#### **ELECTRONS ACCELERATION**

in an

#### INVERTED MEDIUM

Levi Schächter



Technion - Israel Institute of Technology

Department of Electrical Engineering

# Outline

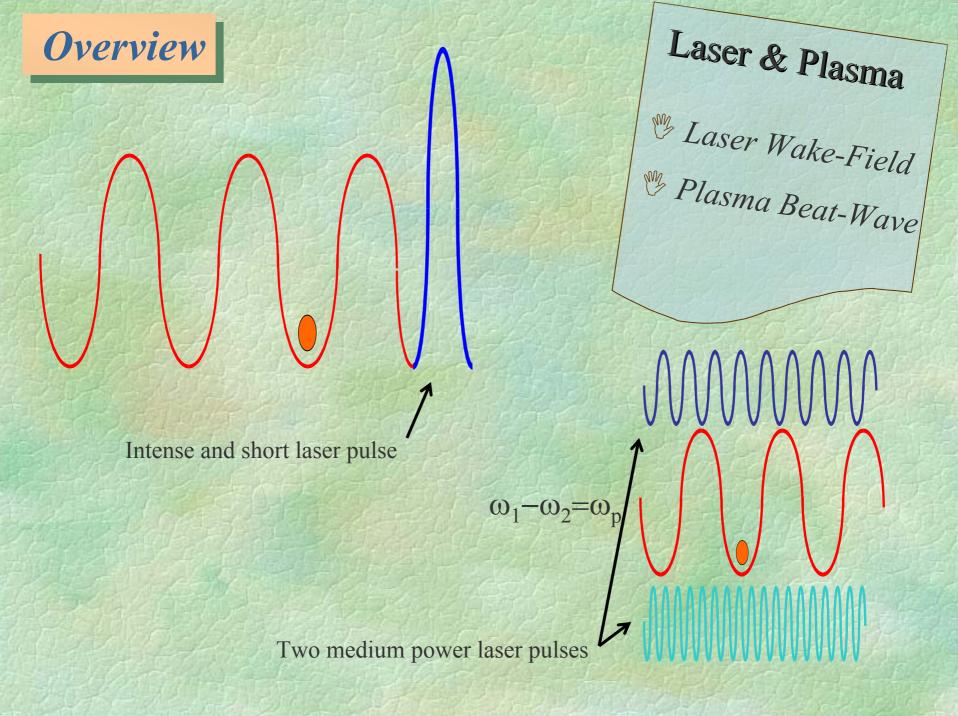
- Overview and Motivation
- Particle Acceleration in Inverted Medium
- Wake Amplification and Acceleration
- Parameter Analysis
- Experimental Setup
- Summary

#### Overview

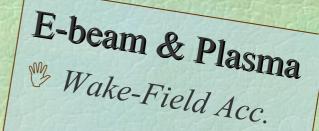
# Laser & Plasma

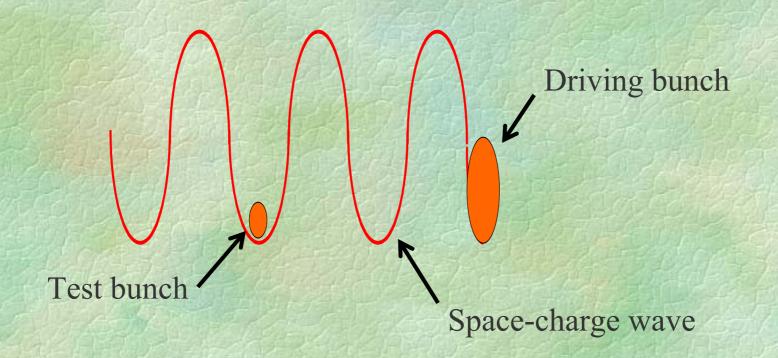
- Laser Wake-Field
- Plasma Beat-Wave

# E-beam & Plasma


Wake-Field Acc.

