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Background and Motivation

General Model of Parallel Channels
Transmission takes place over a set of J independent parallel
channels.

Channel mapper maps encoded bits into a set of parallel
channels.

Each bit is mapped to one and only one of these channels.
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Background and Motivation

Example: Block Fading

.
.
.
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Background and Motivation

Other Applications of the Parallel Channel Model

Codes employing non-uniform error protection.

Bit-interleaved coded modulation.

Multi-carrier systems (OFDM).

Rate-compatible puncturing of turbo-like codes.

etc.
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Background and Motivation

Upper Bounds on ML Decoding Error Probability
Single channel:

Bounding techniques for the performance of error-correcting
codes under maximum-likelihood (ML) decoding were addressed
by various researchers (see, e.g., Sason-Shamai, FnT Tutorial,
2006).

These bounds rely on the distance spectrum of the code, and in
the asymptotic case where the block length tends to infinity, they
provide bounds on decoding thresholds.
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Bounding techniques for the performance of error-correcting
codes under maximum-likelihood (ML) decoding were addressed
by various researchers (see, e.g., Sason-Shamai, FnT Tutorial,
2006).

These bounds rely on the distance spectrum of the code, and in
the asymptotic case where the block length tends to infinity, they
provide bounds on decoding thresholds.

Parallel channels:

Performance bounds enable to assess the ML decoding error
probability of error-correcting codes over these channels.

In the asymptotic case, they provide attainable channel regions for
reliable communications over parallel channels.
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Preliminaries

Concept of Derivation of the DS2 Bound (1)

The classic 1965 Gallager bound is given by

Pe|m ≤
∑

y

pn
(

y |xm)





∑

m′ 6=m

(

pn(y |xm′

)

pn(y |xm)

)λ




ρ

λ, ρ ≥ 0
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Preliminaries

Concept of Derivation of the DS2 Bound (2)
From the 1965 Gallager bound, multiplying and dividing by an
arbitrary probability tilting measure Ψ

(m)
n (y) yields

Pe|m ≤
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y

Ψ
(m)
n (y)



Ψ
(m)
n (y)−

1
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Applying Jensen’s inequality gives the DS2 bound

Pe|m ≤





∑

m′ 6=m
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ρ
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0 ≤ ρ ≤ 1
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Preliminaries

Concept of Derivation of the DS2 Bound (3)
For memoryless binary-input output-symmetric (MBIOS)
channels, the probability density function satisfies

pn(y |x) =

n
∏

i=1

p(yi |xi)

and we also assume a probability tilting measure which can be
factorized as follows:

Ψn(y) =

n
∏

i=1

ψ(yi).

Note that, in general, ψ can be a function of the index m.
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Concept of Derivation of the DS2 Bound (3)
For memoryless binary-input output-symmetric (MBIOS)
channels, the probability density function satisfies

pn(y |x) =

n
∏

i=1

p(yi |xi)

and we also assume a probability tilting measure which can be
factorized as follows:

Ψn(y) =

n
∏

i=1

ψ(yi).

Note that, in general, ψ can be a function of the index m.

As a result, the DS2 bound is expressed in terms of single-letter
functions and the distance spectrum of the code.

Let {Ah}
n
h=0 be the distance spectrum where Ah denotes the

number of codewords of Hamming weight h.
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Preliminaries

The DS2 Bound for a Single MBIOS Channel

Theorem (Sason and Shamai, IEEE IT. Dec. 2002)
The ML decoding error probability of a binary linear block code,
transmitted over a single MBIOS channel is upper bounded by

Pe ≤







n
∑

h=1

Ah

(

∑

y

ψ(y)
1− 1

ρ p(y |0)
1
ρ

)n−h

(

∑

y

ψ(y)
1− 1

ρ p(y |0)
1−λρ

ρ p(y |1)λ

)h






ρ

0 ≤ ρ ≤ 1
λ ≥ 0

.

The function ψ(·) is a probability tilting measure, subject to
optimization so as to minimize the upper bound.
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Preliminaries

Applying the DS2 Bound to Code Ensembles

The DS2 bound applies also to structured ensembles of codes.

Replace the distance spectrum {Ah} with the average distance
spectrum in the bound.

