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Chapter 1   Maxwell’s Equations 
 
1.1   Introduction 
 
Maxwell's equations constitute the theoretical basis of most phenomena encountered by 
electrical engineers in their practice; these equations elucidate the underlying physical processes 
occurring in electronic circuits, in microwave, optical and X-ray systems, in power transmission, 
computer tomography, geophysical remote sensing, etc. In many practical cases of interest 
various tools or “laws” have been developed in order to simplify the analysis e.g. – Kirchoff's 
laws, which are the basis of circuit theory. Although Kirchoff's laws are perfectly valid starting 
at dc and up to the GHz frequency range, their validity must be carefully considered for 
frequencies in the ten GHz range or higher. In order to envision the difficulties associated with 
the higher frequency range, we have to bear in mind that in lumped circuits operating at low 
frequencies, the electric energy is assumed to be stored in capacitors only, whereas magnetic 
energy is assumed to be stored exclusively in inductors. However, at high frequencies (wave 
phenomena), electric energy is also stored in inductors and vice versa, i.e. magnetic energy is 
stored in capacitors. In fact, this becomes evident if we consider a plane harmonic 
electromagnetic wave in which the electric and magnetic energies co-exist equally in the same 
volume of space. 
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These days many young students focus their interest on computer and communication related 
topics; although it may not seem evident at first sight, both these areas rely heavily on 
electromagnetic theory. At the micro-chip level, for example, electromagnetic theory is resorted 
to in order to design circuits without “cross-talk” between elements; on the other hand in 
modern communication systems, the entire broadcasting and receiving process is either 
microwave or optically based. This list may be extended to include generation and control of 
electrons as in TV sets or in computer monitors, where a single electron beam covers each point 
on the screen at high repetition rates; these devices are being replaced by flat displays where 
arrays of electron emitters generate micro-electron beams hitting a fluorescent panel, each 
beamlet, in turn, being decoupled from the others. In other cases controlling electron emission 
entails avoiding it in spite of presence of intense electric fields – for example one must know 
how to design micro-circuits capable of withstanding high electric fields. Similarly, one must 
know how to shield circuits from external signals, and how to reduce noise levels. 
Electromagnetic field theory is obviously the very basic topic that a student must study if 
interested in areas of microwave systems, optics, electro-optics and opto-electronics. 
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1.2   Maxwell Equations – Differential Form 
 

For an analysis of physical phenomena it is necessary to introduce a frame of 
reference facilitating the description of a phenomenon in space-time. Such a frame 
of reference may consist of a coordinate system comprising three orthogonal rulers 
enabling the measurement of the distance between any two points, with each point of 
interest “carrying” a clock providing information about the local running time; all 
the clocks are assumed to be initially synchronized. At this stage we restrict 
ourselves to a Cartesian system of coordinates, schematically illustrated in the 
Figure. 

 
As an integral part of this coordinate system we define three unit vectors ( )1 ,1 ,1x y z  
forming a right-handed system as illustrated in the Figure. 

  
In addition, two differential operators playing an important role in the description of 
electromagnetic phenomena, are introduced; thus given a vector 1 1 1x x y y z zA A A A≡ + + , we 
define its divergence by  

 x x y y z zA A A A∇⋅ ≡ ∂ + ∂ + ∂      (1.2.1) 

1x

1y

1z

 
 
 
 
 
 
 
 
 

z

x

y
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as well as its curl i.e.,  

 

1 ( )1 1 1
= 1 ( )

1 ( ).

x y z z yx y z

x y z y x z z x

x y z z x y y x

A A

A A A
A A A A A

⎡ ⎤+ ∂ − ∂
⎢ ⎥

∇× ≡ ∂ ∂ ∂ − ∂ − ∂⎢ ⎥
⎢ ⎥+ ∂ − ∂⎣ ⎦

     (1.2.2) 

Based on these two differential operators and assuming the electromagnetic field to be 
adequately described by three dimensional vectors, it is possible to write a set of equations, 
called Maxwell's Equations (ME) describing all known electromagnetic phenomena. In their  
differential form these equations read 

 

= 0 Faraday s law

= Ampere s law

= 0 Magnetic induction conservation

= Gauss law

t

t

E B

H D J

B
D ρ

′∇× + ∂

′∇× − ∂

∇ ⋅

′∇ ⋅

 (1.2.3) 

Although nomenclature may vary, we resort to the following description:  
 E  – electric field [V/m] D  – electric induction  [C/m 2 ] 
H  – magnetic field [A/m] B  – magnetic induction   [V sec/m2 ] or [T] 
J – current density [A/m2 ] ρ  – charge density  [C/m3]. 
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ME is a set of 8 equations which indicate that: 
 = tE B∇× −∂   time variations of the magnetic induction are associated with 

spatial variations of the electric field and vice versa; 
= tH J D∇× +∂  spatial variation of the magnetic field implies time variation of the 

electric induction and/or the presence of an electric current density. 
The interpretation of the two scalar equations will be discussed within the context of their 
integral reformulation. 

 
In order to examine the inter-dependence of this set of equations we resort to the well known 
differential equation satisfied by a vector A, i.e.,  

 ( ) 0.A∇⋅ ∇× ≡      (1.2.4) 
Examining now Faraday's law and applying the divergence operator ∇ , we conclude that  

 ( ) = 0.tE B∇⋅ ∇× +∂      (1.2.5) 
According to (1.2.4) the first term is identically zero  

 
=0

( ) ( ) = 0,tE B∇⋅ ∇× +∂ ∇ ⋅       (1.2.6) 

and, therefore, upon interchanging the order of the operators ∇  and t∂ , we conclude that B∇⋅  
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equals a time-independent scalar function ( )f r . Assuming this function to have been zero in the 
remote past, we obtain  

 = 0B∇⋅      (1.2.7) 
which is identical to the third equation in (1.2.3). In other words, based on a mathematical 
identity as well as on experiment [i.e. ( ) = 0f r ] we have found that Faraday's law comprises 
information associated with the continuity of magnetic induction. 
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1.3   Equation of Electric Charge Continuity 
 

Applying the same procedure to Ampere's law we obtain  
 ( ) = ,tH D J∇⋅ ∇× −∂ ∇ ⋅      (1.3.1) 

where the first term on the left once more vanishes, and according to Gauss' law =D ρ⎡ ⎤∇ ⋅⎣ ⎦    

 ( ) ( ) = .

=0
tH D J∇⋅ ∇× −∂ ∇ ⋅ ∇ ⋅

ρ
     (1.3.2) 

We are thus left with the continuity equation of the electric charge  
 = 0.tJ ρ∇ ⋅ + ∂      (1.3.3) 

As we shall subsequently see, this relation implies charge conservation; therefore if we postulate 
(or assume) the latter, Ampere's law includes physical information associated with Gauss' law. It 
is therefore possible to conclude that the vector equations (Faraday's and Ampere's law) are 
"stronger'', since in conjunction with the identity in Eq. (1.2.4), they include all the information 
associated with the two scalar equations; we shall later on return to this point. 
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1.4   Maxwell Equations – Integral Form:  
In a variety of cases it is more convenient to use Maxwell's equations 

(ME) in their integral form rather than in their differential form (1.2.3). For this 
purpose it is necessary to examine these equations in conjunction with two 
integral theorems of calculus i.e. Stokes' and Gauss' theorems. (i) Stokes' 
theorem states that the surface integral over the curl of any continuous vector 
field ( A) equals the contour integral over the same vector field; the integration 
contour has to follow the circumference of the initial surface,  

C
S

( ) = ;da A A dl⋅ ∇× ⋅∫∫ ∫   (1.4.1) 

dl  is an infinitesimal vector tangential to the circumference of the 
surrounding contour (counter clockwise), C is the contour 
encompassing the surface S and da  is an infinitesimal surface element pointing 
outwards.  (ii) Gauss' mathematical theorem states that the volume integral of the 
divergence of a vector field ( A) equals the surface integral of the same vector field  

 
v S

( ) ;dv A da A∇⋅ ≡ ⋅∫ ∫                          (1.4.2) 

the surface enclosing the whole volume (v) of integration, dv  is an infinitesimal 
volume element in v.   
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1.4.1   Faraday's Law in Integral Form 
Based upon Faraday's law,  

 [ ] = 0,tda E B⋅ ∇× + ∂∫∫      (1.4.3) 
Stokes' theorem implies  

 = 0tdl E da B⋅ + ⋅ ∂∫ ∫∫      (1.4.4) 
and assuming that the surface of integration does not vary in time,  

 = 0ddl E da B
dt

⋅ + ⋅∫ ∫∫      (1.4.5) 

This expression may be interpreted in the following way: the 
negative temporal change of the magnetic flux,  

 = ,da BΦ ⋅∫        (1.4.6) 
across a given surface (see Figure 3) equals the line integral of the 
electric field along the contour of the same surface  

 = .ddl E
dt
Φ

⋅ −∫  (1.4.7) 
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Consequently, Kirchoff voltage law  
 = 0dl E⋅∫      (1.4.8) 

may be used in one of three cases: 
   
1.  Vanishing magnetic induction ( = 0B ).  
2.  Time-independent magnetic induction ( = 0t∂ ).  
3.  Time-dependent magnetic induction, yet the integration  

             surface and the magnetic induction are perpendicular to  
             each other locally ( B da⊥ ) .  
 
