ACCEPTED TO IEEE TRANS. ON INFORMATION THEORY. FINAL VERSIN, APRIL 2011 1

ON UNIVERSAL LDPC CODES OVER
MEMORYLESS SYMMETRIC CHANNELS

Igal Sason Boaz Shuval
Department of Electrical Engineering
Technion — Israel Institute of Technology
Haifa 32000, Israel

April 28, 2011

Abstract

A design of robust error-correcting codes that achievedi communication over various channels is of great
theoretical and practical interest. Such codes are teramigkersal This paper considers the universality of low-
density parity-check (LDPC) code ensembles over familfem@moryless binary-input output-symmetric (MBIOS)
channels. Universality is considered both under belieppgation (BP) and maximume-likelihood (ML) decoding.

For the BP decoding case, we derive a density-evolutioechamalytical method for designing LDPC code
ensembles that are universal over various families of MBEDSnnels. We also derive a necessary condition for
universality of LDPC code ensembles under BP decoding cthiislition is used to provide bounds on the universally
achievable fraction of capacity. These results enable psaeide conditions for reliable / unreliable communicato
under BP decoding that are based on the Bhattacharyya pracighe channel. For the ML decoding case, we
prove that properly selected regular LDPC code ensembkesigiversally capacity-achieving for the set of equi-
capacity MBIOS channels and extend this result to punctuegdlar LDPC code ensembles.

Index Terms

Belief propagation (BP), Bhattacharyya parameter (B+p&tar), density evolution (DE), linear programming
(LP) bounds, low-density parity-check (LDPC) codes, maximlikelihood (ML), memoryless binary-input output-
symmetric (MBIOS) channels, stability.

. INTRODUCTION

Low-density parity-check (LDPC) codes are linear block codied tan be represented by sparse parity-check
matrices. This sparse structure enables to decode thess bgdriboptimal iterative decoding algorithms. These
low-complexity algorithms are remarkable in that they aghirates close to capacity for properly designed LDPC
code ensembles (see, e.qg., [4], [16], [18], [24], and [25]).

The density evolution approach serves as a main tool for the@atetic analysis of the performance of LDPC
code ensembles under iterative message-passing dec@fihdJsing this approach, it is possible to numerically
optimize LDPC code ensembles for specific memoryless bingmytioutput-symmetric (MBIOS) channels. The
goal is to find degree distributions that asymptotically easionvergence to error-free communications for a given
channel model, and that are optimal in the sense of eithéewdnly maximal rate for specific channel parameters, or
exhibiting the best threshold for a specific chosen rate cgratbnstraints on the degree distributions. Depending
on the threshold parameter considered, the best threshoild ©e either a maximal value, as in the crossover
probability of a binary symmetric channel, or a minimal \@las in the signal-to-noise ratio of a binary-input
additive white Gaussian noise channel. Another conseguehdensity evolution is the stability condition which
forms a necessary condition for an LDPC code ensemble to astiocglly achieve vanishing bit error probability
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2010 IEEE 26th Convention of Electrical and Electronics Engineers, Hsatel, November 2010. Igal Sason is the corresponding author
(e-mail: sason@ee.technion.ac.il).
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under iterative message-passing decoding for a given ehanodel. Density evolution is a powerful tool for
numerical optimization of degree distributions, but it dowt lend itself, in general, for thanalytical design of
degree distributions. An exception to this is the case obihary erasure channel (BEC), where density evolution is
greatly simplified to a single-dimensional recursive equatBased on this, several explicit expressions of capacity
achieving sequences for the BEC have been derived (see[22pand [35]). So far, no explicit expressions for
capacity-achieving code ensembles under iterative degodave been found for other MBIOS channel models.
While ML decoding is impractical, explicit expressions foaipacity-approaching codes for any MBIOS channel
under ML decoding have been derived (see [11] and [30, The@8fh The analysis under ML decoding relies on
upper bounds on the decoding error probability based onuweege weight distribution of the ensemble (see [20]
and [29]).

It is of great interest, both practically and theoretically design a code that will operate reliably over a range
of channels. Such robust codes are terraatersal There are many different notions of universality, and many
approaches to the design of universal codes. An excellameglon the matter can be found in [15], where the
authors have focused on the problem of communicating tgliatnen there is channel uncertainty. The authors
introduced several models of channel uncertainty, andudgssd several universality strategies for these models,
both in terms of encoder design and decoder design.

The subject of universal LDPC codes has been addressed in Isea@at studies. In this setting, the goal is
to design an LDPC code ensemble that will perform well in terferoor probability over a family of channels,
using a standard decoder for LDPC codes, such as a belief @ipaglecoder.

One approach is to find so-called extreme channels that carsée to predict the LDPC code ensemble’s
performance under iterative decoding. Khandekar [13] shibthhat a code’s behavior on the BEC can be used to
predict its behavior on other channels. In particular, hewstd that if for a BEC, the bit erasure probability of
an LDPC code ensemble converges to zero under iterative neepaaging decoding then the bit error probability
will also converge to zero on any other MBIOS channel with daene Bhattacharyya parameter (B-parameter).
Among the family of equi-capacity MBIOS channels, the BECibith the smallest B-parameter whereas the binary
symmetric channel (BSC) exhibits the greatest B-paramé&jerBased on this observation, it was suggested that
it may be possible to design a code for an arbitrary MBIOS nkaby designing it for a BEC with a matching
B-parameter. Further evidence of the extremes of the BEC and &&e found, e.g., in a study by Sutskover
et al. (see [37] and [38]), which is based on an informatiombining approach ([14]) to predict the behavior of
LDPC code ensembles over various channels; they showed #hdtetavior of an LDPC code ensemble over a
BEC and BSC can be used to provide bounds on its behavior over BHBIOS channels under iterative message-
passing decoding. These works all use bounds that stem fremetluction of the density evolution equation to a
single parameter. Such bounds first appeared in [2], albeifraot a universality standpoint.

Another approach stems from several researchers havingedahat LDPC codes exhibit similar performance
under iterative message-passing decoding over a set ohelsawith similar parameters. Numerical evidence that
equi-capacity and equi-B-parameters exhibit similar shodds is provided in [3], and thus it was conjectured
that the performance of an LDPC code over one MBIOS channel eaapproximated by its performance on a
different MBIOS channel but with the same capacity or B-paeter. In [6], the authors also provide supporting
numerical evidence that LDPC code ensembles behave simdarlgqui-capacity MBIOS channels. In [23], the
authors conjecture that it is possible to design good LDPC s@dsed on a so-called “surrogate” channel, such
as the BEC, so that they will exhibit good performance oveeotthannels. Recently, Sanaei et al. [28] designed
numerically some universal LDPC code ensembles that achibighdraction of capacity for a set of equi-capacity
MBIOS channels. Based on some practical experiments, theg hlso conjectured that an LDPC code ensemble
designed for two equi-capacity MBIOS channels will alsoveyge under iterative message-passing decoding over
any convex combination of these two chanhels

We briefly mention several other avenues of research regamdiiversal LDPC codes; these works present
approaches that are quite remote from the approach of ol evouniversality, and are presented here for the sake
of completeness. Duyck et al. [5] numerically optimized LDRitle ensembles to be universal over Rician fading
multiple-access channels. Miyake and Maruyama [21] studieiversal properties of fixed length LDPC codes
under the minimum-entropy decoding scheme. Universal codth finite block lengths were addressed in [34];

!l.e., a channel formed by using one of these channels with probaijlity< 6§ < 1, and the other channel with probability— 6.
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this paper was focused on the performance of such code efeermbterms of bounds on the probability of error
(and error exponents), for a class of channels the authdirépesiodic erasure channels.” Factor-graph decoding
over a family of channels related by some unknown parametassconsidered in [41] where this work defined
several factor-graph based decoding schemes over chanitielsinknown parameters, and applied to codes that
are represented by factor graphs, not necessarily LDPC cédealy, Yedla, et al. [44] consider the problem
of universal joint source-channel coding; in their settitfiere are two correlated sources transmitting over two
channels with unknown parameters, to be jointly decoded bingle receiver.

In this paper, we consider the universality of LDPC code en$esninder both iterative message-passing decoding
and maximum-likelihood decoding over MBIOS channels. lrerdase of belief-propagation (BP) decoding, we use
density evolution to derive some conditions for the uniaétg of LDPC codes over various MBIOS channels. These
results serve to formulate an approach for the analyticsigdeof universal LDPC code ensembles. Furthermore,
we show that for any code ensemble, one can classify chanaajsod or bad (in the sense of convergence under
BP decoding) based on the value of the B-parameter of thenehaRor the ML decoding case, we show that
regular LDPC code ensembles can be made universal both witlviimolut puncturing over equi-capacity MBIOS
channels.

This paper is structured as follows: Section Il provides somddirpinary material and notation, Section IlI
explores the universality of LDPC code ensembles under BPdilegoSection IV contains some universality
results for LDPC code ensembles under ML decoding, and Sectieor¢ludes this work with a summary and
some directions for future research.

II. PRELIMINARIES

This section follows the notation in [26, Chapter 4], and fyistroduces some preliminaries on MBIOS channels
that are relevant for the analysis in this paper.

Consider an MBIOS channel whose input and output are desidriy X andY’, respectively, and Ity x (-|)
be its transition probability. The associated log-likebdoratio (LLR) /(y) when the channel output 8 = y is

given by 4I0)
o [(Prix 0
=1 (pY|X(@/|1)> '

The LLR associated with the random variablds defined ad. = [(Y). Let a designate the conditional probability
density function pdf) of the random variabld. given that the channel input i¥ = 0 (to be referred to as the
L-density function). This density function satisfies the syrtin@ropertya(z) = e* a(—x) for everyx € R (see
[26, Theorem 4.26]).

This paper relies on the following three functionals (vasi@ther functionals are presented in [26, Section 4.1]).

Proposition 1. [Capacity functional] Consider an MBIOS channel whose symmetric L-density funcisodenoted
by a. The capacity of this channel in units of bits per channel Gs&; C(a), is given by

C— /O:o a(z)(1 — logy(1 + ¢)) da. 1)

This proposition is proved in [26, p. 193].

Definition 1. [The Bhattacharyya functional] The Bhattacharyya parameter (B-paramet&)2 B(a), which is
associated with the symmetric L-density functiems given by

B = /Oo a(x)e” = dz. 2)

The following is a direct consequence of a proposition thad imroduced in [1, Proposition 1] (for a proof see
[1, Appendix A]); it relates the capacity with the B-parasretf an MBIOS channel.

Proposition 2. For every MBIOS channel, let be the L-density of the LLR at the channel output for an equi-
probable binary input, and leB and C' designate the B-parameter and channel capacity, resplgctivhen, the

following inequality holds: )
<0< — B2,
log, (1 ) C<+V1-B 3)
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Proposition 2 implies that for a perfect MBIOS channel, whoapacity,C, approaches 1 bit per channel use,
the corresponding B-parameter tends to zero. On the otht, fiar a very noisy channel, whose capacity is close
to zero, we have that the B-parameter tends to 1. This is densiwith the interpretation that the B-parameter
forms an upper bound on the error probability under ML desgdivhen the channel is used only once to transmit
a zero or a one.

The following proposition was introduced in [33, Lemma 8] (foproof see [33, Appendix 1V]), and it provides
another property that relates the channel capacity and thar@meter of an MBIOS channel. This proposition
improves upon the lower bound in Proposition 2.