This result applies due to Jensen’s inequality

E(xρ) ≤ (Ex)ρ 0 ≤ ρ ≤ 1
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Preliminaries

On the Calculation of the DS2 Bound
When the DS2 bound is taken over the whole code, the optimized
tilting measure depends on the entire distance spectrum.

When channel conditions are good, the bound can be tightened
by adding degrees of freedom to the optimization.

This is accomplished by
I Recognizing that for a linear code transmitted over a symmetric

channel, Pe = Pe|0.
I Partitioning the code into constant Hamming-weight subcodes and

calculate the optimized tilting measure for the DS2 bound
of each subcode separately.

I Using union bound over these subcodes, i.e.,

Pe ≤

n
∑

h=0

Pe|0(h).
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Preliminaries

The 1961 Gallager Bound and its Connection to the
DS2 Bound

A similar bounding technique was used by Gallager (in 1961) to
obtain an upper bound on the ML decoding error probability.

Divsalar (JPL 1999) and Sason & Shamai (IEEE IT. Dec. 2002)
and have demonstrated that this bound is a special case of the
DS2 bound; thus the DS2 bound is inherently tighter.

Optimized tilting measures for constant Hamming-weight
subcodes obtained by Sason and Shamai: DS2 bound (IEEE IT.
Dec. 2002), 1961 Gallager bound (Oct. 1998), both using calculus
of variations.
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Improved Bounds on the Error Probability for Parallel Channels Generalizing the Gallager and DS2 Bounds to Parallel Channels

Generalizing the 1961 Gallager and DS2 Bound to
Parallel Channels

Liu et al. (IEEE IT. 2006) generalized the 1961 Gallager bound for
the setting of parallel channels. In their analysis they rely on
sub-optimal tilting measures.

I On one hand, simplify the computational complexity of the bound.
I On the other hand, these bounds are not tight.

Our motivation is two-fold:
I First, we are interested in finding optimized tilting measures for the

1961 Gallager bound.
I Second, due to the superiority of the DS2 bound over the 1961

Gallager bound for a single channel, we generalize the DS2 bound
to parallel channels.
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Improved Bounds on the Error Probability for Parallel Channels Generalizing the Gallager and DS2 Bounds to Parallel Channels

Random Channel Mapper

Following the analysis of Liu et al., we assume a random channel
mapper.

The random channel mapper assigns a coded bit to channel j with
probability αj , independent of other bits.

Code

Error−
Correction

Channel

Mapper

Channel 1

Channel 2

Channel J

Decoder

1

2

J

Let nj denote the number of bits mapped to channel j . The vector
n = (n1,n2, . . . ,nJ) has a multinomial distribution, i.e.,

PN(n) =

(

n
n1,n2, . . . ,nJ

)

α
n1
1 α

n2
2 . . . α

nJ
J
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Improved Bounds on the Error Probability for Parallel Channels Generalizing the Gallager and DS2 Bounds to Parallel Channels

Random Channel Mapper: Split Weight Enumerator
For a specific choice of the codeword and channel mapping, let hj

denote the Hamming weight of that part of the codeword which is
transmitted over channel j .
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Random Channel Mapper: Split Weight Enumerator
For a specific choice of the codeword and channel mapping, let hj

denote the Hamming weight of that part of the codeword which is
transmitted over channel j .

For a specific channel mapping, the split weight enumerator
(SWE) Ah1,h2,...,hJ is defined as the number of codewords with
partial Hamming weights {hj}

J
j=1.
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Random Channel Mapper: Split Weight Enumerator
For a specific choice of the codeword and channel mapping, let hj

denote the Hamming weight of that part of the codeword which is
transmitted over channel j .

For a specific channel mapping, the split weight enumerator
(SWE) Ah1,h2,...,hJ is defined as the number of codewords with
partial Hamming weights {hj}

J
j=1.

The SWE is in general not available. However, the SWE averaged
over all channel mappings assigning nj bits to channel j is given by

E(Ah1,h2,...,hJ ) = Ah ·

( h
h1,...,hJ

)( n−h
n1−h1,...,nJ−hJ

)

( n
n1,...,nJ

)

where

h1 + h2 + . . .+ hJ = h, 0 ≤ hj ≤ nj (1 ≤ j ≤ J).