# Laser & Inverse of Radiation Processes


- Inverse Cerenkov
- Inverse FEL
- Inverse Smith-Purcell


# E-beam & Structure

- Two-Beam Acc.
- Cerenkov Wake-Field







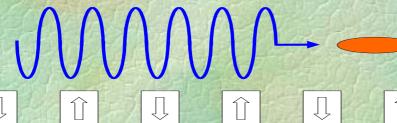


### **Overview**

Inverse Cerenkov

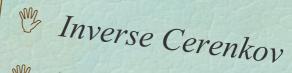
#### Inverse FEL

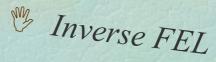










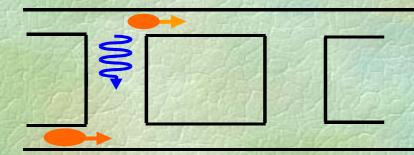

**Inverse Smith-Purcell** 

# Laser & Inverse of Radiation Processes

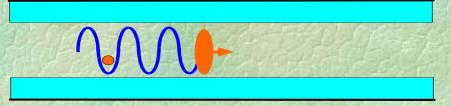




Inverse Smith-Purcell




Two-beam Accelerator




Two-Beam Acc.

Cerenkov Wake-Field



Cerenkov Wake-Field Accelerator



Phase velocity = velocity of driving bunch

#### Motivation

# Laser & Plasma

- Laser Wake-Field
- Plasma Beat-Wave

# Inverse Laser?

# Laser & Inverse of Radiation Processes

- Inverse Cerenkov
- Inverse FEL
- Inverse Smith-Purcell

# E-beam & Plasma

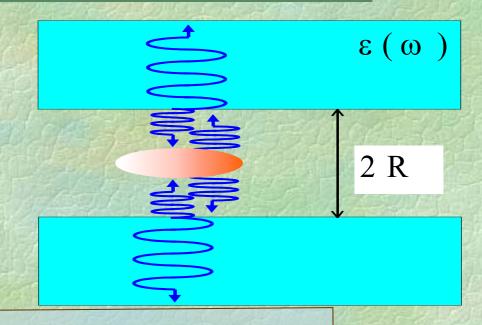
Wake-Field Acc.

Amplify a Wake?

Amplify
Cerenkov
Radiation?

# E-beam & Structure

- Two-Beam Acc.
- Cerenkov Wake-Field


### Particle Acceleration by Inverted Medium

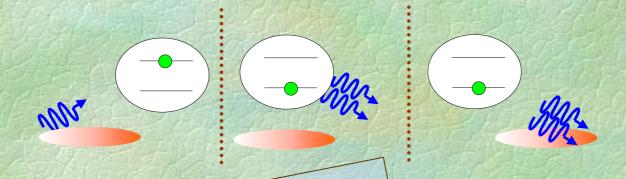
# Passive Dielectric

- Cerenkov Radiation
- Decelerating Force

Resistive Material

- Eddy Currents
- Decelerating Force




#### **Inverted Medium**

- Megative Resistivity
- Managed Currents
- Accelerating Force

Phys. Lett. A, 205, p.355 (1995)

PRE, 53, p.6427 (1996).

# Particle Acceleration by Active Medium



# Inverse Frank-Hertz or Collision of the Second Kind

- Single Particle -Latyscheff(1930)
  - Accumulative effect yet to be demonstrated experimentally!!

# PASER:

Particle Acceleration by

Stimulated Emission of

Radiation

Phys. Lett. A, 205, p.355 (1995)

#### Motivation

# Laser & Plasma

- Make-Field Laser Wake-Field
- Plasma Beat-Wave

# Laser & Inverse of Radiation Processes

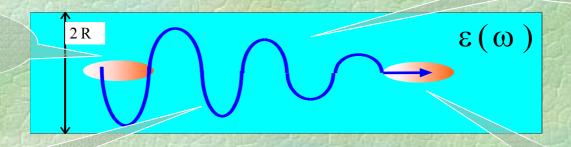
- Inverse Cerenkov
- Inverse Laser Inverse FEL
  - Inverse Smith-Purcell

# E-beam & Plasma

Wake-Field Acc.

Amplify a Wake?

Amplify
Cerenkov
Radiation?


