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Abstract

The performance of either structured or random turbo-block codes and binary, systematic block
codes operating over the additive white Gaussian noise (AWGN) channel, is assessed by upper bounds
on the error probabilities of maximum likelihood (ML) decoding. These bounds on the block and bit
error probability which depend respectively on the distance spectrum and the input-output weight
enumeration function (IOWEF) of these codes, are compared, for a variety of cases, to simulated per-
formance of iterative decoding and also to some reported simulated lower bounds on the performance
of ML decoders. The comparisons facilitate to assess the efficiency of iterative decoding (as compared
to the optimal ML decoding rule) on one hand and the tightness of the examined upper bounds on
the other.

We focus here on uniformly interleaved and parallel concatenated turbo-Hamming codes, and to
that end the IOWEFs of Hamming and turbo-Hamming codes are calculated by an efficient algorithm.
The usefulness of the bounds is demonstrated for uniformly interleaved turbo-Hamming codes at
rates exceeding the cutoff rate, where the results are compared to the simulated performance of
iteratively decoded turbo-Hamming codes with structured and statistical interleavers. We consider
also the ensemble performance of ‘repeat and accumulate’ (RA) codes, a family of serially concatenated
turbo-block codes, introduced by Divsalar, Jin and McEliece. Although, the outer and inner codes
possess a very simple structure: a repetitive and a differential encoder respectively, our upper bounds
indicate impressive performance at rates considerably beyond the cutoff rate. This is also evidenced
in literature by computer simulations of the performance of iteratively decoded RA codes with a
particular structured interleaver.



1. Introduction

Turbo codes, one of the most recent and dramatic discoveries in coding theory, have demonstrated

near Shannon limit performance on a Gaussian channel with relatively simple convolutional or

block component codes and large interleavers. For applications that require error correcting codes

to operate with much shorter delays, Berrou, Evano and Battail [8] have advocated block component

codes, maintaining turbo coding/ decoding principle. These codes, called turbo-block codes, exhibit

a coding gain that is considerably larger than that of the stand alone component block codes.

Moreover, the decoding complexity for these turbo-block codes is quite reasonable, as long as the

decoding complexity of the component block codes is so.

Simulation results demonstrated the importance and efficiency of turbo-block codes: Nickl, Ha-

genauer and Burkert [24] presented a possibility to approach Shannon’s capacity limit by 0.27 dB

using turbo-Hamming codes operating at a high coding rate of 0.981 bits/symbol. Huber, Schetelig

and Wachsmann [16] have simulated some turbo-Hamming codes for different types of interleavers,

providing some insight on the influence of the interleaver’s structure on the performance of these

codes. Pyndiah and his collaborators ([1],[2],[3],[13],[27],[28],[29],[30],[31]) have suggested an alter-

native suboptimal iterative decoding algorithm for these turbo-block codes, discussed the complex-

ity of the decoding process, implemented these ideas on hardware (especially for turbo-Hamming

codes) and examined the performance of these turbo-block codes for a binary-input AWGN and

Rayleigh fading channels. These turbo-Hamming codes were demonstrated to have a good perfor-

mance with the suboptimal iterative decoding algorithm for both channels. Hence, as evidenced

by most of the references here, a turbo-block code is one of the worthiest coding options in terms

of performance and decoding complexity for high code rate applications.

In addition to simulation results, theoretical upper bounds on the error probability of ML

decoding for block and turbo-block codes operating over the binary-input AWGN channel are

reported. Mostly, these bounds are based on the union bounding technique ([6],[7],[10],[36],[38]),

and therefore they apparently render useless results at rates exceeding the cutoff rate (R0), a region

where efficient complex codes demonstrate satisfactory performance.

Since explicit results for a particular chosen structure of an interleaver appears yet intractable,

the bounds are developed as averages over certain ensembles, featuring random coding properties.

Comparisons between bounds for ML decoding and simulation results of the iterative decoding

algorithm for some block and turbo-block codes, facilitate the theoretical assessment of the potential

good performance of these codes (referring to soft decision ML decoding), as well as the examination

of the efficiency of suboptimal and practical iterative decoding algorithms (as compared to the

optimal prohibitively complex ML decoding.
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The focus of this paper is directed towards the application of efficient bounding techniques

on ML decoding performance, which are not subjected to the deficiencies of the union bounds and

therefore provide useful results at rates reasonably higher than the cut-off rate, where union bounds

are usually useless. In particular, we apply some versions of the tangential sphere bounds [26],[32],

as well as original versions of Gallager’s 1963 bounds [33].

The paper is structured as follows: In section 2, we state our underlying assumptions and intro-

duce notations and relevant relations. In section 3, bounds on the decoding error probability of ML

decoding and iterative decoding simulation results are compared for binary, systematic block codes

(the simulation results are taken from the contribution of Lucas, Bossert and Breitbach[20],[21]).

Based on these comparisons and results presented by Soljanin and Urbanke [35], we discuss the

performance of the iterative decoding algorithm for the considered block codes (as compared to

soft decision ML decoding). In section 4, we apply our bounds on ML decoding for an ensemble of

random serially concatenated turbo-block codes, called ‘Repeat and Accumulate’ (RA) codes, that

were introduced by Divsalar, Jin and McEliece [11]. Finally section 5 focuses on turbo-Hamming

codes, where the upper bounds on the error probability of their soft decision ML decoding are

compared to iterative decoding simulation results (as presented by Huber, Schetelig and Wachs-

mann [16]) with respect to certain types of interleavers. Since in general our upper bounds for

turbo-block codes are based on the input-output weight enumeration function (IOWEF) of their

component codes, we derive analytically the IOWEF of Hamming codes in the appendix. This

derivation facilitates the determination of the IOWEF of the considered turbo-Hamming codes and

the application of our bounds for soft decision ML decoding. Finally, our conclusions are discussed

and summarized in Section 6.

2. Preliminaries

In this section, we state the underlying assumptions for our bounding technique, introduce nota-

tions and relations from [6],[7],[11],[12],[16],[21],[26],[32],[33], which apply to the discussion here on

block and turbo-block codes. We state further relations and comments useful to our analysis and

conclusions.

A. Assumptions

We assume throughout a binary-input additive white Gaussian noise (AWGN) channel having a

double-sided noise spectral density N0
2 . The modulation of the transmitted signals is antipodal,

which is coherently detected and ML decoded (with soft decision).

2



B. Notations and relations

B.1 Tangential sphere bound

The tangential sphere bound is an upper bound on the block error probability of ML decoding,

derived in [26]. Suppose that equi-energy signals are transmitted through a binary-input AWGN

channel corresponding to each one of the codewords of a linear and binary block code C. The energy

of each signal is E = nEs, when n designates the block length and Es is the energy transmitted

per symbol.

It can be shown that the tangential sphere bound is always tighter than the tangential bound

and the union bound at low and moderate values of Eb
N0

[26]. The properties of the tangential sphere

bound follow by the central inequality which governs this and other bounds ([12],[26] and references

therein)

Prob (A) ≤ Prob (z ∈ B, A) + Prob (z �∈ B) . (1)

In the case of the tangential sphere bound, A is an event that represents a block ML decoding error,

B is an n-dimensional cone with a half angle θ and radius r, and z is the Gaussian noise vector

added to the transmitted signal by the channel. Since an optimization is carried over r (r and θ

are related) for deriving the tightest upper bound on the block error probability, within this family,

it follows that this upper bound does not exceed 1 in contrast to the union bound, especially for

moderate and low values of Eb
N0

. The tangential sphere bound on the block error probability Pe is

based only on the distance spectrum {Sk}n
k=1 of the linear block code C and it reads:

Pe ≤
∫ +∞

−∞
dz1√
2π σ

e−
z2
1

2σ2




1 − γ

(
n − 1

2
,

r2
z1

2σ2

)

+
∑

k:
δk
2

<αk

Sk

[
Q

(
βk(z1)

σ

)
− Q

(
rz1

σ

)]
γ

(
n − 2

2
,

r2
z1

− β2
k(z1)

2σ2

)



+ Q

(√
2nREb

N0

)
,

(2)

where the following notations are used in (2):



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N0

2
,
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(
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)
r ,

βk(z1) =
rz1√

1 − δ2
k

4nEs

δk

2r
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√
1 − δ2

k

4nEs
.