I. Goldenberg (Technion) Coding for Parallel Channels 19 / 53



Improved Bounds on the Error Probability for Parallel Channels Generalizing the Gallager and DS2 Bounds to Parallel Channels

Generalization of the DS2 Bound for Parallel Channels

Based on the random mapper approach, we obtain a
generalization of the DS2 bound for parallel channels.
General concept:

I Calculate DS2 bound for a specific channel mapping.
I Average the result over all channel mappings.

Resulting averaged bound is expressed in terms of the distance
spectrum of the code (or ensemble). This is the dividend gained
by using the random channel mapper.

I. Goldenberg (Technion) Coding for Parallel Channels 20 / 53



Improved Bounds on the Error Probability for Parallel Channels Generalizing the Gallager and DS2 Bounds to Parallel Channels

Statement of the Bound

Theorem (Generalization of the DS2 Bound for Parallel
Channels)
Under the above assumptions on the channel model, let p(y |x ; j)
designate the transition probability of the j-th channel (1 ≤ j ≤ J).
Then, the ML decoding error probability is upper bounded by

Pe ≤











n
∑

h=0

Ah





J
∑

j=1

αjA(λ, ρ; j , ψ(·; j))





h





J
∑

j=1

αjB(ρ; j , ψ(·; j))





n−h










ρ
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Improved Bounds on the Error Probability for Parallel Channels Generalizing the Gallager and DS2 Bounds to Parallel Channels

Statement of the Bound (Cont.)

where

A(λ, ρ; j , ψ(·; j)),
∑

y

ψ(y ; j)1− 1
ρ p(y |0; j)

1−λρ

ρ p(y |1; j)λ

B(ρ; j , ψ(·; j)),
∑

y

ψ(y ; j)1− 1
ρ p(y |0; j)

1
ρ

0 ≤ ρ ≤ 1, λ ≥ 0.

The functions ψ(·; j) are J probability tilting measures, subject to
optimization.
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Improved Bounds on the Error Probability for Parallel Channels Generalizing the Gallager and DS2 Bounds to Parallel Channels

Optimization of the tilting measures for the DS2 Bound
The optimal tilting measures are obtained by variational calculus, and
are given by

ψ(y ; j) = βj p(y |0; j) C(y ; j)ρ

C(y ; j) , 1 + k
(

p(y |1; j)
p(y |0; j)

)λ

.

The optimal parameters k and βj are related by the implicit equations

k =
δ

1 − δ

J
∑

j=1

∑

y∈Y

{

αjβ
1− 1

ρ

j p(y |0; j)C(y ; j)ρ−1
}

J
∑

j=1

∑

y∈Y

{

αjβ
1− 1

ρ

j p(y |0; j)C(y ; j)ρ−1
(

p(y |1; j)
p(y |0; j)

)λ
}
, δ ,

h
n

βj =

[

∑

y∈Y

p(y |0; j)C(y ; j)ρ

]−1

.

I. Goldenberg (Technion) Coding for Parallel Channels 23 / 53



Improved Bounds on the Error Probability for Parallel Channels Generalizing the Gallager and DS2 Bounds to Parallel Channels

Interim Notes and Observations

When the block length tends to infinity, this bound extends the
attainable channel regions as predicted by Liu et al. (as they relied
on special cases of the 1961 Gallager bound).

This bound makes use of Jensen’s inequality twice: Once for the
vector tilting measure Ψ

(m)
n (y) in the beginning of the derivation,

and a second time in the process of averaging over all possible
mappings.

Consequently, this version does not attain the random coding
exponent.

⇒ Hence, the motivation to derive another alternative of the DS2
bound which attains the random coding exponent (in this respect, a
stimulating discussion with Shlomo Shamai is acknowledged).
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Improved Bounds on the Error Probability for Parallel Channels Generalizing the Gallager and DS2 Bounds to Parallel Channels

Generalizing the DS2 Bound to Parallel Channels: 2nd
version

Recall that the random channel mapper assigns a coded bit to
channel j with probability αj , independent of other bits.

⇒ j may be interpreted as the internal state of a state-dependent
channel with output b = (y , j). We call this the channel state
information at the receiver (CSIR) model.