# E-beam & Structure

- Two-Beam Acc.
- Cerenkov Wake-Field

## Wake-Field Amplification

Inverted medium

Accelerated bunch



Amplified wake

Trigger bunch

$$\varepsilon(\omega) = 1 + \sum_{v} \frac{\omega_{p,v}^{2}}{\omega_{0,v}^{2} - \omega^{2} + 2j\omega\omega_{1,v}} \cong \varepsilon_{r} + \frac{\omega_{p,n}^{2}}{\omega_{0,n}^{2} - \omega^{2} + 2j\omega\omega_{1,n}}$$

$$A_{z,s} \propto \int_{-\infty}^{\infty} d\omega \, \frac{e^{j\omega(t-z/v)}}{D(\omega)}$$

Effective dielectric coefficient

One pole corresponds to a growing wave

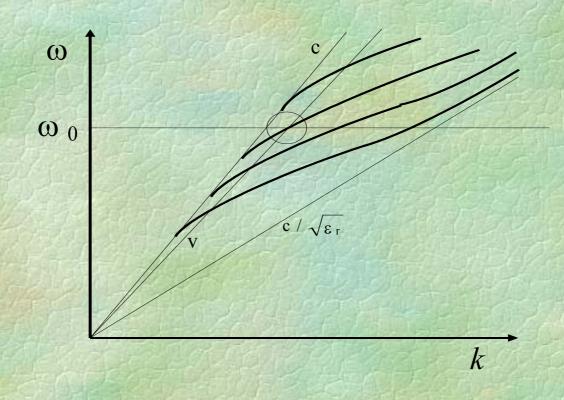
### Wake-Field Amplification - Eigen-frequencies

The dispersion equation:

$$D(\omega) \equiv J_0 \left( \frac{\omega}{c} R \sqrt{\epsilon - \beta^{-2}} \right) + \frac{1}{\gamma \beta} \frac{\epsilon}{\sqrt{\epsilon - \beta^{-2}}} J_1 \left( \frac{\omega}{c} R \sqrt{\epsilon - \beta^{-2}} \right) \frac{K_0 \left( \frac{\omega}{c} \frac{R}{\gamma \beta} \right)}{K_1 \left( \frac{\omega}{c} \frac{R}{\gamma \beta} \right)}$$

For relativistic particles ( $\gamma >> 1$ ) the poles are determined by

Ignore resonance


$$D(\omega) \cong J_0\left(\frac{\omega}{c}R\sqrt{\varepsilon(\omega)-1}\right) = 0 \quad \Rightarrow \quad \frac{\omega_0}{c}R\sqrt{\varepsilon_r-1} = p$$

Resonance introduces a change:

*Inversion:*  $\omega_p^2 < 0$ 

$$\omega = \omega_0 + \delta \omega$$
  $\Rightarrow$   $\delta \omega = \pm j \frac{|\omega_p|}{2\sqrt{\epsilon_r - 1}}$ 

#### Wake-Field Amplification - Dispersion Curves



Although multiple modes are possible in this geometry only a single mode will be amplified - provided the mode separation is sufficient.

## Wake-Field Amplification - Gradient

Longitudinal component of the electric field:

Length of the driving bunch

$$E_z(r,z,t) \cong E_d J_0\left(p\frac{r}{R}\right) \sin\left[\omega_0(t-z/v)\right] e^{\left|\delta\omega\right|} (t-z/v)$$

Charge of the trigger bunch

$$E_{d} \cong \frac{q}{4\pi\epsilon_{0}\epsilon_{r}R^{2}J_{1}^{2}(p)}$$

$$\begin{bmatrix}
J_1 \left( p \frac{R_d}{R} \right) \\
0.5 p \frac{R_d}{R}
\end{bmatrix}$$

$$E_{d} \cong \frac{q}{4\pi\epsilon_{0}\epsilon_{r}R^{2}J_{1}^{2}(p)} \begin{bmatrix} J_{1}\left(p\frac{R_{d}}{R}\right) \\ 0.5p\frac{R_{d}}{R} \end{bmatrix} \begin{bmatrix} \sin\left(\frac{\omega_{0}\Delta}{v}\right) \\ \frac{\omega_{0}\Delta}{v} \end{bmatrix}$$

Radius of the driving bunch

Total power flow

Interaction Impedance

$$Z_{int} \equiv \frac{(E_z R)^2}{2P} = \sqrt{\frac{\mu_0}{\epsilon_0}} \frac{\epsilon_r - 1}{\pi J_1^2(p)} \propto \frac{\omega_0}{c} R$$

