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Abstract

A design of robust error-correcting codes that achieve reliable communication over various channels is of great
theoretical and practical interest. Such codes are termeduniversal. This paper considers the universality of low-
density parity-check (LDPC) code ensembles over families of memoryless binary-input output-symmetric (MBIOS)
channels. Universality is considered both under belief-propagation (BP) and maximum-likelihood (ML) decoding.

For the BP decoding case, we derive a density-evolution-based analytical method for designing LDPC code
ensembles that are universal over various families of MBIOSchannels. We also derive a necessary condition for
universality of LDPC code ensembles under BP decoding; thiscondition is used to provide bounds on the universally
achievable fraction of capacity. These results enable us toprovide conditions for reliable / unreliable communications
under BP decoding that are based on the Bhattacharyya parameter of the channel. For the ML decoding case, we
prove that properly selected regular LDPC code ensembles are universally capacity-achieving for the set of equi-
capacity MBIOS channels and extend this result to puncturedregular LDPC code ensembles.

Index Terms

Belief propagation (BP), Bhattacharyya parameter (B-parameter), density evolution (DE), linear programming
(LP) bounds, low-density parity-check (LDPC) codes, maximum-likelihood (ML), memoryless binary-input output-
symmetric (MBIOS) channels, stability.

I. I NTRODUCTION

Low-density parity-check (LDPC) codes are linear block codes that can be represented by sparse parity-check
matrices. This sparse structure enables to decode these codes by suboptimal iterative decoding algorithms. These
low-complexity algorithms are remarkable in that they achieve rates close to capacity for properly designed LDPC
code ensembles (see, e.g., [4], [16], [18], [24], and [25]).

The density evolution approach serves as a main tool for the asymptotic analysis of the performance of LDPC
code ensembles under iterative message-passing decoding [25]. Using this approach, it is possible to numerically
optimize LDPC code ensembles for specific memoryless binary-input output-symmetric (MBIOS) channels. The
goal is to find degree distributions that asymptotically ensure convergence to error-free communications for a given
channel model, and that are optimal in the sense of either achieving maximal rate for specific channel parameters, or
exhibiting the best threshold for a specific chosen rate or other constraints on the degree distributions. Depending
on the threshold parameter considered, the best threshold could be either a maximal value, as in the crossover
probability of a binary symmetric channel, or a minimal value, as in the signal-to-noise ratio of a binary-input
additive white Gaussian noise channel. Another consequence of density evolution is the stability condition which
forms a necessary condition for an LDPC code ensemble to asymptotically achieve vanishing bit error probability

This research work was supported by the Israel Science Foundation (grant no. 1070/07). The material in this paper was presented in part
at the 2010 International Symposium on Information Theory (ISIT ’10), Austin, Texas, USA, June 2010. It was also presented in part at the
2010 IEEE 26th Convention of Electrical and Electronics Engineers, Eilat,Israel, November 2010. Igal Sason is the corresponding author
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under iterative message-passing decoding for a given channel model. Density evolution is a powerful tool for
numerical optimization of degree distributions, but it does not lend itself, in general, for theanalytical design of
degree distributions. An exception to this is the case of thebinary erasure channel (BEC), where density evolution is
greatly simplified to a single-dimensional recursive equation. Based on this, several explicit expressions of capacity-
achieving sequences for the BEC have been derived (see, e.g.,[22] and [35]). So far, no explicit expressions for
capacity-achieving code ensembles under iterative decoding have been found for other MBIOS channel models.
While ML decoding is impractical, explicit expressions forcapacity-approaching codes for any MBIOS channel
under ML decoding have been derived (see [11] and [30, Theorem2.2]). The analysis under ML decoding relies on
upper bounds on the decoding error probability based on the average weight distribution of the ensemble (see [20]
and [29]).

It is of great interest, both practically and theoretically, to design a code that will operate reliably over a range
of channels. Such robust codes are termeduniversal. There are many different notions of universality, and many
approaches to the design of universal codes. An excellent survey on the matter can be found in [15], where the
authors have focused on the problem of communicating reliably when there is channel uncertainty. The authors
introduced several models of channel uncertainty, and discussed several universality strategies for these models,
both in terms of encoder design and decoder design.

The subject of universal LDPC codes has been addressed in several recent studies. In this setting, the goal is
to design an LDPC code ensemble that will perform well in terms of error probability over a family of channels,
using a standard decoder for LDPC codes, such as a belief propagation decoder.

One approach is to find so-called extreme channels that can be used to predict the LDPC code ensemble’s
performance under iterative decoding. Khandekar [13] showed that a code’s behavior on the BEC can be used to
predict its behavior on other channels. In particular, he showed that if for a BEC, the bit erasure probability of
an LDPC code ensemble converges to zero under iterative message-passing decoding then the bit error probability
will also converge to zero on any other MBIOS channel with thesame Bhattacharyya parameter (B-parameter).
Among the family of equi-capacity MBIOS channels, the BEC exhibits the smallest B-parameter whereas the binary
symmetric channel (BSC) exhibits the greatest B-parameter [3]. Based on this observation, it was suggested that
it may be possible to design a code for an arbitrary MBIOS channel by designing it for a BEC with a matching
B-parameter. Further evidence of the extremes of the BEC and BSCcan be found, e.g., in a study by Sutskover
et al. (see [37] and [38]), which is based on an information-combining approach ([14]) to predict the behavior of
LDPC code ensembles over various channels; they showed that the behavior of an LDPC code ensemble over a
BEC and BSC can be used to provide bounds on its behavior over other MBIOS channels under iterative message-
passing decoding. These works all use bounds that stem from the reduction of the density evolution equation to a
single parameter. Such bounds first appeared in [2], albeit notfrom a universality standpoint.

Another approach stems from several researchers having noticed that LDPC codes exhibit similar performance
under iterative message-passing decoding over a set of channels with similar parameters. Numerical evidence that
equi-capacity and equi-B-parameters exhibit similar thresholds is provided in [3], and thus it was conjectured
that the performance of an LDPC code over one MBIOS channel can be approximated by its performance on a
different MBIOS channel but with the same capacity or B-parameter. In [6], the authors also provide supporting
numerical evidence that LDPC code ensembles behave similarlyon equi-capacity MBIOS channels. In [23], the
authors conjecture that it is possible to design good LDPC codes based on a so-called “surrogate” channel, such
as the BEC, so that they will exhibit good performance over other channels. Recently, Sanaei et al. [28] designed
numerically some universal LDPC code ensembles that achieve ahigh fraction of capacity for a set of equi-capacity
MBIOS channels. Based on some practical experiments, they have also conjectured that an LDPC code ensemble
designed for two equi-capacity MBIOS channels will also converge under iterative message-passing decoding over
any convex combination of these two channels1.

We briefly mention several other avenues of research regarding universal LDPC codes; these works present
approaches that are quite remote from the approach of our work on universality, and are presented here for the sake
of completeness. Duyck et al. [5] numerically optimized LDPC code ensembles to be universal over Rician fading
multiple-access channels. Miyake and Maruyama [21] studied universal properties of fixed length LDPC codes
under the minimum-entropy decoding scheme. Universal codes with finite block lengths were addressed in [34];

1I.e., a channel formed by using one of these channels with probabilityθ, 0 ≤ θ ≤ 1, and the other channel with probability1 − θ.
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this paper was focused on the performance of such code ensembles, in terms of bounds on the probability of error
(and error exponents), for a class of channels the authors call “periodic erasure channels.” Factor-graph decoding
over a family of channels related by some unknown parameterswas considered in [41] where this work defined
several factor-graph based decoding schemes over channelswith unknown parameters, and applied to codes that
are represented by factor graphs, not necessarily LDPC codes.Finally, Yedla, et al. [44] consider the problem
of universal joint source-channel coding; in their setting, there are two correlated sources transmitting over two
channels with unknown parameters, to be jointly decoded by asingle receiver.

In this paper, we consider the universality of LDPC code ensembles under both iterative message-passing decoding
and maximum-likelihood decoding over MBIOS channels. For the case of belief-propagation (BP) decoding, we use
density evolution to derive some conditions for the universality of LDPC codes over various MBIOS channels. These
results serve to formulate an approach for the analytical design of universal LDPC code ensembles. Furthermore,
we show that for any code ensemble, one can classify channelsas good or bad (in the sense of convergence under
BP decoding) based on the value of the B-parameter of the channel. For the ML decoding case, we show that
regular LDPC code ensembles can be made universal both with andwithout puncturing over equi-capacity MBIOS
channels.

This paper is structured as follows: Section II provides some preliminary material and notation, Section III
explores the universality of LDPC code ensembles under BP decoding, Section IV contains some universality
results for LDPC code ensembles under ML decoding, and Section Vconcludes this work with a summary and
some directions for future research.

II. PRELIMINARIES

This section follows the notation in [26, Chapter 4], and briefly introduces some preliminaries on MBIOS channels
that are relevant for the analysis in this paper.

Consider an MBIOS channel whose input and output are designated byX andY , respectively, and letpY |X(·|·)
be its transition probability. The associated log-likelihood ratio (LLR) l(y) when the channel output isY = y is
given by

l(y) = ln

(

pY |X(y|0)

pY |X(y|1)

)

.

The LLR associated with the random variableY is defined asL = l(Y ). Let a designate the conditional probability
density function (pdf) of the random variableL given that the channel input isX = 0 (to be referred to as the
L-density function). This density function satisfies the symmetry propertya(x) = ex a(−x) for everyx ∈ R (see
[26, Theorem 4.26]).

This paper relies on the following three functionals (various other functionals are presented in [26, Section 4.1]).

Proposition 1. [Capacity functional] Consider an MBIOS channel whose symmetric L-density function is denoted
by a. The capacity of this channel in units of bits per channel use,C , C(a), is given by

C =

∫ ∞

−∞
a(x)

(

1 − log2(1 + e−x)
)

dx. (1)

This proposition is proved in [26, p. 193].

Definition 1. [The Bhattacharyya functional] The Bhattacharyya parameter (B-parameter),B , B(a), which is
associated with the symmetric L-density functiona is given by

B =

∫ ∞

−∞
a(x)e−

x

2 dx. (2)

The following is a direct consequence of a proposition that was introduced in [1, Proposition 1] (for a proof see
[1, Appendix A]); it relates the capacity with the B-parameter of an MBIOS channel.

Proposition 2. For every MBIOS channel, leta be the L-density of the LLR at the channel output for an equi-
probable binary input, and letB and C designate the B-parameter and channel capacity, respectively. Then, the
following inequality holds:

log2

(

2

1 + B

)

≤ C ≤
√

1 − B2. (3)
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Proposition 2 implies that for a perfect MBIOS channel, whosecapacity,C, approaches 1 bit per channel use,
the corresponding B-parameter tends to zero. On the other hand, for a very noisy channel, whose capacity is close
to zero, we have that the B-parameter tends to 1. This is consistent with the interpretation that the B-parameter
forms an upper bound on the error probability under ML decoding when the channel is used only once to transmit
a zero or a one.

The following proposition was introduced in [33, Lemma 8] (fora proof see [33, Appendix IV]), and it provides
another property that relates the channel capacity and the B-parameter of an MBIOS channel. This proposition
improves upon the lower bound in Proposition 2.

Proposition 3. For every MBIOS channel, the sum of its channel capacity and its B-parameter is greater than or
equal to 1, i.e.,

B + C ≥ 1

and equality is achieved for a BEC.

Note that Proposition 3 implies that among all equi-capacityMBIOS channels, the BEC possesses the minimal
B-parameter.

Remark 1. From the lower bound of Proposition 2, it is implied thatC +B ≥ 1+(B− log2(1+B)). It can easily
be verified thatf(B) , 1+(B− log2(1+B)) ≤ 1 for B ∈ [0, 1], with equality only at the end points, i.e.,B = 0 or
B = 1. To see this, we first note that indeedf(0) = f(1) = 1. The derivative off is f ′(B) = 1− ((1+B) ln 2)−1,
which has only one zero, atB = −1 + 1/ ln 2 ≈ 0.4427. This is easily determined to be a minimum point off ,
implying thatf(B) ≤ 1 for B ∈ [0, 1]. On the other hand, Proposition 3 states thatB + C ≥ 1, thereby improving
the lower bound in Proposition 2.