Proposition 3. For every MBIOS channel, the sum of its channel capacity &diparameter is greater than or
equal to 1, i.e.,

B+C>1

and equality is achieved for a BEC.

Note that Proposition 3 implies that among all equi-capaklBIOS channels, the BEC possesses the minimal
B-parameter.

Remark 1. From the lower bound of Proposition 2, it is implied ti@t- B > 1+ (B —log,(1+ B)). It can easily
be verified thatf (B) £ 1+ (B —log,(1+ B)) < 1 for B € [0, 1], with equality only at the end points, i.€3,= 0 or

B = 1. To see this, we first note that inde¢) = f(1) = 1. The derivative off is f/(B) = 1—((1+B)In2)7!,

which has only one zero, @& = —1 + 1/1In2 ~ 0.4427. This is easily determined to be a minimum point fof
implying that f(B) < 1 for B € [0, 1]. On the other hand, Proposition 3 states tBat C' > 1, thereby improving
the lower bound in Proposition 2.

Following standard notation, the degree distributions hef £tDPC codes under consideration from the edge
perspective are denoted byz) = >, \pz¥~! andp(z) = 3, pra®~!, where ), and p;, designate the fraction of
edges emanating from variable and parity-check nodes akdég respectively.

The analysis in this paper relies partially on #iability conditionfor LDPC code ensembles under BP decoding.
This condition applies to the asymptotic case where we leblbek length tend to infinity, and it forms a necessary
condition for successful BP decoding in the sense that itireg that the fixed point of zero bit error rate be stable.
Consider an LDPC code ensemble with a pair of degree distimifi\, p) whose transmission takes place over
an MBIOS channel, characterized by its L-density functionThen, the stability condition under BP decoding
assumes the form (see [26, Theorem 4.125])

Ba)N(0)p/(1) < 1. (4)
The reader is referred to [26, Section 4.9] for a proof.

Definition 2. [The error probability functional] The bit error probability that is associated with a symmetric
L-density functiona is given by

E(a) = /0 a(z)dx + ;/W a(z) dx

1 [+ 2|z
= 5/ a(z) e 51H3) 4z,

The following inequalities relate the Bhattacharyya andrmprobability functionals. Based on [26, Lemma 4.64],
the following inequality holds for an arbitrary symmetricdensitya

28(a) < B(a) < 24/&(a)(1 — &(a)). (5)

Note that the lower and upper bounds on the B-parameter,vas g (5), are satisfied with equality for a BEC
and BSC, respectively.
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Convolutions of densities in the so-called L-domain and Gdio? are presented in [26, p. 181], and are
denoted by® and, respectively. Using the density evolution approach fer dsymptotic analysis of LDPC code
ensembles over MBIOS channels, where we let the block letagtth to infinity, the® convolution describes how
the distribution of the (statistically independent) mgesachanges at the variable node under BP decoding at every
single iteration, whereas tt® convolution describes the change of this distribution atghrity-check node side.

[1l. UNIVERSALITY UNDER BELIEF PROPAGATION DECODING
A. Universal Achievability Results

In the following, we consider the suitability of LDPC code emédes to operate reliably over a set of MBIOS
channels under BP decoding. We rely here on the density amolapproach, and our goal is to construct LDPC
code ensembles which achieve vanishing bit error proltgbifli the asymptotic case where the block length tends
to infinity, uniformly over a set of MBIOS channels.

To this end, let us consider first an arbitrary MBIOS channed, letay denote theodf of the LLR at the channel
output given that the channel input is zero. Letand p designate the degree distributions of the variable and
parity-checks, respectively, from the edge perspectiaseB on density evolution, the densities at every iteration
of the BP decoder satisfy the recursive equation

a; = CL()@)\(F_I([)(F(CLl_l)))), [ = 1,2,... (6)

where the mappind' and its inversd'~! are introduced in [25, p. 627]. The densitigsare symmetric functions
for everyl > 0, i.e., qi(x) = e*a;(—x) for all x € R. Let x; = B(a;) for [ > 0 where B(a) designates the
B-parameter that is associated with the L-dengitased on the proof of sufficiency in the stability conditiced
[26, p. 234)), it follows that

z; < Blag) A(1 — p(1 —x-1)), 1=1,2,... (7)

where this inequality is proved in [9, Theorem 4.2] and [12,drkeen 2]. From (5), an LDPC code ensemble obtains
asymptotically vanishing bit error probability as the nwenlbf iterations grows if and only #fim; .., z; = 0.

Let us now consider an arbitrary set of MBIOS channels, anddletesignate the corresponding set of its L-
densities. Suppose that one wishes to design an LDPC code daseittb degree distributiong)\, p) in order
to asymptotically achieve vanishing bit error probabilityder BP decoding for every channel in this set. Let us
designate byB the maximal B-parameter over the MBIOS channels of the dened set, i.e.,

B £ max B(a). (8)
Let us consider the recursive equation
yl:B/\(l_p(l_yl—1>)7 1=1,2,... 9)

with the initial valuey, = B. This recursive equation refers to the density evolution BEC whose erasure

probability is equal taB. By comparing (7) and (9), it is straightforward to show (el induction) thad < x; < y;

for everyl > 0 anda € A. If the pair of degree distributiong\, p) is selected in a way wherém; .., y; = 0,

then we get thatim;_., z; = 0 in (7) for every MBIOS channdirom the setA. Hence, the universality of the

LDPC code ensemble whose degree distributiof\ig) follows with respect to the considered set of channels.
One can thus rely on (9) to construct a sequence of LDPC codenbiee which achieves vanishing bit error

probability, under BP decoding, for all the MBIOS channeldh® considered set. In particular, to this end one

can use the well-known explicit constructions of capaeitirieving sequences of LDPC code ensembles for the

BEC (see, e.g., [22] and references therein). By this apprdahe asymptotic design rate of this capacity-achieving

sequence of LDPC code ensembles is equal to the capacity ofEfe iB.,

Ry=1-B, (10)
where B is given in (8). We study the following particular cases aktapproach.

2As mentioned at the beginning of this section, an L-density is the pdf of tiRILY) given that the channel input i§ = 0. A G-density
is the result of the transformatidfY’) — (sgni(Y),logcoth(|I(Y)|/2)). The L- and G-domains are, respectively, the domains of the L
and G densities.
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1) Universal LDPC Code Ensembles for Equi-Capacity MBIOS Chanrfeinong all MBIOS channels which
exhibit a given capacity’, the B-parameter that is associated with the L-densitiehisfdet of channels attains its
maximal and minimal values for the BSC and BEC, respectivédlis (follows readily from (5)). The B-parameter
of a BSC whose crossover probability sisis equal to\/4p(1 — p), and the capacity of this channel is equal to
C =1— ho(p). By referring to the set of all equi-capacity MBIOS channelse therefore gets from (8) that

B = \/4h;'(1-C) (1 - hy'(1 - C)) (11)

whereh;1 designates the inverse of the binary entropy function oe Bagrom (10), the asymptotic design rate of
the corresponding sequence of LDPC code ensembles is eqhal+tol — B. As a consequence of Proposition 3,
it follows that indeedRy < C, which is necessary for reliable communication. The fractibthe channel capacity

that is achievable by this approach, "
m(C) 25,

is therefore equal to

—Jata-0)1-nta-C
ey Vans (1 ;(1 ,'(1-0) w2

Lemma 1. The functionu; is monotonically increasing over the intenv@l, 1], and

élgloul(C') =1n2 ~ 69.3%, élinq u (C) = 1.

Proof: See Appendix A. ]
This implies that as the value of the capacity is increasedygef fraction of the channel capacity is achievable
uniformly for the entire considered set of equi-capacity IAB channels, and the two extremes are 69.3% and
100% when the capacity varies between zero and 1 bits penehase. For a value of the channel capacity which
approaches 1, the channels are almost noiseless, so almasiding is required. Hence, the uniform attainment
of nearly 100% of the capacity for the entire set of channelaell expected. However, this convergence of the
achievable fraction of capacity is rather slow as we let thdecrate tend to 1 (as is evidenced in Fig. 1). To see

this, note that ifC' is close to 1
1—2¢/hyt(1-0C)
pi(C) = c

which tends to 1 quite slowly (e.g., f@r = 0.95 bits per channel use, this approximation is equal to 0.89&wh
indeed coincides with Fig. 1).

The above analysis implies that at least 69.3% of the capafitgny MBIOS channel can be achieved by
designing a capacity-achieving sequence of LDPC code enesrfirl a BEC; the erasure probability of this BEC
is set to be equal to the B-parameter of a BSC whose capacishembur channel.

This presents an analytical approach for the design of usadd&DPC code ensembles for equi-capacity MBIOS
channels where a provable (non-vanishing) fraction of ciyp& universally achieved, and the value of this fraction
gets larger as the value of capacity is increased. We notevewhat numerical optimization via density evolution
enables to design universal LDPC code ensembles in [28] aobievsignificantly larger fraction of the channel
capacity, though the considered approach here is purelytarad, and it is not subject to numerical optimizations.

2) Universal LDPC Code Ensembles for BEC and BIAWGNC with the Samac@®a We consider here an
achievable fraction of capacity when one wishes to desigh#C code ensemble which achieves asymptotically
vanishing bit error probability under BP decoding for bokle tBEC and the binary-input AWGN channel (BI-
AWGNC) with the same capacity. Since among all equi-capadBJOS channels, the BEC possesses the minimal
B-parameter (see Proposition 3), then the paranmeter (8) corresponds to the B-parameter of the BIAWGNC. The
conversion from the channel capacity to the B-parametetHhigrchannel is done numerically by first calculating
the noise variance? via the following expression for its capacity (see [26, p4]l9

e | (2 o2 s (B e 142
C_Hln?[(ﬂ a(y) -~y e Xgene e
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Achievable fraction of capacity

0.65
0

0.1 0.2 0.3 _0.4 0.5 0.6 0.7 0.8 0.9 1
C [bits per channel use]

Fig. 1. Universal achievable fraction of capacity under BP decodingwo sets of MBIOS channels which exhibit a given capacity (see
Theorem 1). The values ¢f; in (12) andus in (13) correspond, respectively, to the entire set of equi-capacityOd8Bchannels, and the
subset of a BEC and BIAWGNC with capaci€y bits per channel use.

(based on (1)), and then substituting the valuerdfto obtain the B-parameteB = P (based on (2)). From
(10), the asymptotic achievable fraction of the capacitggsal to
1-B

12(C) - (13)

Since the universality in this example applies to a subsehefequi-capacity MBIOS channels, the inequality
u2(C) > p1(C) is expected to hold foé < C' < 1. Our results so far are summarized in the following theorem.
To this end, we denote by BEE) the binary erasure channel whose erasure probability is

Theorem 1. [Universality of LDPC Codes under BP Decoding for Equi-Capacit MBIOS Channels] Consider

a setA of MBIOS channels that exhibit a given capacity and letB denote the maximal B-parameter over this
set (see (8)). Lef(n, A, p)} form a capacity-achieving sequence of LDPC code ensembldBHGX B), achieving
vanishing bit erasure probability under BP decoding. Thhis, sequence universally achieves vanishing bit error
probability under BP decoding for the entire sétand the design rate of this sequence forms a fraction thett is
Ieast% of the channel capacity. As a consequence, the followingltesold:

« For the entire set of equi-capacity MBIOS channels, the amsally achievable design rate forms at least a
fraction u1 (C') of capacity (see (12)). Moreover, forms a monotonic increasing function of the capacity
(see Fig. 1), getting the extreme value ~ 69.3% and 100% at the endpoints wheré€ — 0 or C' — 1,
respectively.