In any case, for an electric circuit located in a varying (external) 
magnetic field, Kirchoff's voltage law must, in principle, be 
extended to include the effect of the external magnetic flux on the 
circuit.   
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1.4.2   Ampere's law in Integral Form 
 

Ampere's law,  
 ( ) = ,tda H D da J⋅ ∇× − ∂ ⋅∫∫ ∫∫    (1.4.9) 

in conjunction with Stokes theorem reads  

 = = .ddl H da D da J I
dt

⋅ − ⋅ ⋅ ∑∫ ∫∫ ∫∫      (1.4.10) 

wherein I∑  denotes the total current crossing the (stationary) surface of interest. Disregarding 
for the sake of simplicity at this stage temporal variations, the last equation implies that the 
current crossing a given surface a  is linked to the magnetic field so that the latter's line integral 
along the contour of the surface equals exactly that current. 
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1.4.3   Gauss' Law 
 

Based on Gauss' mathematical theorem it is possible to write Gauss' law  
 =D∇⋅ ρ      (1.4.11) 

as  
 ( ) =

S

da D

dv D dv

Q⋅

∇ ⋅

∫∫

∫ ∫ ρ      (1.4.12) 

hence  
 =

S

d a D Q⋅∫∫      (1.4.13) 

This result indicates that the electric charge inside a given volume is directly linked to the 
electric induction (D ). Obviously, the relation = 0Q  does not 
imply D  to be of zero value, but rather that no net sources exist in 
the specific region considered. 

 
 
 



 13

The total change enclosed in a surface is directly linked to the electric induction. 
 
 
In a similar way one may examine the magnetic induction  

 
v

( ) = 0 = 0.
A

dv B da B∇⋅ ⇒ ⋅∫ ∫∫    (1.4.14) 

This relation indicates that the magnetic induction has no sources resembling those of the 
electric field. At the fundamental (microscopic) level this entails that no magnetic monopole has 
ever been observed in nature (so far)!! 

   

ρ

Q
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1.4.4   Charge Conservation 
The approach followed in Section 1.4.3 may also be applied to the law of charge conservation,  

 = 0.tJ∇⋅ + ∂ ρ      (1.4.15) 
Integration of this relation over a given volume, v , implies  

 
v

( ) = 0tdv J∇⋅ + ∂∫ ρ      (1.4.16) 

and with the aid of Gauss' theorem = 0dda J dv
dt

ρ⋅ +∫∫ ∫  and  Q dvρ= ∫  furthermore, the 

surfaces considered in both Faraday's and Ampere's laws are neither moving nor deforming. One 
finally obtains  

 = 0.dda J Q
dt

⋅ +∫∫      (1.4.17) 

Explicitly, this equation states that the negative time-change of the total charge “stored” in a 
given volume, is balanced by the current crossing the envelope encompassing the volume 
considered. Kirchoff's current law (KCL) may be now derived from this relation coupled with 
the assumption that the amount of charge stored in any junction is zero (all charge being stored 
in capacitors), and consequently,  

 = = 0.da J I⋅ ∑∫∫      (1.4.18) 
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1.4.5   Summary of Maxwell's Equations – Integral Form 
 It is convenient at this stage to summarize the various relation developed in this 

subsection:  

Faraday's Law:                                  = 0ddl E da B
dt

⋅ + ⋅∫ ∫∫  

 

Ampere's Law:                                   =ddl H da D I
dt

⋅ − ⋅∫ ∫∫  

 
Gauss' Law:                                       =da D Q⋅∫∫  

 
Magnetic Induction Conservation:    = 0da B⋅∫∫  
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1.5   Maxwell's Equations in the Presence of Magnetic Sources 
 

As indicated in Section 1.4.3, at the  microscopic level, no magnetic monopole has as yet been 
detected; however, at the  macroscopic level, it is sometimes convenient to artificially  postulate 
the existence of such sources, and the question now is what is the form of Maxwell's equations 
in such a case. In order to address this question, let us consider a fictitious magnetic charge 
density denoted by mρ . Similar to Gauss' law, this magnetic charge density is linked to the 
magnetic induction by means of the relation  

 = .mB∇⋅ ρ      (1.5.1) 
Moreover, associated with this magnetic charge density, we postulate the existence of a so called 
magnetic current density denoted by mJ . It is further assumed that similar to the electric charge, 
the magnetic charge also satisfies the continuity equation namely,  

 = 0,m t mJ∇⋅ + ∂ ρ      (1.5.2) 
and, consequently, Faraday's law is augmented to read  

 = .t mE B J∇× +∂ −      (1.5.3) 
Hence, in the presence of electric as well as of magnetic sources Maxwell's equations read    
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=

=

=

=

t m

t

m

E B J

H D J

B

D

ρ

ρ

∇× + ∂ −

∇× − ∂

∇ ⋅

∇ ⋅

 (1.5.4) 

 
Exercise: Formulate Maxwell's equations in the presence of magnetic sources in integral form.     

 
1.6   Constitutive Relations 

 
As they stand, Maxwell's equations [Eqs. (1.2.3)] cannot be solved since they represent in effect 
6 independent equations for 12 variables, assuming that the source terms are known. To proceed 
towards a set of equations that may be solved, we have to determine 6 other equations 
determining the relations among E , D , H  and B . At this stage we shall consider only free 
space (“vacuum”) conditions and, specifically, we shall point out that from the point of view of 
electrical measurement E  and B  are well defined since they determine the force acting on an 
electrically charged particle ( )q   
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 ( )e = v ,F q E B+ ×      (1.6.1) 
or the force density acting on an electric charge distribution ρ   

 ( )e = v ;f E Bρ + ×      (1.6.2) 
here v  represents the velocity of the particle – relative to an inertial frame of reference. These 
are two equivalent representations of Lorentz's law; the subscript “e” emphasizes the fact that 
this is the force acting on an electric charge. It is evident from ((1.6.2) that assuming the charge-
density of the body to be known, it is possible to deduct, in principle, the intensity of the electric 
field E  or the value of the magnetic induction B  just from the motion of the charged body. 
 
Basically, in analogy to the electric charge q , the Lorentz' force definition may be generalized to 
include a magnetic charge mq  namely,  

 ( )m m= v ,F q H D− ×      (1.6.3) 
or in case of a magnetic charge density mρ ,  

 ( )m m= v .f H Dρ − ×      (1.6.4) 
Once more, in complete analogy to the electric charge, the force density determines the two 
other field components (H  and D ), or more explicitly, the way each one of them could, in 
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principle, be measured. Measurement of the various field components  in vacuum leads to the 
conclusion that E  and D  are proportional and so are H  and B . Consequently, in SI units we 
may write  

 0= ,D Eε      (1.6.5) 
wherein 12

0 8.85 10−≡ ×ε [V][m]/[C] stands for the  permittivity coefficient of vacuum and  

 
0

1= ,H B
μ

     (1.6.6) 

7
0 4 10−≡ ×μ π [T][m]/[A] stands for the  permeability coefficient of vacuum (by agreement). 

 
For a significant group of materials, the relation between D  and E  is linear as in vacuum but 
the coefficient is different i.e.  

 0 r=D Eε ε      (1.6.7) 
wherein rε  stands for the  relative permittivity or for the relative dielectric coefficient. Typical 
values of rε  range from unity to ten, few material exhibiting a dielectric coefficient of a few 
thousands and very few showing even larger values. 
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Similarly for many materials, the relation between the magnetic induction and the magnetic field 
is linear, the slope differing from the free space slope, i.e.  

 0 r=B Hμ μ      (1.6.8) 
wherein rμ  represents the  relative permeability; its value may exceed several hundreds of 
thousands in some metallic alloys. 
 
Another constitutive relation that will be used in what follows is the experimental relation 
between the current density and the electric field in metals. For sufficiently low electric field 
( 2

0| | /E E mc ec≡ τ  where τ  is the mean free time between two collisions of the electron in 
the metal) the relation between the current density and the electric field is given by Ohm's law  

 =J Eσ      (1.6.9) 
where σ  is the conductivity of the material – for typical values see next Table.  
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Metals and Alloys in Solid State 
   /S m−σ  at 20 o C

Aluminum   73.54 10×
Copper, annealed  75.80 10×
Copper, hard drawn  75.65 10×
Gold, pure drawn  74.10 10×
Iron, 99.98%  71.0 10×
Steel  70.5 1.0 10− ×
Lead  70.48 10×
Magnesium  72.17 10×
Nichrome  70.10 10×
Nickel  71.28 10×
Silver, 99.98%  76.14 10×
Tungsten  71.81 10×
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1.7   Boundary Conditions 
 

In this section we examine the behavior of the electromagnetic field in the presence of a 
discontinuity. A difficulty occurs due to the fact that the physical situation is in principle 
described by  differential equations and the derivatives are obviously not defined in the vicinity 
of a sharp discontinuity. To obliterate this obstacle it is necessary to resort to Maxwell's 
equations in their integral form. As a first case let us consider the discontinuity in the magnetic 
field due to a current-density flowing along a very thin layer. Specifically consider the following 
setup: the current flows along the layer, as illustrated in the Figure, parallel to the unit vector 1a . 
We consider a test area w  which this current density crosses. The basic assumption is that at 
limit 0w→  the current density is sufficiently high so that 

 ( )
0

.lim sw
J

Jw J
→
→∞

≡  (1.7.1) 

The limiting value sJ  denotes the so-called  surface current-
density its units being Ampere per meter. The next step is to 
examine Ampere's law in view of the configuration described 
above namely,  

 = .dd H da J da D
dt

⋅ ⋅ + ⋅∫ ∫ ∫      (1.7.2) 
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At the limit of an extremely narrow range ( 0w→ ) this integral equation 
reads, for finite values of the field  

 
=00

[ ] [ ] = 1 1a b a b a a
Js

dH H w H H wJ wD
dt→

⋅ − + ⋅ − ⋅ + ⋅      (1.7.3) 

however, the second terms on both the left as well as on the right hand side vanish, so that one 
obtains the relation  

 1 [ ] = 1 .a b a sH H J⋅ − ⋅      (1.7.4) 
Resorting to the definition of the normal to the surface 1 1 1 1 = 1 1n a a n≡ × ⇒ ×  (right handed 
coordinates) there results the relation  

 (1 1 ) [ ] = 1a n a b a sH H J× ⋅ − ⋅      (1.7.5) 
or 1 [1 ( )] = 1a n a b a sH H J⋅ × − ⋅ . Since this is valid for an arbitrary unit vector 1a  we conclude that  

 1 ( ) = .n a b sH H J× −      (1.7.6) 
Clearly, this boundary condition is related to Ampere's law  

 = 1 ( ) = .t n a b sH D J H H J∇× − ∂ ⇒ × −      (1.7.7) 
Hence, by analogy it may be readily concluded that Faraday's law implies  

 ,= 1 ( ) = .t m n a b m sE B J E E J∇× + ∂ − ⇒ × − −      (1.7.8) 



 24

Here ,m sJ  is defined similar to the definition of sJ  in (1.7.1) i.e. ( )0
,lim w

J m m sm
J w J→

→∞ ≡ . Note that 
if the magnetic surface current density is zero, then  

 1 ( ) = 0 .n a bE E× −      (1.7.9) 

The normal, 1n , points from b  to a . The last relation therefore links the tangential components 
of the electric field in two different domains imposing their continuity -- in the absence of any 
magnetic surface current density. Similarly, Eq.(1.7.6) indicates that the discontinuity of the 
tangential components of the magnetic field is determined by the surface current density. 
 