Resulting transition probability pB(b|x) is equivalent to an MBIOS
channel, so the DS2 bound may be applied directly.
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Improved Bounds on the Error Probability for Parallel Channels Generalizing the Gallager and DS2 Bounds to Parallel Channels

Statement of the Bound

Theorem (Generalized DS2 Bound for Parallel Channels, 2nd
Version)
The ML decoding error probability of a binary linear block code,
transmitted over a set of J parallel MBIOS channels with transition
probabilities p(y |x ; j), with a random mapping of bits to channels w.p.
αj , j = 1, . . . , J is upper bounded by

Pe ≤











n
∑

h=0

Ah





J
∑

j=1

α
1
ρ

j A(λ, ρ; j , ψ̃(y ; j))





h





J
∑

j=1

α
1
ρ

j B(ρ; j , ψ̃(y ; j))





n−h










ρ
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Improved Bounds on the Error Probability for Parallel Channels Generalizing the Gallager and DS2 Bounds to Parallel Channels

Statement of the Bound (cont.)

A(λ, ρ; j , ψ̃(y ; j)),
∑

y

(

ψ̃(y ; j)1− 1
ρ p(y |0; j)

1−λρ

ρ p(y |1; j)λ
)

B(ρ; j , ψ̃(y ; j)),
∑

y

ψ̃(y ; j)1− 1
ρ p(y |0; j)

1
ρ

0 ≤ ρ ≤ 1, λ ≥ 0.

The function ψ̃(y ; j) is a probability tilting measure, subject to
optimization.

I. Goldenberg (Technion) Coding for Parallel Channels 27 / 53



Improved Bounds on the Error Probability for Parallel Channels Generalizing the Gallager and DS2 Bounds to Parallel Channels

Interim Notes and Observations (cont’d)

Obtaining optimized bound requires optimization over a single
tilting measure ψ̃(y ; j) (as opposed to J tilting measures in the first
version).

The 2nd version of the generalized DS2 bound attains the random
coding exponent while the first version does not !

However, neither of these two bounds is uniformly tighter than the
other for general ensembles.
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Improved Bounds on the Error Probability for Parallel Channels The 1961 Gallager Bound for Parallel Channels

Generalizing the 1961 Gallager Bound to Parallel
Channels

Liu et al. (IEEE IT, April 2006) have generalized the 1961 Gallager
bound to the case of parallel channels.

They use the technique of obtaining a bound for a specific channel
mapping, and then averaging over all possible mappings (same as
1st version of DS2 bound).

Applying the CSIR model in this case yields the same bound.

The 1961 Gallager bound for parallel channels is less tight than
the 2nd version of the DS2 bound (similar to the single-channel
case).
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Improved Bounds on the Error Probability for Parallel Channels The 1961 Gallager Bound for Parallel Channels

Statement of the Bound

Theorem (Generalized 1961 Gallager Bound for Parallel
Channels, Liu et al. (IEEE IT, April 2006))
The ML decoding error probability of a binary linear block code,
transmitted over a set of J parallel MBIOS channels with transition
probabilities p(y |x ; j), with a random mapping of bits to channels w.p.
αj where j ∈ {1, . . . , J} is upper bounded by

Pe ≤ 2h(ρ)











n
∑

h=1

Ah





J
∑

j=1

αjZ (r ; j)





h 



J
∑

j=1

αjG(r ; j)





n−h










ρ

·







J
∑

j=1

αjG(s; j)







n(1−ρ)
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Improved Bounds on the Error Probability for Parallel Channels The 1961 Gallager Bound for Parallel Channels

Statement of the Bound (cont.)
where

r ≤ 0, s ≥ 0

and

G(r ; j) ,
∑

y

p(y |0; j)1−r f (y ; j)r

Z (r ; j) ,
∑

y

[

p(y |0; j)p(y |1; j)
]

1−r
2 f (y ; j)r

ρ ,
s

s − r
, 0 ≤ ρ ≤ 1

and f (·; j) is an arbitrary tilting measure, constrained to be
non-negative and even (i.e., f (y ; j) = f (−y ; j)).
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Improved Bounds on the Error Probability for Parallel Channels The 1961 Gallager Bound for Parallel Channels

Statement of the Bound (cont.)

By partitioning the code into constant Hamming-weight subcodes,
we obtain that the optimized tilting measures f (y ; j) are given by

f (y ; j) =

{

(1−c)

(

p(y |0;j)
1−s(1−ρ−1)

2 −p(y |1;j)
1−s(1−ρ−1)

2

)2

p(y |0;j)1−s+p(y |1;j)1−s

+
2c
(

p(y |0;j)p(y |1;j)
)

1−s(1−ρ−1)
2

p(y |0;j)1−s+p(y |1;j)1−s

}
ρ

s

, (ρ, s, c) ∈ [0,1]3.