« For some sub-classes of equi-capacity MBIOS channels,ethdts for the universally achievable design rate
significantly improve (see, e.g., (13) apd in Fig. 1).

Fig. 1 compares the achievable fractions of capagityand 2 as a function of the channel capacity.

B. Universal Lower Bound on the Achievable Gap to Capacity

The stability condition3(a)\ (0)p/(1) < 1 forms a necessary condition for asymptotically achieviagishing
bit error probability under BP decoding when the transroisgakes place over an MBIOS channel.

We wish to find an upper bound on the achievable design rateieénsal LDPC code ensembles over a get
of MBIOS channels, or alternatively, a universal lower bdwm the achievable gap (in rate) to capacity. From the
stability condition in (4) and also from (8), the inequality

BXN(0)p/(1) < 1 (14)

forms a necessary condition for achieving this goal unayrover the setA.
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We consider in the followingight-regular LDPC code ensembles whetlg designates the degree of the parity-
check nodes (i.ep(x) = z%1).

Following the notation in [26, p. 181], letx b denote the density which is the result of transforming bo#nd
b from the L-domain to the G-domain, then performing the comtioh in the G-domain, and then transforming
it back to the L-domain. As mentioned earlier, under BP dempdihe operatom describes the change of the
distributions at the check node side.

In the following, we introduce an additional necessary ddowl for universally achieving vanishing bit error
probability under BP decoding with respect to a gebf MBIOS channels.

Theorem 2. [A Necessary Condition for Universality of LDPC Code Ensebles under BP Decoding]Let
{(n, A\, p)} be aright-regular sequence of LDPC code ensembles, uniyeasaieving vanishing bit error probability
under BP decoding for a set of MBIOS channgls Then, the following condition holds

BA(y/1—p(1 —2?)) <z, VYaze(0,B] (15)

where B designates the maximal B-parameter over the4et
Proof: For the derivation of this condition, we rely on the follogitnequality:

Lemma 2. Let a®* £ a®ma® - - - ®a denote the operator wheteis convolved by itself — 1 times (i.e.,a appears
k times on the right-hand side of this equality), where thevoartion here is in the G-domain (see [26, p. 181]).
Then, for a symmetric L-density with B(a) = 3,

B(a®") > \/1— (1 - B2)F (16)

for any integerk > 2.

Proof: Let ¢ and b denote two symmetric L-densities with(a) = [, and B(b) = [, then from [26,
Problem 4.62]

BB+ B — 3207 < B(a®b) < Ba+ o — Pably (17)

where the upper and lower bounds are achieved with equdlity and b are from the family BEC or BSC,
respectively. By setting = b, we get the inequality in (16) fok = 2. The proof for a generat > 2 is completed
by mathematical induction. Let us assume that (16) holds foertaink > 2, then from (17)
B(akJrl) — B(ak a)
B(a®)?2 + B(a)? — B(a®)2 B(a)?
1— (1 B(a®%)?) (1 — B(a)?)
1— (1= B(aB*)?)(1 - 33)
- (1 gy

Y%
-

I
=~ = =

v

which then implies that (16) also holds fér+ 1. [ |

Corollary 1. For aright-regular LDPC code ensemble

B(r(p(r@) ) = 1= o1 - B@?) (18)

Hence, by definings; = B(a;) for all I in the density evolution equation in (6), we get the follogiichain of
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equalities and inequalities

Iy =

(a)Bao B()\(F Hp(r(ar 1)))))
A(B(F Y all)))>>
(V1

—p(1 - B(a- 1)2))
= B(ao) (\/1— (1—a? 1) (19)

where equality (a) follows from the recursive density etioln equation in (6) and since for two symmetric L-
densitiesa andb

©
> B a() )\

B(a ®b) = B(a) B(b) (20)

equality (b) follows since the linearity of the convolutioperator and the last equality yield that

=B <Z )\ia®(i_1)>
= Z )\zB (a®(i71))
= A (B(a)) (21)

and inequality (c) follows from (18). By definition, the irdtivaluez is equal to the B-parameter of the symmetric
L-density of the MBIOS channel. From (19), it follows that ietsequencéz; } tends asymptotically to zero, then
the sequence

zl:B(ag)/\< 1—,0(1—zl2_1)), 1=1,2,... (22)

with the initial valuezy = B(ao), should also tend to zero. Note that the sequenge is not the same aéz; }:
the sequencéz;}, as shown in (19), igreater than or equal tahe right-hand-side of (22). Further note that from
(5), the convergence of the sequereg} forms a necessary and sufficient condition for achievingsking bit
error probability as we let the number of iterations growcélethat by the density evolution approach, we first
let the block length tend to infinity, so that the tree assuamptiolds with probability 1 for any fixed number of
iterations, and then we let the number of iterations grow).

Consider a sequence of right-regular LDPC code ensembleshwimiversally achieves vanishing bit error
probability under BP decoding over a sdtof MBIOS channels. LetB be the maximal B-parameter over the
entire set4 (see (8)), then we obtain from (22) that the sequence defirrdsigely by

zl—B)\< l—p(l—zf_l)), 1=1,2,... (23)

with the initial valuezy = B tends asymptotically to zero. Therefore, the satisfiabilityth@ condition in (15)
forms a necessary condition for universality. This comgdtee proof of Theorem 2. [ |
For an extension of condition (15) for general LDPC code ensesnfmot necessarily right-regular), see Ap-
pendix B.
In order to relate the condition in Theorem 2 to the stabiliindition, we calculate the derivative of the left-hand
side of (15)

A (Vimpa—an) =y (Vi-pa—an) 2 (1-p0 - )

=

p(1—a?)
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and then require that this derivative be strictly less thaat the fixed pointz = 0. Sinced. designates the fixed
right degree of the right-regular LDPC code ensemble,

li x
1m
Tl %)

and therefore one gets the condition

BX(0)p'(1)
- < 1. (24)
Interestingly, this coincides with the stability conditi¢4) up to a scaling factor that is equal to the reciprocal of
the square root of. — 1; this scaling factor in (24) yields a weaker condition as paned to the stability condition.
However, the condition in (15) provides a constraint on thterival (0, B], and not just at a neighborhood of the

fixed point at zero.
Let 4'® designate the maximal degree of the variable nodes. Sincdetfign rate of a right-regular LDPC code
ensemble is equal to

1
A
de Yilo %

=2 ¢

Rg=1- (25)

.. . . . ... max
then the maximization ofz4 is equivalent to maximizing"", A

Suppose that it is required to universally achieve vanishib@rror probability under BP decoding as the block
length tends to infinity over a sed of equi-capacity MBIOS channels with capacity. This requirement also
implies that the bit error probability under MAP decodingiignes. Thus, by combining [33, Egs. (43), (44), and
(53)], it follows that the design rate satisfies the inequyalit

1-C
(5]

and therefore, as the parity-check degr&¢ is decreased, theRy is more bounded away from capacity. Combining
(25) and (26) gives that

0<Ry<1- (26)

\; 1 1-C%
< 2 < . . 27
d = - i—ﬂ—CMCM< 2 ) (@7)

d(’nax
By a maximization of > 2: subject to
=2
1) the necessary condition for vanishing bit error probigbih Theorem 2,
2) the satisfiability of the stability condition for all the MBS channels in the sed (see (14)),
3) the inequality constraints in (27) that follow from thddrmmation-theoretic bounds in [33],

one obtains a linear programming (LP) universal upper boundhenachievable rate of LDPC code ensembles
over the setd of equi-capacity MBIOS channels with capacityunder BP decoding. This gives the following LP
bound where, practically, the values ofc (0, B] in the first inequality constraint are quantized uniformlyepv
this interval in order to get a finite number of inequality doaiits in the LP problem (to be referred to as the
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TABLE |
LOWER BOUND ON THE UNIVERSAL ACHIEVABLE GAP TO CAPACITY(s £ 1 — %) FOR EQUFCAPACITY MBIOS CHANNELS UNDERBP
DECODING; THE DEGREE OF THE PARITYCHECK NODES IS FIXED(dc), AND THE MAXIMAL DEGREE OF THE VARIABLE NODES IS SET TO
dy®* = 200. THESE NUMERICAL RESULTS REFER TO THEP1 BOUND.

Capacity Set of all Equi-Capacity Channels BEC + BIAWGNC BEC
) de=8 dc =10 de=12 | de=38 dc =10 de=12 | dc.=38 de =10 de =12
: 2.83-107° 7.05-10°" 1.76-10 " [ 2.83-10"° 7.05-10"" 1.76-10 " [ 2.83-10"° 7.05-10"" 1.76-10""
3 9.09-107% 1.79-107% 7.84-107% | 7.90-107% 1.43-107% 7.84-107% | 556107 1.43-1072 7.84-107°
2 2.06-10"" 1.57-107" 1.20-10"' | 1.73-10"" 1.33-10"" 1.03-10"" | 1.67-10"" 1.11-10"" 7.99 107

‘LP1 bound):

dmax

maximize Z A

subject to
BA(v1—p(1—2?) <z, VYuze(0,B]

B)\Qp/(l) S 1

Due to (25), LP1 also defines an upper bound on the design rateuppé&r bound can also be translated into a
universal lower bound on the achievable gap to capacity,]1 — Rq/C.

This LP problem is solved numerically with the aid of the CVX Matbased modelling system for convex
optimization (see [8]). Numerical results for the lower hduon the achievable gap to capacity are provided
in Table | for the cases wherg(z) = 7, 2%, andz!' (i.e., the parity-check degree is fixed to 8, 10, and 12,
respectively), and the maximal degree of the variable naslest tod)'® = 200.

In order to possibly improve the bound, let us consider thtiquaar case where the sgt forms a set of equi-
capacity MBIOS channels that also includes the BEC. Howenmehe following case, the LDPC code ensembles
are not restricted to be right-regular. For a BEC, the comdlifior vanishing bit erasure probability under BP
decoding assumes the form

1-C)A1-p(l—2) <z, VO<z<l-C. (28)

This condition is used instead of the necessary conditiorl&Y( Since in this LP the LDPC code ensemble is
not assumed to be right-regular, the condition (27), which result of combining [33, Eqgs. (43), (44), and (53)]
and (25), assumes the form

dmax aR
1 1-C=
7< -h
Z —C)ar 2( 2 >’

whereag is the average right degree of the LDPC code ensemble.
In this particular case where the sdtincludes the BEC, one gets the following LP problem (to be retéto

3It was verified numerically that adding condition (15) to the LP does nangh the result. Thus, this condition is conjectured to be
redundant in light of (28).
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TABLE I
LOWER BOUND ON THE UNIVERSAL ACHIEVABLE GAP TO CAPACITY(s £ 1 — %) FOR EQUFCAPACITY MBIOS CHANNELS UNDERBP
DECODING; THE DEGREE OF THE PARITYCHECK NODES IS FIXED(dc), AND THE MAXIMAL DEGREE OF THE VARIABLE NODES IS SET TO
dy®* = 200. THESE NUMERICAL RESULTS REFER TO THEP2 BOUND.