(3)
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δk denotes the Euclidean distance between two signals that their corresponding codewords differ in

k symbols (k ≤ n). Thus, for the case of antipodal signals, δk = 2
√

kEs. Also,

γ(a, x) =
1

Γ(a)

∫ x

0
ta−1 e−t dt , a, x > 0 (4)

denotes the normalized incomplete gamma function.

In the upper bound (2), the optimal radius r (in the sense of achieving the tightest upper bound,

within this family of bounds) is determined by nulling the derivate of the bound (2) with respect

to the free parameter r, which yields the following optimization equation ([26]):




∑
k:

δk
2

<αk

Sk

∫ θk

0
sinn−3 φ dφ =

√
π Γ

(
n − 2

2

)

Γ
(

n − 1
2

)

θk = cos−1




δk

2r

1√
1 − δ2

k

4nEs


 .

(5)

In [32], we derive an upper bound on the bit error probability of linear block codes, based on the

concept of the derivation of the tangential sphere bound in [26]. This upper bound is based on the

IOWEF of the linear binary block code C (rather than its distance spectrum).

Let Bw,� be the number of codewords encoded by information bits of Hamming weight w having

also an overall Hamming weight of 	 (if the code C is systematic, then for 	 < w, Bw,� = 0). Define:

S′
� =

nR∑
w=1

(
w

nR

)
Bw,� 	 = 0, 1 , . . . , n , (6)

where R
[

bits
symbol

]
is the rate of the code C. The derived upper bound on the bit error probability

in [32] is similar to the upper bound on the block error probability (Eqs. (2)-(5)), with {S′
�}n

�=0

replacing the distance spectrum {S�}n
�=0 of the code C. The validity of the upper bounds on

the block and bit error probabilities is addressed in [32], where the existence and uniqueness of a

solution r to the optimization equation (5) (or the modified optimization equation that refers to

the upper bound on the bit error probability) is also proved. Efficient algorithms for solving the

optimization equations of the tangential sphere upper bounds on the block and bit error probabilities

are suggested in [32].
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B.2 Gallager’s 1963 bound for structured and random binary block codes

Gallager derived in [12] a general upper bound on the decoding error probability of ML decoded

binary block codes transmitted through a binary-input symmetric-output memoryless channel. New

observations on Gallager’s 1963 bound are presented in [33], and the upper bounds derived there

are applicable for upper bounding the ML decoding error probability of block and turbo-block

codes. The efficiency of the upper bounds was demonstrated for certain high rate turbo codes

with random binary, linear and systematic block component codes incorporated with a sufficiently

large interleaver. In these cases, a particular version of Gallager’s 1963 bound outperforms the

tangential sphere bound, as is demonstrated in [33], and therefore we apply here this advantageous

upper bound. The upper bound on the block error probability reads as follows:

Pe ≤ c(ρ) · 2nρR
{∫ +∞

−∞

[1
2

p0(y)
1

1+ρ +
1
2

p1(y)
1

1+ρ

]1+ρ
dy

}n

·
[

n∑
�=0

r�,n

(
n
	

)
λ(ρ)�

(
1 − λ(ρ)

)n−�
]ρ

0 ≤ ρ ≤ 1 , (7)

where n is the block length of the code, R is its rate and ρ is an optimized parameter in the interval

[0, 1] (for minimizing the upper bound on Pe). The conditional probability density functions of the

channel are denoted by p0 and p1, corresponding to the transmitted ‘0’ or ‘1’ respectively. Since the

considered channel is a binary-input symmetric-output memoryless channel, then p0(y) = p1(−y)

for −∞ < y < +∞. Moreover, based on the analysis in [33]:

λ(ρ) =
1
2

∫ +∞

−∞

[
p0(y) p1(y)

] 1
1+ρ

[1
2

p0(y)
1

1+ρ +
1
2

p1(y)
1

1+ρ

]ρ−1
dy∫ +∞

−∞

[1
2

p0(y)
1

1+ρ +
1
2

p1(y)
1

1+ρ

]1+ρ
dy

, (8)

which yields 0 ≤ λ(ρ) ≤ 1
2

for 0 ≤ ρ ≤ 1. In (7), {r�,n}n
�=0 is defined as follows:

r�,n =
S�

2−n(1−R)

(
n
	

) , 	 = 0, 1, 2 , . . . , n (9)

which is the ratio of the number of codewords in the code C with Hamming weight 	 and the

corresponding average number of codewords in a fully random block code having the same block

length n and rate R. Finally, c(ρ) in (7) is:

c(ρ) =




ρ−1
(
ρ−1 − 1

)ρ−1
, 0 < ρ < 1

1 , ρ = 0, 1
(10)
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noticing that 1 ≤ c(ρ) ≤ 2 for 0 ≤ ρ ≤ 1 [33].

The upper bound on the bit error probability takes on the same form as the upper bound on

the block error probability, as defined in Eq. (6) replacing though {S�}n
�=0 (the distance spectrum

of the code C) with {S′
�}n

�=0, Therefore, we define for the upper bound on the bit error probability:

r′�,n =
S′

�

2−n(1−R)

(
n
	

) , 	 = 0, 1, 2 , . . . , n (11)

and then the upper bound on the bit error probability is the same expression as that for the upper

bound on the block error probability (7), but for {r′�,n}n
�=0 replacing the sequence {r�,n}n

�=0. The

upper bound on the bit error probability derived in [33], reads then:

Pb ≤ c(ρ) · 2nρR
{∫ +∞

−∞

[1
2

p0(y)
1

1+ρ +
1
2

p1(y)
1

1+ρ

]1+ρ
dy

}n

·
[

n∑
�=0

r′�,n
(

n
	

)
λ(ρ)�

(
1 − λ(ρ)

)n−�
]ρ

, 0 ≤ ρ ≤ 1 . (12)

The ensemble performance of random, binary and systematic (n, k) block codes is investigated in

[33], and based on (12) the following upper bound on the average bit error probability for ML

decoding is derived,

Pb ≤ c(ρ) · 2nρR · λ(ρ)ρ
{∫ +∞

−∞

[1
2

p0(y)
1

1+ρ +
1
2

p1(y)
1

1+ρ

]1+ρ
dy

}n

, 0 ≤ ρ ≤ 1 . (13)

Moreover, for the extended ensemble of random binary (n, k) block codes (which are not necessarily

systematic), the following upper bound on the average bit error probability for ML decoding is

derived in [33]:

Pb ≤ c(ρ) · 2nρR ·
(

1
2

)ρ {∫ +∞

−∞

[1
2

p0(y)
1

1+ρ +
1
2

p1(y)
1

1+ρ

]1+ρ
dy

}n

, 0 ≤ ρ ≤ 1 .

Since for 0 ≤ ρ ≤ 1, we get 0 ≤ λ(ρ) ≤ 1
2

, the upper bound on the bit error probability for the

ensemble of random, binary and systematic (n, k) block codes is tighter than the corresponding

upper bound for the ensemble of random, binary (n, k) block codes. The average upper bound on

the block error probability is the same though for the two ensembles above (i.e., for systematic and

non-systematic codes) due to their spectral distance equivalence and reads:

Pe ≤ c(ρ) · 2nρR
{∫ +∞

−∞

[1
2

p0(y)
1

1+ρ +
1
2

p1(y)
1

1+ρ

]1+ρ
dy

}n

, 0 ≤ ρ ≤ 1 . (14)
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It is noted that the upper bound on the block error probability (14) is the same as the known

random coding bound of Gallager (from 1965), except for the factor c(ρ) that does not exceed 2 as

0 ≤ ρ ≤ 1, as is pointed out also in [12].