We now turn our attention to the boundary conditions associated with the 
divergence equations. Similar to the definition of sJ  we define the 
surface charge density  as  
 

0
( ) .lim sw

w
→
→∞

≡
ρ

ρ ρ  (1.7.10) 

With this definition we now examine Gauss' law in its integral form  
 1 ( ) = =n z a b z z sD D wΔ ⋅ − Δ Δρ ρ      (1.7.11) 

hence  
 1 ( ) =n a b sD D⋅ − ρ      (1.7.12) 
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implying that any discontinuity in the perpendicular electric induction is compensated by a 
surface charge density. In the absence of the latter, this induction component is continuous. 
 
An identical approach may be used to formulate the discontinuity of the magnetic induction. 
Since Gauss' law leads to (1.7.12), i.e.  

 = 1 ( ) =n a b sD D D∇⋅ ⇒ ⋅ −ρ ρ     (1.7.13) 
we conclude that the conservation of the magnetic induction, = mB∇⋅ ρ , implies  

 ,1 ( ) =n a b m sB B⋅ − ρ     (1.7.14) 

where  
 [ ], m0

.limm s w
m

w
→
→∞

≡
ρ

ρ ρ     (1.7.15) 

Furthermore, in case of zero magnetic charge density, the perpendicular components of the 
magnetic induction are continuous. 
 
Each boundary condition so far was associated with one of Maxwell's equations. At this point it 
is possible to proceed one step further and develop the boundary conditions associated with the 
charge conservation. In its integral form, the latter reads  
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 = 0dv J dv
t

∂
∇ ⋅ +

∂∫ ∫
ρ  (1.7.16) 

Without loss of generality let us consider a volume element of width 
w  and area A. The discontinuity separates this volume in two halves. This element is 
infinitesimally small as illustrated in the Figure. Without loss of generality, we shall assume that 
the z-axis is perpendicular to the discontinuity hence 

 = ;zJdv J dv J
z

∂⎛ ⎞∇ ⋅ +∇ ⋅⎜ ⎟∂⎝ ⎠∫ ∫      (1.7.17) 

J  denoting the two components in the plane of the discontinuity whereas ∇  is the divergence 
operator in the same plane. The first term in the right hand side may be simplified to read  

 ( ),1 ,2= =z z
z z

J Jdv A dz A J J
z z

∂ ∂
−

∂ ∂∫ ∫      (1.7.18) 

and the second term  
 ( ) = ( ) = sdv J Aw J A J∇ ⋅ ∇ ⋅ ∇ ⋅∫      (1.7.19) 

Following a similar approach used earlier, the second term of equation (1.7.16) reads  

 = = sdv Aw A
t t t

∂∂ ∂
∂ ∂ ∂∫

ρρ ρ      (1.7.20) 

hence  
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 ( )1 21 = 0s
n sJ J J

t
∂

⋅ − +∇ ⋅ +
∂
ρ      (1.7.21) 

Based on this expression we may conclude that the change (in time) of the surface charge-
density may be linked to a discontinuity of the normal current density or the 2D divergence of 
the surface current density - or vice versa. 
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1.8   Operation Regimes 
After establishing the constitutive relations and the boundary conditions it is possible, in 

principle, to determine the complete solution of the electromagnetic field. However, it is not 
always necessary to solve the full set of Maxwell's equations in order to determine the solution 
required. The Table below shows the equations that describe the electromagnetic phenomena in 
three main regimes: on the left, appear the equations that describe static phenomena. In the 
middle of the table the equations describing the quasi-statics regime are listed, i.e. the regimes 
for which time variations may occur but as will be discussed extensively subsequently, they 
occur on time scales much longer than the time it takes light to traverse a distance in vacuum 
similar to the dimension of the investigated device. On the third, the “complete” set of dynamic 
equations are presented.  

   Statics   Quasi-Statics   Dynamics 
  Electro  Magneto  Electro   Magneto Electromagnetics

= 0E∇×    = 0E∇×  = 0tE B∇× +∂  = 0tE B∇× +∂  
 =H J∇× =tH D J∇× −∂  =H J∇×   =tH D J∇× −∂
=D∇⋅ ρ   =D∇⋅ ρ   =D∇⋅ ρ  

 = 0B∇⋅   = 0B∇⋅  = 0B∇⋅  
  



Chapter 2   Potentials and Superpotentials 
 

Maxwell's equations are a set of first order differential equations which, in vacuum, are 
also linear. In many cases it is convenient to solve  one second order equation rather than  
two first order equations. With this purpose in mind it is quite convenient to introduce the 
so-called potential functions. It is important to emphasize that within the context of the 
present discussion, these functions are in effect mathematical tools where the quantities 
determined by practical measurements are always the fields. Although widely used for 
solving electromagnetic problems, only in some specific cases these potentials have also 
a useful physical interpretation. 

   
2.1   Magnetic Vector Potential and Electric Scalar Potential 

 
Consider for simplicity Maxwell equations in vacuum, 

 0= ,D Eε     (2.1.1) 
 

 0= ,B Hμ     (2.1.2) 
in the presence of electric charge sources ( , )J ρ , yet in the absence of magnetic sources 
( = 0, = 0)m mJ ρ  i.e.,  
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 0= tE H∇× −∂ μ     (2.1.3) 
 0= tH J E∇× +∂ ε     (2.1.4) 
 0 =E∇⋅ε ρ     (2.1.5) 
 0 = 0.H∇⋅ μ     (2.1.6) 

 The last equation [(2.1.6)] may be reduced to an  identity if we bear in mind that any 
vector field V  satisfies the relation ( ) 0V∇⋅ ∇× ≡ . It is therefore natural to define  

 0 ,H Aμ ≡ ∇×     (2.1.7) 

where ( , )A r t  is referred to as the  magnetic vector potential. Substitution of this 
definition into Faraday's law implies the relations  

0 = 0 ( ) = 0 [ ] = 0.t t tE H E A E A∇× + ∂ ⇒ ∇× +∂ ∇× ⇒ ∇× +∂μ  (2.1.8) 
At this point it is natural to invoke a second identity of the vector calculus namely: any 
scalar function, f , satisfies  

 ( ) 0.f∇× ∇ ≡     (2.1.9) 
Consequently, the electric field is given by  

 
( )
[ ] = 0

=
0 t

tE
E

A
A φ

φ

⎫∇× + ∂ ⎪ ⇒⎬
∇× ∇ =

−
⎪⎭

−∂ ∇     (2.1.10) 

φ electric scalar potential 



 31

So far we have determined the relation between the electromagnetic field and the two 
potential functions. Bearing in mind that E  and H  satisfy Maxwell equations, the 
question we shall address next is what differential equations do A and φ  satisfy? In order 
to reply to this question we substitute =B A∇×  and = tE A−∂ −∇φ  in Ampere's law  

 0
0

1 ( ) = .t tA J A⎡ ⎤∇× ∇× + ∂ −∂ −∇⎣ ⎦ε φ
μ

    (2.1.11) 

In Cartesian coordinates the double curl operator reads  
 2( ) ( )A A A∇× ∇× ≡ ∇ ∇⋅ −∇     (2.1.12) 

and thus  

 
2

2
0 0 02( ) = tA A J A

t
⎡ ⎤∂

∇ ∇⋅ −∇ − − ∂ ∇⎢ ⎥∂⎣ ⎦
μ ε ε φ     (2.1.13) 

or  

 
2

2
0 0 0 0 02 = .tA J A

t
⎡ ⎤∂ ⎡ ⎤∇ − − +∇ ∇⋅ + ∂⎢ ⎥ ⎣ ⎦∂⎣ ⎦

ε μ μ ε μ φ     (2.1.14) 

Similarly we substitute (2.1.9) in Gauss' law  
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0 0

2

0

= / [ ] = /

= [ ].

t

t

E A

A

∇⋅ ⇒ ∇⋅ −∂ −∇

∇ − −∂ ∇ ⋅

ρ ε φ ρ ε
ρφ
ε

    (2.1.15) 

In order to continue from this point one has to bear in mind that in general a time-
independent vector field is determined by its curl ( )V∇×  and by the divergence ( )V∇⋅ . 
The latter has not been defined so far for our magnetic vector potential. According to 
Eqs. (2.1.15) we observe that there are two “natural” possibilities: 