Capacity Set of all Equi-Capacity Channels BEC + BIAWGNC BEC
) de=8 dc =10 de=12 | de=38 dc =10 de=12 | dc=38 de =10 de =12
: 1.50-107% 9.01-107° 1.94-1077 [ 1.25-107° 6.76-10° 1.73-10 ° [ 7.34-10"° 1.79-10"° 1.22-10 °
3 9.09-107% 4.24-107% 2.75-107% | 7.90-107% 3.99-107% 2.42-107% | 6.59-107% 3.56-10"* 1.93-10 >
2 2.06-10"" 1.57-107" 1.20-10"' | 1.73-10"" 1.33-10"" 1.03-10"" | 1.67-10"" 1.11-10"" 7.99 107

as the ‘LP2 bound’):

max
dV

maximize ) 2
i=2
subject to
1-C)AN1-p(l—2) <z, VO<z<1-C

B)\gp/(l) S 1

o0

S =1

1=2

N >0, i=23,...

dmax

v 2R
1 A 1 1-C 2
aRS,Zzz‘S(l—C)aR'M( 2 )

1=

where the values of € (0,1 — C] are quantized uniformly over this interval in order to get atéimumber of
inequality constraints in the LP problem; our implementatonverts the first inequality constraint above to 1000
inequality constraints where is equally spaced, and it gets the valugs= 0.001(1 — C)k for k = 1,...,1000
(it was verified numerically that increasing the number ofgumity constraints beyond one thousand, by a more
refined uniform quantization of over the interval(0,1 — C], does not affect the numerical results of the LP2
bound). Numerical results for the lower bound on the aclilvgap to capacity are provided in Table Il for the
same setting as in Tablé.|

By comparing Tables | and Il, the values of the LP1 and LP2 bounuieide for large values of the capacity,
whereas the LP2 bound shows an improved (larger) lower boumdrapared to the LP1 bound for lower values
of C. Note also that the two lower bounds become more significaat, fhey become greater) as the value of
capacity is increased. Let us mention that the possible imgmnent in the LP2 bound stems from the fact that it
applies to a set of equi-capacity MBIOS channels that ireduthe BEC, whereas the LP1 bound applies to any
set of equi-capacity MBIOS channels.

It was observed numerically that the LP2 bound on the achievgdgb to capacity is sensitive the valuedj®,
especially for large values aef.. For example, foilC' = % andd; = 12, whend]'™ = 200, the LP2 lower bound is
equal t01.94 - 1072, but whend™® = 500 the LP2 lower bound becomé&s3s - 1073,

C. Universal Conditions for Reliable Communications undelieBé>ropagation Decoding

We prove in this sub-section the following theorem and exXdyjts use:

Theorem 3. [Universal Conditions on the B-parameter for Good/ Bad Comunications under BP Decoding]
Let {(n, A, p)} be a sequence of LDPC code ensembles whose block lengths tiefidity. The following universal
properties hold under BP decoding:

“Even though in the LP2 bound the LDPC code ensembles are not restadvedright regular, for the purpose of comparing the results
of the LP2 bound with those of the LP1 bound, we provide the numerisaltesfor the same setting as for the LP1 bound.
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» This sequence achieves vanishing bit error probability uife decoding forevery MBIOS channel whose

B-parameter is less than
xr

inf .
xel?o,l} A1 —p(1—2))

« For aright-regular sequence, it does not achieve reliable communications aweMBIOS channel whose
B-parameter is greater than

BO()V p) £ (29)

inf $
2€(0,1] A\(v/1— p(1 — 22))
For every MBIOS channel whose B-paramef@rsatisfiesB > B;()\,p), BP decoding is not reliable in

the sense that the left-to-right message error probalfiléy, the average probability of error for a message
emanating from a variable node to a parity-check node) iatgre¢han the positive value

Bl ()‘7 p) =

(30)

2

1 x
(2 max{x € (0,1] : NI = ) < B}) (31)

irrespective of the number of iterations performed by thed@€oder.

Proof: We start by proving the first part of the theorem. et} be the sequence of symmetric L-densities
that are obtained from the density evolution equation (6)gf@! > 0 denotes the number of iterations). From (5),
it follows that a necessary and sufficient condition for atitag vanishing bit error probability under BP decoding
is that the B-parameter that is associated withgt&a; tends to zero, i.e.,

lliglo B(a;) = 0. (32)
From (7), it follows that if the sequendgy;} as defined in (9) by the recursive equation
yr=BAX1—-p(1-y-1)), 1=1,2,...
with the initial conditiony, = B tends to zero, then also the sequetieg} where
x; = B(ay)

tends to zero (since < x; < y; for every integer > 0, see (9) and the paragraph that follows). The sequénge
refers to the density evolution analysis for a BEC whose cbbarasure probability is3. The threshold value,
which determines a necessary and sufficient condition foctimwergence of the sequengg } to zero, yields that
if B < By(A, p) thenlim;_,, y; = 0 (this follows from [26, Theorem 3.59]). Hence, for every MBB@hannel, if
the B-parameter is less thdBy(\, p), then the property in (32) is satisfied, and therefore the roitr @orobability
vanishes under BP decoding. This completes the proof of thepfrs.

In order to prove the second part of the theorem, which réfeassequence of right-regular LDPC code ensembles,
we rely on inequality (19). If the equality in (32) holds, thé follows from (19) that the sequende;} in (23)
should necessarily tend to zero. Hence, from (5), if the sege that is defined in (23) via the recursive equation

z1=BAy/1—-p(1—27,)), 1=1,2,...

stays bounded away from zero, with the initial valye= B, then the communication is not reliable. More explicitly,
for every MBIOS channel whose B-parameter is greater tBaf\, p), the sequencé&(a;)} that represents the
left-to-right message error probabilities under BP decgdstays bounded away from zero (irrespective of the
number of iterations). In order to proceed, the followinghitea considers the convergence of the sequénge

Lemma 3. Let B (A, p) be defined as in (30). IB < By (), p) then the sequencgz;} in (23) tends to zero, and
if B> Bi(\,p) then the sequencg;} is lower bounded by the positive constant

:E(B)émax{xe (0,1] : N 1_;:(1_x2)) SB}. (33)

Proof: See Appendix C. ]
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From (19)
Bla) 2z >2%, 1=01,...
and therefore it follows from Lemma 3 that for every MBIOS chahwhose B-parameter is greater than(\, p)
B(a;) > x(B), 1=0,1,....
From (5) we have

B(ay) < 2/E(ar)
OHEOHEA)

2
and therefore the left-to-right message error probabiiynot be reduced below the positive value as above,
irrespective of the number of iterations of the BP decodeis Thmpletes the proof of Theorem 3. ]

Corollary 2. For every MBIOS channel with B-parametBr> B; (), p), let (B) be defined as in (33). Then, the
(average) left-to-right message error probability is biedhaway from zero by the universal bound

n2  lim (“"”(B)>2 (34)

B—Bi(Ap)t 2

irrespective of the number of iterations of the BP decoder.

Proof: By definition,z(B) in (33) is an increasing function @, and therefore we take the limit — B; (), p),
where the limit is from the right side, in order to obtain a évbound on the left-to-right message error probability
for the case wheré > By (), p). [ |

Corollary 3. Let {(n, A, p)} be a sequence of right-regular LDPC code ensembles whose leogihs tend to
infinity. Then, the left-to-right message error probabilitays bounded away from zero under BP decoding for
every MBIOS channel whose B-parameter is greater than

B\, p) émin{Bl()\,p),X(O)lp,(D,\/l—Rg} (35)

where B; is introduced in (30), and

s Jopl@)de
Rg21 - 072
‘ TN (z) do

designates the design rate.

Proof: If the B-parameterB is greater thanB; (), p), then the statement follows from the second part of

Theorem 3. Also, ifB > m then the communication under BP decoding is not reliabtabse the stability

condition is not satisfied. Finally, iB > /1 — R3 then it follows from the right-hand side of (3) tha&ty > C
and error-free communication cannot be achieved when tegmnleate exceeds the channel capacity. Therefore,
BP decoding is not reliable for any MBIOS channel whose Bapaater is greater thaB; in (35). ]

Remark 2. In essence, the results of this section stem from one dimealsbounds based on the density evolution
equation that utilize the B-parameter (namely, inequit(7) and (19)). This approach is not new, and was
introduced in [2]. In that paper, the authors derived ifgeabounds on the expectation of messages transferred in
BP decoding. These bounds enabled them to lower- and uppeditbe performance of BP decoding.

Remark 3. Unknown to the authors at the time of writing, Wang, et al. h@voved inequalities (7) and (19)
in [42]. Wang et al. mention that these inequalities can tegl uteratively to derive upper and lower bounds on the
decoding threshold based on the initial B-parameter of taagel, and that closed-form solutions for these bounds
can be obtained, but do not derive them explicitly. In thipgrawe have independently shown these inequalities
and have also explicitly derived a closed-form solution le# bounds. Moreover, we have shown a lower bound
on the decoding error probability when the B-parameter ef¢channel exceeds the value in (35).
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Although here we concentrate only on channels with symmeuiiputs, we note that [42, Theorem 4] extended
inequalities (7) and (19) also to memoryless channels wittarly input and non-symmetric output, under the
assumption that the input distribution is uniform.

Remark 4. Note that if the B-parameter is abo¥& (), p) (see (35)), then Corollary 3 does not specify an explicit
positive lower bound on the left-to-right message errotbphility under BP decoding. However, B > By (), p)
(where it readily follows from (35) thaB;(\, p) > Ba(\, p)), then the second part of Theorem 3 determines an
explicit positive lower bound on the left-to-right messageor probability that is valid universally for all MBIOS
channels. As shown in Examples 1 and 2 that follow, the valugisflower bound, (see (34)) is typically large,
irrespective of the number of iterations of the BP decoded this lower bound holds for all MBIOS channels
whose B-parameter is above, (), p).

Remark 5. All channels in the convex hdllof equi-capacity MBIOS channels have the same capacity.|&imi

all channels in the convex hull of equi-B-parameter MBIO%ruhels have the same B-parameter. This is due to
the linearity of the capacity and Bhattacharyya functienalthe L-density function, see (1) and (2). Therefore, the
condition for good channels, under BP decoding, in the strad3 < By (), p) (see the first part of Theorem 3) or
the condition for bad channels in the sense tBat By (), p) (see the second part of Theorem 3 and Corollaries 2
and 3) are both preserved, respectively, for the convex dfujood or bad channels. Although this conclusion
does not prove [28, Conjecture 1] for equi-capacity MBIO@rutels (since it does not cover the case wherns
betweenB, and B, in case thatB, < Bs), it supports this conjecture in the cases whBre: By or B > Bs.

Remark 6. From the two parts of Theorem 3, it follows directly that forhigegular codesB; (A, p) > Bo(\, p).
For a direct proof of this inequality, see Appendix D.

In the following, we exemplify the use of Theorem 3 and its darees:

Example 1 (Regular LDPC Code Ensembledn Table Ill, we show the numerical values @, and B; in
Theorem 3, and the value gfin Corollary 2 for some regular LDPC code ensembles whose iesig is one-
half. The value ofB; corresponds to the threshold for the BEC under BP decodiryttemvalue ofB; (see (30))
refers to the value of the B-parameter where above it, thetidefight message error probability is at leastno
matter how many iterations of the BP decoder are performedtliese regular LDPC code ensemblgs,= 0,

TABLE Il
THE NUMERICAL VALUES OF By AND B; IN THEOREM 3, AND THE VALUE OF 1 IN COROLLARY 2 FOR SOME REGULARLDPC CODE
ENSEMBLES WHOSE DESIGN RATE IS ONEHALF.