For the particular case of a binary-input AWGN channel, we get from Eq. (8) (based on the

analysis in [33]):

λ(ρ) =
1
2

∫ +∞

−∞
exp(−x2)

[
cosh

(
2

√
REb

N0

x

1 + ρ

)]ρ−1

dx

∫ +∞

−∞
exp(−x2)

[
cosh

(
2

√
REb

N0

x

1 + ρ

)]ρ+1

dx

(15)

and also,

∫ +∞

−∞

[1
2

p0(y)
1

1+ρ +
1
2

p1(y)
1

1+ρ

]1+ρ
dy

=
1√
π

exp
(
−REb

N0

) ∫ +∞

−∞
exp(−x2) ·

[
cosh

(
2

√
REb

N0

x

1 + ρ

)]1+ρ

dx . (16)

For the numerical evaluation of the integrals (15),(16), the Gauss-Hermite integration technique

was performed.

B.3 Types of interleavers

B.3.1 Uniform interleaver A uniform interleaver of length N is a statistical interleaver which

maps a given input word of weight 	 into all its
(

N
	

)
distinct permutations, equally weighted.

Note that the identity permutation (that doesn’t permute the bits of the word) is also considered

as a possible “interleaving”. This type of statistical interleaving was introduced in [6], permitting

an easy derivation of the distance spectrum (and the IOWEF) of parallel and serial concatenated

turbo codes, relying on the IOWEFs of its components.

B.3.2 Block interleaver A block interleaver is a structured interleaver in which N = n1n2

bits are arranged in a matrix of n1 rows and n2 columns. After the permutation of the bits, we

get simply the transpose of the matrix (i.e., the bits are arranged in the matrix row by row and

transmitted column by column).

B.3.3 Diagonal interleaver A diagonal interleaver is a structured interleaver in which the input

bits are arranged in the rows of a matrix, and the permutation of the bits is performed in such a
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way, that the data is transmitted in cyclic diagonals, in a reverse direction. This type of interleaving

is introduced in [16] where its efficiency for turbo-Hamming codes is demonstrated.

B.4 Some notations for the IOWEF

In general, for a binary, systematic linear (n, k) block code C, let Aw,j be the number of codewords

having an information weight w and parity weight j. Moreover, for a binary block code (not

necessarily systematic), let Bw,� be the number of codewords encoded by information bits of weight

w having also an overall Hamming weight of 	. Therefore, if the code C is systematic, we get the

relation: Aw,j = Bw,w+j for 0 ≤ w ≤ k and 0 ≤ j ≤ n − k . The notion of Aw,j is more convenient

for analyzing the performance of parallel concatenated turbo codes with a uniform interleaving

(as for example the turbo-Hamming codes, discussed in section 5), while on the other hand the

notation of Bw,� is preferred for analyzing the performance of serially concatenated turbo codes

with a uniform interleaving (as for example the RA codes, discussed in section 4).

B.5 Repeat and accumulate (RA) codes

In [11], Divsalar et al. introduce an ensemble of turbo-like codes, called there RA codes. The

general idea in these codes is that an information block of length N is repeated q times, scrambled

by a uniform interleaver of length qN , and then encoded by a differential encoder. Although the

differential encoder can be viewed as a rate–1 recursive convolutional encoder, it can also be treated

as a binary block code of rate 1 with the following generator matrix G:

G =




1
1

1

1 0
1

1
1

1 1
1

1
1




, (17)

of dimensions (qN)× (qN), playing the role of an accumulator. Moreover, the repetitive outer code

is also a simple (structured) binary and systematic (qN, N) block code, of rate R = 1
q . Therefore,

RA codes can be viewed as an ensemble of serially concatenated turbo-block codes. It is also noted

in [11] that B
(N)
w,� the average number of codewords in the ensemble of uniformly interleaved (qN, N)
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RA codes having an information weight w and an overall Hamming weight 	 is

B
(N)
w,� =

(
N
w

) (
qN − 	
�qw/2�

) (
	 − 1

�qw/2	 − 1

)
(

qN
qw

) , (18)

where 0 ≤ w ≤ N and 0 ≤ 	 ≤ qN , and where �x�, �x	 denote respectively the maximal and

minimal integers that satisfy the inequality �x� ≤ x ≤ �x	.

B.6 A simulated lower bound for soft decision ML decoding

The simulated lower bound on the block error probability of a binary block code C with soft

decision ML decoding is introduced in [21]. The bound is based on examining the performance

of a hypothetical decoder which has access also to the true sequence (Genie aided): the all-zero

codeword is transmitted as an all 1–sequence (‘0’ and ‘1’ are mapped to ‘+1’ or ‘-1’ respectively).

Suppose the decoder receives the vector r = (r1, r2 , . . . , rn) and define rH = (x1, x2, . . . , xn),

such that xi = 0 or 1 if ri is positive or negative respectively (a hard decision). If rH ∈ C, then

the Euclidean distance between the vector r and each one of the two vectors rH and the all 1–

sequence are measured. The decision on which signal was transmitted is based on the minimal

Euclidean distance between the two measured distances. If rH �∈ C, then this hypothetical decoder

decided correctly that the all-zero codeword was transmitted. Clearly, computer simulations of the

performance of that decision rule, as in [21], yields a lower bound on the block error probability for

soft decision ML decoding.

3. The Performance of the Iterative Decoding Algorithm for

Binary, Systematic and Linear Block Codes

In this section, we discuss the degradation in performance of the suboptimal and practical iterative

decoding algorithm derived in [21], as compared to bounds on the performance of soft decision ML

decoding. The latter is known to be an optimal decoding rule, in the sense of minimizing the block

error probability, but is prohibitively complex to implement for most of the block codes. The exact

evaluation of performance, though possible for very selected classes of block codes, is commonly

intractable and therefore we resort to bounds (as is also performed in [21]). However, one of the

aspects in the discussion here is that we narrow the gap between the simulated lower bound for

soft decision ML decoding in [21] and the ubiquitous union bound, by applying improved upper

bounds (that are considerably more efficient than the union bound especially at rates exceeding

the cutoff rate of the channel). Some versions of the tangential sphere bound [26], [32] (see also

9



2.B.1) and also some original version of Gallager’s 1963 bound [33] (see also 2.B.2) are applied.

These upper and lower bounds for the soft-decision ML decoding on one hand and the iterative

decoding simulation results on the other, facilitate to assess the loss in performance due to the

iterative decoding algorithm in [21], for a variety of binary and systematic block codes.

The improved upper bounds introduced here are based on the distance spectrum or the IOWEF

of the considered block code, to get respectively upper bounds on the block and bit error probabili-

ties of soft decision ML decoding. Therefore, for some of the structured block codes examined here,

where the computation of their distance spectrum or their IOWEF are not available, we compare

the simulation results of the iterative decoding rule from [21], with some upper bounds on the

bit/block error probability of soft-decision ML decoding for an ensemble of random, binary and

systematic (n, k) block codes with the same parameters of n, k as of the structured block codes

under examination (2.B.2). In these cases, the comparison with the random ensemble of binary

and systematic block codes, seems to be more appropriate than comparing the performance of such

a binary and systematic (n, k) block code with a non-systematic convolutional code of the same

code rate R, as is reported in [21].

In Figs. 1–5, comparisons between the performance of the iterative decoding algorithm [21]

and bounds on the block error probability of soft decision ML decoding are presented for some

structured block codes of moderate length. These block codes, were already investigated in [21],

however the tangential sphere bounds were added here and their advantage over the union bound

in Q-form is demonstrated. It is interesting to note, that the iterative decoding results in [21] for

the (42, 21) double circulant (DC) code and (64, 42) Reed-Muller (RM) code fall very close to the

corresponding tangential sphere upper bounds of these codes (see Figs. 1 and 5). Moreover, for the

block codes examined in Figs. 1–5, the tangential sphere bound is a rather efficient upper bound

on the block error probability for soft decision ML decoding, as evidenced by the simulated lower

bound. The suboptimality of the iterative decoding algorithm [21] is also indicated, as compared to

the optimal ML decoding rule. This observation is consistent with results in [32], considering turbo

codes with convolutional component codes, where it was demonstrated there that in certain cases,

the upper bounds on the block and bit error probabilities of ML decoding fall below simulated

performance of iterative decoding, pointing on the mild suboptimality of the iterative decoding for

moderate and low values of Eb
N0

.

