)

1 If α ∈ (0, 1) ∪ (1,∞), then

c(∞)
α (ρ) =

1

α− 1
log

(
1 +

1 + α (ρ− 1)− ρα

(1− α)(ρ− 1)

)
− α

α− 1
log

(
1 +

1 + α (ρ− 1)− ρα

(1− α)(ρα − 1)

)
,

and

lim
α→∞

c(∞)
α (ρ) = log ρ, v(α) = c(∞)

α (2)

2 If α = 1, then

c
(∞)
1 (ρ) = lim

α→1
c(∞)
α (ρ) =

ρ log ρ

ρ− 1
− log

(
eρ loge ρ

ρ− 1

)
.
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A Tight Lower Bound on the Rényi Entropy
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Figure: A plot of c
(∞)
α (ρ) as a function of ρ.
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A Tight Lower Bound on the Rényi Entropy

Plot
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Application I: Guessing

Guessing

The problem of guessing discrete random variables has found a variety of
applications in

Shannon theory,

coding theory,

cryptography,

searching and sorting algorithms,

etc.

The central object of interest:
The distribution of the number of guesses required to identify a realization

of a random variable, taking values on a finite or countably infinite set.
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Guessing Moments and Rényi Entropy

Guessing and Ranking functions

X is a discrete random variable taking values on a finite or countably
infinite set X = {1, . . . , |X |}.
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Guessing Moments and Rényi Entropy

Guessing and Ranking functions

X is a discrete random variable taking values on a finite or countably
infinite set X = {1, . . . , |X |}.

One wishes to guess the value of X by repeatedly asking questions of
the form “Is X equal to x ?” until X is guessed correctly.

A guessing function is a 1-to-1 function g : X → X where the number
of guesses is equal to g(x) if X = x ∈ X .

For ρ > 0, E[gρ(X)] is minimized by selecting g to be a ranking
function gX , for which gX(x) = k if PX(x) is the k-th largest mass.
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Guessing Moments and Rényi Entropy

Hα(X) and Guessing Moments

Theorem (Arikan ’96)

Let X be a discrete random variable taking values on X = {1, . . . ,M}.
Let gX(·) be a ranking function of X. Then, for ρ > 0,

1
ρ logE

[
gρX(X)

]
≥ H 1

1+ρ
(X)− log(1 + logeM),

1
ρ logE

[
gρX(X)

]
≤ H 1

1+ρ
(X).
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Guessing Moments and Rényi Entropy

Hα(X) and Guessing Moments

Theorem (Arikan ’96)

Let X be a discrete random variable taking values on X = {1, . . . ,M}.
Let gX(·) be a ranking function of X. Then, for ρ > 0,

1
ρ logE

[
gρX(X)

]
≥ H 1

1+ρ
(X)− log(1 + logeM),

1
ρ logE

[
gρX(X)

]
≤ H 1

1+ρ
(X).

Arikan’s result yields an asymptotically tight error exponent:

lim
n→∞

1
n logE

[
gρXn(Xn)

]
= ρH 1

1+ρ
(X), ∀ ρ > 0

when X1, . . . , Xn are i.i.d. [Xn := (X1, . . . , Xn)].
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Guessing Moments and Rényi Entropy

Reminder: Rm(PX)

Let X ∼ PX take n possible values, and let m ∈ {2, . . . , n− 1}.
If PX(1) < 1

m , then Rm(PX) is the equiprobable dist. on {1, . . . ,m};
Otherwise, Rm(PX) := QX ∈ Pm with

QX(i) =


PX(i), i ∈ {1, . . . , n∗},

1

m− n∗
n∑

j=n∗+1

PX(j), i ∈ {n∗ + 1, . . . ,m},

where n∗ is the max. integer i s.t. PX(i) ≥ 1
m−i

∑n
j=i+1 PX(j).