LDPC| B, B n
(3,6) | 0.4294] 0.6553] 6.50- 102

(4,8) | 0.3834| 0.6192| 6.58- 102
(5,10) | 0.3416 | 0.5884 | 6.18- 102

and therefore the stability condition is useless. Also¢aithe design rate of these ensembles is equal to one-half,
then,/1 — R2 = @ ~ 0.8660, hence the values dBs in (35) coincide withB; for these ensembles.

Example 2 (Optimized Right-Regular LDPC Code Ensembles for the BEC, aed tbniversal Properties)in
Table 1V, right-regular LDPC code ensembles are optimizedHerBEC under BP decoding; to this end, a linear
program is solved as described in [26, Section 3.18] for agdeste of one-half Ry = %) and for a maximal
degree of the variable nodes of one hundféf®™ = 100).

From Table 1V, it can be seen th&l ~ Bs.. Hence, for these optimized LDPC code ensembles, the first part
of Theorem 3 states that these LDPC code ensembles are reliadde BP decoding, in the sense of achieving
vanishing bit error probability, for every MBIOS channel o#e B-parameter is belo#,; on the other hand,
Corollary 3 implies that these code ensembles are not teliabder BP decoding for every MBIOS channel

5The convex hull of a setl of channels consists of all the channels that are convex combinati@gofels ind. A convex combination
of several channels is the result of using each channel with probaility < 6; < 1, such thatzi 0; = 1.
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TABLE IV
THE DEGREE DISTRIBUTIONS(FROM THE EDGE PERSPECTIVE NUMERICAL VALUES OF By AND B; IN THEOREM 3, THE VALUE OF
IN COROLLARY 2, AND THE VALUE OF By IN COROLLARY 3 FOR SOME OPTIMIZED RIGHFREGULAR LDPC CODE ENSEMBLES WHOSE
DESIGN RATE IS ONEHALF WITH A MAXIMAL DEGREE OF THE VARIABLE NODES THAT IS SET T0100.

Ma) =, Mz’ plz) =, pix' ™! By Bs B, n
Xo = 0.4127, X3 = 0.1762
As = 0.1177, A7 = 0.1202 ps =1 0.4816 | 0.4846 | 0.7066 | 8.45102
Ag = 0.1731

A2 = 0.2879, A3 =0.1222
A4 = 0.0905, A\¢ =0.1174

A7 = 0.0300, A2 = 0.0807 ps=1 0.4962 | 0.4962 | 0.7146| 1.02107*
A13 = 0.0831, Az2 = 0.0050
A3z = 0.1831

X2 = 0.2226, A3 = 0.1013
A4 = 0.0504, A5 = 0.0646
X6 = 0.0445, Ajo = 0.1219 pro=1 0.4988 | 0.4992 | 0.7123| 1.0810~"
A11 = 0.0117, g4 = 0.0903
Aas = 0.0678, Aigo = 0.2248

whose B-parameter is slightly abové, or greater than this value. This is a universal result thalieppo all
MBIOS channels, and it separates them into two sets of godmhdrchannels for which the reliability of these
code ensembles under BP decoding solely depends on theaBiptar of the communication chanwathout any
relevance to its channel mod@s long as it is MBIOS, and it exhibits a given B-parameter).

In contrast to the results in Table Il that apply to regularR®O code ensembles, for the right-reqular LDPC
code ensembles studied in this example, the valuB,06 significantly greater tha®,, which here is given by the
stability condition. In continuation to Remark 4, the lowmsund on the left-to-right message error probabilities
when the B-parameter is greater th8n is rather large (around 0.1), whereas such a measure is onitlpd here
for the unreliability of the messages when the B-parametéreiweenB; and Bs.

The results of this paper imply that a family of degraded cledsnan be parameterized by the B-parameter. This
is also supported by [26, Theorem 4.76], which states thatgsaded channel has a higher B-parameter than the
original (see also Proposition 2 in this paper). Moreovemany cases there is a simple one-to-one correspondence
between the channel parameter and the B-parameter. Fopéxaior a BEC with erasure probabiliy we have
B = ¢, for a BSC with crossover probability, we haveB = /4p(1 — p); and for a BIAWGN channel with noise

varianceo2, we haveB = e 5.2,
In order to obtain bounds on the B-parameter for any LDPC coderehle, not necessarily right-regular, a
simple modification of Theorem 3 and Corollary 3 yields thedaiing:

Corollary 4. Let {(n,\, p)} be a sequence of (not necessarily right-regular) LDPC codenanies whose block
lengths tend to infinity. Then
« This sequence achieves vanishing bit error probability umfe decoding forevery MBIOS channel whose

B-parameter is less than .

inf .

201 M1 — p(1 — 2))

« The left-to-right message error probability of this sequestays bounded away from zero under BP decoding
for every MBIOS channel whose B-parameter is greater than

min{Bl(A7P)7W’\/ﬁ}7

N if the sequence is right-regular.
B3(A> p) =

min { gy /1~ Fa)

if the sequence is not right-regular.

BO()‘7 10) £
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TABLE V
COMPARISON OF UNIVERSAL BOUNDS ON THRESHOLDS FOR VARIOUEDPC CODE ENSEMBLES THE BOUNDS BASED ON THE
B-PARAMETER ARE COMPUTED BASED ON THE APPROACH PRESENTED IN THPAPER THE BOUNDS BASED ON THE CAPACITY ARE

COMPUTED ACCORDING TO[37].

Mz) =Y, Nz p(z) =>, pix' ™" Bounds based o Bounds based of?

0.4294 < B < 0.6553 | 0.4744 < C < 0.6350
As =1 ps =1 BSC: 0.0485 < p < 0.1223 | 0.0698 < p < 0.1187
BIAWGN: | 0.7691 < 0 < 1.0877 | 0.8026 < ¢ < 1.0180
0.3834 < B < 0.6192 | 0.5160 < C' < 0.6630
=1 ps =1 BSC: 0.0382 < p < 0.1074 | 0.0624 < p < 0.1048
BIAWGN: | 0.7222 < 0 < 1.0214 | 0.7707 < o < 0.9553
0.3416 < B < 0.5844 | 0.5564 < C' < 0.6970
s =1 pro=1 BSC: 0.0301 < p < 0.0943 | 0.0540 < p < 0.0921
BIAWGN: | 0.6822 < 0 < 0.9648 | 0.7333 < ¢ < 0.8996
A2 = 0.4127, A3 = 0.1762 0.4816 < B < 0.4846 | 0.4147 < C' < 0.8980
A4 = 0.1177, A7 = 0.1202 pe =1 BSC: 0.0618 < p < 0.0626 0.0133 < p < 0.1404
As = 0.1731 BIAWGN: | 0.8272 < 0 < 0.8308 | 0.5182 < 0 < 1.1209

Xo = 0.2879, As = 0.1222
A = 0.0905, A\¢ = 0.1174 0.4962 < B <£0.4962 | 0.3989 < C' < 0.8910
A7 = 0.0300, A2 = 0.0807 pg =1 BSC: 0.0659 < p < 0.0659 0.0144 < p < 0.1465
A1z = 0.0831, A32 = 0.0050 BIAWGN: | 0.8446 < o <0.8447 | 0.5265 < o < 1.1513

Az3 = 0.1831

where B; is introduced in (30), and?q designates the design rate.

It follows that for any family of MBIOS channels there exisisBy;, betweenB, and Bs (its exact value is
dependent on the family) such that BP decoding achieveshiag bit error probability for all channels of this
family with B < By, and does not achieve vanishing bit error probability forreteds of the family withB > Byy,.
Hence,By(\, p) and Bs(\, p) provide universal lower and upper bounds on the threshot@imeter. In general,
different channel families will have different threshalds should be noted that the lower bound is tight for the
BEC. Furthermore, this universal bound is non-iterative pé&mand easy to compute.

Similar bounds on the B-parameters have been derived in [d2hat paper, the authors have derived the same
inequalities on the B-parameter evolution during BP dewgdhat have led to the bounds on the threshold in this
section. Therefore, the lower boursh (), p) and the upper bound; (A, p) are not new. In this paper, however,
we have combined the upper bouid (), p) with other upper bounds, such as the stability conditiorartive at
a tighter upper bound in some cases. Moreover, we have aleortdrated that these bounds can be tight in some
cases, as shown in Table IV.

Other works, such as [14], [26, Section 4.10.2], and [37] wsethformation-combining approach to also provide
universal bounds on the threshold. These bounds give upgdoaer bounds on the capacity of the channel, another
natural parameter for channel degradation (a degradechehlas lower capacity). These bounds are significantly
more difficult to compute, requiring either an iterative mss or involving computations that are numerically
unstable for high left degrees.

In Table V, we compare the bounds suggested by this approiicithe bounds of [37] for some of the ensembles
considered in this paper. In order to make the comparisontravslate the bounds on the B-parameter to bounds
on the channel parameters for a BSC and a BIAWGN channel. ¥emplified that the bounds in [37] are superior
for the regular LDPC code ensembles, but the bounds of the agiporesented here are more informative for the
irregular LDPC code ensembles shown in Table V.

Comparing these information-combining results by Land efld], and by Sutskover et al. ([37], [38]) with
our bounds, there is one conceptual difference:Bor B;, Theorem 3 and Corollary 2 provide an explicit lower
bound on the left-to-right message error probability tlsairiespective of the number of iterations, whereas this is
not the case in these related works. Secondly, for the regli®C code ensembles, for which we hake = B,
we also have an explicit positive lower bound on the leftitght message error probability for the case where the
B-parameter is larger thaBs; (e.g., as shown in Table lll, for the (3,6) LDPC code ensemblewar bound on
the left-to-right message error probability around 6.5%ligs to the cases whefe> 0.1223 or ¢ > 1.088 for the
BSC and the binary-input AWGN channel, respectively).
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The observation made in Example 2, regarding the reliabifith® optimized right-regular LDPC code ensembles
over the entire set of MBIOS channels where this result galepends on the B-parameter of the communication
channel (but not on the specific channel model of the MBIOS glircalls for analysis. Since these LDPC code
ensembles were optimized numerically (via linear programgi closed forms for the degree distributions are not
available, and we turn instead to consider the sequenceghifregular LDPC code ensembles as suggested by
Shokrollahi [35]. In this respect, the following theorem dmratrates a universality property under BP decoding
with respect to the entire set of MBIOS channels which exldlgiven B-parameter; the following theorem shows
that not only the stability condition is common for the calesied set of channels, but also a universality property
exists for this set.

Theorem 4. [Universality of LDPC Code Ensembles under BP Decoding for MBDS Channels with a Fixed
B-Parameter] Consider the set of MBIOS channels that exhibit a fixed B-patam(B). Then:
« Every capacity-achieving sequence designed for BEC universally achieves the following fraction of ca-
pacity for the considered set of channels:
1-B
= hy (SE)

(1>

p3(B) (36)

whereh, denotes the binary entropy function to the base 2. The fumgtiois monotonic decreasing iB; it
gets the value$n 2 ~ 69.3% and 100% for the extreme cases whefe — 1 (i.e., a very noisy channel) and
B — 0 (i.e., a perfect channel), respectively.