    
2.1.1   Coulomb Gauge 
The first choice is motivated by (2.1.15) namely  

 = 0A∇ ⋅     (2.1.16) 
in which case φ  satisfies the ordinary Poisson equation  

 2

0

=∇ −
ρφ
ε

    (2.1.17) 

whereas the magnetic vector potential obeys the wave equation  

 
2

2
0 0 0 0 02 = ( )tA J

t
ε μ μ ε μ φ

⎡ ⎤∂
∇ − − +∇ ∂⎢ ⎥∂⎣ ⎦

    (2.1.18) 

but the drawback is that it depends on φ . 
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2.1.2   Lorentz Gauge 
The second choice relies on the fact that by imposing the condition  

 0 0 = 0A
t

ε μ φ∂∇ ⋅ +
∂

    (2.1.19) 

A and φ  satisfy each the decoupled wave equation  

 
2

2
0 0 02 = ,A J

t
⎡ ⎤∂
∇ − −⎢ ⎥∂⎣ ⎦

ε μ μ     (2.1.20) 

 
2

2
0 0 2

0

= .
t

⎡ ⎤∂
∇ − −⎢ ⎥∂⎣ ⎦

ρε μ φ
ε

    (2.1.21) 

Note that 2= 1/o o cε μ  where c  is the speed of light in vacuum. Furthermore, if in 
Cartesian coordinates we apply ∇  on (2.1.20), apply t∂  on (2.1.21), multiply the latter by 

0 0μ ε  and add the two, we obtain  

 ( ) ( )
2

2
0 0 0 0 02 =t tA J

t
⎡ ⎤∂
∇ − ∇ ⋅ + ∂ − ∇ ⋅ + ∂⎢ ⎥∂⎣ ⎦

ε μ ε μ φ μ ρ  

i.e. by virtue of Lorentz gauge as well as by the law of charge conservation a zero 
identity 0 = 0 results! 
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In case the magnetic vector potential is time-independent or zero, the scalar potential φ  is 
closely related to the voltage. In order to realize the relation between the potential and the 
voltage recall that =E −∇φ  and as indicated in Section 1.4.1, Kirchoff's voltage law can 
be formulated in terms of = 0E dl⋅∫  or in other words in a closed loop the sum of all 
voltages vanishes. Let us examine instead of the closed integral, the integral between two 
points 1l  and 2l . Now, the voltage between these two points is denoted by 1,2V  i.e.,  

 2
1,2

1
= .

l

l
V dl E− ⋅∫  

However, bearing in mind that =E −∇φ , then  

 2
1,2 2 1

1
= = ( ) ( ).

l

l
V dl l l⋅∇ −∫ φ φ φ  

This is to say that for such cases the voltage represents the difference between the 
potentials at the two different locations. 
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2.2   Electric Vector Potential and Magnetic Scalar Potential 
 

As in Section 2.1 we shall assume a free-space region [i.e. Eqs. (2.1.1)–(2.1.2)]; however, 
now the electric charge sources vanish ( = 0J  and = 0)ρ  yet the magnetic charge sources 
are non zero i.e. m = 0J  and m = 0ρ . Maxwell's equations in this case read    

 0 m=tE H J∇× +∂ −μ     (2.2.1) 
 0 = 0tH E∇× −∂ ε     (2.2.2) 
 0 = 0E∇⋅ε     (2.2.3) 
 0 m= .H∇⋅ μ ρ     (2.2.4) 

We now take advantage of Eq. (2.2.3) i.e. = 0D∇⋅ , and define  
 0 = ,E Cε −∇×     (2.2.5) 

which renders (2.2.3) into an identity [since ( ) 0C∇⋅ ∇× ≡ ]. In Eq. (2.2.5) C  stands for 
the so-called  electric vector potential. Substituting this definition in Ampere's law Eq. 
(2.2.2) we obtain  

0[ ] = 0 [ ] = 0 [ ] = 0t t tH E H C H Cε∇× −∂ ⇒ ∇× −∂ −∇× ⇒ ∇× + ∂          (2.2.6) 
implying that the magnetic field is determined by the relation  

 = ,tH C ψ−∂ −∇     (2.2.7) 

ψ  - magnetic scalar potential 
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and here advantage has been taken of the identity  
 ( ) = 0.∇× ∇ψ     (2.2.8) 

The next step is to determine the equations satisfied by C  and ψ . For this purpose we 
substitute (2.2.5) in Faraday's law; the result is  

 

m 0

m 0
0

2

0 m 0 0 2

2
2

0 m 0 0 2

2
2

0 0 0 m 0 02

=
1 ( ) = [ ]

( ) =

( ) =

= .

t

t t

t

t

t

E J H

C J C

C J C
t

C C J C
t

C J C
t

∇× − −∂

∇× −∇× − − ∂ −∂ −∇

⎡ ⎤∂
∇× ∇× − +∂ ∇⎢ ⎥∂⎣ ⎦

⎡ ⎤∂
∇ ∇ ⋅ −∇ − +∂ ∇⎢ ⎥∂⎣ ⎦
⎡ ⎤∂ ⎡ ⎤∇ − − +∇ ∇⋅ + ∂⎢ ⎥ ⎣ ⎦∂⎣ ⎦

μ

μ ψ
ε

ε ε μ ψ

ε ε μ ψ

ε μ ε ε μ ψ

    (2.2.9) 

Similarly, substituting (2.2.7) in (2.2.4) we have  
2

m 0 m 0 m 0= / ( ) = / = /t tH C Cρ μ ψ ρ μ ψ ρ μ∇ ⋅ → −∇ ⋅ ∇ + ∂ →∇ − − ∂ ∇ ⋅  (2.2.10) 
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In this case the equivalent of the Coulomb gauge reads  
 = 0C∇⋅     (2.2.11) 

which implies   

 2 m

0

= ,∇ −
ρψ
μ

    (2.2.12) 

 
2

2
0 0 0 m 0 02 = ( ).tC J

t
⎡ ⎤∂
∇ − − +∇ ∂⎢ ⎥∂⎣ ⎦

ε μ ε ε μ ψ     (2.2.13) 

In a similar way, if the equivalent of Lorentz gauge  

 0 0 = 0C
t

ε μ ψ∂∇ ⋅ +
∂

    (2.2.14) 

is imposed, we obtain   

 
2

2
0 0 0 m2 = ,C J

t
⎡ ⎤∂
∇ − −⎢ ⎥∂⎣ ⎦

ε μ ε     (2.2.15) 

 
2

2 m
0 0 2

0

= .
t

⎡ ⎤∂
∇ − −⎢ ⎥∂⎣ ⎦

ρε μ ψ
μ

    (2.2.16) 
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2.3   Superpotentials 
 

The electromagnetic field in vacuum has six components that satisfy Maxwell's equation. 
In the previous section it was shown that rather than solving a set of first order 
differential equations it is possible to define  four functions ( A and φ ) that satisfying a 
second order differential equation i.e the wave equation. In fact if we take into 
consideration the constraint imposed by the Lorentz gauge there are actually  three 
independent functions which have to be determined. These three functions may be the 
three components of a vector field called the vector superpotential. Let us recapitulate the 
case of electric sources assuming the Lorentz gauge:    

 = ,B A∇×     (2.3.1) 
 = ,tE A−∂ −∇φ     (2.3.2) 

 
2

2
0 0 02 = ,A J

t
⎡ ⎤∂
∇ − −⎢ ⎥∂⎣ ⎦

ε μ μ     (2.3.3) 

 
2

2
0 0 02 = / ,

t
⎡ ⎤∂
∇ − −⎢ ⎥∂⎣ ⎦

ε μ φ ρ ε     (2.3.4) 

 0 0 = 0,tA∇⋅ + ∂ε μ φ     (2.3.5) 
 = 0.tJ∇⋅ + ∂ ρ     (2.3.6) 
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 If we now define the Hertz superpotential Π  and the generalized source P  such that   
 0 0= ,tA ε μ ∂ Π     (2.3.7) 
 = ,φ −∇ ⋅Π     (2.3.8) 
 = ,tJ P∂     (2.3.9) 
 = ,Pρ −∇ ⋅     (2.3.10) 

then the first two definitions render the Lorentz gauge [(2.3.5)] into an identity, whereas 
the second two imply that the continuity equation (2.3.6) reduces to an identity. 
Substituting (2.3.7) and (2.3.9) in (2.3.3) we have  

 
2

2
0 0 0 0 02 =t t Pt

⎡ ⎤∂
∇ − ∂ Π − ∂⎢ ⎥∂⎣ ⎦

ε μ ε μ μ     (2.3.11) 

hence  

 
2

2
0 0 02 = / .P

t
⎡ ⎤∂
∇ − Π −⎢ ⎥∂⎣ ⎦

ε μ ε     (2.3.12) 
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One may repeat the same procedure for the case of “magnetic” charge sources.   
 0 = ,E Cε −∇×     (2.3.13) 
 = ,tH Cψ−∇ −∂     (2.3.14) 

 
2

2
0 0 0 m2 = ,C J

t
⎡ ⎤∂
∇ − −⎢ ⎥∂⎣ ⎦

ε μ ε     (2.3.15) 

 
2

2
0 0 m 02 = / ,

t
⎡ ⎤∂
∇ − −⎢ ⎥∂⎣ ⎦

ε μ ψ ρ μ     (2.3.16) 

 0 0 = 0,C
t

∂
∇ ⋅ +

∂
ψε μ     (2.3.17) 

 m
m = 0.J

t
∂

∇ ⋅ +
∂
ρ     (2.3.18) 

If we now define   
 0 0= ,tC Fε μ ∂     (2.3.19) 
 = ,Fψ −∇⋅     (2.3.20) 
 m = ,tJ M∂     (2.3.21) 
 m = ,Mρ −∇ ⋅     (2.3.22) 

we obtain  
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2

2
0 0 02 = / ,F M

t
⎡ ⎤∂
∇ − −⎢ ⎥∂⎣ ⎦

ε μ μ     (2.3.23) 

F  is often called the Fitzgerald superpotential and M  stands for the generalized 
magnetic source.     
 