The degradiation in performance of the iterative decoding algorithm as compared to ML decod-

ing for certain structured binary block codes of moderate length, is summarized in Table 1 (based

on Figs. 1–5).

It is noted that the range of values of the energy per bit to noise spectral density
(

Eb
N0

)
required
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for soft-decision ML decoding is determined for each considered block code by the tangential sphere

bound on the block error probability and also by the simulated lower bound in [21] (see also 2.B.6).

In Figs. 6 and 7, the performance of the iterative decoding algorithm in [21] is examined for

two structured long block codes. The examined block codes in Figs. 6,7 are respectively the (1023,

781) EG (Euclidean Geometry) code and also a product (3969, 1369) code, constructed by a di-

rect product of two (63, 37) EG codes. As is demonstrated by examples in [37], the full distance

spectrum of a product code is not completely determined by the distance spectrum of its compo-

nent codes, but only for relatively low Hamming weights of the product code. In particular, the

computation of the distance spectrum of the considered product code, cannot be fully evaluated

from the distance spectrum of the (63, 37) EG code. On the other hand, the direct calculation of

the distance spectrum of the considered product code based on its generator matrix is impractical,

due to the enormous number of codewords. Moreover, as for the considered structured block code

in Fig. 7, calculating its IOWEF seems to be problematic (bounds on the distance spectrum of

arbitrary EG codes are derived in [17], but the derivation of the corresponding IOWEF seems not

to appear in the literature). Therefore, the performance of the iterative decoding algorithm [21]

for structured, binary and systematic long block codes is compared in Table 2 to upper bounds for

ML decoding on the bit error probability for the ensemble of random, binary and systematic block

codes having the same length and rate.

Based on the results presented in Tables 1 and 2, we conclude that for relatively simple struc-

tured block codes, the degradation in performance due to the suboptimality of the iterative decoding

algorithm is reasonable, as compared to soft decision ML decoding. On the other hand, the loss in

performance is increased with the complication of the code’s structure and the increased number of

the codewords, as is indicated by comparing the estimated loss in the suboptimality of the iterative

decoding algorithm (compared to ML decoding) in Tables 1 and 2.

These conclusions are consistent also with those in [32], considering turbo codes with recursive

systematic convolutional codes as components. It is demonstrated there that the degradation in

the performance of the iterative decoding, as compared to soft-decision ML decoding, increases

with the increased number of the component codes and the interleaver length.

4. The Ensemble Performance of RA Codes

The ensemble performance of uniformly interleaved RA codes is considered by Divsalar, Jin and

McEliece [11]. The structure of these codes and the expressions for the IOWEF of this ensemble

of codes are introduced in 2.B.5 (based on the analysis in [11]).
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Based on the IOWEF of these RA codes (Eq. (18)), the distance spectrum of some ensembles of

(qN, N) RA codes, are illustrated in Fig. 8, versus the normalized Hamming weight of the codewords

(the normalization relates to block length qN), where N = 1024 and q = 2, 3, 4. It is observed

there that for a fixed value of N , the number of codewords with relatively low Hamming weights

is decreased by increasing the value of q (although the overall number of codewords (2N ) remains

constant). Therefore, it is indicated in Fig. 8 that the ensemble performance of the uniformly

interleaved and serially concatenated RA codes is improved by increasing the value of q, as expected

(since the number of repetitions of the outer encoder is increased and the interleaver length qN is

also increased).

Upper bounds on the block and bit error probabilities of soft decision ML decoding for uniformly

interleaved RA codes, are illustrated in Fig. 9. The usefulness of the tangential sphere bounds

[26],[32] is demonstrated at rates considerably exceeding the cutoff rate of the channel: for q = 3, 4

(the code rate of the RA code is 1
3 or 1

4 respectively), the cutoff rate of the binary-input AWGN

channel corresponds to Eb
N0

= 2.03 and 1.85 dB respectively. From Fig. 9, it is indicated that

for q = 3, the tangential sphere upper bound on the bit error probability [32], yields 10−5 at
Eb
N0

= 1.58 dB (i.e, 0.45 dB below the value of Eb
N0

that corresponds to the cutoff rate). Moreover,

for q = 4, this improved upper bound equals 10−5 at Eb
N0

= 0.79 dB (that is 1.06 dB below the value

of Eb
N0

that corresponds to the cutoff rate, but 1.59 dB above the value of Eb
N0

that corresponds to

the capacity of the binary-input AWGN channel). On the other hand, it is indicated in Fig. 9, that

the union bounds in Q-form are useless at rates beyond the cutoff rate of the channel, as expected

for long enough block codes (the interleaver length for these RA codes is 3072 or 4096 for q = 3, 4

respectively).

Based on the analysis in [11] for uniformly interleaved RA codes of sufficiently large block

lengths: for values of Eb
N0

above a certain value γ (which depends on the parameter q), the upper

bound on block error probability of the ensemble of these (qN, N) RA codes, behaves asymptotically

(for large values of N) like Nβ , where β = −
⌈

q−2
2

⌉
. Therefore, for q = 3, 4, the upper bound on the

block error probability behaves asymptotically like 1
N , for Eb

N0
> γ. Based on the analysis in [11],

γ = 1.11 or 0.31 dB for q = 3, 4 respectively, considering the asymptotic case where N → ∞. It

is demonstrated in Fig. 9 that the upper bounds on the block error probability of these ensembles

of (qN, N) RA codes do not differ too much for moderate and high values of Eb
N0

, where N = 1024

and q = 3, 4. That verifies the same basic trend of the block error probability for these values of q.

The tangential sphere upper bound [26] and the union bound in Q-form (referring to soft-

decision ML decoding and examined for a uniform interleaver), are compared with some simulation
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results in [11], for the iterative decoding algorithm for a specific structured interleaver, where

N = 1024 and q = 3, 4 (see Figs. 10,11). It is indicated (especially in Fig. 10), that the error floor

of these RA codes is improved by this specific choice of interleaver (in comparison to the error

floor that corresponds to the analysis referring to uniform interleaving). On the other hand, the

tightness of the tangential sphere bound for moderate and low values of Eb
N0

is demonstrated by

Figs. 10,11, based on a comparison of this upper bound of ML decoding with the iterative decoding

simulation results from [11] (although the structured interleaver simulated in [11], is advantageous

over the statistical uniform interleaver).

5. Turbo-Hamming Codes

In this section, we discuss (parallel concatenated) turbo-Hamming codes of the following structure:

the component codes are two identical (2m − 1, 2m − m − 1) Hamming codes and the interleaver

operates on the bits of 2m − m − 1 different Hamming codewords, having thus an interleaver

length N of (2m − m − 1)2 bits. As in general the interleaver length N of turbo-Hamming codes

is not uniquely determined by its Hamming component codes (in general, N should be an integer

multiple of 2m−m−1), it therefore provides a flexibility in the design of the turbo-Hamming codes

in contrast to product codes which are constructed from the same component codes.

In subsection 5.A, we describe the algorithm derived in the appendix, for the calculation of the

IOWEF of (2m − 1, 2m − m − 1) Hamming codes (when m ≥ 3). In subsection 5.B, we derive

the IOWEF for the ensemble of these turbo-Hamming codes, when the statistical expectation is

performed over the uniform interleaver of length N . Finally, in subsection 5.C, we discuss the

ensemble performance of these turbo-Hamming codes, as reflected by the tangential sphere upper

bounds on the bit error probability of soft decision ML decoding and by a comparison of these

bounds for ML decoding with simulation results for iteratively decoded turbo-Hamming codes with

structured and statistical interleavers [16].