« There exists an explicit construction of a sequence of nightdar LDPC code ensembles for whighsatisfies

de—2\c _1(=2_
B§£%§32§1—<; 1) e 15 (1 - B) (37)
-

so By and By can be made arbitrarily close 1 for larged.. Hered, denotes the fixed degree of parity-check
nodes,By and B, are introduced in (29) and (35) respectively, anet 0.5772 denotes Euler’s constant.

Proof: Among all MBIOS channels which exhibit a given B-parametgr the capacity is maximized or
minimized for a BSC and BEC, respectively. For a BEC= 1 — B, and therefore the capacity is achieved (i.e.,
Rq = C) because of (10). For a BSC whose crossover probability is

C=1-hy(p), B=/4p(1—p)

and therefore

gzl_M(L—V“Jy)

2

From (10), the fraction of capacity that is universally agbit for the entire set of MBIOS channels which exhibit
a given B-parameteB satisfies
1-B
1—hy (152

Ry
< —=<1 38
== (38)

where the upper and lower bounds are obtained, respectieelpa BEC and BSC with a B-paramet&. Let us
check the two extreme cases whéte= 0 and B — 1 (referring, respectively, to an ideal channel and a vergyoi
channel). In the case whei® = 0, the upper and lower bounds coincide, and are equal to 1;eheapacity is
achievable. For examining the case whére— 1, we rely on the following Taylor series expansion of the bjna
entropy function around = % (see [43, p. 575]):

1 & (1—2x)%
—1- <z<1
ha(w) 2m2%§dw—1y Osos (39)
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which enables to calculate the limit of the left-hand sid€38) whenB — 1 (from below). This gives

I 1-B
im
B—1-1 _ p, (1—\/5_32)
. 1-B
:Bhnl1 (1 - B2
ZIHQZ
gq=1 q(Qq_]-
. 1-B
= lim
51— (1-B2
b=l (21n2>
=1In2.

Moreover, it is easy to verify with (39) that the lower boumnl%é in (38) forms a monotonic decreasing function
of B (where0 < B < 1); it varies from 1 toln2 ~ 0.693 as the value ofB is increased from zero to 1 bit
per channel use. This shows that, for the entire set of MBIO&gbls which exhibit a given B-paramets,

the achievable fraction (10) of capacity is at least 69.3s tesult is obtained by designing a capacity-achieving
sequence of LDPC code ensembles for a BEC whose B-parametdnesaiar channel (as above). Interestingly,
these two extreme values (i.e., 69.3% and 100%) coincide thidtse obtained in Theorem 1 for the entire set of
equi-capacity MBIOS channels.

To prove the second part of the Theorem, we consider a seqoémiggnt-regular LDPC code ensembles with a
fixed right-degreel., and parameters of the degree distributions that are séleatcording to [30, Theorem 2.3]
for a BEC with channel erasure probabiliB/ (see also [26, Section 3.15] and [33, Appendix VI]). These srqges
are capacity-achieving as we let the right degigéend to infinity. From [30, Theorems 2.1 and 2.3], this sequence
is constructed to achieve at least a fractione of the capacity of the BEC under BP decoding with a right degree
d. that scales logarithmically with the reciprocal of the gapcapacity, i.e., it behaves likeg %

For a BEC, the B-parameter of the channel is equal to the clhamasure probability. The sequence of right-
regular LDPC code ensembles is designed to achieve vanisktiregasure probability under BP decoding for a
BEC whose channel erasure probability is seBtdsince, by assumption, the parametersafd N) of its degree
distributions are selected according to [30, Theorem 2B§nce, the threshold of this sequenés, under BP
decoding is greater than or equal B This proves the left-hand side of inequality (37).

We derive in the following the upper bound @# in this inequality, based on [33, Appendix VI]. More expligj
let c(cr, N') be the function (see [33, Eq. (116)])

c(a, N) = (1 - a)% (T —rraR) (40)

for 0 < a < 1 and an integetN > 1 (on the right-hand side of this equality, ~ 0.5772 denotes Euler’s
constant). The fraction of edges attached to degree-2 Varadnles, for this right-regular sequence, satisfies (see
[33, Eq. (117)])

(6% o
e N)(1-B) ~ <3 (41)
wherea £ L. From (35), (40) and (41)
B
2= V)

. (6%

=

<1l-c¢(a,N)(1-B

= —(1—a)§ea(%_7+z§v)(1_3)

<i-(1-a)5eF7) 12 B)
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This completes the proof of (37). Following the first part of Tieen 3 and Corollary 3, it follows that in the limit
whered; — oo, Bo < 1— (1 — B) = B, so that (37) yields thaB, = B2 = B. Hence,

» the BP decoder achieves vanishing bit error probabilityeieery MBIOS channel whose B-parameter is less
than B,

« it is unreliable (i.e., the left-to-right message errorhability is bounded away from zero) for every MBIOS
channel whose B-parameter is greater tian

This completes the proof of Theorem 4. ]

Remark 7. Another way to prove the first part of the above theorem is veaafgdhe approach of sub-section IlI-A.
In the setting of Theorem 4, the family of MBIOS channels beiogsidered is the one that exhibits the same B-
parameter (regardless of capacity). Over this family, t&&EBnd BEC exhibit the maximal and minimal capacities,
respectively. Following the approach of sub-section IJlwe construct a capacity-achieving sequence of LDPC
ensembles for a BEC with erasure probabilRy The design rate of this ensembleRg = 1 — B. Since the BSC
exhibits the maximal capacity over this set of MBIOS chaan#iie universally achievable fraction of capacity is
%, whereC' is the capacity of a BSC with B-paramet8r. Using the expressions fdkRq and C' we obtain that
the universally achievable fraction of capacity is indegdB).

Table VI shows the resulting achievable fraction of capaait (36) as a function of the B-parameter of the
considered set of MBIOS channels.

TABLE VI
UNIVERSAL ACHIEVABLE FRACTION OF CAPACITY UNDERBP DECODING FOR THE ENTIRE SET OMBIOS CHANNELS WHICH EXHIBIT
A GIVEN B-PARAMETER B (SEETHEOREM4).

B | ps(B)

0 100%
0.250 | 85.0%
0.333 | 82.0%
0.500 | 77.5%
0.750 | 72.7%
1.000 | 69.3%

Corollary 5. In the limit whered. — oo, the BP decoder in Theorem 4 achieves vanishing bit errorafitty
for all MBIOS channels whose B-parameter is less tirand it is unreliable (i.e., the left-to-right message erro
probability is bounded away from zero) for every MBIOS chalnwhose B-parameter is greater thBn For finite
de, the values ofBy and B, differ from B by at most

(1—B)< 1 +%(%1)Z)),

de—1 " (de—

and this difference tends uniformly to zero fo< B < 1 as we letd,; tend to infinity.

Proof: The first part of this corollary, for infinite, is immediate from (37). For finitd., subtractingB from
(37) yields

0<By-B<By—B

<(1-B) (1 - (jzj)wﬁed;l(’f—v)) _ (42)

Bernoulli's inequality states thdtl + z)” > 1 + rx for x > —1, » > 1. Thus,

2 2

de—2\¢ 1 \& 72 /6
=(1= >1— )
<dc1) (1 dc1> S (43)
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Moreover, for everyy > 0 we havee? > 1 + y, so that

2

1 (= 2/6 —
edc—1 (T_'Y) >1+ w )

(44)

Using (42)—(44) gives

0< By— B
<By-B

o 25) (%)
2 72 /6
=(1-B) (dcfy—1+<6_fy> (dc—/1)2>'

From the above inequality it is clear that as we dgt— oo, the differencesBy — B and B, — B tend to zero
uniformly. ]

Example 3. For ensemble no. 2 in Table IV, whose design rateRis= % bits per channel use, the threshold
under BP decoding correspondsiformlyto the B-parameteB = 0.4962 for every MBIOS channel. For the BEC,
this corresponds to a capacity 6f= 1 — B = 0.5038 bits per channel use, and therefore 99.3% of the capacity
of the BEC is achieved under BP decoding with vanishing biswe probability. For the BIAWGN channel, this
corresponds to channel capacity= 0.5977 bits per channel use, and therefore this code ensemblevast8&.4%

of the capacity for this channel. The smallest fraction ofacdly under BP decoding is achieved for the BSC. The
B-parameterB = 0.4962 corresponds t@’ = 0.6496 for the BSC, which means thar.0% of capacity is achieved
under BP decoding.

Example 4. In this example, we consider a right-regular LDPC code ensemidiose design rate By = 0.9 bits
per channel use, and which closely approaches the capdcibe BEC under BP decoding. To this end, we set
the degree of the parity-check nodes to be 40, and the maxian@ble node degree is set to 200. The following
degree distributions are obtained by linear programminty Wie approach in [26, Section 3.18]:

A(z) = 0.2638z 4 0.125922 + 0.1088z3 + 0.05512°

+0.158925 4+ 0.02782"° + 0.2598x16 |

plx) = 2%,

From (29), (30), and (35)
By =0.0972, B; =0.3185, By =0.0972

and therefore, sincd®, = B,, then for every MBIOS channel, this LDPC code ensemble achigaaishing bit
error probability under BP decoding if the B-parameter ikbWweB = 0.0972, and it is unstable if the B-parameter
exceeds this value. This enables to calculate the thresmaldriBP decoding by transforming the B-parameter to
the proper channel parameter. For the BEC, this corresp@ndapacity ofC = 1 — B = 0.9028 bits per channel
use, and therefore 99.7% of the capacity of the BEC is asyinptigt obtained under BP decoding with vanishing
bit erasure probability. For the BIAWGN channel, this cepends to channel capacity = 0.9400 bits per channel
use, and therefore this code ensemble achieves 95.7% ofaffaxity for this channel. The smallest fraction of
capacity under BP decoding is achieved for the BSC, and itcab®s with the lower bounds(B) = 92.5% as
given in (36).

Example 5. We note that the approach presented in the examples abow# i®oessarily the best approach for
obtaining universal LDPC code ensembles. Numerically oghicode ensembles may lead to better performance
under BP over some channels. To demonstrate this, we consideollowing LDPC code ensemble, obtained
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using [16]:

AMz) = 0.244022z + 0.22497322 + 0.04765262°
+0.2257562% + 0.02707272'8 + 0.1738772°

+0.05155542%° 4 0.005091342% |
p(x) = 2.
This code is numerically optimized for the BIAWGN channelftwa design rate of one-half; its threshold under
BP decoding iss = 0.966293. This corresponds to a capacity ©6f= 0.5084 bits per channel use. Therefore, this
code achieve88.35% of the capacity of the BIAWGN channel. The threshold of thiseander BP decoding for
the BEC computes to b& = 0.4741, which corresponds to a capacity 6f= 1 — B = 0.5259 bits per channel
use. l.e., this code achieves.08% of the capacity for the BEC.

The ensemble above and the ensemble considered in Examplee3tehasame design rate. We see that the
code ensemble considered here, when used over a BIAWGN ehasrsuperior to the ensemble of Example 3,
achieving a much higher fraction of capacity. The perforneaotthe two ensembles over the BEC, however, is
similar, with a slight advantage to the ensemble of Example8ygnizing that it was designed for a BEC.

This observation is also supported by the numerical resuodtsemted in [23]. In that work, the authors compared
how LDPC code ensembles designed for one MBIOS channel peztbaver other MBIOS channels. The channels
considered there were the BEC, the BIAWGN, and the flat-fadingrg input Rayleigh channel. Their results show
that the BEC can indeed be used as a so-called “surrogatehehfor the design of good LDPC code ensembles,
while recognizing that better results can be obtained, ae#tpense of a higher computational load, with numerical
optimization for the desired channel.