Notation

for m ∈ {2, . . . , n}, let
Xm ∼ Rm(PX).
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Guessing Moments and Rényi Entropy

Theorem: Guessing Moments

Let

{Xi}ki=1 be i.i.d. with X1 ∼ PX taking values on a set X , |X | = n;

Yi = f(Xi), for every i ∈ {1, . . . , k}, where f ∈ Fn,m is a
deterministic function with m < n;

gXk : X k → {1, . . . , nk}, gY k : Yk → {1, . . . ,mk}

be, respectively, ranking functions of the random vectors

Xk := (X1, . . . , Xk), Y k := (Y1, . . . , Yk).
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Guessing Moments and Rényi Entropy

Theorem: Guessing Moments (Cont.)

Then, for every ρ > 0,

1 For every deterministic function f ∈ Fn,m

1

k
log

E
[
gρ
Xk(Xk)

]
E
[
gρ
Y k

(Y k)
] ≥ ρ [H 1

1+ρ
(X)−H 1

1+ρ
(X̃m)

]
− ρ log(1 + k lnn)

k
.
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Guessing Moments and Rényi Entropy

Theorem: Guessing Moments (Cont.)

Then, for every ρ > 0,

1 For every deterministic function f ∈ Fn,m

1

k
log

E
[
gρ
Xk(Xk)

]
E
[
gρ
Y k

(Y k)
] ≥ ρ [H 1

1+ρ
(X)−H 1

1+ρ
(X̃m)

]
− ρ log(1 + k lnn)

k
.

2 For the deterministic function f∗ ∈ Fn,m, whose construction relies
on the Huffman algorithm, with Yi = f∗(Xi) for all i ∈ {1, . . . , k},

1

k
log

E
[
gρ
Xk(Xk)

]
E
[
gρ
Y k

(Y k)
]

≤ ρ
[
H 1

1+ρ
(X)−H 1

1+ρ
(X̃m) + v

(
1

1 + ρ

)]
+
ρ log(1 + k lnm)

k
.
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Guessing Moments and Rényi Entropy

Theorem: Guessing Moments (Cont.)

For every ρ > 0,

3) The gap between the universal lower bound and the upper bound, for
f = f∗, is at most

ρ v

(
1

1 + ρ

)
+

2ρ log(1 + k loge n)

k

≈ 0.08607 ρ

1 + ρ
+O

(
log k

k

)
bits.

Letting k →∞, the gap is less than 0.08607 bits for all ρ > 0, and
the construction of the function f∗ ∈ Fn,m does not depend on ρ.
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Cumulant Generating Functions & Lossless Compression

Application II:

Non-Asymptotic Bounds for Optimal Fixed-to-Variable
Lossless Compression Codes

We rely on Campbell’s work (1965), providing bounds on the cumulant
generating function which are expressed in terms of Rényi entropies.
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Cumulant Generating Functions & Lossless Compression

The paper refers to lossless data compression. However, due to time
constraints, this talk needs to be a lossy compression of the journal paper,
and I’ll skip the details here.

Journal Paper

I. Sason, “Tight bounds on the Rényi entropy via majorization with
applications to guessing and compression,” Entropy, vol. 20, no. 12,
paper 896, pp. 1–25, November 2018.
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Summary

Summary

Tight bounds on the Rényi entropy of a function of a random variable
with finite number of possible values where the function is not 1-to-1,
and the cardinality of the image of the function is fixed.
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Summary

Summary

Tight bounds on the Rényi entropy of a function of a random variable
with finite number of possible values where the function is not 1-to-1,
and the cardinality of the image of the function is fixed.

A tight lower bound on the Rényi entropy of a discrete random
variable with a finite support is derived as a function of the size of the
support, and the ratio of the maximal to minimal probability masses.

Inspired by the recent work by Cicalese et al., which was focused on
the Shannon entropy. It strengthens and generalizes the results of
that paper to Rényi entropies of arbitrary positive orders.

In view of the generalized bounds and the works by Arikan and
Campbell, non-asymptotic bounds are derived for guessing moments
and lossless data compression of discrete memoryless sources.
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