The parameters ρ, s, c are optimized numerically.
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Improved Bounds on the Error Probability for Parallel Channels Special Cases

Special Cases of the Bounds for Parallel Channels

The union bound for Parallel Channels. A special case of both
versions of the DS2 bound and the 1961 Gallager bound.

Simplified sphere bound for Parallel Channels (extension of
Divsalar 1999 to parallel channels). A special case of both
versions of the DS2 bound and the 1961 Gallager bound.

Shulman-Feder (SF) bound for Parallel Channels. A special case
of the DS2 bound and the 1961 Gallager bound.
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Improved Bounds on the Error Probability for Parallel Channels Special Cases

Modified Shulman-Feder (MSF) bound

The Shulman-Feder bound contains a multiplication by the
quantity

max
1≤h≤n

(

Ah

2−n(1−R)
(n

h

)

)ρ

Problem: This quantity measures the maximum distance between
the distance spectrum of the code ensemble and that of the
random ensemble and can be considerably large.

Consequently, the bound is not so tight for some structured
ensembles of codes whose distance spectra largely deviate from
the binomial distribution for low Hamming weights (see, e.g.,
Twitto et al., IEEE IT 2007).

General idea behind MSF bound (Miller-Burshtein, IEEE IT 2001):
Use combination of SF bound with union bound.
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Improved Bounds on the Error Probability for Parallel Channels Special Cases

Modified Shulman-Feder (MSF) bound (cont’d)

Divide the set of normalized Hamming weights Ψn ,
{1

n ,
2
n , . . . ,1

}

into two disjoint subsets, Ψn = Ψ+
n ∪ Ψ−

n .

Apply the union bound for all codewords of normalized Hamming
weight ∈ Ψ+

n and SF bound for codewords of normalized
Hamming weight ∈ Ψ−

n .

The partition of Ψn may be optimized, yielding the largest MSF
(LMSF) region. Nickname: LMSF bound.

Typically, union bound is used for low and high Hamming weights
where the distance spectrum of typical ensembles deviates
considerably from that of the random code ensemble.

The LMSF bound is a special case of the 2nd version of the DS2
bound and the 1961 Gallager bound for parallel channels.
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Attainable Channel Regions

Attainable Channel Regions

Single channel (single parameter → noise threshold)
J parallel channels

I Communication is reliable if the average ML decoding word error
probability (bound) approaches 0.

I Attainable channel region: a set of J-tuples of channel parameters
for which the communication over these set of parallel channels in
reliable.

I Tightening existing upper bounds → extension of known attainable
channel regions.
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Attainable Channel Regions

Attainable Channel Regions - example
Turbo codes with R=1/3, two parallel AWGN channel,

1
=

2
=1/2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Channel 1: Es/N0

C
h
a
n
n
e
l 
2
: 
E

s
/N

0

TC k=3840, WEP=10
-2

TC k=3840, WEP=10
-3

Pw 0

Pw 1

Channel 1: SNR (normal scale)

C
h
a
n
n
e
l 
2
: 

S
N

R

I. Goldenberg (Technion) Coding for Parallel Channels 38 / 53



Attainable Channel Regions

Asymptotics

Let [C(n)] denote an ensemble of codes of length n.

The average distance spectrum of [C(n)] the ensemble is denoted
by A[C(n)]

h .

r [C(n)](δ) ,
ln A[C(n)]

h
n is the normalized exponent of the distance

spectrum, where δ , h
n is the normalized distance

The asymptotic growth rate of the distance spectrum is defined by
r [C](δ) , limn→∞ r [C(n)](δ)

Techniques for calculating r [C](δ) have been addressed in the
literature, e.g., RA codes (McElice, 1998), LDPC codes
(Burshtein-Miller, IEEE IT. 2004) and others.

Attainable channel regions are evaluated using the asymptotic
growth rate of the distance spectrum and the generalized 1961
and DS2 bounds.
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Applications for Turbo-Like Codes and Numerical Results Turbo Codes

Performance Bounds for Uniformly Interleaved Turbo
Codes

Consider the ensemble of uniformly interleaved turbo codes of
rate R = 1

3 .

The encoder consists of two convolutional encoders with
polynomials G(D) =

[

1, 1+D4

1+D+D2+D3+D4

]

.