Following standard notation, the degree distributions of the LDPC codes under consideration from the edge
perspective are denoted byλ(x) =

∑

k λkx
k−1 andρ(x) =

∑

k ρkx
k−1, whereλk andρk designate the fraction of

edges emanating from variable and parity-check nodes of degreek, respectively.
The analysis in this paper relies partially on thestability conditionfor LDPC code ensembles under BP decoding.

This condition applies to the asymptotic case where we let theblock length tend to infinity, and it forms a necessary
condition for successful BP decoding in the sense that it requires that the fixed point of zero bit error rate be stable.
Consider an LDPC code ensemble with a pair of degree distributions (λ, ρ) whose transmission takes place over
an MBIOS channel, characterized by its L-density functiona. Then, the stability condition under BP decoding
assumes the form (see [26, Theorem 4.125])

B(a)λ′(0)ρ′(1) < 1. (4)

The reader is referred to [26, Section 4.9] for a proof.

Definition 2. [The error probability functional] The bit error probability that is associated with a symmetric
L-density functiona is given by

E(a) =

∫ 0−

−∞
a(x) dx +

1

2

∫ 0+

0−

a(x) dx

=
1

2

∫ +∞

−∞
a(x) e−(| x

2
|+ x

2
) dx.

The following inequalities relate the Bhattacharyya and error probability functionals. Based on [26, Lemma 4.64],
the following inequality holds for an arbitrary symmetric L-densitya

2E(a) ≤ B(a) ≤ 2
√

E(a)
(

1 − E(a)
)

. (5)

Note that the lower and upper bounds on the B-parameter, as given in (5), are satisfied with equality for a BEC
and BSC, respectively.
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Convolutions of densities in the so-called L-domain and G-domain2 are presented in [26, p. 181], and are
denoted by� and�, respectively. Using the density evolution approach for the asymptotic analysis of LDPC code
ensembles over MBIOS channels, where we let the block lengthtend to infinity, the� convolution describes how
the distribution of the (statistically independent) messages changes at the variable node under BP decoding at every
single iteration, whereas the� convolution describes the change of this distribution at the parity-check node side.

III. U NIVERSALITY UNDER BELIEF PROPAGATION DECODING

A. Universal Achievability Results

In the following, we consider the suitability of LDPC code ensembles to operate reliably over a set of MBIOS
channels under BP decoding. We rely here on the density evolution approach, and our goal is to construct LDPC
code ensembles which achieve vanishing bit error probability, in the asymptotic case where the block length tends
to infinity, uniformly over a set of MBIOS channels.

To this end, let us consider first an arbitrary MBIOS channel, and leta0 denote thepdf of the LLR at the channel
output given that the channel input is zero. Letλ and ρ designate the degree distributions of the variable and
parity-checks, respectively, from the edge perspective. Based on density evolution, the densities at every iteration
of the BP decoder satisfy the recursive equation

al = a0 � λ

(

Γ−1
(

ρ
(

Γ(al−1)
)

)

)

, l = 1, 2, . . . (6)

where the mappingΓ and its inverseΓ−1 are introduced in [25, p. 627]. The densitiesal are symmetric functions
for every l ≥ 0, i.e., al(x) = exal(−x) for all x ∈ R. Let xl = B(al) for l ≥ 0 whereB(a) designates the
B-parameter that is associated with the L-densitya. Based on the proof of sufficiency in the stability condition (see
[26, p. 234]), it follows that

xl ≤ B(a0)λ
(

1 − ρ(1 − xl−1)
)

, l = 1, 2, . . . (7)

where this inequality is proved in [9, Theorem 4.2] and [12, Theorem 2]. From (5), an LDPC code ensemble obtains
asymptotically vanishing bit error probability as the number of iterations grows if and only ifliml→∞ xl = 0.

Let us now consider an arbitrary set of MBIOS channels, and letA designate the corresponding set of its L-
densities. Suppose that one wishes to design an LDPC code ensemble with degree distributions(λ, ρ) in order
to asymptotically achieve vanishing bit error probabilityunder BP decoding for every channel in this set. Let us
designate byB the maximal B-parameter over the MBIOS channels of the considered set, i.e.,

B , max
a∈A

B(a). (8)

Let us consider the recursive equation

yl = B λ
(

1 − ρ(1 − yl−1)
)

, l = 1, 2, . . . (9)

with the initial valuey0 = B. This recursive equation refers to the density evolution of aBEC whose erasure
probability is equal toB. By comparing (7) and (9), it is straightforward to show (e.g., by induction) that0 ≤ xl ≤ yl

for every l ≥ 0 and a ∈ A. If the pair of degree distributions(λ, ρ) is selected in a way whereliml→∞ yl = 0,
then we get thatliml→∞ xl = 0 in (7) for every MBIOS channelfrom the setA. Hence, the universality of the
LDPC code ensemble whose degree distribution is(λ, ρ) follows with respect to the considered set of channels.

One can thus rely on (9) to construct a sequence of LDPC code ensembles which achieves vanishing bit error
probability, under BP decoding, for all the MBIOS channels of the considered set. In particular, to this end one
can use the well-known explicit constructions of capacity-achieving sequences of LDPC code ensembles for the
BEC (see, e.g., [22] and references therein). By this approach, the asymptotic design rate of this capacity-achieving
sequence of LDPC code ensembles is equal to the capacity of the BEC, i.e.,

Rd = 1 − B, (10)

whereB is given in (8). We study the following particular cases of this approach.

2As mentioned at the beginning of this section, an L-density is the pdf of the LLR l(Y ) given that the channel input isX = 0. A G-density
is the result of the transformationl(Y ) → (sgn l(Y ), log coth(|l(Y )|/2)). The L- and G-domains are, respectively, the domains of the L
and G densities.
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1) Universal LDPC Code Ensembles for Equi-Capacity MBIOS Channels: Among all MBIOS channels which
exhibit a given capacityC, the B-parameter that is associated with the L-densities of this set of channels attains its
maximal and minimal values for the BSC and BEC, respectively (this follows readily from (5)). The B-parameter
of a BSC whose crossover probability isp is equal to

√

4p(1 − p), and the capacity of this channel is equal to
C = 1 − h2(p). By referring to the set of all equi-capacity MBIOS channels, one therefore gets from (8) that

B =
√

4h−1
2 (1 − C)

(

1 − h−1
2 (1 − C)

)

(11)

whereh−1
2 designates the inverse of the binary entropy function on base 2. From (10), the asymptotic design rate of

the corresponding sequence of LDPC code ensembles is equal toRd = 1−B. As a consequence of Proposition 3,
it follows that indeedRd ≤ C, which is necessary for reliable communication. The fraction of the channel capacity
that is achievable by this approach,

µ1(C) ,
Rd

C
,

is therefore equal to

µ1(C) =
1 −

√

4h−1
2 (1 − C)

(

1 − h−1
2 (1 − C)

)

C
. (12)

Lemma 1. The functionµ1 is monotonically increasing over the interval(0, 1], and

lim
C→0

µ1(C) = ln 2 ≈ 69.3%, lim
C→1

µ1(C) = 1.

Proof: See Appendix A.
This implies that as the value of the capacity is increased, a larger fraction of the channel capacity is achievable

uniformly for the entire considered set of equi-capacity MBIOS channels, and the two extremes are 69.3% and
100% when the capacity varies between zero and 1 bits per channel use. For a value of the channel capacity which
approaches 1, the channels are almost noiseless, so almost no coding is required. Hence, the uniform attainment
of nearly 100% of the capacity for the entire set of channels is well expected. However, this convergence of the
achievable fraction of capacity is rather slow as we let the code rate tend to 1 (as is evidenced in Fig. 1). To see
this, note that ifC is close to 1

µ1(C) ≈
1 − 2

√

h−1
2 (1 − C)

C

which tends to 1 quite slowly (e.g., forC = 0.95 bits per channel use, this approximation is equal to 0.895 which
indeed coincides with Fig. 1).

The above analysis implies that at least 69.3% of the capacityof any MBIOS channel can be achieved by
designing a capacity-achieving sequence of LDPC code ensembles for a BEC; the erasure probability of this BEC
is set to be equal to the B-parameter of a BSC whose capacity matches our channel.

This presents an analytical approach for the design of universal LDPC code ensembles for equi-capacity MBIOS
channels where a provable (non-vanishing) fraction of capacity is universally achieved, and the value of this fraction
gets larger as the value of capacity is increased. We note however that numerical optimization via density evolution
enables to design universal LDPC code ensembles in [28] achieving a significantly larger fraction of the channel
capacity, though the considered approach here is purely analytical, and it is not subject to numerical optimizations.

2) Universal LDPC Code Ensembles for BEC and BIAWGNC with the Same Capacity: We consider here an
achievable fraction of capacity when one wishes to design anLDPC code ensemble which achieves asymptotically
vanishing bit error probability under BP decoding for both the BEC and the binary-input AWGN channel (BI-
AWGNC) with the same capacity. Since among all equi-capacityMBIOS channels, the BEC possesses the minimal
B-parameter (see Proposition 3), then the parameterB in (8) corresponds to the B-parameter of the BIAWGNC. The
conversion from the channel capacity to the B-parameter forthis channel is done numerically by first calculating
the noise varianceσ2 via the following expression for its capacity (see [26, p. 194]):

C = 1 +
1

ln 2

[

(

2

σ2
− 1

)

Q
( 1

σ

)

−
√

2

πσ2
e−

1

2σ2 +
∞
∑

i=1

(−1)i

i(i + 1)
e

2i(i+1)

σ2 Q
(1 + 2i

σ

)

]
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Fig. 1. Universal achievable fraction of capacity under BP decoding for two sets of MBIOS channels which exhibit a given capacity (see
Theorem 1). The values ofµ1 in (12) andµ2 in (13) correspond, respectively, to the entire set of equi-capacity MBIOS channels, and the
subset of a BEC and BIAWGNC with capacityC bits per channel use.

(based on (1)), and then substituting the value ofσ2 to obtain the B-parameterB = e−
1

2σ2 (based on (2)). From
(10), the asymptotic achievable fraction of the capacity isequal to

µ2(C) =
1 − B

C
. (13)

Since the universality in this example applies to a subset of the equi-capacity MBIOS channels, the inequality
µ2(C) ≥ µ1(C) is expected to hold for0 ≤ C ≤ 1. Our results so far are summarized in the following theorem.
To this end, we denote by BEC(ε) the binary erasure channel whose erasure probability isε:

Theorem 1. [Universality of LDPC Codes under BP Decoding for Equi-Capacity MBIOS Channels] Consider
a setA of MBIOS channels that exhibit a given capacityC, and letB denote the maximal B-parameter over this
set (see (8)). Let{(n, λ, ρ)} form a capacity-achieving sequence of LDPC code ensembles forBEC(B), achieving
vanishing bit erasure probability under BP decoding. Then, this sequence universally achieves vanishing bit error
probability under BP decoding for the entire setA, and the design rate of this sequence forms a fraction that isat
least 1−B

C
of the channel capacity. As a consequence, the following results hold:

• For the entire set of equi-capacity MBIOS channels, the universally achievable design rate forms at least a
fraction µ1(C) of capacity (see (12)). Moreover,µ1 forms a monotonic increasing function of the capacityC
(see Fig. 1), getting the extreme valuesln 2 ≈ 69.3% and 100% at the endpoints whereC → 0 or C → 1,
respectively.

• For some sub-classes of equi-capacity MBIOS channels, the results for the universally achievable design rate
significantly improve (see, e.g., (13) andµ2 in Fig. 1).

Fig. 1 compares the achievable fractions of capacity,µ1 andµ2 as a function of the channel capacity.

B. Universal Lower Bound on the Achievable Gap to Capacity

The stability conditionB(a)λ′(0)ρ′(1) < 1 forms a necessary condition for asymptotically achieving vanishing
bit error probability under BP decoding when the transmission takes place over an MBIOS channel.

We wish to find an upper bound on the achievable design rate of universal LDPC code ensembles over a setA
of MBIOS channels, or alternatively, a universal lower bound on the achievable gap (in rate) to capacity. From the
stability condition in (4) and also from (8), the inequality

Bλ′(0)ρ′(1) ≤ 1 (14)

forms a necessary condition for achieving this goal universally over the setA.
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We consider in the followingright-regular LDPC code ensembles wheredc designates the degree of the parity-
check nodes (i.e.,ρ(x) = xdc−1).