A. A summary of the algorithm used for calculating the IOWEF of the

(2m − 1, 2m − m − 1) Hamming codes

The IOWEF of the (7, 4) Hamming code is straightforwardly derived in [6] based on its 16 code-

words. However, since the number of codewords of a general (2m − 1, 2m − m − 1) Hamming

code increases considerably with the increased value m, it is obvious that the approach in [6],

used for the derivation of the IOWEF of this particular Hamming code, is impractical for m ≥ 5

(already for m = 5, there are more than 67 · 106 Hamming codewords, and therefore checking
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the Hamming weights of each one of the individual codewords becomes rather tedious). In the

appendix, we present an efficient analytical algorithm for the derivation of IOWEF for a general

(2m − 1, 2m −m− 1) Hamming code. The steps of the algorithm are summarized here adhering to

the notations in section 2.B.4.

Step 0: Determine: A0,0 = 1 and A0,j = 0 for 1 ≤ j ≤ m.

Step 1: Calculate the coefficients A1,j and A2,j , (0 ≤ j ≤ m), based on equations (A.1) and (A.6)

respectively.

Step 2: Calculate the coefficients Ai,j

(
3 ≤ i ≤ �2m−m−1

2 � , 0 ≤ j ≤ m
)

based on the recursive

equation (A.9) and the initial values of Ai,j calculated in step 1.

Step 3: Calculate all the rest of the coefficients Ai,j (�2m−m−1
2 �+ 1 ≤ i ≤ 2m −m− 1 , 0 ≤ j ≤ m)

based on equation (A.10) and the coefficients determined in steps 0–2.

The IOWEF of two Hamming codes are presented in Figs. 12,13: log10(Ai,j) is plotted as a

function of the information weight i and the parity weight j of the Hamming codewords (where

0 ≤ i ≤ 2m − m − 1 and 0 ≤ j ≤ m).

B. Derivation of the IOWEF for the ensemble of turbo-Hamming codes with

uniform interleaving

The IOWEF of the ensemble of (parallel concatenated) turbo-Hamming codes (Cp), with two

identical (2m − 1, 2m − m − 1) Hamming codes (C) as components and a uniform interleaver of

length N , has the following form:

ACp(W, Z) =
N∑

i=0

J∑
j=0

A
Cp

i,j W i Zj , (19)

where N = (2m − m − 1)2 and J = 2m(2m − m − 1) are the number of information bits and

parity bits of the turbo-Hamming code. Equations (8),(16)-(18) in [6] facilitate to find the IOWEF

of the considered ensemble of turbo-Hamming codes Cp, based on the IOWEFs of its component

codes. However, to circumvent the need to calculate polynomials (including calculations of partial

derivatives of high orders, as results from Eq. (17) in [6]), the complexity of the following algorithm

is reduced by operating on matrices instead of polynomials.

For the generality of the proposed method here, we consider the general case where the compo-

nent codes of a (parallel concatenated) turbo-block code are (n1, k1) and (n2, k2) binary systematic

block codes, denoted here as C1 and C2, respectively. The uniform interleaver in the general case
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is of length N = sk1 = 	k2, where 	, s are integers, operating on N bits. Therefore, s codewords

are encoded by the block code C1, 	 codewords are encoded by the block code C2, and the rate of

the overall parallel concatenated code is:

R =
1

n1
k1

+ n2
k2

− 1
bits

symbol
. (20)

The IOWEFs of its component codes are represented by the following matrices: P1 = [AC1
i,j ]

(0 ≤ i ≤ k1, 0 ≤ j ≤ n1 − k1) is a matrix of dimension (k1 + 1) × (n1 − k1 + 1) for the block code

C1, and similarly P2 = [AC2
i,j ] is a matrix of dimension (k2 + 1) × (n2 − k2 + 1) for the block code

C2.

The IOWEF constructed of s codewords of block code C1 can be represented by matrix Q1 of

dimensions (sk1 +1)×
(
s(n1−k1)+1

)
, resulting in s−1 consecutive two-dimensional convolutions

of matrix P1. This matrix represents the IOWEF of the (sn1, N) block code. Similarly, the

IOWEF constructed by 	 codewords of block code C2 can be represented by a matrix of dimensions

(	k2 + 1) ×
(
	(n2 − k2) + 1

)
resulting in 	 − 1 consecutive two-dimensional convolutions of matrix

P2. Matrix Q2 represents the IOWEF of the (	n2, N) block code. These operations, performed on

matrices, are equivalent to equation (16) in [6], referring to polynomials. It is noted that the (i+1)th

row of such a matrix refers to the coefficients of the conditional IOWEF of the corresponding code,

if the information weight of the binary systematic code is i. Therefore, the calculation of a partial

derivative order i, used for calculating the conditional IOWEF from the IOWEF code (equation (17)

in [6]) is avoided here.

Finally, the matrix S = [ACp

i,j ] representing the IOWEF turbo-block code Cp is determined by

calculating each one of the N + 1 rows separately: the (i + 1)th row of matrix S (0 ≤ i ≤ N) is(
N
i

)−1

times the one-dimensional convolution between the two vectors in the (i + 1)th row of

matrices Q1 and Q2 (both matrices have the same number of rows, as the equality: sk1 = 	k2

holds). This operation on vectors is analogous to equation (18) in [6], that refers to polynomials.

The algorithm suggested here is very efficient, as it operates only on matrices and vectors.

Moreover, one and two dimensional convolutions are built-in functions in some general computer

facilities, and therefore this algorithm is easily implemented . For the particular case where C1 and

C2 are similar binary systematic block codes and also s = l (as in our case here), the complexity

of the algorithm is further reduced due to the equalities: P1 = P2 and Q1 = Q2.

The IOWEF of two turbo-Hamming codes are presented in Figs. 14,16: log10 (Ai,j) is plotted,

as a function of the information weight i and the parity weight j of the codewords (where 0 ≤ i ≤ N

and 0 ≤ j ≤ J).
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C. Upper Bounds on the bit error probability of soft decision ML decoding

for turbo-Hamming codes

In this section we apply some upper bounds on the bit error probability of soft decision ML

decoding for turbo-Hamming codes, and compare these bounds with simulation results of the

iterative decoding algorithm [16], where different types structured and statistical of interleavers of

length N are considered.

The ensemble performance of turbo-Hamming codes with (7, 4) Hamming component codes

and a uniform interleaver of length N = 16, is analyzed in [6], relying on the union bounding

technique (in its looser exponential form). In general, for large enough values of N , the usefulness

of the union bounding technique (even in its Q-form), is limited to rates below the cutoff rate of

the channel. Therefore, we apply here in addition to the union bound (in its Q-form), an improved

upper bound that is a version of the tangential sphere bound, derived in [32].

The usefulness of the later bound is demonstrated for these ensembled codes, at rates exceeding

the cutoff rate of the binary-input AWGN channel, where the performance of the iterative decoding

is satisfactory, but the union bounds become useless (see Figs. 15,17). For example, in Fig. 17,

the rate R = 0.722 bits/symbol turbo-Hamming code is constructed by the two identical (31, 26)

Hamming codes and a uniform interleaver of length N = 676. The value of Eb
N0

that corresponds

to the cutoff rate of the binary-input AWGN channel is 3.32 dB. By the union bounding technique

(Q-from), the upper bound on the bit error probability yields 10−3 at Eb
N0

= 3.38 dB, while with the

version of the tangential sphere bound from [32], the same upper bound on the bit error probability

(10−3) is achieved at Eb
N0

= 3.02 dB (an improvement of 0.36 dB).

Moreover, it is reflected in Figs. 15 and 17 that the upper bounds on the bit error probability

of soft decision ML decoding are sufficiently close to the iterative decoding simulation results [16],

at rates below the cutoff rate of the channel.