2.4   Equivalence of the Two Gauges 

 
It was previously emphasized that the potentials are just mathematical tools. However, 
according to (2.1.17)–(2.1.18) and (2.1.20)–(2.1.21) the differential equations they satisfy 
are quite different. In this section we show that for a  given source the electromagnetic 
field is the same though the equations for the potentials differ! For simplicity we shall 
translate the problem into k−ω  space, namely every quantity being written in the form:  

 ( )3( , , , ) = ( , )exp .U x y z t d d kU k j t jk rω ω ω − ⋅∫  
The advantage of this notation is that the differential operators become algebraic 
operators i.e.    

 tU j U∂ → ω     (2.4.1) 
 .U jk U∇⋅ → − ⋅     (2.4.2) 
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Within the framework of Coulomb gauge we have  
 2 2

0 0= / = /kφ ρ ε φ ρ ε∇ − →     (2.4.3) 
and thus  

 2
0

1=
k

ρφ
ε

    (2.4.4) 

along with  

 

2
2

0 0 0 0 02

0 0 0
2 2 2 2 2

0 0 0 0 0

= [ ]

( )

tA J
t

A J k
k k k

ε μ μ ε μ φ

μ ω ε μ ρ
ω ε μ ω ε μ ε

⎡ ⎤∂
∇ − − +∇ ∂ ⇒⎢ ⎥∂⎣ ⎦

−
= +
− + − +

    (2.4.5) 

For comparison, in the framework of the Lorentz gauge   

 2 2
0 0 0

1= ,
k

ρφ
ω ε μ ε−

    (2.4.6) 

 02 2
0 0

1= .A J
k

μ
ω ε μ−

    (2.4.7) 

Clearly the two expressions differ; however, the the electromagnetic fields are identical 
as next shown. Thus, using the Coulomb gauge 
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0 0 0
2 2 2 2 2 2

0 0 0 0 0 0

0
2 2 2 2

0 0 0 0 0

( ) 1 1

E j A jk

J kj jk
k k k k

j jkJ
k k

ω φ

μ ω ε μ ρ ρω
ω ε μ ω ε μ ε ε

ωμ ρ
ω ε μ ω ε μ ε

= − +

⎡ ⎤−
= − + +⎢ ⎥

− + − +⎢ ⎥⎣ ⎦

= −
− + − +

            (2.4.8) 

On the other hand, reverting now to the Lorentz gauge, the expressions  

 
0

2 2 2 2
0 0 0 0 0

E j A jk

j jkJ
k k

ω φ

ωμ ρ
ω ε μ ω ε μ ε

= − +

= −
− + − +

    (2.4.9) 

result. As expected Eqs. (2.4.8) and (2.4.9) are identical. 
 
Exercise 2.1: Repeat this procedure for the magnetic field.  
Exercise 2.2: Repeat this procedure for the couple C  and ψ .  
 



Chapter 3    Conservation Laws 
 
 

3.1   Poynting Theorem – Time Domain 
 

Maxwell equations “contain” information about energy conservation, or more precisely, 
about power balance. In the first part of this section we develop the expression which 
governs this balance; subsequently we shall investigate some of its aspects and 
implications. 
Consider first Faraday and Ampere laws in matter-free space, i.e.    

 0( ) = 0,tE H∇× +∂ μ     (3.1.1) 
 0( ) = .tH E J∇× −∂ ε     (3.1.2) 

Multiplying scalarly the first equation by H  and the second by E  and subtracting the 
resulting expressions one obtains the relation  

0 0( ) ( ) ( ) ( ) = .t tH E E H H H E E J E⋅ ∇× − ⋅ ∇× + ⋅∂ + ⋅∂ − ⋅μ ε     (3.1.3) 
It is possible to show that (prove it!!)  

 ( ) = ( ) ( )E H E H H E∇⋅ × ∇× ⋅ − ∇× ⋅     (3.1.4) 
which in turn implies that (3.1.3) may be rewritten as  
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 0 0
1 1( ) = .
2 2tE H E E H H J E⎡ ⎤∇ ⋅ × + ∂ ⋅ + ⋅ − ⋅⎢ ⎥⎣ ⎦
ε μ     (3.1.5) 

At this point we define the so-called  Poynting vector  
 S E H≡ ×     (3.1.6) 

whose units are 2[ / ]Watt m . To the second term in (3.1.5) we ascribe the term  
electromagnetic energy density  

 EM 0 0
1 1=
2 2

w E E H H⋅ + ⋅ε μ     (3.1.7) 

whose units are 3J /oules m  whereas the third stands for the power conversed per unit 
volume or otherwise expressed, generated (or absorbed) by the “sources” or “sinks”  

 ;J E⋅     (3.1.8) 
the units of this term are 3W /att m . The first term in (3.1.7) being regarded as the electric 

energy density, E 0
1=
2

w E E⋅ε , whereas the second term stands for the magnetic energy 

density, M 0
1=
2

w H H⋅μ . 

In conclusion, from Maxwell equations we directly obtain the so-called  Poynting 
theorem which, in its differential form, reads  
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 EM =tS w J E∇ ⋅ + ∂ − ⋅     (3.1.9) 

or in integral form  

 EM
dd d = d ( ) .
d

a S v w v J E
t

⋅ + − ⋅∫∫ ∫ ∫     (3.1.10) 

The last expression indicates that the power flow across the envelope in conjunction with 
the time-variation of the energy stored in the volume, equals the power 
generated/absorbed in the volume confined by the envelope. In the following examples 
this theorem will be examined somewhat more closely. 
 
Example 1: Capacitor. Let us now obtain a more intuitive picture of this theorem. 
Consider a capacitor consisting of two circular plates of radius R  separated by an air gap 
h  with h R�  being assumed that R  is much smaller than the wavelength ( = 2 /cλ π ω) 
of the exciting electromagnetic field. A voltage (V ) is applied to the upper plate whereas 
the lower one is grounded. Ignoring any possible edge effects, we may approximate the 
electric field between the plates by its axial component only, i.e.  

 ( )( ) = .z
V tE t

h
−  (3.1.11) 

According to Ampere's law and bearing in mind the circular 
symmetry of the system, we have  
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0 0

0

1= ( ) = ,
2

1 1 .
2

z zE r ErH H
t r r t

dVH r
h dt

∂ ∂ ∂
⇒

∂ ∂ ∂

−

ϕ ϕ

ϕ

ε ε

ε�
    (3.1.12) 

Once the field components have been established, the Poynting vector is quite easily 
calculated:  

 
0

2
0

02 2

1 1= = 1 1
2

1 1= 1 = 1 .
2 2 2

z

r r

V dVS E H r
h g dt

r dV r dVV
h dt h dt

⎛ ⎞⎛ ⎞× − × −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

− −

ϕε

εε

    (3.1.13) 

The Poynting vector comprises a  radial component only and therefore  
2 2

0 0
2 2

1 1 1 1( ) =
2 2 2r

r dV dVS rS r
r r r r g dt h dt

ε ε⎡ ⎤∂ ∂
∇ ⋅ = − = −⎢ ⎥∂ ∂ ⎣ ⎦

    (3.1.14) 
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In the integral form:  

 

=

2
02

2

= ( ) = (2 )

1 1= (2 )
2 2

1= =
2

r r r R

E

S da S Rd dz S h R

R dh R V
h dt

d dCV W
dt dt

⋅

⎡ ⎤−⎢ ⎥⎣ ⎦
⎡ ⎤− −⎢ ⎥⎣ ⎦

∫∫ ∫∫ ϕ π

π ε     (3.1.15) 

wherein,  

 
2

0= ,RC
h

πε     (3.1.16) 

is defined as the low frequency (static) capacitance of the system, and thus  

 = 0.E
dS da W
dt

⋅ +∫∫     (3.1.17) 

As it stands at the moment, the magnetic energy stored in the capacitor does not 
contribute to the energy balance. Justification of this result will be provided subsequently 
when discussing electro and magneto-quasi-statics. 
Note that for building-up some electrical energy in the capacitor it is strictly necessary to 
have magnetic energy. 
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Example 2: Resistor. A second example of interest relates 
to a resistor. Consider the system illustrated in the right. 
The inner cylinder consists of a conducting material σ . 
Between the two plates the electric field is again (see 
discussion prior to Eq. (3.1.11)) approximated by  

 =z
VE
h

−     (3.1.18) 

and consequently, the relevant axial current density is  

 = = .z z
VJ E
h

−σ σ     (3.1.19) 

In the presence of this current a circular magnetic field is established  

 1= ( ) = .t r zH J D rH J
r

∇× +∂ ∂ ϕx     (3.1.20) 

Hence, for r R≤   

 1
2

VH r
h

−ϕ σ�     (3.1.21) 

so that the Poynting vector comprises (in our approximation) only a radial component 
namely  
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 1= =
2r z

V VS E H r
h h

⎛ ⎞⎡ ⎤− − − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
ϕ σ     (3.1.22) 

and, therefore, the power flow across the surface at =r R  is 
   

 
2

2

1= 2
2

=

V Vda S Rh R
h h

R V
h

⎡ ⎤⎡ ⎤⋅ − − −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

−

∫∫ π σ

π σ
    (3.1.23) 

i.e. 