While the approach presented here may not be the optimabagipr it isanalytical and easy to compytand
thus provides insight. For instance, we have shown how thpsaach can be used to obtain bounds on the thresholds
of ensembles under BP decoding oagry channel, which, as exemplified in Examples 3 and 4 above, dreftg
some ensembles.

Remark 8. Universality results for LDPC code ensembles have been dknivehis section with vanishingit error
probability under BP decoding. An extension of these residt vanishingblock error probability can be made
based on the results of [12] and [17]. These works showed trah fspecific MBIOS channel, an LDPC code
ensemble with\, = 0 has the same threshold under vanishing block and bit erasapilitie$. The threshold
for vanishing block error probability, similar to the thiedd for vanishing bit error probability, is defined as the
maximal channel parameter for which the block error proliighwill converge to zero. This result is based on the
union bound,Pg < nP,, wherePg is the block error probabilityP, is the bit error probability, and is the block
length. The conditions ons ensure that the bit error probability decays fast enougls ttausing the block error
probability to vanish as well.

An extension of this result to universality over a multitudleMBIOS channels is now straightforward. As an
example, let us demonstrate this by extending the resulihebrem 1. In the setting of this theorem, we consider
a set4 of MBIOS channels exhibiting the same capaadity,and maximal B-parametds. If the capacity-achieving
sequence of LDPC code ensemblgs, A\, p)} for BEC(B) also satisfies the above-mentioned conditions\gn
then this sequence is not only universal over this set ingesfmvanishingbit error probability, but also in terms
of vanishingblock error probability.

Similarly, by imposing om\s the conditions from [12] and [17], the other results of thestgon can be extended
in a straight-forward manner for universality under vamghblock error probability.

IV. UNIVERSALITY UNDER MAXIMUM -LIKELIHOOD DECODING

In Section 11l we considered the universality of LDPC code erdemunder BP decoding. Though maximum-
likelihood (ML) decoding is in general prohibitively complewe show in the following that universality can be
achieved under ML decoding for the entire set of equi-capadBIOS channels. The universality results proved in
Section 11l under BP decoding automatically hold under MLal#ing. In this section, we prove universality results

®In fact, [12] presents a stronger condition, also enabag> 0 for code ensembles with a special structure.



I. SASON AND B. SHUVAL: ON UNIVERSAL LDPC CODE ENSEMBLES 23

for ML decoding that are stronger in the sense that capaeitybe approachedrbitrarily closely with vanishing
block error probability for the entire set of channels under cobesition.

A. Universality of Gallager's Regular LDPC Code Ensembles

In his monograph, Gallager introduced ensembles of regudC codes, and also considered their performance
under ML decoding via their distance properties (see [7,pfra 2 and 3]). In the following, we rely on [30],
and demonstrate that a proper selection of Gallager's aeduUDPC code ensembles can be made to approach
arbitrarily closely the channel capacity for the entire geequi-capacity MBIOS channels with vanishing block
error probability.

Theorem 5. [Universality of Regular LDPC Code Ensembles under ML Decodindor Equi-Capacity MBIOS
Channels] Under ML decoding, Gallager’s regular LDPC code ensemblesbeamade universal for the set
of MBIOS channels that exhibit a given capacity More explicitly, for anye > 0 (that can be made arbitrarily
small), there exists a sequence of these code ensembleg whegn rate forms at least a fractibn- £ of the
channel capacity with vanishing block error probability fbe entire setd. Moreover, the asymptotic parity-check
density of this sequence scales likg %

Proof: The proof of the first part of this theorem follows along the dirad the proof of [30, Theorem 2.2] by
noticing that the way where the capacity-approaching sszpief regular LDPC code ensembles is determined only
depends on the channel capacity. This therefore makes thigesee universal for the entire set of equi-capacity
MBIOS channelsA, and it asymptotically achieves (as we let the block lendtlths sequence tend to infinity)
vanishing block error probability under ML decoding with asign rate that is at least a fractidn— ¢ of the
channel capacity. The asymptotic parity-check densityeschike log%, which is a consequence of the upper and
lower bounds on the parity-check density in [30, Theorem arf] [30, Theorem 2.1], respectively, which both
scale likelog . [ ]

Remark 9. [Capacity-Achieving Code Ensembles with Bounded Graphical Qoplexity under ML Decoding]

In [11], some ensembles of codes defined on graphs are demeasto achieve capacity under ML decoding with
bounded graphical complexityrhis holds for every MBIOS channel, but the degree distrims are designed for a
specific MBIOS channel, so the question of the universalitgravfamily of MBIOS channels with fixed capacity
is an open issue. We note, however, that the existence of@pdcity-achieving code ensembles whose graphical
complexity stays bounded, as opposed toltt@% result in [30, Theorem 2.1] and Theorem 5, is attributed to the
existence of state nodes (e.g., punctured bits) in the Tagmag@hs of irregular repeat-accumulate codes whereas
LDPC code ensembles without puncturing are represented bytidgpgraphs without these additional state nodes. It
is an open question if the code ensembles discussed in [{&]tha potential of being universal capacity-achieving
code ensembles under ML decoding with respect to a multitefdeapacity-achieving MBIOS channels. Note
however that since the decoding complexity of ML decodingsdonot depend directly on the graphical complexity
of these ensembles (as opposed to iterative BP decoding)ormaithe other han(cbg% stays relatively small even
for e = 1072 (thus referring to the case of achieving 99.9% of the cappaite choose to leave the analysis of the
possible universality of the new capacity-achieving codseenbles in [11] under ML decoding outside the scope
of this paper.

Example 6. In order to exemplify Theorem 5, consider lower bounds on tinerexponents of some expurgated
Gallager’s regular LDPC code ensembles under ML decoding. Z&ghows lower bounds on the error exponent
for several expurgated Gallager’s LDPC code ensembles ofHeng- 100000 and design raté. The expurgation
followed the approach in [7, Chapter 2]. The bounds were caetpdor three MBIOS channels of different
capacities. For the BSC and BEC, the Shulman-Feder bound waqse®={R9, section 4.4.1]). For the BIAWGN
channel, the error exponent was computed based on [40, The®rd. The distance spectra of the ensembles
were computed according to the asymptotic results in [7,p@a2]. It is noted that for this block length, the
asymptotic results are very close to the exact distancetrspésee [39]). It is evident from Fig. 2 that as we
increase the degrees of the variable and check nodes whilgaiméng a constant design rate, the point where
the error exponent vanishes gets closer to the channel ibgpagardless of the MBIOS channel in question.
Thus, this demonstrates that this sequence of ensemblembgsamiversal under maximum-likelihood decoding
for equi-capacity MBIOS channels.
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Fig. 2. Lower bounds on the error exponent for expurgated Galkag®PC code ensembles on various MBIOS channels. The results
were computed for block length = 100000, and for codes with constant design ray and increasing variable and check node degrees.

For short block lengths, we compare the lower bound for theumgated(6, 12) ensemble and block length
n = 1008 computed using the exact distance spectrum [39] and ther lgmuend from [7, Chapter 2]. Fig. 3 shows
the comparison. Clearly, the vanishing point of the errqvament is closer to capacity when computed using the
exact distance spectrum. The calculation of the lower bounthe error exponent that uses the upper bound on
the distance spectrum provides, however, a reasonablaatstiof the lower bound on the error exponent that is
calculated via the exact distance spectrum.

B. Universality of Punctured Regular LDPC Code Ensembles

The performance of punctured LDPC code ensembles under BP idgoods addressed extensively (see, e.g.,
[27, Chapter 5] and references therein). The potential padace of punctured LDPC code ensembles under ML
decoding was studied, e.g., in [10] and [32]. These works stiwremarkable performance of some punctured
LDPC code ensembles for various channel models. In the fatipwive rely on [10], and consider the universality
of some randomly punctured regular LDPC code ensembles undledddoding over the set of equi-capacity
MBIOS channels.

Consider a linear block code, which will be referred to as ah@mocode. By introducing the option of possibly
puncturing various fractions of the code bits of the mothede; one generates a set of new linear block codes
with some higher rates. The advantage of puncturing lies énflexibility of the selected rates of the punctured
codes, and in the ability to use the same decoder as for thkemoode to decode all of these punctured codes.
Specifically, by puncturing.q bits of a mother code of length and rateR, one obtains a punctured code of length
n(1l — ¢) and rate at mos{%. A lower rate occurs whenever at least two different codewaf the mother code
are mapped to the same codeword after puncturing; this phemon is calledate reduction(see [10, Section IIl]).

In [10], the authors analyze the performance of punctured LB&de ensembles under ML decoding. Specifically,
they consider puncturing Gallager’s ensemble of regulay, k) LDPC codes, and provide conditions on the original
ensemble (before puncturing) for asymptotically obtagriero rate reduction with probability 1 as we let the block
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Fig. 3. A comparison of the lower bounds on the error exponent oesexpurgated Gallager's LDPC code ensembles for various MBIOS
channels. The results were computed for the expurg@tel®) ensemble with block length = 1008, using both the exact distance spectrum
as found in [39] (left-hand plot) and the upper bound from [7, Chapldright-hand plot).

lengthn tend to infinity. Consider an ensemble whose design rateyjsthen in the case where there is no rate
reduction due to puncturing, the design rate of the pundteresemble isf%dq. It is also shown in [10] that under
the condition of zero rate reduction, if the original sequeenf code ensembles achieves a fractiens of capacity
(note that Theorem 5 ensures the existence of such a sequémee)so does the sequence of punctured code
ensembles. This leads to the following theorem:

Theorem 6. [Universality of Punctured Regular LDPC Code Ensembles under ML [@coding for Equi-
Capacity MBIOS Channels] Under ML decoding, punctured regular LDPC code ensembles eanaudle universal
for the set of MBIOS channels that exhibit a given capacitprélexplicitly, lete > 0 (which can be set arbitrarily
close to zero), and consider a sequence of redulaf, k) LDPC code ensembles whose design rAteforms a
fraction of at leastl — ¢ of the capacityC’. Assume that this sequence achieves vanishing block erotyapility
under ML decoding for the entire set of MBIOS channdlsvhich exhibit a channel capacity. Random puncturing
of a fractionq of code bits from this sequence of ensembles produces a ripyersee of punctured code ensembles
with any desired design ratg; > Ry with the following properties:

« It achieves vanishing block error probability under ML déitm over the entire set of equi-capacity MBIOS

. St
channels with capacitg” = 1=,

« It achieves a fraction of at leas$t— ¢ of the capacityC’.

Proof: From Theorem 5, there exists a sequence of regular LDPC code klesethat universally achieves,
under ML decoding, a fractioih— ¢ of the channel capacity with vanishing block error proliabibr the entire set
A. The idea is to first construct such a sequence with a low enoesgjigrirate, and then increase the design rate via
(random) puncturing to obtain the new universal code enterMore specifically, according to [10, Theorem 1], if
the design rate of the mother ensemble is low enough, therateaeduction due to puncturing is zero. Note that
the proof of this theorem is based solely on the distancegntig of the original (mother) code ensemble and the
desired design rate. Since the proofs of [10, Theorems 2 and\8pnly on the capacity of the MBIOS channel
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and the condition for zero rate reduction, this implies tthat new sequence of punctured LDPC code ensembles
has vanishing block error probability under ML decoding ozt MBIOS channels with capacitg’ = l%q Note
that since
R}, _ Ry S C _
1—-e (1-¢)(1—-¢q) " 1—¢q
then this new sequence of punctured LDPC code ensembles hagga date that is at least a fractian- ¢ of C’.
[ |

V. SUMMARY AND OUTLOOK
A. Summary

In this work we considered the universality of LDPC code endembnder both BP and ML decoding. We have
focused on obtaining closed-form analytical results, eeugh better performance can be obtained by numerical
design of LDPC code ensembles (see, e.g., [3], [6], [23], [2@] also the discussion in Example 5 of this paper).