Finally, based on the insight provided in [16] for the influence of the interleaver structure on

the ensemble performance of turbo-Hamming codes and the advantage of the diagonal interleaver

over the block and uniform interleavers (as is indicated also in Figs. 15,17), we get some results

substantiating the advantage of this diagonal interleaver for a general value of m ≥ 3 (and not only

for m = 3, as explained in [16]). This is concluded straightforwardly, based on the interpretation

in [16], and are therefore summarized here briefly. For a block interleaver, the quantity of the

different numbers of check equations per data symbol increases linearly with m (equals 2m − 3,

for m ≥ 3). On the other hand, for a diagonal interleaver, the quantity of the different numbers

of check equations per data symbol is constant for m ≥ 4, and equals 3. Therefore, the quantity
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of the different numbers of check equations per data symbol is smaller for a diagonal interleaver

than for a block interleaver. As expected the average number of check equations per data symbol

is independent on the type of the interleaver. On the other hand, the standard deviation of the

quantity of the different number of check equations per data symbol is an increasing function of m

for a block interleaver, in contrast to the case for a diagonal interleaver, where it is approximately

constant and gets its maximal value for m = 5. The results above are summarized in Table 3.

Based on the insight provided in [16], that the interleaving scheme is improved by choosing

a permutation, such that the standard deviation of the number of check equations per symbol is

reduced, it follows that for a turbo-Hamming code the diagonal interleaver provides better perfor-

mance than block interleaving. Finally, the turbo-Hamming codes considered here, can be viewed

as a direct product code of two identical Hamming codes, excluding the m2 parity bits encoded

by the parity bits of its components. Therefore, the code rates of these turbo-Hamming codes

are slightly above the corresponding rates of the product codes having the same component codes.

There is however a slight associated degradation in their performance, in comparison to product

codes, as is evidenced by simulation results in [16].

6. Summary and Conclusions

The performance of structured binary, systematic block codes operating over the Gaussian channel

is assessed by bounds on the error probability of soft decision ML decoding and is compared to

reported results of the suboptimal iterative decoding algorithm [21]. It is observed that for such

block codes of short length, the degradation in the performance of the iterative decoding algorithm

is moderate (as compared to ML decoding). On the other hand, for long block codes that possess

also a large number of codewords, the degradation in performance of the suboptimal algorithm is

considerably increased. These conclusions based on comparisons between the two decoding rules

for a variety of block codes, are consistent also with previous results reported for turbo codes

with recursive systematic convolutional codes. It is demonstrated here that the degradation in the

performance of the iterative decoding algorithm as compared to optimal ML decoding, increases

considerably for complex and long enough structured block codes (see Tables 1,2).

Our bounding techniques are based on the tangential sphere bounds [26],[32] and some versions

of the Gallager’s 1963 bound [12],[33]. There is a slight improvement in the upper bound on the

bit error probability (derived from Gallager’s 1963 bound) [33] where the ensemble of random,

binary and systematic (n, k) block codes is considered, instead of the whole ensemble of random,

binary block codes (including also the non-systematic block codes), as is indeed demonstrated here.

The error exponents of the upper bounds for these two ensembles of codes are evidently the same
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(asymptotically if n → ∞) as are also the upper bounds on the block error probability for these

two ensembles of codes.

Although, the outer and the inner code components of uniformly interleaved and serially con-

catenated RA codes possess a very simple structure: a repetition and a differential encoder respec-

tively, the tangential sphere bounds on their block and bit error probabilities indicate impressive

performance at rates exceeding the cutoff rate. This is also evidenced by simulations of the iterative

decoding algorithm (reported by Divsalar, Jin and McEliece) for a specific structured interleaver

(evidently better than the statistical uniform interleaver, as is demonstrated in [11]).

We focus here on parallel concatenated turbo-Hamming codes, and as the upper bounds on

the block and bit error probabilities rely on the distance spectrum and IOWEF codes respectively,

efficient algorithms are derived for their calculation. The tangential sphere upper bounds applied to

ML-decoded uniformly interleaved turbo-Hamming codes are compared with simulation results for

iterative decoding (with some types of interleavers) reported by Huber, Schetelig and Wachsmann

[16]. Finally, based on the insight provided in [16] for the advantage of the diagonal interleaver

over the block and uniform interleavers for these turbo-Hamming codes, we present some further

analytical results related to the comparison between diagonal and block interleavers for these codes

(see Table 3).

18



Appendix: Derivation of IOWEF for (2m − 1, 2m − m − 1) Hamming Codes

The IOWEF of a binary, linear and systematic (n, k) block code is of the form:

W (x, y) =
k∑

i=0

n−k∑
j=0

Ai,j xiyj , where Ai,j denotes the number of codewords with information weight

i and parity weight j (0 ≤ i ≤ k , 0 ≤ j ≤ n − k).

The derivation of IOWEF for (2m − 1, 2m − m − 1) Hamming codes is based on its particular

algebraic structure: In systematic form, the vectors of the parity-bits in the generator matrix G are

all the binary vectors of length m, with a Hamming weight of at least 2. These vectors of length

m bits are the parity bits of all the 2m − m − 1 Hamming codewords, encoded by 2m − m − 1

information bits of weight i = 1. As Hamming codes are linear, we get A0,0 = 1 (that corresponds

to the all-zero codeword), and A0,j = 0 for 1 ≤ j ≤ m. Moreover, based on this particular property

of Hamming codes:

A1,0 = A1,1 = 0 and also A1,j =
(

m
j

)
for 2 ≤ j ≤ m . (A.1)

For calculating the coefficient A2,1, we address the following two cases:

1. For any codeword c having an information weight i = 1 and parity weight j = 2, there are

m − 2 codewords having an information weight i = 1 and parity weight j = 3, such that

their sum c + c′ is a codeword with an information weight i = 2 and parity weight j = 1.

The reason is that for Hamming codes, the binary vectors of the parity bits are all the

vectors of length m with Hamming weights of at least 2, and therefore, for every chosen

parity vector of weight j = 2, there are m − 2 other parity vectors of weight j = 3, that

each one of them differs from the first vector in a single place (the two parity vectors with

a unique ‘1’ that also differ from the first vector in a single place are not accepted, since

the parity bits of codewords with information weight i = 1 have weights j ≥ 2).

2. For any codeword c having an information weight i = 1 and parity weight j ≥ 3, there are

m codewords c′ with an information weight i = 1 and a parity weight j ≥ 2, such that their

sum c + c′ is a codeword with information weight i = 2 and a parity weight j = 1. The

argument is based again on the particular vectors of parity bits of the Hamming codewords.
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Therefore, we find:

A2,1 =
1
2




m∑
j=3

[
m

(
m
j

)]
+ (m − 2)

(
m
2

)


=
1
2


m

m∑
j=3

(
m
j

)
+

m(m − 1)(m − 2)
2




=
1
2

[
m
(
2m − 1 − m − m(m − 1)

2

)
+

m(m − 1)(m − 2)
2

]

= m
(
2m−1 − m

)
.

(A.2)

Similarly, based on the same property of Hamming codes, we also calculate the coefficient A2,2: if

the binary vector of parity bits in one of the 2m − m − 1 codewords in the matrix G has weight

j ≥ 4, then every vector of length m that differs from it in two places has a weight of at least two,

j ≥ 2, and each one of these parity vectors corresponds to a Hamming codeword in the matrix G in

its systematic form (that each one of its codewords has an information weight i = 1). Alternatively,

if for such a Hamming codeword, the parity weight is j = 3, there are three vectors of parity bits

having weight j = 1, that each one of them differs from the parity bits above in two places. These

three vectors of length m, cannot be Hamming codewords with information weight i = 1 (i.e, these

parity bits cannot correspond to one of the 2m − m − 1 codewords in the generator matrix G,

expressed in its systematic form). Moreover, for a Hamming codeword with an information weight

i = 1 and a parity weight j = 2, all the codewords that their parity vectors differ in two places from

the parity vector of the considered codeword, except the all-zero codeword, are Hamming codewords

having an information weight i = 1 (as, except for the all-zero codeword, the parity weight of these

codewords is at least 2. So relying the property of Hamming codes, such a codeword is one of the

Hamming codewords in the matrix G).

These considerations yield the following expression for the coefficient A2,2 of the IOWEF:

A2,2 =
1
2




m∑
j=4

(
m
j

)(
m
2

)
+
(

m
3

) [(
m
2

)
− 3

]
+
(

m
2

) [(
m
2

)
− 1

]


=
1
2


( m

2

) m∑
j=2

(
m
j

)
− 3

(
m
3

)
−
(

m
2

)

=
1
2

[(
m
2

) (
2m − m − 1

)
− m(m − 1)(m − 2)

2
− m(m − 1)

2

]

=
1
2

[(
m
2

) (
2m − m − 1

)
− (m − 1)

(
m
2

)]

=
(

m
2

) (
2m−1 − m

)
.