Following the notation in [26, p. 181], leta� b denote the density which is the result of transforming botha and
b from the L-domain to the G-domain, then performing the convolution in the G-domain, and then transforming
it back to the L-domain. As mentioned earlier, under BP decoding, the operator� describes the change of the
distributions at the check node side.

In the following, we introduce an additional necessary condition for universally achieving vanishing bit error
probability under BP decoding with respect to a setA of MBIOS channels.

Theorem 2. [A Necessary Condition for Universality of LDPC Code Ensembles under BP Decoding]Let
{(n, λ, ρ)} be a right-regular sequence of LDPC code ensembles, universally achieving vanishing bit error probability
under BP decoding for a set of MBIOS channelsA. Then, the following condition holds

Bλ
(

√

1 − ρ(1 − x2)
)

< x, ∀ x ∈ (0, B] (15)

whereB designates the maximal B-parameter over the setA.

Proof: For the derivation of this condition, we rely on the following inequality:

Lemma 2. Let a�k , a�a� · · ·�a denote the operator wherea is convolved by itselfk−1 times (i.e.,a appears
k times on the right-hand side of this equality), where the convolution here is in the G-domain (see [26, p. 181]).
Then, for a symmetric L-densitya with B(a) = βa

B(a�k) ≥
√

1 − (1 − β2
a)k (16)

for any integerk ≥ 2.

Proof: Let a and b denote two symmetric L-densities withB(a) = βa and B(b) = βb, then from [26,
Problem 4.62]

√

β2
a + β2

b − β2
aβ2

b ≤ B(a � b) ≤ βa + βb − βaβb (17)

where the upper and lower bounds are achieved with equality if a and b are from the family BEC or BSC,
respectively. By settinga = b, we get the inequality in (16) fork = 2. The proof for a generalk ≥ 2 is completed
by mathematical induction. Let us assume that (16) holds for acertaink ≥ 2, then from (17)

B(a�k+1) = B(a�k
� a)

≥
√

B(a�k)2 + B(a)2 − B(a�k)2 B(a)2

=
√

1 −
(

1 − B(a�k)2
)(

1 − B(a)2
)

=
√

1 −
(

1 − B(a�k)2
)

(1 − β2
a)

≥
√

1 − (1 − β2
a)k+1

which then implies that (16) also holds fork + 1.

Corollary 1. For a right-regular LDPC code ensemble

B
(

Γ−1
(

ρ
(

Γ(a)
)

)

)

≥
√

1 − ρ
(

1 − B(a)2
)

. (18)

Hence, by definingxl , B(al) for all l in the density evolution equation in (6), we get the following chain of
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equalities and inequalities

xl = B(al)

(a)
= B(a0)B

(

λ

(

Γ−1
(

ρ
(

Γ(al−1)
)

)

)

)

(b)
= B(a0)λ

(

B
(

Γ−1
(

ρ
(

Γ(al−1)
)

)

)

)

(c)
≥ B(a0)λ

(
√

1 − ρ
(

1 − B(al−1)2
)

)

= B(a0)λ
(
√

1 − ρ
(

1 − x2
l−1

)

)

(19)

where equality (a) follows from the recursive density evolution equation in (6) and since for two symmetric L-
densitiesa andb

B(a ⊛ b) = B(a)B(b) (20)

equality (b) follows since the linearity of the convolutionoperator and the last equality yield that

B(λ(a)) = B
(

∑

i

λia
�(i−1)

)

=
∑

i

λiB
(

a�(i−1)
)

= λ (B(a)) (21)

and inequality (c) follows from (18). By definition, the initial valuex0 is equal to the B-parameter of the symmetric
L-density of the MBIOS channel. From (19), it follows that if the sequence{xl} tends asymptotically to zero, then
the sequence

zl = B(a0)λ

(

√

1 − ρ(1 − z2
l−1)

)

, l = 1, 2, . . . (22)

with the initial valuez0 = B(a0), should also tend to zero. Note that the sequence{zl} is not the same as{xl}:
the sequence{xl}, as shown in (19), isgreater than or equal tothe right-hand-side of (22). Further note that from
(5), the convergence of the sequence{xl} forms a necessary and sufficient condition for achieving vanishing bit
error probability as we let the number of iterations grow (recall that by the density evolution approach, we first
let the block length tend to infinity, so that the tree assumption holds with probability 1 for any fixed number of
iterations, and then we let the number of iterations grow).

Consider a sequence of right-regular LDPC code ensembles which universally achieves vanishing bit error
probability under BP decoding over a setA of MBIOS channels. LetB be the maximal B-parameter over the
entire setA (see (8)), then we obtain from (22) that the sequence defined recursively by

zl = B λ

(

√

1 − ρ(1 − z2
l−1)

)

, l = 1, 2, . . . (23)

with the initial valuez0 = B tends asymptotically to zero. Therefore, the satisfiability of the condition in (15)
forms a necessary condition for universality. This completes the proof of Theorem 2.

For an extension of condition (15) for general LDPC code ensembles (not necessarily right-regular), see Ap-
pendix B.

In order to relate the condition in Theorem 2 to the stability condition, we calculate the derivative of the left-hand
side of (15)

d

dx

{

B λ

(

√

1 − ρ(1 − x2)

)}

= B λ′
(

√

1 − ρ(1 − x2)

)

x
(

1 − ρ(1 − x2)
)− 1

2 ρ′(1 − x2)
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and then require that this derivative be strictly less than 1at the fixed pointx = 0. Sincedc designates the fixed
right degree of the right-regular LDPC code ensemble,

lim
x→0

x
√

1 − ρ(1 − x2)

= lim
x→0

x
√

1 − (1 − x2)dc−1

=
1√

dc − 1

and therefore one gets the condition

Bλ′(0)ρ′(1)√
dc − 1

< 1. (24)

Interestingly, this coincides with the stability condition (4) up to a scaling factor that is equal to the reciprocal of
the square root ofdc−1; this scaling factor in (24) yields a weaker condition as compared to the stability condition.
However, the condition in (15) provides a constraint on the interval (0, B], and not just at a neighborhood of the
fixed point at zero.

Let dmax
v designate the maximal degree of the variable nodes. Since thedesign rate of a right-regular LDPC code

ensemble is equal to

Rd = 1 − 1

dc
∑dmax

v
i=2

λi

i

(25)

then the maximization ofRd is equivalent to maximizing
∑dmax

v
i=2

λi

i
.

Suppose that it is required to universally achieve vanishingbit error probability under BP decoding as the block
length tends to infinity over a setA of equi-capacity MBIOS channels with capacityC. This requirement also
implies that the bit error probability under MAP decoding vanishes. Thus, by combining [33, Eqs. (43), (44), and
(53)], it follows that the design rate satisfies the inequality

0 ≤ Rd ≤ 1 − 1 − C

h2

(

1−C
dc
2

2

) (26)

and therefore, as the parity-check degree (dc) is decreased, thenRd is more bounded away from capacity. Combining
(25) and (26) gives that

1

dc
≤

dmax
v
∑

i=2

λi

i
≤ 1

(1 − C) dc
· h2

(

1 − C
dc
2

2

)

. (27)

By a maximization of
dmax

v
∑

i=2

λi

i
subject to

1) the necessary condition for vanishing bit error probability in Theorem 2,
2) the satisfiability of the stability condition for all the MBIOS channels in the setA (see (14)),
3) the inequality constraints in (27) that follow from the information-theoretic bounds in [33],

one obtains a linear programming (LP) universal upper bound onthe achievable rate of LDPC code ensembles
over the setA of equi-capacity MBIOS channels with capacityC under BP decoding. This gives the following LP
bound where, practically, the values ofx ∈ (0, B] in the first inequality constraint are quantized uniformly over
this interval in order to get a finite number of inequality constraints in the LP problem (to be referred to as the
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TABLE I
LOWER BOUND ON THE UNIVERSAL ACHIEVABLE GAP TO CAPACITY(ε , 1 − Rd

C
) FOR EQUI-CAPACITY MBIOS CHANNELS UNDERBP

DECODING; THE DEGREE OF THE PARITY-CHECK NODES IS FIXED(dc), AND THE MAXIMAL DEGREE OF THE VARIABLE NODES IS SET TO

dmax

v = 200. THESE NUMERICAL RESULTS REFER TO THELP1 BOUND.

Capacity Set of all Equi-Capacity Channels BEC + BIAWGNC BEC
(C) dc = 8 dc = 10 dc = 12 dc = 8 dc = 10 dc = 12 dc = 8 dc = 10 dc = 12

1

2
2.83 · 10−3 7.05 · 10−4 1.76 · 10−4 2.83 · 10−3 7.05 · 10−4 1.76 · 10−4 2.83 · 10−3 7.05 · 10−4 1.76 · 10−4

3

4
9.09 · 10−2 1.79 · 10−2 7.84 · 10−3 7.90 · 10−2 1.43 · 10−2 7.84 · 10−3 5.56 · 10−2 1.43 · 10−2 7.84 · 10−3

9

10
2.06 · 10−1 1.57 · 10−1 1.20 · 10−1 1.73 · 10−1 1.33 · 10−1 1.03 · 10−1 1.67 · 10−1 1.11 · 10−1 7.99 · 10−2

‘LP1 bound’):

maximize
dmax

v
∑

i=2

λi

i

subject to






























































Bλ
(√

1 − ρ(1 − x2)
)

< x, ∀ x ∈ (0, B]

Bλ2ρ
′(1) ≤ 1

∞
∑

i=2
λi = 1

λi ≥ 0, i = 2, 3, . . .

1
dc

≤
dmax

v
∑

i=2

λi

i
≤ 1

(1−C) dc
· h2

(

1−C
dc
2

2

)

Due to (25), LP1 also defines an upper bound on the design rate. Thisupper bound can also be translated into a
universal lower bound on the achievable gap to capacity,ε = 1 − Rd/C.

This LP problem is solved numerically with the aid of the CVX Matlab-based modelling system for convex
optimization (see [8]). Numerical results for the lower bound on the achievable gap to capacity are provided
in Table I for the cases whereρ(x) = x7, x9, and x11 (i.e., the parity-check degree is fixed to 8, 10, and 12,
respectively), and the maximal degree of the variable nodesis set todmax

v = 200.
In order to possibly improve the bound, let us consider the particular case where the setA forms a set of equi-

capacity MBIOS channels that also includes the BEC. However,in the following case, the LDPC code ensembles
are not restricted to be right-regular. For a BEC, the condition for vanishing bit erasure probability under BP
decoding assumes the form

(1 − C)λ
(

1 − ρ(1 − x)
)

< x, ∀ 0 < x ≤ 1 − C. (28)

This condition is used instead of the necessary condition in (15)3. Since in this LP the LDPC code ensemble is
not assumed to be right-regular, the condition (27), which is a result of combining [33, Eqs. (43), (44), and (53)]
and (25), assumes the form

1

aR
≤

dmax
v
∑

i=2

λi

i
≤ 1

(1 − C) aR
· h2

(

1 − C
aR
2

2

)

,

whereaR is the average right degree of the LDPC code ensemble.
In this particular case where the setA includes the BEC, one gets the following LP problem (to be referred to

3It was verified numerically that adding condition (15) to the LP does not change the result. Thus, this condition is conjectured to be
redundant in light of (28).



12 ACCEPTED TO IEEE TRANS. ON INFORMATION THEORY. FINAL VERSION, APRIL 2011

TABLE II
LOWER BOUND ON THE UNIVERSAL ACHIEVABLE GAP TO CAPACITY(ε , 1 − Rd

C
) FOR EQUI-CAPACITY MBIOS CHANNELS UNDERBP

DECODING; THE DEGREE OF THE PARITY-CHECK NODES IS FIXED(dc), AND THE MAXIMAL DEGREE OF THE VARIABLE NODES IS SET TO

dmax

v = 200. THESE NUMERICAL RESULTS REFER TO THELP2 BOUND.