Zero of Bessel function

### Wake-Field Amplification - Saturation

At high intensities the inversion is reduced by the field:

$$\delta\omega \rightarrow \delta\omega \frac{1}{1 + (E/E_{cr})^2}, \quad E_{cr} \equiv \frac{\hbar}{\mu\sqrt{\tau T_2}}$$

Dipole moment

Relaxation time constants

Consequently, at a distance d after the driving bunch

$$E = E_d \exp \left\{ \frac{d}{c} |\delta\omega| \frac{1}{1 + (E/E_{cr})^2} \right\}$$

and for a given accelerating gradient (Eace) the witness bunch

$$d_{w} = \frac{c}{|\delta\omega|} \left[ 1 + \left( \frac{E_{acc}}{E_{cr}} \right)^{2} \right] \ln \left( \frac{E_{acc}}{E_{d}} \right)$$

### Wake-Field Amplification - Parameter Analysis

Geometric and Electrical parameters

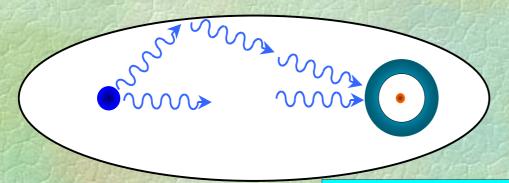
```
R[cm] = 1
D[cm] = 100
R_d[cm] = 0.01
\Delta[cm] = 0.1
E_{acc}[GV/m] = 1
E_{sat}[MV/m] = 10
```

## Wake-Field Amplification - Parameter Analysis

|                                          | $ND:YAG$ $[Y_3A_{L5}O_{12}]$ | TI SAPPHIRE  [TI <sup>3+</sup> : AL <sub>2</sub> O <sub>3</sub> ] |
|------------------------------------------|------------------------------|-------------------------------------------------------------------|
| $\mathcal{E}_{ m r}$                     | 1.82                         | 1.76                                                              |
| λ [μm]                                   | 1.06                         | 0.514                                                             |
| N <sub>dop</sub> [atom/cm <sup>3</sup> ] | $5.8 \times 10^{19}$         | $3.3 \times 10^{19}$                                              |
| Dopant                                   | Yttrium (1%)                 | $Ti_2O_3$ (0.1%)                                                  |
| p                                        | $5.362 \times 10^4$          | $9.981 \times 10^4$                                               |
| $Z_{ m int}\left[{ m M}\Omega ight]$     | 8.64                         | 16.41                                                             |
| Energy [kJ]                              | 3.24                         | 3.8                                                               |
| N <sub>acc</sub> [50% eff]               | $1.0 \times 10^{13}$         | $1.2 \times 10^{13}$                                              |
| $\delta\omega/\omega_0$                  | 0.134                        | 0.051                                                             |
| $E_d$ [V/m]                              | $3x10^{-4}$                  | 6x10 <sup>-5</sup>                                                |
| $d_{w}[m]$                               | 0.36                         | 0.49                                                              |
| P[MW]                                    | 5.78                         | 3.05                                                              |
| $S[MW/cm^2]$                             | 1.8                          | 0.97                                                              |
| Gain [dB/cm]                             | 6.9                          | 5.4                                                               |

## Summary

- PASER: Electrons gain energy stored in the medium. For `competitive` gradients the charge density required is very high thus the alternative is
- Wake-Field Amplification. Energy is in the medium -- no need for optical system.
- Acc. mode moves at the speed of trigger bunch.
- Inherent longitudinal electric field.
- Growth controlled by the population inversion.
- Less than  $0.1\pi$  mm-mrad emittance growth.


# Summary

- Vacuum acc. by combining solid-state medium.
- Although the transverse dimension entails many modes excitation, they all move at  $V_d$  and all oscillate at the frequency of the medium  $\omega_0$
- Nd: YAG and Ti: Sapphire store sufficient energy to accelerate more than 10 9 electrons ignoring the longitudinal space-charge effect.

## Experiment Suggested at ORION

• Goal:

Acc. with Energy Stored in the Medium Amplification of Cerenkov Radiation



• Investigate:

Saturation effects Energy out vs. Energy stored Trigger bunch effect  $(N_d, \gamma_d, energy spread)$ Transition radiation effect.

 $\varepsilon(\omega)$