(A.3)
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Similar considerations for an integer p such that 3 ≤ p ≤ m , give rise to the following expression

for the coefficient A2,p of IOWEF of the (2m − 1, 2m − m − 1) Hamming code:

A2,p =
1
2




m∑
k=p+2

(
m
k

)
·
(

m
p

)
+
(

m
p + 1

) [(
m
p

)
− (p + 1)

]

+
(

m
p

) [(
m
p

)
− 1

]
+
[(

m
p − 1

) [(
m
p

)
− (m − p + 1)

]

+
p−2∑
k=2

(
m
k

)
·
(

m
p

)
 .

(A.4)

If p = 3, the last term in (A.4) is zero and if p > m−2, the first term in (A.4) is zero. However, for

any integer p, such that 3 ≤ p ≤ m, the expression above can be further simplified to the following

form:

A2,p =
1
2

[(
m
p

) m∑
k=2

(
m
k

)
− (p + 1)

(
m

p + 1

)
−
(

m
p

)
− (m − p + 1)

(
m

p − 1

)]

=
[(

m
p

) (
2m − m − 1

)
− (p + 1)m!

(p + 1)! (m − p − 1)!
−
(

m
p

)
− (m − p + 1)m!

(p − 1)! (m − p + 1)!

]

=
1
2

[(
m
p

) (
2m − m − 2

)
− (m − p)m!

p! (m − p)!
− p · m!

p! (m − p)!

]

=
1
2

[(
m
p

) (
2m − m − 2

)
− m

(
m
p

)]

=
(

m
p

) (
2m−1 − m − 1

)
, 3 ≤ p ≤ m .

(A.5)

To conclude, by (A.2),(A.3) and (A.5), we find that:

A2,j =




0 if j = 0
(

m
j

) (
2m−1 − m

)
if j = 1, 2

(
m
j

) (
2m−1 − m − 1

)
if 3 ≤ j ≤ m .

(A.6)

For calculating the coefficients Ai,j of the IOWEF in case that 2 < i ≤ 2m −m− 1 and 1 ≤ j ≤ m,

we derive here a recursive equation, based again on the particular property of Hamming codes:

Suppose that we have a Hamming codeword c with an information weight of i− 1 and a parity

weight of k. If k ≥ j + 2, then any vector of parity bits (of length m) that differs from the

vector of the parity bits of the considered codeword c in j places, has a parity weight of at least

k − j ≥ 2. Therefore, the information weight of such a codeword c′, is therefore 1 (as this is one of

21



the codewords in the 2m − m − 1 rows of the generator matrix G of the Hamming code, when it

is expressed in a systematic form). The codeword c + c′ is a Hamming codeword with information

weight that may only be i − 2 or i. If, however, k = j + 1, then all the vectors of length m that

differ from the vector of parity bits of c in j places, all of them (except j + 1 vectors of length m

that are of weight 1), have at least a weight of 2. Therefore, all the codewords c′ (except for j + 1

codewords with the corresponding j + 1 vectors of parity bits), are Hamming codewords with an

information weight 1. As before, the codeword c + c′ is a codeword with an information weight i

or i − 2. The same considerations are performed when k ≤ j (we divide it to the three sub-cases

k = j, k = j − 1 and finally k ≤ j − 2).

Moreover, if the Hamming codeword c + c′ has an information weight i and a parity weight j,

as the addition (modulo 2) is commutative and associative, then by covering all the possibilities of

codewords c with an information weight i − 1 and codewords c′ from the 2m − m − 1 rows of the

generator matrix G (in its systematic form) that differ from c in j parity bits (and have also an

information weight of 1), we get that the number of possibilities of c + c′ is i times the number of

codewords with an information weight i and a parity weight j (i.e, iAi,j). The reason is by this

procedure we get i times each codeword of information weight i and parity weight j. If, however,

the Hamming codeword c + c′ has an information weight i − 2 and a parity weight j, then by

covering all the possibilities of the codewords c with an information weight i − 1 and codewords c′

from the rows of the generator matrix G of the Hamming code, that their parity bits differ from

those of the codewords c in j places (and as before each of the codewords c′ has an information

weight of 1), this procedure yields 2m − m − 1 − (i − 2) times the number of the codewords with

an information weight i − 2 and a parity weight j (i.e, (2m − m − i + 1)Ai−2,j).

Based on the arguments above, we find the following recursive equation for calculating the

coefficients Ai,j (when 2 < i ≤ 2m − m − 1 and 1 ≤ j ≤ m) for IOWEF of Hamming codes:

iAi,j +
[
2m − m − 1 − (i − 2)

]
Ai−2,j

=
m∑

k=j+2

Ai−1,k ·
(

m
j

)
+ Ai−1,j+1 ·

[(
m
j

)
− (j + 1)

]

+ Ai−1,j ·
[(

m
j

)
− 1

]
+ Ai−1,j−1 ·

[(
m
j

)
− (m − j + 1)

]

+
j−2∑
k=0

Ai−1,k ·
(

m
j

)
.

(A.7)
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A simplication of the right hand side of (A.7), results in the following:

m∑
k=j+2

Ai−1,k ·
(

m
j

)
+ Ai−1,j+1 ·

[(
m
j

)
− (j + 1)

]

+ Ai−1,j ·
[(

m
j

)
− 1

]
+ Ai−1,j−1 ·

[(
m
j

)
− (m − j + 1)

]

+
j−2∑
k=0

Ai−1,k ·
(

m
j

)

=
m∑

k=0

Ai−1,k ·
(

m
j

)
− (j + 1)Ai−1,j+1 − Ai−1,j − (m − j + 1)Ai−1,j−1

=
(

2m − m − 1
i − 1

) (
m
j

)
− (j + 1)Ai−1,j+1 − Ai−1,j − (m − j + 1)Ai−1,j−1 .

(A.8)

Hence, we get the recursive equation:

iAi,j + (2m − m − i + 1)Ai−2,j

=
(

2m − m − 1
i − 1

) (
m
j

)
− (j + 1)Ai−1,j+1 − Ai−1,j − (m − j + 1)Ai−1,j−1 .

⇒ Ai,j =
1
i

[( 2m − m − 1
i − 1

) (
m
j

)
− (j + 1)Ai−1,j+1 − Ai−1,j (A.9)

−(m − j + 1)Ai−1,j−1 −
(
2m − m − i + 1

)
Ai−2,j

]
.

where 1 ≤ i ≤ 2m − m − 1, 1 ≤ j ≤ m (if j = m, then Ai−1,j+1 ≡ 0).

Since the
(
2m − 1, 2m − m − 1

)
Hamming code is linear, we find also that:

Ai,j = A2m−m−1−i,m−j (m parity bits and 2m − m − 1 information bits) for

i = 0, 1, 2 . . .

⌊
2m − m − 1

2

⌋
, j = 0, 1, 2 . . . m .

(A.10)

It seems that the number of Hamming codewords having an information weight i and a parity

weight j is approximately:

Ai,j ≈ 2−m
(

2m − m − 1
i

) (
m
j

)
, (A.11)

where 0 ≤ i ≤ 2m − m − 1 and 0 ≤ j ≤ m. Surprisingly, the approximated expression (A.11) is

also a particular solution of the recursive equation (A.9). Moreover, (A.11) relates to the average

number of codewords with information weight i and parity weight j in the ensemble of binary and
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systematic
(
2m − 1, 2m − m − 1

)
block codes. The

(
2m − 1, 2m − m − 1

)
Hamming code is a

particular code of this ensemble of codes, that behaves approximately like the average of the whole

ensemble. The approximation (A.11) is very tight for m ≥ 5, as is clearly indicated in the following

two examples:

1. For m = 5, the (31,26) Hamming code, and for i = 3 and j = 4, the accurate analysis yields

Ai,j = 400, while the approximated value in (A.11) is 406.25.