Interleaver between the encoders is of length 1000.

Transmission takes place over parallel binary input AWGN
channels.

Each bit is equally likely to be assigned to one of the channels
(α1 = α2 = 1

2 ).
Eb
N0

on the first channel is set to 0 dB.
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Repeat-Accumulate Codes and Variations

Accumulate Puncturing
qN
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N
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Repeat-Accumulate Codes and Variations (cont.)

All ensembles: we choose a common rate of 1
3 , input block length

is N.

First ensemble: non-systematic repeat-accumulate codes
(McElice et al., Allerton 1998) - NSRA codes

Second ensemble: systematic and punctured repeat-accumulate
codes - SPRA codes.

Third ensemble: systematic and punctured
accumulate-repeat-accumulate codes - SPARA codes.
Denote α , M

3N to be the fraction of bits which do not pass through
the outer accumulator, but pass directly to the repetition code.
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Distance Spectra of Considered Ensembles

First ensemble (NSRA): distance spectrum derived by McElice et
al. (Allerton 1998):

r [C](δ) = max
0≤u≤min(2δ,2−2δ)

{

−
2
3

H(u) + (1 − δ)H
(

u
2(1 − δ)

)

+δH
( u

2δ

)}

where H is the binary entropy function.

Second and third ensembles: distance spectrum and asymptotic
growth rate derived using the techniques by Abbasfar et al.
(GLOBECOM 2004).
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Distance Spectra of Considered Ensembles

For SPRA codes:

r [C](δ) =

max
η,ρ1,ρ2

{

−
5
3

H
(

2ρ2 + η

2

)

+ η H
(

ρ1

η

)

+

(

2
3
− η

)

H

(

ρ2 − ρ1
2
3 − η

)

+

(

2
3
− δ +

2ρ2 + η

6

)

H





η

2
(

2
3 − δ + 2ρ2+η

6

)





+

(

δ −
2ρ2 + η

6

)

H





η

2
(

δ − 2ρ2+η
6

)



+ (η + ρ2 − 2ρ1) ln 3
}
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Attainable Channel Regions
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Distance Spectra of Considered Ensembles
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Discussion

Ensemble of SPARA codes approaches capacity very closely.
This is attributed to the spectral thinning effect (Perez et al., IEEE
IT Nov. 1996).
Computer simulation results indicate

I the superiority of SPARA codes over SPRA and NSRA codes
(similarly to their performance under ML decoding).

I For ensembles of SPARA codes, if we let α tend to zero, then the
iterative decoding cannot start ⇒ Unlike ML decoding, there is an
intermediate value of α for maximizing the performance of the
iterative decoder (whereas for ML decoding, α→ 0 is optimal).

I Possible solution for the iterative decoder: setting a small fraction of
the bits to be pilot bits which enable the iterative decoder to start.

I. Goldenberg (Technion) Coding for Parallel Channels 49 / 53



Summary

Outline

1 Background and Motivation

2 Preliminaries

3 Improved Bounds on the Error Probability for Parallel Channels

4 Attainable Channel Regions

5 Applications for Turbo-Like Codes and Numerical Results

6 Summary

I. Goldenberg (Technion) Coding for Parallel Channels 50 / 53



Summary

Summary

Improved upper bounds on the ML decoding error probability for
parallel channels have been derived.

These upper bounds considerably improve on previously-known
attainable channel regions.

The interconnections and relations between the bounds are
established.

Simpler upper bounds were derived as special cases of the
improved bounds (Liu et al., IEEE IT 2006).
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Summary (cont’d)

Analysis of asymptotic growth rates of the distance spectra of
some turbo-like ensembles, and in particular repeat-accumulate
codes and their modern variants (systematic and punctured RA
and ARA ensembles).

The above bounds for the repeat-accumulate codes and their
modern variants indicate that better performance are obtained
even under iterative decoding for ensembles whose growth rate of
their distance spectra resembles the binomial distribution of the
random code ensemble.
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Further Reading

This talk is based on the paper:

I. Sason and I. Goldenberg, “Coding for parallel channels:
Gallager bounds for binary linear codes with applications to
repeat-accumulate codes and variations,” accepted to IEEE Trans.
on Information Theory, February 2007.

Available at:

http://www.ee.technion.ac.il/people/sason/.

Thank you for your attention !
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