Capacity Set of all Equi-Capacity Channels BEC + BIAWGNC BEC
(C) dc = 8 dc = 10 dc = 12 dc = 8 dc = 10 dc = 12 dc = 8 dc = 10 dc = 12

1

2
1.50 · 10−2 9.01 · 10−3 1.94 · 10−2 1.25 · 10−2 6.76 · 10−3 1.73 · 10−2 7.34 · 10−3 1.79 · 10−3 1.22 · 10−2

3

4
9.09 · 10−2 4.24 · 10−2 2.75 · 10−2 7.90 · 10−2 3.99 · 10−2 2.42 · 10−2 6.59 · 10−2 3.56 · 10−2 1.93 · 10−2

9

10
2.06 · 10−1 1.57 · 10−1 1.20 · 10−1 1.73 · 10−1 1.33 · 10−1 1.03 · 10−1 1.67 · 10−1 1.11 · 10−1 7.99 · 10−2

as the ‘LP2 bound’):

maximize
dmax

v
∑

i=2

λi

i

subject to






























































(1 − C)λ
(

1 − ρ(1 − x)
)

< x, ∀ 0 < x ≤ 1 − C

Bλ2ρ
′(1) ≤ 1

∞
∑

i=2
λi = 1

λi ≥ 0, i = 2, 3, . . .

1
aR

≤
dmax

v
∑

i=2

λi

i
≤ 1

(1−C) aR
· h2

(

1−C
aR
2

2

)

where the values ofx ∈ (0, 1 − C] are quantized uniformly over this interval in order to get a finite number of
inequality constraints in the LP problem; our implementation converts the first inequality constraint above to 1000
inequality constraints wherex is equally spaced, and it gets the valuesxk = 0.001(1 − C)k for k = 1, . . . , 1000
(it was verified numerically that increasing the number of inequality constraints beyond one thousand, by a more
refined uniform quantization ofx over the interval(0, 1 − C], does not affect the numerical results of the LP2
bound). Numerical results for the lower bound on the achievable gap to capacity are provided in Table II for the
same setting as in Table I4.

By comparing Tables I and II, the values of the LP1 and LP2 bounds coincide for large values of the capacityC,
whereas the LP2 bound shows an improved (larger) lower bound ascompared to the LP1 bound for lower values
of C. Note also that the two lower bounds become more significant (i.e., they become greater) as the value of
capacity is increased. Let us mention that the possible improvement in the LP2 bound stems from the fact that it
applies to a set of equi-capacity MBIOS channels that includes the BEC, whereas the LP1 bound applies to any
set of equi-capacity MBIOS channels.

It was observed numerically that the LP2 bound on the achievable gap to capacity is sensitive the value ofdmax
v ,

especially for large values ofdc. For example, forC = 1
2 anddc = 12, whendmax

v = 200, the LP2 lower bound is
equal to1.94 · 10−2, but whendmax

v = 500 the LP2 lower bound becomes7.38 · 10−3.

C. Universal Conditions for Reliable Communications under Belief Propagation Decoding

We prove in this sub-section the following theorem and exemplify its use:

Theorem 3. [Universal Conditions on the B-parameter for Good/ Bad Communications under BP Decoding]
Let {(n, λ, ρ)} be a sequence of LDPC code ensembles whose block lengths tend toinfinity. The following universal
properties hold under BP decoding:

4Even though in the LP2 bound the LDPC code ensembles are not restrictedto be right regular, for the purpose of comparing the results
of the LP2 bound with those of the LP1 bound, we provide the numerical results for the same setting as for the LP1 bound.
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• This sequence achieves vanishing bit error probability under BP decoding foreveryMBIOS channel whose
B-parameter is less than

B0(λ, ρ) , inf
x∈(0,1]

x

λ
(

1 − ρ(1 − x)
) . (29)

• For a right-regular sequence, it does not achieve reliable communications overany MBIOS channel whose
B-parameter is greater than

B1(λ, ρ) , inf
x∈(0,1]

x

λ
(
√

1 − ρ(1 − x2)
) . (30)

For every MBIOS channel whose B-parameterB satisfiesB > B1(λ, ρ), BP decoding is not reliable in
the sense that the left-to-right message error probability(i.e., the average probability of error for a message
emanating from a variable node to a parity-check node) is greater than the positive value

(

1

2
max

{

x ∈ (0, 1] :
x

λ
(
√

1 − ρ(1 − x2)
) ≤ B

}

)2

(31)

irrespective of the number of iterations performed by the BPdecoder.

Proof: We start by proving the first part of the theorem. Let{al} be the sequence of symmetric L-densities
that are obtained from the density evolution equation (6) (wherel ≥ 0 denotes the number of iterations). From (5),
it follows that a necessary and sufficient condition for obtaining vanishing bit error probability under BP decoding
is that the B-parameter that is associated with thepdf al tends to zero, i.e.,

lim
l→∞

B(al) = 0. (32)

From (7), it follows that if the sequence{yl} as defined in (9) by the recursive equation

yl = Bλ
(

1 − ρ(1 − yl−1)
)

, l = 1, 2, . . .

with the initial conditiony0 = B tends to zero, then also the sequence{xl} where

xl = B(al)

tends to zero (since0 ≤ xl ≤ yl for every integerl ≥ 0, see (9) and the paragraph that follows). The sequence{yl}
refers to the density evolution analysis for a BEC whose channel erasure probability isB. The threshold value,
which determines a necessary and sufficient condition for theconvergence of the sequence{yl} to zero, yields that
if B < B0(λ, ρ) then liml→∞ yl = 0 (this follows from [26, Theorem 3.59]). Hence, for every MBIOS channel, if
the B-parameter is less thanB0(λ, ρ), then the property in (32) is satisfied, and therefore the bit error probability
vanishes under BP decoding. This completes the proof of the first part.

In order to prove the second part of the theorem, which refersto a sequence of right-regular LDPC code ensembles,
we rely on inequality (19). If the equality in (32) holds, then it follows from (19) that the sequence{zl} in (23)
should necessarily tend to zero. Hence, from (5), if the sequence that is defined in (23) via the recursive equation

zl = Bλ
(

√

1 − ρ(1 − z2
l−1)

)

, l = 1, 2, . . .

stays bounded away from zero, with the initial valuez0 = B, then the communication is not reliable. More explicitly,
for every MBIOS channel whose B-parameter is greater thanB1(λ, ρ), the sequence{E(al)} that represents the
left-to-right message error probabilities under BP decoding stays bounded away from zero (irrespective of the
number of iterations). In order to proceed, the following lemma considers the convergence of the sequence{zl}.

Lemma 3. Let B1(λ, ρ) be defined as in (30). IfB < B1(λ, ρ) then the sequence{zl} in (23) tends to zero, and
if B > B1(λ, ρ) then the sequence{zl} is lower bounded by the positive constant

x(B) , max

{

x ∈ (0, 1] :
x

λ
(√

1 − ρ(1 − x2)
) ≤ B

}

. (33)

Proof: See Appendix C.
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From (19)
B(al) , xl ≥ zl, l = 0, 1, . . .

and therefore it follows from Lemma 3 that for every MBIOS channel whose B-parameter is greater thanB1(λ, ρ)

B(al) ≥ x(B), l = 0, 1, . . . .

From (5) we have

B(al) ≤ 2
√

E(al)

⇒ E(al) ≥
(B(al)

2

)2

≥
(

x(B)

2

)2

and therefore the left-to-right message error probabilitycannot be reduced below the positive value as above,
irrespective of the number of iterations of the BP decoder. This completes the proof of Theorem 3.

Corollary 2. For every MBIOS channel with B-parameterB > B1(λ, ρ), let x(B) be defined as in (33). Then, the
(average) left-to-right message error probability is bounded away from zero by the universal bound

η , lim
B→B1(λ,ρ)+

(

x(B)

2

)2

(34)

irrespective of the number of iterations of the BP decoder.

Proof: By definition,x(B) in (33) is an increasing function ofB, and therefore we take the limitB → B1(λ, ρ),
where the limit is from the right side, in order to obtain a lower bound on the left-to-right message error probability
for the case whereB > B1(λ, ρ).

Corollary 3. Let {(n, λ, ρ)} be a sequence of right-regular LDPC code ensembles whose blocklengths tend to
infinity. Then, the left-to-right message error probability stays bounded away from zero under BP decoding for
every MBIOS channel whose B-parameter is greater than

B2(λ, ρ) , min

{

B1(λ, ρ),
1

λ′(0)ρ′(1)
,
√

1 − R2
d

}

(35)

whereB1 is introduced in (30), and

Rd , 1 −
∫ 1
0 ρ(x) dx
∫ 1
0 λ(x) dx

designates the design rate.

Proof: If the B-parameterB is greater thanB1(λ, ρ), then the statement follows from the second part of
Theorem 3. Also, ifB > 1

λ′(0)ρ′(1) , then the communication under BP decoding is not reliable because the stability

condition is not satisfied. Finally, ifB >
√

1 − R2
d then it follows from the right-hand side of (3) thatRd > C

and error-free communication cannot be achieved when the design rate exceeds the channel capacity. Therefore,
BP decoding is not reliable for any MBIOS channel whose B-parameter is greater thanB2 in (35).

Remark 2. In essence, the results of this section stem from one dimensional bounds based on the density evolution
equation that utilize the B-parameter (namely, inequalities (7) and (19)). This approach is not new, and was
introduced in [2]. In that paper, the authors derived iterative bounds on the expectation of messages transferred in
BP decoding. These bounds enabled them to lower- and upper-bound the performance of BP decoding.

Remark 3. Unknown to the authors at the time of writing, Wang, et al. have proved inequalities (7) and (19)
in [42]. Wang et al. mention that these inequalities can be used iteratively to derive upper and lower bounds on the
decoding threshold based on the initial B-parameter of the channel, and that closed-form solutions for these bounds
can be obtained, but do not derive them explicitly. In this paper, we have independently shown these inequalities
and have also explicitly derived a closed-form solution of the bounds. Moreover, we have shown a lower bound
on the decoding error probability when the B-parameter of the channel exceeds the value in (35).
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Although here we concentrate only on channels with symmetric outputs, we note that [42, Theorem 4] extended
inequalities (7) and (19) also to memoryless channels with binary input and non-symmetric output, under the
assumption that the input distribution is uniform.

Remark 4. Note that if the B-parameter is aboveB2(λ, ρ) (see (35)), then Corollary 3 does not specify an explicit
positive lower bound on the left-to-right message error probability under BP decoding. However, ifB > B1(λ, ρ)
(where it readily follows from (35) thatB1(λ, ρ) ≥ B2(λ, ρ)), then the second part of Theorem 3 determines an
explicit positive lower bound on the left-to-right messageerror probability that is valid universally for all MBIOS
channels. As shown in Examples 1 and 2 that follow, the value ofthis lower boundη (see (34)) is typically large,
irrespective of the number of iterations of the BP decoder, and this lower bound holds for all MBIOS channels
whose B-parameter is aboveB1(λ, ρ).

Remark 5. All channels in the convex hull5 of equi-capacity MBIOS channels have the same capacity. Similarly,
all channels in the convex hull of equi-B-parameter MBIOS channels have the same B-parameter. This is due to
the linearity of the capacity and Bhattacharyya functionals in the L-density function, see (1) and (2). Therefore, the
condition for good channels, under BP decoding, in the sensethatB < B0(λ, ρ) (see the first part of Theorem 3) or
the condition for bad channels in the sense thatB > B2(λ, ρ) (see the second part of Theorem 3 and Corollaries 2
and 3) are both preserved, respectively, for the convex hullof good or bad channels. Although this conclusion
does not prove [28, Conjecture 1] for equi-capacity MBIOS channels (since it does not cover the case whereB is
betweenB0 andB2 in case thatB0 < B2), it supports this conjecture in the cases whereB < B0 or B > B2.

Remark 6. From the two parts of Theorem 3, it follows directly that for right-regular codes,B1(λ, ρ) ≥ B0(λ, ρ).
For a direct proof of this inequality, see Appendix D.

In the following, we exemplify the use of Theorem 3 and its corollaries:

Example 1 (Regular LDPC Code Ensembles). In Table III, we show the numerical values ofB0 and B1 in
Theorem 3, and the value ofη in Corollary 2 for some regular LDPC code ensembles whose design rate is one-
half. The value ofB0 corresponds to the threshold for the BEC under BP decoding, and the value ofB1 (see (30))
refers to the value of the B-parameter where above it, the left-to-right message error probability is at leastη, no
matter how many iterations of the BP decoder are performed. For these regular LDPC code ensembles,λ2 = 0,

TABLE III
THE NUMERICAL VALUES OF B0 AND B1 IN THEOREM 3, AND THE VALUE OF η IN COROLLARY 2 FOR SOME REGULARLDPC CODE

ENSEMBLES WHOSE DESIGN RATE IS ONE-HALF.