 21= =S da V P⋅ − −∫∫ R
    (3.1.24) 

where R  stands for the low frequency (static) resistance  

 2

1= .h
Rσ π

R     (3.1.25) 

This result illustrates that the power dissipated in the metallic material “enters” in the 
system through its boundaries, being propagated by means of the Poynting vector. 
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3.2   Complex Poynting Theorem 

 
In many cases of practical interest the source of the electromagnetic field varies 
periodically in time at a constant angular frequency ( )ω . It is convenient to adopt under 
this circumstance the well-known phasor notation. Consider a function  

 ( , , , ) = ( , , )cos[ ( , , )],oG x y z t G x y z t x y z+ω θ     (3.2.1) 
introducing now a complex notation j te ω  where = 1j −  we have  

 1=
2

j t j j t j
o oG G e G e+ − −⎡ ⎤+⎣ ⎦

ω θ ω θ     (3.2.2) 

or  
 { }= Re .j j t

oG G e eθ ω     (3.2.3) 
We now define the  phasor of G  as  

 ( , , )( , , ) ( , , ) j x y z
oG x y z G x y z e≡ θ     (3.2.4) 

so that  
 ( , , , ) = Re ( , , ) .j tG x y z t G x y z e⎡ ⎤⎣ ⎦

ω     (3.2.5) 
Based upon this notation, and assuming a  linear medium, Maxwell's equations take in 
the following form:    
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 0 = 0E j H∇× + ωμ     (3.2.6) 
 0 =H j E J∇× − ωε     (3.2.7) 
 0 =E∇⋅ε ρ     (3.2.8) 
 0 = 0.H∇⋅ μ     (3.2.9) 

Our next step is to formulate Poynting's theorem within the framework of this notation. 
Before doing this it is important to point out that the complex product of two phasors 
provides information about the  time average of the “real” quantities. In order to illustrate 
this fact, consider  

1 21 2( , ) = Re{ ( ) } and ( , ) = Re{ ( ) }.j t j tG r t G r e G r t G r eω ω     (3.2.10) 
The product of the two is  

{ }

1 2 01 1 02 2

1 1 2 2
01 02

2 ( ) 2 ( ) ( ) ( )1 2 1 2 1 2 1 2
01 02

( , ) ( , ) ( )cos[ ( )] ( )cos[ ( )]
1 1
2 2

1
4

j t j j t j j t j j t j

j t j j t j j j

G r t G r t G r t r G r t r

G G e e e e

G G e e e e

ω θ ω θ ω θ ω θ

ω θ θ ω θ θ θ θ θ θ

ω θ ω θ
+ − − + − −

+ + − − + − − −

= + × +

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

= + + +

 (3.2.11) 

hence  
* *

1 2 1 21 2 01 02 1 2
1 1( , ) ( , ) = cos[2 ] .
2 4

G r t G r t G G t G G G G⎡ ⎤+ + + +⎣ ⎦ω θ θ    (3.2.12) 
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Averaging over a time span T  eliminates the first term on the right hand side yielding  

 

* *
1 21 2 1 2

*
1 2

*
2 1

1< ( , ) ( , )> = ( ) ( ) ( ) ( )
4
1= Re ( ) ( )
2
1= Re ( ) ( ) ;
2

tG r t G r t G r G r G r G r

G r G r

G r G r

⎡ ⎤+⎣ ⎦

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

    (3.2.13) 

here 
0

<....> (1 / ) d ....
T

t T t≡ ∫  represents the averaging process. Based upon this result we 

conclude that in phasor notation, whenever a product of two amplitudes is involved, the 
time average value of this product is readily obtained by the above procedure. As an 
example we enquire about the value of the time-average energy density stored on the 
electric field ( = 1)rε :  

* 2
0 0 0

( , ) = Re{ ( ) }
1 1 1= ( , ) ( , ) < > = ( ) ( ) = | ( ) | .
2 4 4

j t

E E t

E r t E r e

w E r t E r t w E r E r E r

ω

ε ε ε⋅ ⋅
  (3.2.14) 
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We are now in a position to develop an expression for the complex Poynting theorem. 
We multiply Faraday’s law (3.2.6) scalarly by 

*
H   

 
* *

0( ) = 0H E j H H⋅ ∇× + ⋅ωμ     (3.2.15) 
and, similarly the complex conjugate of Eq. (3.2.7) is scalarly multiplied by E :  

 
* * *

0( ) = .E H j E E J E⋅ ∇× + ⋅ ⋅ωε     (3.2.16) 
Subtracting (3.2.16) from (3.2.15) we obtain the relation  

* * * * *
0 0( ) ( ) =H E E H j E E H H J E⎡ ⎤⋅ ∇× − ⋅ ∇× − ⋅ − ⋅ − ⋅⎣ ⎦ω ε μ    (3.2.17) 

hence  

 
* * * *

0 0
1 1( ) 4 =
4 4

E H j E E H H J E⎡ ⎤∇ ⋅ × − ⋅ − ⋅ − ⋅⎢ ⎥⎣ ⎦
ω ε μ     (3.2.18) 

or  
* * * *

0 0
1 1 1 12 = .
2 4 4 2

E H j E E H H J E⎛ ⎞ ⎡ ⎤∇ ⋅ × − ⋅ − ⋅ − ⋅⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
ω ε μ     (3.2.19) 

We now define the complex Poynting vector  

 
*1 ,

2
S E H≡ ×     (3.2.20) 

which determines the average energy flux density from or to the system. The time 
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average electric field energy density is  

 
*

0
1< >
4E tw E E≡ ⋅ε     (3.2.21) 

whereas the time averaged magnetic field energy density is  

 
*

0
1< >
4M tw H H≡ ⋅μ     (3.2.22) 

so that we may finally write for the complex Poynting theorem:  

 *12 = .
2E Mt t

S j w w J Eω ⎡ ⎤∇ ⋅ − − − ⋅⎣ ⎦     (3.2.23) 

We now review a few simple examples in light of this theorem (a somewhat more 
systematic discussion follows in the next chapters). 
 
(a) Capacitor: For a capacitor = 0J ; we may ignore the magnetic energy yet < >= 0Ew . 
Consequently, the imaginary part of the Poynting vector is non zero. 
 (b) Inductor: Similar to (a) except that now < > 0E tw �  and < > = 0M tw . The phase of S  
is shifted by 180 o . 
 (c) Resonance: < >=< >M Ew w ⇒  power exchange takes place inside the system. 
Comparing (3.2.23) with (3.1.9) we observe that in the present formulation a minus sign 
occurs between the average magnetic energy density and its electric counterpart. 
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 (d) Resistor:  

 
*

< > 0
1< > 0 = .
2

=

M

E

w
w S E E

J E

⎫
⎪ ∇ ⋅ − ⋅⎬
⎪
⎭

σ

σ

∼
∼  

⇒  Only the  real part of the Poynting vector is  non zero.  
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3.3   Global Energy Conservation -- Hydrodynamic Approximation 
 

As observed in several cases so far, the electromagnetic field is a direct result of the 
presence of a source and it was tacitly assumed that the latter was not affected by the 
field. In practice this generally is not the case. In fact, since the source of any 
electromagnetic field is electric charge, the source itself is affected by the field since each 
individual charge is affected by the field through the Lorentz force L = [ ]F q E V B− + × ; 
the charge here is assumed to be negative. Consequently, it is important to determine the 
energy conservation relation for a specific case when the source is affected by the field. 
For this purpose we shall consider the dynamics of electrons within the simplest 
framework that is – hydrodynamics.  
 
We assume that within an infinitesimal volume dv  a uniform distribution of electrons 
exists all having a common velocity ( )u  which may, in fact, be attributed to a single 
particle in the center of the infinitisimal volume. It is further assumed that the dynamics 
of this particular particle reflects the dynamics of all the electrons in the infinitisimal 
volume. The full set of equations describing such phenomenon is given by    

 =t EMS w J E∇⋅ + ∂ − ⋅     (3.3.1) 
 ( ) = 0tnu n∇⋅ + ∂     (3.3.2) 
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 21 =
2

d mu qu E
dt
⎡ ⎤ − ⋅⎢ ⎥⎣ ⎦

    (3.3.3) 

subject to the relation =J qnu− ; here n  represents the density of electrons, q−  is the 
charge of a single electron and m represents its rest mass. 
 
Before we proceed it is important to clarify the meaning of the last operator in Eq. (3.3.3)
For a function of three variables ( , , )x y z  varying in time ( )t , namely ( , , ; )F x y z t , the 
total time derivative is given by  

 d ( , , ; ) =
d

F x F y F z FF x y z t
t t t x t y t z

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
    (3.3.4) 

 = = ( ) .x y z
F F F F Fu u u u F
t x y z t

∂ ∂ ∂ ∂ ∂
+ + + + ⋅∇

∂ ∂ ∂ ∂ ∂
 

 
Our goal is to determine the energy conservation associated with the dynamics of charges 
and fields as reflected by this set of equations. Multiplying now Eq. (3.3.3) by the 
particles density n  we find that  

 k =in
dn E J E
dt

⋅     (3.3.5) 
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therefore Eq. (3.3.1) has the following form  
  

 
EM kin

kin
kin

= =

= ,

t
dS w J E n E
dt

En u E
t

∇⋅ +∂ − ⋅ −

∂⎡ ⎤− + ⋅∇⎢ ⎥∂⎣ ⎦

    (3.3.6) 

where in the last expression we have used Eq. (3.3.5). The last term may be simplified 
since  

 

kin kin

kin kin kin kin

kin kin kin

0

= ( )

( ) [ ] ( )

= ( ) ( ) ( )

n E nu E
t

nE E n E nu E nu
t t

nE nuE E n nu
t t

≡

∂
− − ⋅∇

∂
∂ ∂

− + −∇⋅ + ∇⋅
∂ ∂

⎡ ⎤
∂ ∂⎢ ⎥− −∇ ⋅ + +∇ ⋅⎢ ⎥∂ ∂

⎢ ⎥⎣ ⎦

    (3.3.7) 