2. For m = 6, the (63,57) Hamming code, and for i = 6, j = 4, the accurate analysis yields

Ai,j = 8.504 · 106, while the approximated value in (A.11) is 8.505 · 106.
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Figure Captions

Figure 1: A comparison between the performance of the iterative decoding algorithm [21] and
bounds on the block error probability of soft decision ML decoding for the (42,21) DC
block code.

Figure 2: A comparison between the performance of the iterative decoding algorithm [21] and
bounds on the block error probability of soft decision ML decoding for the (63,24)
BCH block code.

Figure 3: A comparison between the performance of the iterative decoding algorithm [21] and
bounds on the block error probability of soft decision ML decoding for the (63,39)
BCH block code.

Figure 4: A comparison between the performance of the iterative decoding algorithm [21] and
bounds on the block error probability of soft decision ML decoding for the (64,22) RM
block code.

Figure 5: A comparison between the performance of the iterative decoding algorithm [21] and
bounds on the block error probability of soft decision ML decoding for the (64,42) RM
block code.

Figure 6: A comparison between the performance of the iterative decoding algorithm [21] for
the (1023,781) EG block code and upper bounds on the bit error probability of two
ensembles of random binary (1023,781) block codes with soft decision ML decoding.

Figure 7: A comparison between the performance of the iterative decoding algorithm [21] for the
product (3969,1369) code, constructed by a direct product of two (63,37) EG codes,
and an upper bound on the bit error probability of soft-decision ML decoding for the
ensemble of random, systematic and binary (3969,1369) block codes.

Figure 8: The distance spectrum of some ensembles of uniformly interleaved, and serially con-
catenated, (qN, N) RA codes versus the normalized Hamming weights of the codewords
(normalized with respect to the block length qN): N = 1024, q = 2, 3, 4.

Figure 9: A comparison between upper bounds on the block and bit error probabilities of two
ensembles of uniformly interleaved and serially concatenated RA codes. The upper
bounds considered are the tangential sphere bound and the union bound in Q-form.

Figure 10: A comparison between the block error probability of an iterative decoding algorithm
for the (4096,1024) RA code (N = 1024, q = 4) for a specific structured interleaver
(of length qN = 4096) [11], and upper bounds of ML decoding (considering a uniform
interleaver).

Figure 11: A comparison between the block error probability of an iterative decoding algorithm
for the (3072,1024) RA code (N = 1024, q = 3) for a specific structured interleaver
(of length qN = 3072) [11], and upper bounds of ML decoding (considering a uniform
interleaver).

Figure 12: The logarithm on base 10 of the IOWEF of the (31,26) Hamming code versus the
information weight and the parity weight of its codewords.

Figure 13: The logarithm on base 10 of the IOWEF of the (255,247) Hamming code versus the
information weight and the parity weight of its codewords.

Figure 14: The logarithm on base 10 of the IOWEF of the ensemble of parallel concatenated
(209,121) turbo-Hamming codes, constructed by a uniform interleaver of length N =
121 and two identical (15,11) Hamming codes.

Figure 15: A comparison between analytical upper bounds on the bit error probability of soft deci-
sion ML decoding for the ensemble of parallel concatenated (209,121) turbo-Hamming



codes (constructed by a uniform interleaver of length N = 121 and two identical (15,11)
Hamming codes), and iterative decoding simulation results with some different types
of interleavers (based on [16]).

Figure 16: The logarithm on base 10 of the IOWEF of the ensemble of parallel concatenated
(936,676) turbo-Hamming codes, constructed by a uniform interleaver of length N =
676 and two identical (31,26) Hamming codes.

Figure 17: A comparison between analytical upper bounds on the bit error probability of soft deci-
sion ML decoding for the ensemble of parallel concatenated (936,676) turbo-Hamming
codes (constructed by a uniform interleaver of length N = 676 and two identical (31,26)
Hamming codes), and iterative decoding simulation results for some different types of
interleavers (based on [16]).

Table Captions

Table 1: The performance of iterative decoding algorithm [21] as compared to soft decision ML
decoding for structured, binary systematic block codes of moderate length. The upper
and lower bounds for ML decoding are based on the tangential sphere bound [26] and a
simulated lower bound (see section B.6) respectively.

Table 2: A comparison between the bit error probability of iteratively decoded structured, binary
and systematic long block codes as compared to upper bounds on the bit error probability
of ML decoded random, binary and systematic block codes with the same block length and
code rate. The upper bounds of ML decoding are based on a particular version of Gallager’s
1963 bound (see section B.2).

Table 3: Comparison of some parameters of block and diagonal interleavers of turbo-Hamming codes.



The considered Eb
N0

required for a block error probability of 10−3 Estimated loss

block code iterative decoding algorithm [21] ML decoding in suboptimality

(42, 21) DC 3.93 dB 3.66 - 3.83 dB 0.10 - 0.27 dB

(63, 24) BCH 3.55 dB 2.98 - 3.28 dB 0.27 - 0.57 dB

(63, 39) BCH 4.16 dB 3.48 - 3.79 dB 0.37 - 0.69 dB

(64, 22) RM 3.59 dB 3.35 - 3.45 dB 0.14 - 0.24 dB

(64, 42) RM 4.19 dB 4.05 - 4.16 dB 0.03 - 0.14 dB

Table 1.

The considered Eb
N0

required for a bit error probability of 10−4 Estimated loss

block code iterative decoding algorithm [21] Upper bound for ML decoding in suboptimality
(soft decision)

(1023, 781) EG 3.81 dB 2.93 dB at least 0.88 dB

(3969, 1369) 1.48 dB 0.38 dB at least 1.10 dB
(product code)

Table 2.

The value of The quantity of different Average standard deviation of the

m number(s) of check equations per symbol for
the following type of interleaver of length N :

Block Diagonal Block/diagonal Block Diagonal

3 3 2 4.500 0.612 0.500

4 5 3 5.091 0.927 0.514

5 7 3 5.769 1.198 0.576

6 9 3 6.526 1.440 0.565

7 11 3 7.350 1.655 0.511

8 13 3 8.227 1.846 0.438

Table 3.
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(63, 24) BCH code:

curve 1: a simulated lower bound (ML decoding).

curve 2: tangential sphere upper bound (ML decoding).

curve 3: simulation results for the iterative decoding.

curve 4: union bound (in Q form) for ML decoding.
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curve 1: a simulated lower bound (ML decoding).
curve 2: tangential sphere upper bound (ML decoding).
curve 3: simulation results for the iterative decoding.
curve 4: union bound (in Q−form) for ML decoding.
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curve 1: a simulated lower bound (ML decoding).

curve 2: tangential sphere upper bound (ML decoding).

curve 3: simulation results for the iterative decoding.

curve 4: union bound (in Q−form) for ML decoding.
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curve 1: a simulated lower bound (ML decoding).

curve 2: simulation results for the iterative decoding.

curve 3: tangential sphere upper bound (ML decoding).

curve 4: union bound (in Q−form) for ML decoding.
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m = 4: (15, 11) Hamming codes, N = 121, R = 0.579
−−−o−−−o−−− : iterative decoding results for a random interleaver.
−−−x−−−x−−− : iterative decoding results for a block interleaver.
− − − − − − − : iterative decoding results for a diagonal interleaver.
−−−−−−−−−−−−− : Upper bound on the bit error probability for ML decoding:

curve 1 is based on the tangential sphere bound,
curve 2 is based on the union bound (in Q−form).

1 2

Figure 15.
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Figure 16.
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m = 5: (31,26) Hamming codes, N = 676, R = 0.722
−−−o−−−o−−− : iterative decoding results for a random interleaver.
−−−x−−−x−−− : iterative decoding results for a block interleaver.
− − − − − − − : iterative decoding results for a diagonal interleaver.
−−−−−−−−−−−−− : Upper bound on the bit error probability for ML decoding:

curve 1 is based on the tangential sphere bound,
curve 2 is based on the union bound (in Q−form).

1 2

Figure 17.