LDPC B0 B1 η
(3,6) 0.4294 0.6553 6.50 · 10−2

(4,8) 0.3834 0.6192 6.58 · 10−2

(5,10) 0.3416 0.5884 6.18 · 10−2

and therefore the stability condition is useless. Also, since the design rate of these ensembles is equal to one-half,
then

√

1 − R2
d =

√
3

2 ≈ 0.8660, hence the values ofB2 in (35) coincide withB1 for these ensembles.

Example 2 (Optimized Right-Regular LDPC Code Ensembles for the BEC, and their Universal Properties). In
Table IV, right-regular LDPC code ensembles are optimized forthe BEC under BP decoding; to this end, a linear
program is solved as described in [26, Section 3.18] for a design rate of one-half(Rd = 1

2) and for a maximal
degree of the variable nodes of one hundred(dmax

v = 100).
From Table IV, it can be seen thatB0 ≈ B2. Hence, for these optimized LDPC code ensembles, the first part

of Theorem 3 states that these LDPC code ensembles are reliable under BP decoding, in the sense of achieving
vanishing bit error probability, for every MBIOS channel whose B-parameter is belowB0; on the other hand,
Corollary 3 implies that these code ensembles are not reliable under BP decoding for every MBIOS channel

5The convex hull of a setA of channels consists of all the channels that are convex combinations ofchannels inA. A convex combination
of several channels is the result of using each channel with probabilityθi, 0 ≤ θi ≤ 1, such that

∑

i
θi = 1.
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TABLE IV
THE DEGREE DISTRIBUTIONS(FROM THE EDGE PERSPECTIVE), NUMERICAL VALUES OF B0 AND B1 IN THEOREM 3, THE VALUE OF η
IN COROLLARY 2, AND THE VALUE OF B2 IN COROLLARY 3 FOR SOME OPTIMIZED RIGHT-REGULAR LDPC CODE ENSEMBLES WHOSE

DESIGN RATE IS ONE-HALF WITH A MAXIMAL DEGREE OF THE VARIABLE NODES THAT IS SET TO 100.

λ(x) =
∑

i
λix

i−1 ρ(x) =
∑

i
ρix

i−1 B0 B2 B1 η

λ2 = 0.4127, λ3 = 0.1762

λ4 = 0.1177, λ7 = 0.1202 ρ6 = 1 0.4816 0.4846 0.7066 8.45·10−2

λ8 = 0.1731

λ2 = 0.2879, λ3 = 0.1222

λ4 = 0.0905, λ6 = 0.1174

λ7 = 0.0300, λ12 = 0.0807 ρ8 = 1 0.4962 0.4962 0.7146 1.02·10−1

λ13 = 0.0831, λ32 = 0.0050

λ33 = 0.1831

λ2 = 0.2226, λ3 = 0.1013

λ4 = 0.0504, λ5 = 0.0646

λ6 = 0.0445, λ10 = 0.1219 ρ10 = 1 0.4988 0.4992 0.7123 1.08·10−1

λ11 = 0.0117, λ24 = 0.0903

λ25 = 0.0678, λ100 = 0.2248

whose B-parameter is slightly aboveB0 or greater than this value. This is a universal result that applies to all
MBIOS channels, and it separates them into two sets of good orbad channels for which the reliability of these
code ensembles under BP decoding solely depends on the B-parameter of the communication channelwithout any
relevance to its channel model(as long as it is MBIOS, and it exhibits a given B-parameter).

In contrast to the results in Table III that apply to regular LDPC code ensembles, for the right-regular LDPC
code ensembles studied in this example, the value ofB1 is significantly greater thanB2, which here is given by the
stability condition. In continuation to Remark 4, the lowerbound on the left-to-right message error probabilities
when the B-parameter is greater thanB1 is rather large (around 0.1), whereas such a measure is not provided here
for the unreliability of the messages when the B-parameter is betweenB1 andB2.

The results of this paper imply that a family of degraded channels can be parameterized by the B-parameter. This
is also supported by [26, Theorem 4.76], which states that a degraded channel has a higher B-parameter than the
original (see also Proposition 2 in this paper). Moreover, inmany cases there is a simple one-to-one correspondence
between the channel parameter and the B-parameter. For example, for a BEC with erasure probabilityǫ, we have
B = ǫ; for a BSC with crossover probabilityp, we haveB =

√

4p(1 − p); and for a BIAWGN channel with noise
varianceσ2, we haveB = e−

1

2σ2 .
In order to obtain bounds on the B-parameter for any LDPC code ensemble, not necessarily right-regular, a

simple modification of Theorem 3 and Corollary 3 yields the following:

Corollary 4. Let {(n, λ, ρ)} be a sequence of (not necessarily right-regular) LDPC code ensembles whose block
lengths tend to infinity. Then

• This sequence achieves vanishing bit error probability under BP decoding foreveryMBIOS channel whose
B-parameter is less than

B0(λ, ρ) , inf
x∈(0,1]

x

λ
(

1 − ρ(1 − x)
) .

• The left-to-right message error probability of this sequence stays bounded away from zero under BP decoding
for every MBIOS channel whose B-parameter is greater than

B3(λ, ρ) ,































min
{

B1(λ, ρ), 1
λ′(0)ρ′(1) ,

√

1 − R2
d

}

,

if the sequence is right-regular.

min
{

1
λ′(0)ρ′(1) ,

√

1 − R2
d

}

,

if the sequence is not right-regular.
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TABLE V
COMPARISON OF UNIVERSAL BOUNDS ON THRESHOLDS FOR VARIOUSLDPC CODE ENSEMBLES. THE BOUNDS BASED ON THE

B-PARAMETER ARE COMPUTED BASED ON THE APPROACH PRESENTED IN THIS PAPER; THE BOUNDS BASED ON THE CAPACITY ARE

COMPUTED ACCORDING TO[37].

λ(x) =
∑

i
λix

i−1 ρ(x) =
∑

i
ρix

i−1 Bounds based onB Bounds based onC

0.4294 < B < 0.6553 0.4744 < C < 0.6350
λ3 = 1 ρ6 = 1 BSC: 0.0485 < p < 0.1223 0.0698 < p < 0.1187

BIAWGN: 0.7691 < σ < 1.0877 0.8026 < σ < 1.0180
0.3834 < B < 0.6192 0.5160 < C < 0.6630

λ4 = 1 ρ8 = 1 BSC: 0.0382 < p < 0.1074 0.0624 < p < 0.1048
BIAWGN: 0.7222 < σ < 1.0214 0.7707 < σ < 0.9553

0.3416 < B < 0.5844 0.5564 < C < 0.6970
λ5 = 1 ρ10 = 1 BSC: 0.0301 < p < 0.0943 0.0540 < p < 0.0921

BIAWGN: 0.6822 < σ < 0.9648 0.7333 < σ < 0.8996
λ2 = 0.4127, λ3 = 0.1762 0.4816 < B < 0.4846 0.4147 < C < 0.8980
λ4 = 0.1177, λ7 = 0.1202 ρ6 = 1 BSC: 0.0618 < p < 0.0626 0.0133 < p < 0.1404

λ8 = 0.1731 BIAWGN: 0.8272 < σ < 0.8308 0.5182 < σ < 1.1209
λ2 = 0.2879, λ3 = 0.1222
λ4 = 0.0905, λ6 = 0.1174 0.4962 ≤ B ≤ 0.4962 0.3989 < C < 0.8910
λ7 = 0.0300, λ12 = 0.0807 ρ8 = 1 BSC: 0.0659 ≤ p ≤ 0.0659 0.0144 < p < 0.1465
λ13 = 0.0831, λ32 = 0.0050 BIAWGN: 0.8446 ≤ σ ≤ 0.8447 0.5265 < σ < 1.1513

λ33 = 0.1831

whereB1 is introduced in (30), andRd designates the design rate.

It follows that for any family of MBIOS channels there existsa Bth betweenB0 and B3 (its exact value is
dependent on the family) such that BP decoding achieves vanishing bit error probability for all channels of this
family with B < Bth and does not achieve vanishing bit error probability for channels of the family withB > Bth.
Hence,B0(λ, ρ) andB3(λ, ρ) provide universal lower and upper bounds on the threshold B-parameter. In general,
different channel families will have different thresholds. It should be noted that the lower bound is tight for the
BEC. Furthermore, this universal bound is non-iterative, simple, and easy to compute.

Similar bounds on the B-parameters have been derived in [42].In that paper, the authors have derived the same
inequalities on the B-parameter evolution during BP decoding that have led to the bounds on the threshold in this
section. Therefore, the lower boundB0(λ, ρ) and the upper boundB1(λ, ρ) are not new. In this paper, however,
we have combined the upper boundB1(λ, ρ) with other upper bounds, such as the stability condition, toarrive at
a tighter upper bound in some cases. Moreover, we have also demonstrated that these bounds can be tight in some
cases, as shown in Table IV.

Other works, such as [14], [26, Section 4.10.2], and [37] usedan information-combining approach to also provide
universal bounds on the threshold. These bounds give upper and lower bounds on the capacity of the channel, another
natural parameter for channel degradation (a degraded channel has lower capacity). These bounds are significantly
more difficult to compute, requiring either an iterative process or involving computations that are numerically
unstable for high left degrees.

In Table V, we compare the bounds suggested by this approach with the bounds of [37] for some of the ensembles
considered in this paper. In order to make the comparison, wetranslate the bounds on the B-parameter to bounds
on the channel parameters for a BSC and a BIAWGN channel. It is exemplified that the bounds in [37] are superior
for the regular LDPC code ensembles, but the bounds of the approach presented here are more informative for the
irregular LDPC code ensembles shown in Table V.

Comparing these information-combining results by Land et al. [14], and by Sutskover et al. ([37], [38]) with
our bounds, there is one conceptual difference: forB > B1, Theorem 3 and Corollary 2 provide an explicit lower
bound on the left-to-right message error probability that is irrespective of the number of iterations, whereas this is
not the case in these related works. Secondly, for the regularLDPC code ensembles, for which we haveB3 = B1,
we also have an explicit positive lower bound on the left-to-right message error probability for the case where the
B-parameter is larger thanB3 (e.g., as shown in Table III, for the (3,6) LDPC code ensemble, alower bound on
the left-to-right message error probability around 6.5% applies to the cases wherep > 0.1223 or σ > 1.088 for the
BSC and the binary-input AWGN channel, respectively).
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The observation made in Example 2, regarding the reliability of the optimized right-regular LDPC code ensembles
over the entire set of MBIOS channels where this result solely depends on the B-parameter of the communication
channel (but not on the specific channel model of the MBIOS channel) calls for analysis. Since these LDPC code
ensembles were optimized numerically (via linear programming), closed forms for the degree distributions are not
available, and we turn instead to consider the sequences of right-regular LDPC code ensembles as suggested by
Shokrollahi [35]. In this respect, the following theorem demonstrates a universality property under BP decoding
with respect to the entire set of MBIOS channels which exhibit a given B-parameter; the following theorem shows
that not only the stability condition is common for the considered set of channels, but also a universality property
exists for this set.

Theorem 4. [Universality of LDPC Code Ensembles under BP Decoding for MBIOS Channels with a Fixed
B-Parameter] Consider the set of MBIOS channels that exhibit a fixed B-parameter (B). Then:

• Every capacity-achieving sequence designed for BEC(B), universally achieves the following fraction of ca-
pacity for the considered set of channels:

µ3(B) ,
1 − B

1 − h2

(

1−
√

1−B2

2

) , (36)

whereh2 denotes the binary entropy function to the base 2. The function µ3 is monotonic decreasing inB; it
gets the valuesln 2 ≈ 69.3% and100% for the extreme cases whereB → 1 (i.e., a very noisy channel) and
B → 0 (i.e., a perfect channel), respectively.

• There exists an explicit construction of a sequence of right-regular LDPC code ensembles for whichB satisfies

B ≤ B0 ≤ B2 ≤ 1 −
(

dc − 2

dc − 1

)
π
2

6

e
1

dc−1
( π

2

6
−γ) (1 − B) (37)

soB0 andB2 can be made arbitrarily close toB for largedc. Heredc denotes the fixed degree of parity-check
nodes,B0 andB2 are introduced in (29) and (35) respectively, andγ ≈ 0.5772 denotes Euler’s constant.