The last term vanishes by virtue of the continuity equation; hence  
 kin EM kin[ ] [ ] = 0tS nuE w nE∇⋅ + + ∂ +     (3.3.8) 
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This expression has the form of a field conservation law: the term kinnuE  represents the 
kinetic energy flux, whereas kinnE  stands for the kinetic energy density. Employing 
Gauss theorem we obtain that  

 kin EM kinv

dd [ ] d [ ] = 0
d

a S nuE v w nE
t

⋅ + + +∫∫ ∫     (3.3.9) 

which implies that time-variations of kinetic and electromagnetic energies stored within a 
given volume are compensated by the electromagnetic energy flux and/or by the kinetic 
energy flux across the relevant boundaries.  
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3.4   Conservation of Linear Momentum 
 

The conservation of linear momentum can be considered by a similar approach. The total 
electromagnetic force on a charged particle is  

 = ( ).F q E v B− + ×     (3.4.1) 
If the sum of all the momenta of all the particles in the volume V  is denoted by mechP , we 
can write, from Newton's second law,  

 mech = ( ) .
V

dP E J B dv
dt

+ ×∫ ρ     (3.4.2) 

Using Maxwell's equations to eliminate ρ  and J  from (3.4.2) i.e.,  
 = , = tD J H Dρ ∇ ⋅ ∇× −∂     (3.4.3) 

we obtain  
 = ( ) ( ) .tE J B E D B D B Hρ ⎡ ⎤+ × ∇ ⋅ + ×∂ − × ∇×⎣ ⎦  

Further writing  

 = ( )D BB D B D
t t t

∂ ∂ ∂
× − × + ×
∂ ∂ ∂

 

 and adding ( ) = 0H B∇⋅  to the square bracket, we obtain  
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= ( ) ( ) ( ) ( ) ( ).E J B E D H B D E B H D B
t
∂

+ × ∇ ⋅ + ∇ ⋅ − × ∇× − × ∇× − ×
∂

ρ  

The rate of change of mechanical momentum (3.4.2) can now be written  
mech 1( ) = [ ( ) ( ) ( ) ( )] .

4V V

dP d D B dv E D D E H B B H dv
dt dt

+ × ∇ ⋅ − × ∇× + ∇ ⋅ − × ∇×∫ ∫π  

     (3.4.4) 
We may identify the volume integral on the left as the total electromagnetic momentum 

fieldP  in the volume v :  
 field = ( ) .

V

P D B dv×∫     (3.4.5) 

We interprete the integrand as representing a density of electromagnetic momentum; we 
further note that this momentum density is proportional to the energy-flux density S , 
with the proportionality constant 2c−  (in vacuum). In order to complete the identification 
of the volume integral of  

 =g D B×     (3.4.6) 
as the electromagnetic momentum, and in order to postulate (3.4.4) as the conservation 
law for momentum, we must convert the volume integral on the right into a surface 
integral of the normal component of an expression which may be identified to represent a 
flow of momentum. Let the Cartesian coordinates be denoted by =1,2,3xα . The = 1α  
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component of the electric part of the integrand in (3.4.4) is given explicitly by  
3 31 2 2 1 1

1 1 2 3
1 2 3 1 2 3 1

2 2 2 20
0 1 0 1 2 0 1 3 1 2 3

1 2 3 1

[ ( ) ( )] =

= ( ) ( ) ( ) ( ).
2

D ED D E E EE D D E E D D
x x x x x x x

E E E E E E E E
x x x x

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂ ∂ ∂
∇ ⋅ − × ∇× + + − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂
+ + − + +

∂ ∂ ∂ ∂
εε ε ε

 

This means that we can write the α -th component as  

 
3

0
=1

1[ ( ) ( )] = ( )
2

E D D E E E E E
x
∂

∇ ⋅ − × ∇× − ⋅
∂∑α α β αβ

β β

ε δ     (3.4.7) 

obtaining in the right-hand side the form of a divergence of a second rank tensor. With 
the definition of the Maxwell stress tensor Tαβ  as  

 0 0 0
0

1 1= ( ) .
2

T E E B B E E B B+ − ⋅ + ⋅αβ α β α β αβε μ ε δ
μ

    (3.4.8) 

Eq. (3.4.4) may now be written in component form as  

 mech field( ) = .
V

d P P T dv
dt x

∂
+

∂∑∫α αβ
β β

    (3.4.9) 

Application of the divergence theorem to the volume integral finally yields  
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 mech field( ) = ,
s

d P P T n da
dt

+ ∑∫α αβ β
β

   (3.4.10) 

where n  is the outward normal to the closed surface s . T n∑ αβ β
β

 is the α -th component 

of the flow per unit area of momentum across the surface s  into the volume V .  
 
In other words, it is the force per unit area transmitted across the surface s  and acting on 
the combined system of particles and fields inside V . Equation (3.4.10) may therefore be 
used in principle in order to calculate the forces acting on objects in electromagnetic 
fields by enclosing the objects within a boundary surface s  and by adding up the total 
electromagnetic force according to the right-hand side of (3.4.10). 

 
 

 
 
 
 
 
 
 

Sir William Crookes (1873) 
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3.5   Regimes of Operation 
 
After establishing the constitutive relations and the boundary conditions it is 

possible, in principle, to determine the complete solution of the electromagnetic field. 
However, it is not always necessary to solve the full set of Maxwell's equations in order 
to determine the solution required. The Table below shows the equations that describe the 
electromagnetic phenomena in three main regimes: on the left, appear the equations that 
describe static phenomena. In the middle of the table the equations describing the quasi-
statics regime are listed, i.e. the regimes for which time variations may occur but as will 
be discussed extensively subsequently, they occur on time scales much longer than the 
time it takes light to traverse a distance in vacuum similar to the dimension of the 
investigated device. On the third, the “complete” set of dynamic equations are presented.  

   Statics   Quasi-Statics   Dynamics 
  Electro  Magneto  Electro   Magneto Electromagnetics

= 0E∇×    = 0E∇×  = 0tE B∇× +∂  = 0tE B∇× +∂  
 =H J∇× =tH D J∇× −∂  =H J∇×   =tH D J∇× −∂
=D∇⋅ ρ   =D∇⋅ ρ   =D∇⋅ ρ  

 = 0B∇⋅   = 0B∇⋅  = 0B∇⋅  
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We are now in a position to put forward a somewhat more quantitative classification of 
this division. Both the potentials as well as the various components of the 
electromagnetic field satisfy the wave equation, i.e., denoting by ( , , , )U x y z t  either one of 
the components of the electromagnetic field in a Cartesian coordinate system, we have, 
for matter-free space  

 
2

2
0 0 2 ( , , , ) = 0U x y z t

t
⎡ ⎤∂
∇ −⎢ ⎥∂⎣ ⎦

ε μ     (3.5.1) 

further, if the system oscillates at the monochromatic angular frequency ω  i.e.  
 ( , , , ) = R ( , , , ) j tU x y z t e U x y z e⎡ ⎤⎣ ⎦

ωω  then, for a homogeneous, isotropic time-
independent and linear non-conducting environment one has  

 
2

2
2 ( , , , ) = 0,U x y z

c
⎡ ⎤
∇ +⎢ ⎥
⎣ ⎦

ω ω     (3.5.2) 

where 0 0= 1/c μ ε  is the phase-velocity of an electromagnetic plane wave in vacuum -- 
also referred to as the “speed of light”. The angular frequency ω  and the speed of light c  
determine a characteristic wavelength  

 0 = 2 cλ π
ω

    (3.5.3) 

in free space (subscript 0 indicates vacuum) or in a material medium  
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 2 = .r r
m c
π ω ε μ
λ

    (3.5.4) 

As a rule of thumb the criterion for a quasi-static regime can be formulated as  

 
typical geometrical length of

.
the system.m

⎧ ⎫
⎨ ⎬
⎩ ⎭

λ �     (3.5.5) 

This criterion does not distinguish between magneto and electro-quasi-statics. For this 
purpose, we should compare energies in the system, 
(a) Systems operating in the magneto-quasi-static (MQS) regime imply  

 < > < >M Ew dv w dv∫ ∫�     (3.5.6) 
(b) Systems operating in the electro-quasi-static (EQS) regime imply  

 < > < > .E Mw dv w dv∫ ∫�     (3.5.7) 
 
 
 
 
 
 



 69

Chapter 4   Quasi-statics 
 

A variety of phenomena does not fall within the scope of statics or optics; these 
phenomena correspond to cases in which the “characteristic time” of the system is much 
longer than the time it takes the EM phenomena to traverse the system, or alternatively 
expressed, one of the energies (magnetic or electric) is much larger than the other. To 
quote an example, in statics or in a low frequency regime a capacitor stores energy which 
is predominantly electric, whereas the magnetic energy is taken to be zero. On the other 
hand, as it will be shown here that at high frequencies the capacitor itself becomes 
inductive. The opposite is valid for an inductor. These effects may have a dramatic 
impact on the design of fast circuits. Thus, many commercial software packages 
modeling various communication circuits utilize values of capacitance and inductance 
calculated for low frequencies (< 100MHz ). With the increase in the requirements for 
bandwidth, the frequency also increases and the predictions of these models at 10 or 
35GHz are definitely wrong: the parameters have to be re-adapted to the new operating 
regime or even better, the so-called “dynamic capacitance” and/or “inductance” must be 
resorted to. 
In this chapter we shall start with a discussion of  Electro-Quasi-Statics (EQS) which is a 
branch of electromagnetics treating phenomena characterized by the fact that the electric 
energy stored in the system is much larger than its magnetic counterpart. The discussion 
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will be followed by a section introducing  Magneto-Quasi-Statics (MQS) i.e. – the 
regime in which the magnetic energy predominates. Finally, in the last section, we 
investigate the case in which ohmic losses play a predominant role. The latter case is 
particularly important, since at high frequencies or for short electromagnetic impulses, 
the field distribution in metals differs substantially from its dc distribution. 
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4.1   Electro-Quasi Statics 
In this section we investigate a structure that 

at low frequency behaves as a capacitor but at 
high frequency, its behavior changes dramatically. 
The system under investigation is schematically illustrated in the Figure. Our goal is to 
determine the electromagnetic field in the volume confined between the electrodes, and 
further, to examine the values of the power and of the energy exchanged within the 
system. 
 