Under BP decoding we derived an analytical approach foigaésj LDPC code ensembles that achieve vanishing
bit error probability over every channel in a family of MBI@8&annels. This approach was applied to several families
of MBIOS channels, such as the family of equi-capacity MBIGfannels. We also derived a necessary condition
for a sequence of LDPC code ensembles to universally achievshiag bit error probability under BP decoding
over an arbitrary set of MBIOS channels. This condition fothnes basis for a linear programming universal upper
bound on the achievable rate of LDPC code ensembles over a egtis€apacity MBIOS channels. The analytical
design method and the necessary condition above were useérit@ bounds on the threshold of LDPC code
ensembles under BP decoding. These bounds were comparedstiogeinformation-combining bounds on the
threshold ([37]) in Table V). In some cases, our bounds wepeenmformative.

For the ML decoding case, we used the results of [30] to shatv@allager’s regular LDPC code ensembles can
be made universally capacity achieving over the set of egpacity MBIOS channels (in the sense of vanishing
block error probability). The result was extended to randopuinctured LDPC code ensembles as well, based
on [10]. It is noted that the ML decoding results are an improent over the BP decoding case, where the
universally achievable fraction of capacity over the famof equi-capacity MBIOS channels depended on the
channel capacity and could be as low64s3%.

B. Topics for Further Research

In this sub-section, we propose some directions for futesearch:

« The LP bounds derived in Section Il are not tight in generakesithe universal achievable gap to capacity does
not always decrease for increasing valuesiofcontrary to the expected experimental behavior of opteaiz
LDPC code ensembles under BP decoding). Finding some new aimstin these optimization problems
may enhance the tightness of these bounds. Moreover, omdbaefer to fixed right-degree ensembles (note
that typically LDPC code ensembles are designed to be rigjutaie or almost right-regular). Extending the
bounds to the case where the parity-check degree is not fixaldasof interest.

« The Bhattacharyya parameter (B-parameter) for equi-cgpetBIOS channels can vary in a large range. As a
result, the universal LDPC code ensembles designed in thik adrieve, e.g.75% of capacity if the channel
capacity is 0.5 bit per channel use (see Fig. 1). Nonethdles$act that these ensembles are provably universal
and are designed by simple analytical tools is importantc&imn practice, numerical optimizations enable
to design LDPC code ensembles which universally achieve &ddrgction of capacity for some classes of
equi-capacity MBIOS channels (see [28]), further analysithis direction is of interest.

« The ideas of universality in this paper can be developed tsiden other sets of communication channels (for
example, the universality of LDPC code ensembles for the sMRIOS channels with the same uncoded bit
error probability can be considered in a similar approacBdotion IlI-A via the use of density evolution and
(5)).

« The approach for universality in Section Il of this paper seitom the asymptotic analysis of BP decoding
via density evolution; it has resulted in an analytical desif a universal decoder that is based on code design
for a BEC. This universal LDPC code ensemble achieves vanishingrior probability under BP decoding
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but does not achieve full capacity when used over other atarin the family it was designed for, as Fig. 1
demonstrates. That said, one should not infer that this ip&malty of universality, as these results are merely
an artifact of the approach presented here. Numerical sgaén [6] and [23] suggests that better results are
possible (see also Example 5 in this paper). One possibleoapiprto obtain better analytical results may
rely on analytic properties of GEXIT charts [19], instead lo¢ tsuggested approach in this paper that relies
on density evolution for the BEC as a starting point for thelysis. Another possible approach may be to
investigate universal LDPC code ensemble design under otitveptimal decoding methods for LDPC codes
(e.g., a study of the universality of LDPC code ensembles ubBedecoding).

« Although ML decoding is prohibitively complex for codes afrdie block lengths, the fact that (regular) LDPC
code ensembles are capacity-achieving under ML decodinghé set of equi-capacity MBIOS channels is
interesting (see Theorems 5 and 6). As a continuation of txaqars item, it would be interesting to investigate
the universality issue for some near-ML decoding algorihhat provide a better tradeoff between performance
and complexity than the ML decoding algorithm.

« The analysis in this paper can be easily adapted to otheriéentf code ensembles defined on graphs, e.g.,
to irregular repeat-accumulate codes (see [36]).

APPENDIX A
PrROOF OFLEMMA 1

In the following, we prove the monotonicity @f; (see (12)) over the intervéld, 1), and then calculate the limits
of u1(C) as the channel capacity tends either to zero or 1 bit per channel use.
Let x £ hy'(1 — C), then we get from (12) that

(0) - L T

We note thatu;, as a function ofr, monotonically decreases whén< z < 3. This is readily seen by taking the
derivative of 1 with respect tox, which remains negative wheh< x < % The substitution of a Taylor series
expansion ofhy(x) aboutx = % (see (39)) in the denominator gives

1— 1—(1—2;1;)2

m(C) = Z (1 - 22) 29
21112 = q q—l
(1 — 2x)? 2In2
14+ /T - (1 —22)2 & (1—2x)%
2 42— 1)
21n 2 1
Tl VT (0202 & (1- 222D
qz::l q(2¢ — 1)

If C is increased from 0 to 1, then, which was defined above as2 h;'(1 — C), decreases frond to 0 and
thereforeu, (C) is increasing withC', and
(ljiml ui(C) = 1.

On the other hand, the limit g, (C') when we let the capacity tend to zero is equal to

2In2 1
li =
CIE}OMI(C) a:—>1 1+ /1= 1 —2$ 2 i )Q(qfl)
q=1 (2q - 1)
1
= n2 lim =T
= a(2¢-1)

=In2.
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This completes the proof of Lemma 1.

APPENDIX B
EXTENSION OF(15) FOR A GENERAL RIGHFDEGREE DISTRIBUTION

The condition in (15) is stated for a right-regular channel & general right-degree distribution,
p(z) = Zpi:vifl.

This condition can be readily extended to the case at harthuah it takes a more involved form. As in (19) we
begin with (6) to obtain

z = Blay)

© B(agp) A <Z p:B (al_l>>
2 (a1 Bl ), @)

where equality (a) follows from the recursive density etioln equation in (6) and the property in (20) of the
B-functional, equalities (b) and (c) follow from the linégrof the convolution operator and of the B-functional
(see (21)), and inequality (d) follows from (18).

The extension of (15) for a general LDPC code ensemble readityv® by replacingz; in (22) with the sequence

z{ = B(ap) A(Z pi\/l—(l — B(leil)Q)i—l >’

with initial condition z{, = B(ayo).
Thus, the generalized version of (15) assumes the form

BA(ZWM—@—:U?)“) <z, Vze(0,B] (46)

APPENDIXC
PROOF OFLEMMA 3

Let us consider the sequence
2 =20A(y/1—p(1—27,)), 1=1,2,...

Bl()‘v p) é

for zo < Bi(A, p) where .

inf
2201 A(v/T = p(1 — 22))

is introduced in (30). By substituting = 1 on the right-hand side above, it follows readily tha()\, p) < 1 and
thereforezy, < 1. In the following, it is proved by induction that the sequeris monotonically decreasing and
bounded between 0 and 1: let us assume @h&tz;_; < 1 holds for a specifid > 1, then

21 = zoM\(y/1 — p(1 — 21271))

< Bi(A\ p) A1 —p(1 =27 4))
<z
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where the last inequality follows from the definition 8f and the above assumption fgr ;. It therefore follows
by induction that the sequende;} is monotonically decreasing and bounded between 0 and Lehiris a
convergent sequence. Let € [0, 1] denote the limit of this sequence, then due to the continofity and p over
the interval[0, 1], it follows (by letting ! tend to infinity in the recursive equation for the sequefigg) that the
limit z = z* satisfies the equation

z = 20A\(y/1 — p(1 — 22)).

For z € (0,1]

(V1—=p(1—22))

= 20\ (y/1—p(1—22)) <=z

20 < By <
0 1_>\

and therefore the limit should be necessarily zero for the case where the initiagleval is less thanB; (A, p).
For the proof of the second part of the lemma, we consider #se evhereB; (), p) < zp < 1. From the way
B; is defined in (30), it follows that the set

T

F., = {x € (0,1] : N0 =) < zo} (47)

is non-empty. Letr(zy) designate the maximal value of this set (note that z(zp) < 1).

Let us define the functiop(u,v) £ ul(y/1 — p(1 — v2)) over the squarg(u,v) : 0 <u < 1,0 < v < 1}. Note
that the functiory is monotonically increasing in its two variables; the mamitity in « is due to its linearity in
and the non-negativity ok; and the monotonicity in is due to the monotonicity of the degree distributibmnd
p over the interval0, 1] and since they are mapped to the same interval. We show irolleeving, by induction,
that z; € [z(z0), 20] for every integerl > 0. For [ = 0, the inequalityz(zp) < zo < 1 holds since forz € (2o, 1]

A(V1 = p(1 —2?))

Let us assume that,_; € [z(z0), z0] for a specificl > 1 then

> T > 2.

21 = g(20,21-1)
(a)
> g(20,2(20))

= 20A(y/1— p(1 — 2(20)2))

(b)
> x(20)

where inequality (a) is due to the monotonicity @f and inequality (b) follows from the way(zy) is defined
above (or, more generally, this inequality holds for everg 75 where the sef., is defined in (47)). Also, from
the above assumption fag_;

2 = g(20,21-1)
< g(20,1)

and therefore, it follows by induction that
x(20) < zp <z, 1=0,1,...

and the sequencg;} is bounded away from zero (sina€z,) > 0). This completes the proof of Lemma 3.
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APPENDIXD
PROOF OF THEINEQUALITY IN REMARK 6

From the definitions ofB; and B; in (29) and (30), respectively, in order to prove tat(\, p) > By(A, p), it
is sufficient to show that
)‘( 1_p(1_$2)) S/\(l_p(l_:ﬁ»v Vi e {0¢1]

Since\(0) = 0, A\(1) = 1, and X is monotonic increasing over the interval [0, 1], then timisquality is equivalent
to
1-p(1l—22)<1-p(1—2x), Vzel0l].

By squaring and rearranging terms, we need to prove that
h(z) 2 p(1 —2?)+p*A—z)—2p(1 —2) >0, Vzel01].

Note thath is zero at the endpoints of this interval (sinp@) = 0 and p(1) = 1). From the assumption of
right-regularity thenp(z) = 2%~1. Lety £ d. — 1 (wherey > 1), then

h(z)=(1 -2+ 1 —2)* —2(1 — )"
91— ) 1+z)"+(1—-a)

2
>0

-1

where the last transition follows from the non-negativifyboth terms over the interval € [0, 1] (the second term
is non-negative due to the convexity of the functipfx) = =7 for x > 0 (note thaty > 1)). This completes the
proof of the inequality in Remark 6.
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