Proof: Among all MBIOS channels which exhibit a given B-parameterB, the capacity is maximized or
minimized for a BSC and BEC, respectively. For a BEC,C = 1 − B, and therefore the capacity is achieved (i.e.,
Rd = C) because of (10). For a BSC whose crossover probability isp,

C = 1 − h2(p), B =
√

4p(1 − p)

and therefore

C = 1 − h2

(

1 −
√

1 − B2

2

)

.

From (10), the fraction of capacity that is universally achieved for the entire set of MBIOS channels which exhibit
a given B-parameterB satisfies

1 − B

1 − h2

(

1−
√

1−B2

2

) ≤ Rd

C
≤ 1 (38)

where the upper and lower bounds are obtained, respectively, for a BEC and BSC with a B-parameterB. Let us
check the two extreme cases whereB = 0 andB → 1 (referring, respectively, to an ideal channel and a very noisy
channel). In the case whereB = 0, the upper and lower bounds coincide, and are equal to 1; hence, capacity is
achievable. For examining the case whereB → 1, we rely on the following Taylor series expansion of the binary
entropy function aroundx = 1

2 (see [43, p. 575]):

h2(x) = 1 − 1

2 ln 2

∞
∑

q=1

(1 − 2x)2q

q(2q − 1)
, 0 ≤ x ≤ 1 (39)
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which enables to calculate the limit of the left-hand side in(38) whenB → 1 (from below). This gives

lim
B→1−

1 − B

1 − h2

(

1−
√

1−B2

2

)

= lim
B→1−

1 − B

1
2 ln 2

∞
∑

q=1

(1 − B2)q

q(2q − 1)

= lim
B→1−

1 − B
(

1−B2

2 ln 2

)

= ln 2.

Moreover, it is easy to verify with (39) that the lower bound on Rd
C

in (38) forms a monotonic decreasing function
of B (where 0 ≤ B < 1); it varies from 1 toln 2 ≈ 0.693 as the value ofB is increased from zero to 1 bit
per channel use. This shows that, for the entire set of MBIOS channels which exhibit a given B-parameterB,
the achievable fraction (10) of capacity is at least 69.3%; this result is obtained by designing a capacity-achieving
sequence of LDPC code ensembles for a BEC whose B-parameter matches our channel (as above). Interestingly,
these two extreme values (i.e., 69.3% and 100%) coincide with those obtained in Theorem 1 for the entire set of
equi-capacity MBIOS channels.

To prove the second part of the Theorem, we consider a sequenceof right-regular LDPC code ensembles with a
fixed right-degreedc, and parameters of the degree distributions that are selected according to [30, Theorem 2.3]
for a BEC with channel erasure probabilityB (see also [26, Section 3.15] and [33, Appendix VI]). These sequences
are capacity-achieving as we let the right degreedc tend to infinity. From [30, Theorems 2.1 and 2.3], this sequence
is constructed to achieve at least a fraction1−ε of the capacity of the BEC under BP decoding with a right degree
dc that scales logarithmically with the reciprocal of the gap to capacity, i.e., it behaves likelog 1

ε
.

For a BEC, the B-parameter of the channel is equal to the channel erasure probability. The sequence of right-
regular LDPC code ensembles is designed to achieve vanishing bit erasure probability under BP decoding for a
BEC whose channel erasure probability is set toB (since, by assumption, the parameters (α andN ) of its degree
distributions are selected according to [30, Theorem 2.3]).Hence, the threshold of this sequence,B0, under BP
decoding is greater than or equal toB. This proves the left-hand side of inequality (37).

We derive in the following the upper bound onB2 in this inequality, based on [33, Appendix VI]. More explicitly,
let c(α, N) be the function (see [33, Eq. (116)])

c(α, N) , (1 − α)
π
2

6 eα
(

π
2

6
−γ+ 1

2N

)

. (40)

for 0 < α < 1 and an integerN ≥ 1 (on the right-hand side of this equality,γ ≈ 0.5772 denotes Euler’s
constant). The fraction of edges attached to degree-2 variable nodes, for this right-regular sequence, satisfies (see
[33, Eq. (117)])

α

1 − c(α, N) (1 − B)
< λ2 ≤ α

B
(41)

whereα , 1
dc−1 . From (35), (40) and (41)

B2 ≤ 1

λ′(0)ρ′(1)

=
α

λ2

≤ 1 − c(α, N)(1 − B)

= 1 − (1 − α)
π
2

6 eα
(

π
2

6
−γ+ 1

2N

)

(1 − B)

≤ 1 − (1 − α)
π
2

6 eα
(

π
2

6
−γ
)

(1 − B)

= 1 −
(

dc − 2

dc − 1

)
π
2

6

e
1

dc−1
( π

2

6
−γ) (1 − B).
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This completes the proof of (37). Following the first part of Theorem 3 and Corollary 3, it follows that in the limit
wheredc → ∞, B2 ≤ 1 − (1 − B) = B, so that (37) yields thatB0 = B2 = B. Hence,

• the BP decoder achieves vanishing bit error probability forevery MBIOS channel whose B-parameter is less
thanB,

• it is unreliable (i.e., the left-to-right message error probability is bounded away from zero) for every MBIOS
channel whose B-parameter is greater thanB.

This completes the proof of Theorem 4.

Remark 7. Another way to prove the first part of the above theorem is via use of the approach of sub-section III-A.
In the setting of Theorem 4, the family of MBIOS channels beingconsidered is the one that exhibits the same B-
parameter (regardless of capacity). Over this family, the BSC and BEC exhibit the maximal and minimal capacities,
respectively. Following the approach of sub-section III-A, we construct a capacity-achieving sequence of LDPC
ensembles for a BEC with erasure probabilityB. The design rate of this ensemble isRd = 1−B. Since the BSC
exhibits the maximal capacity over this set of MBIOS channels, the universally achievable fraction of capacity is
Rd
C

, whereC is the capacity of a BSC with B-parameterB. Using the expressions forRd and C we obtain that
the universally achievable fraction of capacity is indeedµ3(B).

Table VI shows the resulting achievable fraction of capacity in (36) as a function of the B-parameter of the
considered set of MBIOS channels.

TABLE VI
UNIVERSAL ACHIEVABLE FRACTION OF CAPACITY UNDERBP DECODING FOR THE ENTIRE SET OFMBIOS CHANNELS WHICH EXHIBIT

A GIVEN B-PARAMETERB (SEETHEOREM 4).

B µ3(B)
0 100%

0.250 85.0%

0.333 82.0%

0.500 77.5%

0.750 72.7%

1.000 69.3%

Corollary 5. In the limit wheredc → ∞, the BP decoder in Theorem 4 achieves vanishing bit error probability
for all MBIOS channels whose B-parameter is less thanB, and it is unreliable (i.e., the left-to-right message error
probability is bounded away from zero) for every MBIOS channel whose B-parameter is greater thanB. For finite
dc, the values ofB0 andB2 differ from B by at most

(1 − B)





γ

dc − 1
+

π2

6

(

π2

6 − γ
)

(dc − 1)2



 ,

and this difference tends uniformly to zero for0 ≤ B ≤ 1 as we letdc tend to infinity.

Proof: The first part of this corollary, for infinitedc is immediate from (37). For finitedc, subtractingB from
(37) yields

0 ≤ B0 − B ≤ B2 − B

≤ (1 − B)



1 −
(

dc − 2

dc − 1

)
π
2

6

e
1

dc−1

(

π
2

6
−γ
)



 . (42)

Bernoulli’s inequality states that(1 + x)r ≥ 1 + rx for x > −1, r ≥ 1. Thus,

(

dc − 2

dc − 1

)
π
2

6

=

(

1 − 1

dc − 1

)
π
2

6

≥ 1 − π2/6

dc − 1
. (43)
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Moreover, for everyy > 0 we haveey ≥ 1 + y, so that

e
1

dc−1

(

π
2

6
−γ
)

≥ 1 +
π2/6 − γ

dc − 1
. (44)

Using (42)–(44) gives

0 ≤ B0 − B

≤ B2 − B

≤ (1 − B)

(

1 −
(

1 − π2/6

dc − 1

)(

1 +
π2/6 − γ

dc − 1

))

= (1 − B)

(

γ

dc − 1
+

(

π2

6
− γ

)

π2/6

(dc − 1)2

)

.

From the above inequality it is clear that as we letdc → ∞, the differencesB0 − B and B2 − B tend to zero
uniformly.

Example 3. For ensemble no. 2 in Table IV, whose design rate isRd = 1
2 bits per channel use, the threshold

under BP decoding correspondsuniformly to the B-parameterB = 0.4962 for every MBIOS channel. For the BEC,
this corresponds to a capacity ofC = 1 − B = 0.5038 bits per channel use, and therefore 99.3% of the capacity
of the BEC is achieved under BP decoding with vanishing bit erasure probability. For the BIAWGN channel, this
corresponds to channel capacityC = 0.5977 bits per channel use, and therefore this code ensemble achieves 83.4%
of the capacity for this channel. The smallest fraction of capacity under BP decoding is achieved for the BSC. The
B-parameterB = 0.4962 corresponds toC = 0.6496 for the BSC, which means that77.0% of capacity is achieved
under BP decoding.

Example 4. In this example, we consider a right-regular LDPC code ensemble, whose design rate isRd = 0.9 bits
per channel use, and which closely approaches the capacity of the BEC under BP decoding. To this end, we set
the degree of the parity-check nodes to be 40, and the maximalvariable node degree is set to 200. The following
degree distributions are obtained by linear programming with the approach in [26, Section 3.18]:

λ(x) = 0.2638x + 0.1259x2 + 0.1088x3 + 0.0551x5

+ 0.1589x6 + 0.0278x15 + 0.2598x16 ,

ρ(x) = x39.

From (29), (30), and (35)

B0 = 0.0972, B1 = 0.3185, B2 = 0.0972

and therefore, sinceB0 = B2, then for every MBIOS channel, this LDPC code ensemble achieves vanishing bit
error probability under BP decoding if the B-parameter is below B = 0.0972, and it is unstable if the B-parameter
exceeds this value. This enables to calculate the threshold under BP decoding by transforming the B-parameter to
the proper channel parameter. For the BEC, this corresponds to capacity ofC = 1 − B = 0.9028 bits per channel
use, and therefore 99.7% of the capacity of the BEC is asymptotically obtained under BP decoding with vanishing
bit erasure probability. For the BIAWGN channel, this corresponds to channel capacityC = 0.9400 bits per channel
use, and therefore this code ensemble achieves 95.7% of the capacity for this channel. The smallest fraction of
capacity under BP decoding is achieved for the BSC, and it coincides with the lower boundµ3(B) = 92.5% as
given in (36).

Example 5. We note that the approach presented in the examples above is not necessarily the best approach for
obtaining universal LDPC code ensembles. Numerically optimized code ensembles may lead to better performance
under BP over some channels. To demonstrate this, we consider the following LDPC code ensemble, obtained
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using [16]:

λ(x) = 0.244022x + 0.224973x2 + 0.0476526x5

+ 0.225756x6 + 0.0270727x18 + 0.173877x19

+ 0.0515554x20 + 0.00509134x22 ,

ρ(x) = x8.

This code is numerically optimized for the BIAWGN channel, with a design rate of one-half; its threshold under
BP decoding isσ = 0.966293. This corresponds to a capacity ofC = 0.5084 bits per channel use. Therefore, this
code achieves98.35% of the capacity of the BIAWGN channel. The threshold of this code under BP decoding for
the BEC computes to beB = 0.4741, which corresponds to a capacity ofC = 1 − B = 0.5259 bits per channel
use. I.e., this code achieves95.08% of the capacity for the BEC.

The ensemble above and the ensemble considered in Example 3 share the same design rate. We see that the
code ensemble considered here, when used over a BIAWGN channel, is superior to the ensemble of Example 3,
achieving a much higher fraction of capacity. The performance of the two ensembles over the BEC, however, is
similar, with a slight advantage to the ensemble of Example 3,recognizing that it was designed for a BEC.

This observation is also supported by the numerical results presented in [23]. In that work, the authors compared
how LDPC code ensembles designed for one MBIOS channel performed over other MBIOS channels. The channels
considered there were the BEC, the BIAWGN, and the flat-fading binary input Rayleigh channel. Their results show
that the BEC can indeed be used as a so-called “surrogate” channel for the design of good LDPC code ensembles,
while recognizing that better results can be obtained, at the expense of a higher computational load, with numerical
optimization for the desired channel.

While the approach presented here may not be the optimal approach, it isanalytical and easy to compute, and
thus provides insight. For instance, we have shown how this approach can be used to obtain bounds on the thresholds
of ensembles under BP decoding overany channel, which, as exemplified in Examples 3 and 4 above, are tight for
some ensembles.

Remark 8. Universality results for LDPC code ensembles have been derived in this section with vanishingbit error
probability under BP decoding. An extension of these results for vanishingblock error probability can be made
based on the results of [12] and [17]. These works showed that for a specific MBIOS channel, an LDPC code
ensemble withλ2 = 0 has the same threshold under vanishing block and bit error probabilities6. The threshold
for vanishing block error probability, similar to the threshold for vanishing bit error probability, is defined as the
maximal channel parameter for which the block error probability will converge to zero. This result is based on the
union bound,PB ≤ nPb, wherePB is the block error probability,Pb is the bit error probability, andn is the block
length. The conditions onλ2 ensure that the bit error probability decays fast enough, thus causing the block error
probability to vanish as well.

An extension of this result to universality over a multitudeof MBIOS channels is now straightforward. As an
example, let us demonstrate this by extending the results ofTheorem 1. In the setting of this theorem, we consider
a setA of MBIOS channels exhibiting the same capacity,C, and maximal B-parameterB. If the capacity-achieving
sequence of LDPC code ensembles{(n, λ, ρ)} for BEC(B) also satisfies the above-mentioned conditions onλ2,
then this sequence is not only universal over this set in terms of vanishingbit error probability, but also in terms
of vanishingblock error probability.

Similarly, by imposing onλ2 the conditions from [12] and [17], the other results of this section can be extended
in a straight-forward manner for universality under vanishing block error probability.

IV. U NIVERSALITY UNDER MAXIMUM -L IKELIHOOD DECODING

In Section III we considered the universality of LDPC code ensembles under BP decoding. Though maximum-
likelihood (ML) decoding is in general prohibitively complex, we show in the following that universality can be
achieved under ML decoding for the entire set of equi-capacity MBIOS channels. The universality results proved in
Section III under BP decoding automatically hold under ML decoding. In this section, we prove universality results

6In fact, [12] presents a stronger condition, also enablingλ2 > 0 for code ensembles with a special structure.
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for ML decoding that are stronger in the sense that capacity can be approachedarbitrarily closely with vanishing
block error probability for the entire set of channels under consideration.

A. Universality of Gallager’s Regular LDPC Code Ensembles

In his monograph, Gallager introduced ensembles of regularLDPC codes, and also considered their performance
under ML decoding via their distance properties (see [7, Chapters 2 and 3]). In the following, we rely on [30],
and demonstrate that a proper selection of Gallager’s regular LDPC code ensembles can be made to approach
arbitrarily closely the channel capacity for the entire setof equi-capacity MBIOS channels with vanishing block
error probability.

Theorem 5. [Universality of Regular LDPC Code Ensembles under ML Decodingfor Equi-Capacity MBIOS
Channels] Under ML decoding, Gallager’s regular LDPC code ensembles canbe made universal for the setA
of MBIOS channels that exhibit a given capacityC. More explicitly, for anyε > 0 (that can be made arbitrarily
small), there exists a sequence of these code ensembles whose design rate forms at least a fraction1 − ε of the
channel capacity with vanishing block error probability for the entire setA. Moreover, the asymptotic parity-check
density of this sequence scales likelog 1

ε
.

Proof: The proof of the first part of this theorem follows along the lines of the proof of [30, Theorem 2.2] by
noticing that the way where the capacity-approaching sequence of regular LDPC code ensembles is determined only
depends on the channel capacity. This therefore makes this sequence universal for the entire set of equi-capacity
MBIOS channelsA, and it asymptotically achieves (as we let the block length of this sequence tend to infinity)
vanishing block error probability under ML decoding with a design rate that is at least a fraction1 − ε of the
channel capacity. The asymptotic parity-check density scales like log 1

ε
, which is a consequence of the upper and

lower bounds on the parity-check density in [30, Theorem 2.2]and [30, Theorem 2.1], respectively, which both
scale likelog 1

ε
.

Remark 9. [Capacity-Achieving Code Ensembles with Bounded Graphical Complexity under ML Decoding]
In [11], some ensembles of codes defined on graphs are demonstrated to achieve capacity under ML decoding with
bounded graphical complexity. This holds for every MBIOS channel, but the degree distributions are designed for a
specific MBIOS channel, so the question of the universality over a family of MBIOS channels with fixed capacity
is an open issue. We note, however, that the existence of suchcapacity-achieving code ensembles whose graphical
complexity stays bounded, as opposed to thelog 1

ε
result in [30, Theorem 2.1] and Theorem 5, is attributed to the

existence of state nodes (e.g., punctured bits) in the Tanner graphs of irregular repeat-accumulate codes whereas
LDPC code ensembles without puncturing are represented by bipartite graphs without these additional state nodes. It
is an open question if the code ensembles discussed in [11] have the potential of being universal capacity-achieving
code ensembles under ML decoding with respect to a multitudeof capacity-achieving MBIOS channels. Note
however that since the decoding complexity of ML decoding does not depend directly on the graphical complexity
of these ensembles (as opposed to iterative BP decoding), and on the other handlog 1

ε
stays relatively small even

for ε = 10−3 (thus referring to the case of achieving 99.9% of the capacity), we choose to leave the analysis of the
possible universality of the new capacity-achieving code ensembles in [11] under ML decoding outside the scope
of this paper.

Example 6. In order to exemplify Theorem 5, consider lower bounds on the error exponents of some expurgated
Gallager’s regular LDPC code ensembles under ML decoding. Fig.2 shows lower bounds on the error exponent
for several expurgated Gallager’s LDPC code ensembles of length n = 100000 and design rate12 . The expurgation
followed the approach in [7, Chapter 2]. The bounds were computed for three MBIOS channels of different
capacities. For the BSC and BEC, the Shulman-Feder bound was used(see [29, section 4.4.1]). For the BIAWGN
channel, the error exponent was computed based on [40, Theorem 3.1]. The distance spectra of the ensembles
were computed according to the asymptotic results in [7, Chapter 2]. It is noted that for this block length, the
asymptotic results are very close to the exact distance spectra (see [39]). It is evident from Fig. 2 that as we
increase the degrees of the variable and check nodes while maintaining a constant design rate, the point where
the error exponent vanishes gets closer to the channel capacity, regardless of the MBIOS channel in question.
Thus, this demonstrates that this sequence of ensembles becomes universal under maximum-likelihood decoding
for equi-capacity MBIOS channels.
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Fig. 2. Lower bounds on the error exponent for expurgated Gallager’s LDPC code ensembles on various MBIOS channels. The results
were computed for block lengthn = 100000, and for codes with constant design rate1/2 and increasing variable and check node degrees.

For short block lengths, we compare the lower bound for the expurgated(6, 12) ensemble and block length
n = 1008 computed using the exact distance spectrum [39] and the upper bound from [7, Chapter 2]. Fig. 3 shows
the comparison. Clearly, the vanishing point of the error exponent is closer to capacity when computed using the
exact distance spectrum. The calculation of the lower bound on the error exponent that uses the upper bound on
the distance spectrum provides, however, a reasonable estimate of the lower bound on the error exponent that is
calculated via the exact distance spectrum.

B. Universality of Punctured Regular LDPC Code Ensembles

The performance of punctured LDPC code ensembles under BP decoding was addressed extensively (see, e.g.,
[27, Chapter 5] and references therein). The potential performance of punctured LDPC code ensembles under ML
decoding was studied, e.g., in [10] and [32]. These works showthe remarkable performance of some punctured
LDPC code ensembles for various channel models. In the following, we rely on [10], and consider the universality
of some randomly punctured regular LDPC code ensembles under ML decoding over the set of equi-capacity
MBIOS channels.

Consider a linear block code, which will be referred to as a mother code. By introducing the option of possibly
puncturing various fractions of the code bits of the mother code, one generates a set of new linear block codes
with some higher rates. The advantage of puncturing lies in the flexibility of the selected rates of the punctured
codes, and in the ability to use the same decoder as for the mother code to decode all of these punctured codes.
Specifically, by puncturingnq bits of a mother code of lengthn and rateR, one obtains a punctured code of length
n(1− q) and rate at mostR1−q

. A lower rate occurs whenever at least two different codewords of the mother code
are mapped to the same codeword after puncturing; this phenomenon is calledrate reduction(see [10, Section III]).

In [10], the authors analyze the performance of punctured LDPCcode ensembles under ML decoding. Specifically,
they consider puncturing Gallager’s ensemble of regular(n, j, k) LDPC codes, and provide conditions on the original
ensemble (before puncturing) for asymptotically obtaining zero rate reduction with probability 1 as we let the block
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Fig. 3. A comparison of the lower bounds on the error exponent of some expurgated Gallager’s LDPC code ensembles for various MBIOS
channels. The results were computed for the expurgated(6, 12) ensemble with block lengthn = 1008, using both the exact distance spectrum
as found in [39] (left-hand plot) and the upper bound from [7, Chapter2] (right-hand plot).

length n tend to infinity. Consider an ensemble whose design rate isRd, then in the case where there is no rate
reduction due to puncturing, the design rate of the punctured ensemble isRd

1−q
. It is also shown in [10] that under

the condition of zero rate reduction, if the original sequence of code ensembles achieves a fraction1−ε of capacity
(note that Theorem 5 ensures the existence of such a sequence), then so does the sequence of punctured code
ensembles. This leads to the following theorem:

Theorem 6. [Universality of Punctured Regular LDPC Code Ensembles under ML Decoding for Equi-
Capacity MBIOS Channels] Under ML decoding, punctured regular LDPC code ensembles can be made universal
for the set of MBIOS channels that exhibit a given capacity. More explicitly, letε > 0 (which can be set arbitrarily
close to zero), and consider a sequence of regular(n, j, k) LDPC code ensembles whose design rateRd forms a
fraction of at least1 − ε of the capacityC. Assume that this sequence achieves vanishing block error probability
under ML decoding for the entire set of MBIOS channelsA which exhibit a channel capacityC. Random puncturing
of a fractionq of code bits from this sequence of ensembles produces a new sequence of punctured code ensembles
with any desired design rateR′

d > Rd with the following properties:
• It achieves vanishing block error probability under ML decoding over the entire set of equi-capacity MBIOS

channels with capacityC ′ = C
1−q

.
• It achieves a fraction of at least1 − ε of the capacityC ′.

Proof: From Theorem 5, there exists a sequence of regular LDPC code ensembles that universally achieves,
under ML decoding, a fraction1−ε of the channel capacity with vanishing block error probability for the entire set
A. The idea is to first construct such a sequence with a low enough design rate, and then increase the design rate via
(random) puncturing to obtain the new universal code ensemble. More specifically, according to [10, Theorem 1], if
the design rate of the mother ensemble is low enough, then therate reduction due to puncturing is zero. Note that
the proof of this theorem is based solely on the distance properties of the original (mother) code ensemble and the
desired design rate. Since the proofs of [10, Theorems 2 and 3] rely only on the capacity of the MBIOS channel
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and the condition for zero rate reduction, this implies thatthe new sequence of punctured LDPC code ensembles
has vanishing block error probability under ML decoding over all MBIOS channels with capacityC ′ = C

1−q
. Note

that since
R′

d

1 − ε
=

Rd

(1 − ε)(1 − q)
≥ C

1 − q
= C ′

then this new sequence of punctured LDPC code ensembles has a design rate that is at least a fraction1− ε of C ′.

V. SUMMARY AND OUTLOOK

A. Summary

In this work we considered the universality of LDPC code ensembles under both BP and ML decoding. We have
focused on obtaining closed-form analytical results, eventhough better performance can be obtained by numerical
design of LDPC code ensembles (see, e.g., [3], [6], [23], [28] and also the discussion in Example 5 of this paper).

Under BP decoding we derived an analytical approach for designing LDPC code ensembles that achieve vanishing
bit error probability over every channel in a family of MBIOSchannels. This approach was applied to several families
of MBIOS channels, such as the family of equi-capacity MBIOSchannels. We also derived a necessary condition
for a sequence of LDPC code ensembles to universally achieve vanishing bit error probability under BP decoding
over an arbitrary set of MBIOS channels. This condition formsthe basis for a linear programming universal upper
bound on the achievable rate of LDPC code ensembles over a set ofequi-capacity MBIOS channels. The analytical
design method and the necessary condition above were used toderive bounds on the threshold of LDPC code
ensembles under BP decoding. These bounds were compared to existing information-combining bounds on the
threshold ([37]) in Table V). In some cases, our bounds were more informative.

For the ML decoding case, we used the results of [30] to show that Gallager’s regular LDPC code ensembles can
be made universally capacity achieving over the set of equi-capacity MBIOS channels (in the sense of vanishing
block error probability). The result was extended to randomly punctured LDPC code ensembles as well, based
on [10]. It is noted that the ML decoding results are an improvement over the BP decoding case, where the
universally achievable fraction of capacity over the family of equi-capacity MBIOS channels depended on the
channel capacity and could be as low as69.3%.

B. Topics for Further Research

In this sub-section, we propose some directions for future research:

• The LP bounds derived in Section III are not tight in general, since the universal achievable gap to capacity does
not always decrease for increasing values ofdc (contrary to the expected experimental behavior of optimized
LDPC code ensembles under BP decoding). Finding some new constraints in these optimization problems
may enhance the tightness of these bounds. Moreover, our bounds refer to fixed right-degree ensembles (note
that typically LDPC code ensembles are designed to be right-regular or almost right-regular). Extending the
bounds to the case where the parity-check degree is not fixed isalso of interest.

• The Bhattacharyya parameter (B-parameter) for equi-capacity MBIOS channels can vary in a large range. As a
result, the universal LDPC code ensembles designed in this work achieve, e.g.,75% of capacity if the channel
capacity is 0.5 bit per channel use (see Fig. 1). Nonetheless,the fact that these ensembles are provably universal
and are designed by simple analytical tools is important. Since, in practice, numerical optimizations enable
to design LDPC code ensembles which universally achieve a larger fraction of capacity for some classes of
equi-capacity MBIOS channels (see [28]), further analysisin this direction is of interest.

• The ideas of universality in this paper can be developed to consider other sets of communication channels (for
example, the universality of LDPC code ensembles for the set ofMBIOS channels with the same uncoded bit
error probability can be considered in a similar approach toSection III-A via the use of density evolution and
(5)).

• The approach for universality in Section III of this paper stems from the asymptotic analysis of BP decoding
via density evolution; it has resulted in an analytical design of a universal decoder that is based on code design
for a BEC. This universal LDPC code ensemble achieves vanishing bit error probability under BP decoding
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but does not achieve full capacity when used over other channels in the family it was designed for, as Fig. 1
demonstrates. That said, one should not infer that this is thepenalty of universality, as these results are merely
an artifact of the approach presented here. Numerical evidence in [6] and [23] suggests that better results are
possible (see also Example 5 in this paper). One possible approach to obtain better analytical results may
rely on analytic properties of GEXIT charts [19], instead of the suggested approach in this paper that relies
on density evolution for the BEC as a starting point for the analysis. Another possible approach may be to
investigate universal LDPC code ensemble design under other suboptimal decoding methods for LDPC codes
(e.g., a study of the universality of LDPC code ensembles underLP decoding).

• Although ML decoding is prohibitively complex for codes of large block lengths, the fact that (regular) LDPC
code ensembles are capacity-achieving under ML decoding for the set of equi-capacity MBIOS channels is
interesting (see Theorems 5 and 6). As a continuation of the previous item, it would be interesting to investigate
the universality issue for some near-ML decoding algorithms that provide a better tradeoff between performance
and complexity than the ML decoding algorithm.

• The analysis in this paper can be easily adapted to other families of code ensembles defined on graphs, e.g.,
to irregular repeat-accumulate codes (see [36]).

APPENDIX A
PROOF OFLEMMA 1

In the following, we prove the monotonicity ofµ1 (see (12)) over the interval[0, 1), and then calculate the limits
of µ1(C) as the channel capacityC tends either to zero or 1 bit per channel use.

Let x , h−1
2 (1 − C), then we get from (12) that

µ1(C) =
1 −

√

4x(1 − x)

1 − h2(x)
.

We note thatµ1, as a function ofx, monotonically decreases when0 ≤ x ≤ 1
2 . This is readily seen by taking the

derivative ofµ1 with respect tox, which remains negative when0 ≤ x ≤ 1
2 . The substitution of a Taylor series

expansion ofh2(x) aboutx = 1
2 (see (39)) in the denominator gives

µ1(C) =
1 −

√

1 − (1 − 2x)2

1
2 ln 2

∞
∑

q=1

(1 − 2x)2q

q(2q − 1)

=
(1 − 2x)2

1 +
√

1 − (1 − 2x)2
2 ln 2

∞
∑

q=1

(1 − 2x)2q

q(2q − 1)

=
2 ln 2

1 +
√

1 − (1 − 2x)2
1

∞
∑

q=1

(1 − 2x)2(q−1)

q(2q − 1)

.

If C is increased from 0 to 1, thenx, which was defined above asx , h−1
2 (1 − C), decreases from1

2 to 0 and
thereforeµ1(C) is increasing withC, and

lim
C→1

µ1(C) = 1.

On the other hand, the limit ofµ1(C) when we let the capacity tend to zero is equal to

lim
C→0

µ1(C) = lim
x→ 1

2

2 ln 2

1 +
√

1 − (1 − 2x)2
1

∞
∑

q=1

(1 − 2x)2(q−1)

q(2q − 1)

= ln 2 lim
x→ 1

2

1
∞
∑

q=1

(1 − 2x)2(q−1)

q(2q − 1)

= ln 2.
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This completes the proof of Lemma 1.

APPENDIX B
EXTENSION OF(15) FOR A GENERAL RIGHT-DEGREE DISTRIBUTION

The condition in (15) is stated for a right-regular channel. For a general right-degree distribution,

ρ(x) =
∑

i

ρix
i−1.

This condition can be readily extended to the case at hand, although it takes a more involved form. As in (19) we
begin with (6) to obtain

xl , B(al)

(a)
= B(a0)B

(

λ

(

Γ−1
(

ρ
(

Γ(al−1)
)

)

)

)

(b)
= B(a0)λ

(

B
(

Γ−1
(

ρ
(

Γ(al−1)
)

)

)

)

(c)
= B(a0)λ

(

∑

i

ρiB
(

a�i−1
l−1

)

)

(d)
≥ B(a0)λ

(

∑

i

ρi

√

1−
(

1 − B(al−1)2
)i−1

)

, (45)

where equality (a) follows from the recursive density evolution equation in (6) and the property in (20) of the
B-functional, equalities (b) and (c) follow from the linearity of the convolution operator and of the B-functional
(see (21)), and inequality (d) follows from (18).

The extension of (15) for a general LDPC code ensemble readily follows by replacingzl in (22) with the sequence

z′l = B(a0)λ

(

∑

i

ρi

√

1−
(

1 − B(z′l−1)
2
)i−1

)

,

with initial condition z′0 = B(a0).
Thus, the generalized version of (15) assumes the form

B λ

(

∑

i

ρi

√

1−
(

1 − x2
)i−1

)

≤ x, ∀x ∈ (0, B]. (46)

APPENDIX C
PROOF OFLEMMA 3

Let us consider the sequence

zl = z0λ
(

√

1 − ρ(1 − z2
l−1)

)

, l = 1, 2, . . .

for z0 < B1(λ, ρ) where
B1(λ, ρ) , inf

x∈(0,1]

x

λ
(
√

1 − ρ(1 − x2)
)

is introduced in (30). By substitutingx = 1 on the right-hand side above, it follows readily thatB1(λ, ρ) ≤ 1 and
thereforez0 < 1. In the following, it is proved by induction that the sequence is monotonically decreasing and
bounded between 0 and 1: let us assume that0 ≤ zl−1 < 1 holds for a specificl ≥ 1, then

zl = z0λ
(

√

1 − ρ(1 − z2
l−1)

)

≤ B1(λ, ρ) λ
(

√

1 − ρ(1 − z2
l−1)

)

≤ zl−1
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where the last inequality follows from the definition ofB1 and the above assumption forzl−1. It therefore follows
by induction that the sequence{zl} is monotonically decreasing and bounded between 0 and 1, hence it is a
convergent sequence. Letz∗ ∈ [0, 1] denote the limit of this sequence, then due to the continuityof λ andρ over
the interval[0, 1], it follows (by letting l tend to infinity in the recursive equation for the sequence{zl}) that the
limit z = z∗ satisfies the equation

z = z0λ
(

√

1 − ρ(1 − z2)
)

.

For z ∈ (0, 1]

z0 < B1 ≤ z

λ
(
√

1 − ρ(1 − z2)
)

⇒ z0λ
(

√

1 − ρ(1 − z2)
)

< z

and therefore the limitz should be necessarily zero for the case where the initial value z0 is less thanB1(λ, ρ).
For the proof of the second part of the lemma, we consider the case whereB1(λ, ρ) < z0 ≤ 1. From the way

B1 is defined in (30), it follows that the set

Fz0
,

{

x ∈ (0, 1] :
x

λ
(
√

1 − ρ(1 − x2)
) ≤ z0

}

(47)

is non-empty. Letx(z0) designate the maximal value of this set (note that0 < x(z0) ≤ 1).
Let us define the functiong(u, v) , uλ

(√

1 − ρ(1 − v2)
)

over the square{(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. Note
that the functiong is monotonically increasing in its two variables; the monotonicity in u is due to its linearity inu
and the non-negativity ofλ; and the monotonicity inv is due to the monotonicity of the degree distributionλ and
ρ over the interval[0, 1] and since they are mapped to the same interval. We show in the following, by induction,
that zl ∈ [x(z0), z0] for every integerl ≥ 0. For l = 0, the inequalityx(z0) ≤ z0 ≤ 1 holds since forx ∈ (z0, 1]

x

λ
(
√

1 − ρ(1 − x2)
) ≥ x > z0.

Let us assume thatzl−1 ∈ [x(z0), z0] for a specificl ≥ 1 then

zl = g(z0, zl−1)
(a)

≥ g(z0, x(z0))

= z0λ
(

√

1 − ρ(1 − x(z0)2)
)

(b)

≥ x(z0)

where inequality (a) is due to the monotonicity ofg, and inequality (b) follows from the wayx(z0) is defined
above (or, more generally, this inequality holds for everyx ∈ FB where the setFz0

is defined in (47)). Also, from
the above assumption forzl−1

zl = g(z0, zl−1)

≤ g(z0, 1)

= z0

and therefore, it follows by induction that

x(z0) ≤ zl ≤ z0, l = 0, 1, . . .

and the sequence{zl} is bounded away from zero (sincex(z0) > 0). This completes the proof of Lemma 3.
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APPENDIX D
PROOF OF THEINEQUALITY IN REMARK 6

From the definitions ofB0 andB1 in (29) and (30), respectively, in order to prove thatB1(λ, ρ) ≥ B0(λ, ρ), it
is sufficient to show that

λ
(

√

1 − ρ(1 − x2)
)

≤ λ
(

1 − ρ(1 − x)
)

, ∀x ∈ [0, 1].

Sinceλ(0) = 0, λ(1) = 1, andλ is monotonic increasing over the interval [0, 1], then this inequality is equivalent
to

√

1 − ρ(1 − x2) ≤ 1 − ρ(1 − x), ∀x ∈ [0, 1].

By squaring and rearranging terms, we need to prove that

h(x) , ρ(1 − x2) + ρ2(1 − x) − 2ρ(1 − x) ≥ 0, ∀x ∈ [0, 1].

Note thath is zero at the endpoints of this interval (sinceρ(0) = 0 and ρ(1) = 1). From the assumption of
right-regularity thenρ(x) = xdc−1. Let γ , dc − 1 (whereγ ≥ 1), then

h(x) = (1 − x2)γ + (1 − x)2γ − 2(1 − x)γ

= 2(1 − x)γ

[

(1 + x)γ + (1 − x)γ

2
− 1

]

≥ 0

where the last transition follows from the non-negativity of both terms over the intervalx ∈ [0, 1] (the second term
is non-negative due to the convexity of the functionf(x) = xγ for x ≥ 0 (note thatγ ≥ 1)). This completes the
proof of the inequality in Remark 6.
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