4.1.1   Assumptions and Notation Conventions 
1. From the geometric point of view the system is “infinite” along the y -axis -- 0y∂ ∼ .  
2. Along the z -axis, the system is narrow so that variations may be neglected -- 0z∂ � .  
3. In order to simplify the analysis we exclude end effects by introducing at =x a  a thin 

layer of material of “infinite” permeability ( )r →∞μ  at the end ( = )x a .  
4. The distributed generator ( = 0)y∂  located at = 0x , generates a signal which oscillates 

at the monochromatic angular frequency ω  i.e., steady-state operation ( )exp j tω∼ .  
5. No sources and/or charges are to be found in the inner space.  
6. ,r rε μ  stand for the relative permittivity and permeability of the material.  
7. The electromagnetic field outside the device is assumed to be negligible.  

 

0x =  x a=  

x  

z  

0z =  

z h=

rμ →∞( )V t
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4.1.2   Basic Approach 

 
Step I:   Gauss' Charge Law. In the y  and z  directions the spatial variations are 
negligibly small (see above) and therefore we can write 

 = 0 0 const.x
xo r

EE E
x

∂
∇ ⋅ ⇒ ⇒

∂
ε ε � ∼  

Furthermore since, ( = 0, ) = 0xE z h  [recall that =] 00z xE∂ ⇒∼ . 
 

Step II:   Conservation of Magnetic Induction 

 0 = 0 0 const.x xr H H H
x
∂

∇ ⋅ ⇒ ⇒
∂

μ μ ∼ ∼  

If this magnetic field is non-zero, we may apply an  external magnetic field to 
compensate it. We therefore consider the case = 0xH . 
 
 
 
 
 
   

 

0x =  x a=  

x  

z  

0z =  

z h=

rμ →∞( )V t
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Step III:   Faraday's Induction Law 
 

0 0

0

1 : 0 = 01 1 1
0 0 = 1 : = ,

0 1 : = .

xx y z

z yx r y x r

y z y zz x r

j H E j H
E E E j H

ωμ μ ωμ μ

ωμ μ

⎧
⎪

∂ − ⇒ −∂ −⎨
⎪ ∂ −⎩

 

Based on the boundary conditions, ( = 0, ) = 0yE z h  and 0z∂ ∼  concluding that = 0yE . 
Consequently = 0zH⇒ . Hence from Faraday's law one obtains the non-trivial relation  

 0= .z yx rE j Hωμ μ∂     (4.1.1) 
Step IV:   Ampere's Law 

 0

0

1 : 0 = 01 1 1
0 0 = 1 : 0 = 0

0 0 1 : =

xx y z

x r y

y y zz x r

j E
H H j E

ωε ε

ωε ε

⎧
⎪

∂ ⇒ ⎨
⎪ ∂⎩

 

i.e. the non-trivial part is  
 0=y zx rH j Eωε ε∂     (4.1.2) 

In conclusion, these two equations [(4.1.1),(4.1.2)] describe the dynamics of the non-zero 
field components in the structure.  

 

0x =  x a=  

x  

z  

0z =  

z h=

rμ →∞( )V t
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For a solution, we substitute the latter into (4.1.1)  

2 2

0 0 02 2= ( )z y z zr r r r r
d dE j H j j E E
dx dx c

ωωμ μ ωμ μ ωε ε ε μ= = −     (4.1.3) 

or  

 
2 2

2 2 = 0.zr r
d E
dx c
⎡ ⎤

+⎢ ⎥
⎣ ⎦

ωε μ     (4.1.4) 

The general solution of the 1-D wave-equation is  

 = exp expz r r r rE A jx B jx
c c
ω ωε μ ε μ⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
    (4.1.5) 

and according to (4.1.1):  

0

0

1=

1= exp exp .

z
y

r

r r r r r r
r

d EH
j dx

j A jx B jx
c c c

ωμ μ

ω ω ωε μ ε μ ε μ
μ μ

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.1.6) 

 
 
 



 75

This magnetic field component vanishes (prove it !!) at the high 
permeability wall ( r →∞μ  at = )x a ; hence  

( = ) = 0 exp exp = 0y r r r rH x a A ja B ja
c c
ω ωε μ ε μ⎛ ⎞ ⎛ ⎞⇒ − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
   (4.1.7) 

and therefore  

 = exp 2 .r rB A j a
c
ω ε μ⎛ ⎞−⎜ ⎟

⎝ ⎠
    (4.1.8) 

Consequently,    

 0

0

= 2 exp sin ( )r
y r r r r

r

H j A ja x a
c c

ε ε ω ωε μ ε μ
μ μ

⎛ ⎞ ⎡ ⎤− −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
                  (4.1.9) 

and 

 
0

1 2 exp cos ( )z yx r r r r
r

E H A ja x a
j c c

ω ωε μ ε μ
ωε ε

⎛ ⎞ ⎡ ⎤= ∂ = − −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
        (4.1.10) 

Note that the expression  

 0
0

0

r

r

Z ≡
μ μ
ε ε

    (4.1.11) 

in (4.1.9) usually labeled by wave-impedance in the medium. 
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The distributed generator imposes at = 0x  a voltage 0V ; therefore the z-component of the 
electric field between the two plates at the input is  

0

0

1( = 0) = exp
2=

cos( = 0) = 2 exp cos

z r r

z r rr r r r

VE x ja
h V cA

h aE x A ja a
cc c

ω ε μ

ωω ω ε με μ ε μ

⎫ ⎛ ⎞− ⎜ ⎟⎪⎪ ⎝ ⎠⇒ −⎬
⎡ ⎤⎛ ⎞ ⎡ ⎤⎪−⎜ ⎟ ⎢ ⎥⎢ ⎥⎪ ⎣ ⎦⎝ ⎠ ⎣ ⎦⎭

 

     (4.1.12) 
so that finally    

 0
cos ( )

=
cos

r r

z

r r

x a
V cE
h a

c

⎡ ⎤−⎢ ⎥⎣ ⎦−
⎡ ⎤
⎢ ⎥⎣ ⎦

ω ε μ

ω ε μ
    (4.1.13) 

 0

0

sin ( )
1= .

cos

r r

y

r r

x a
V cH j
h Z a

c

⎡ ⎤−⎢ ⎥⎣ ⎦−
⎡ ⎤
⎢ ⎥⎣ ⎦

ω ε μ

ω ε μ
    (4.1.14) 

Equations (4.1.13) and (4.1.14) determine the electromagnetic field components confined 
within the structure. 
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4.1.3   Impedance Considerations 
 

Assuming zero magnetic field outside the system implies at = 0,z h  a surface current 
density accounting for the discontinuity in the magnetic field  [see Eq. (1.7.6)]  

 1 ( ) = .n a b sH H J× −     (4.1.15) 
If we consider the upper plate:   

 

0

0

1 = 1 ,

= 0,

sin ( )
1= 1

cos

n z

a

r r

b y

r r

H

x a
V cH j
h Z a

c

⎡ ⎤−⎢ ⎥⎣ ⎦−
⎡ ⎤
⎢ ⎥⎣ ⎦

ω ε μ

ω ε μ

    (4.1.16) 

so that 

0
,

0

sin ( )
1( ) = .

cos

r r

s x

r r

x a
V cJ x j
h Z a

c

⎡ ⎤−⎢ ⎥⎣ ⎦−
⎡ ⎤
⎢ ⎥⎣ ⎦

ω ε μ

ω ε μ
    (4.1.17) 

The width of the system is denoted by w ; accordingly, the current at the input is  
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 0
in ,

0

sin
( = 0) .

cos

r r

s x

r r

a
V w cI J x w j
h Z a

c

ω ε μ

ω ε μ

⎡ ⎤
⎢ ⎥⎣ ⎦= =
⎡ ⎤
⎢ ⎥⎣ ⎦

    (4.1.18) 

With the aid of the exciting voltage we are able to define the input impedance:   

 0 0 0
in

0in

0

= = .
tan tanr r r r

V V ZZ
V w wI j a j a
h Z c h c

ω ωε μ ε μ
≡

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (4.1.19) 

At the limit of a small argument of the trigonometric function  

 1,r ra
c
ω ε μ �     (4.1.20) 

we find that   

 

0

0
in

0
0

1 1 ,

r

r

r r r

Z w wa j Cj a j
h c h

μ μ
ε ε
ω ωε μ ω ε ε⎡ ⎤× ⎢ ⎥⎣ ⎦

� � �     (4.1.21) 

wherein 0 0 /rC wa h≡ ε ε  represents the static capacitance. If (4.1.20) is not satisfied, the 
trigonometric function in (4.1.20) may become negative and the device rather than being 
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a capacitor as per (4.1.21), becomes an  inductor. As remarked, this conclusion may be of 
great practical importance in the design of fast circuits, as components designed to 
operate as capacitors at low frequency may behave inherently in a different form at high 
frequencies. With this observation in mind we may express the input impedance as  

 in
0

1=
tan

r r

r r

a
cZ

j C a
c

ω μ ε

ωω μ ε

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    (4.1.22) 

 
Resonance. If instead of the generator we locate at = 0x  a shunting plane, the input 
impedance reduces to zero in( = 0)Z  and resonances of the system are determined from 
the condition  

cot( ) = 0 = ; = 0,1,2,....
2r r r ra a n n

c c
ω ω πε μ ε μ π⇒ ±     (4.1.23) 

As opposed to the simplified lumped circuit theory, it is quite clear that infinitely many 
resonances occur. 

Exercise: Expand the function tan( )x
x

 in Taylor series (up to the third term) and discuss 

the role of the various terms of inZ  when viewed as an electric circuit. 
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4.1.4   Energy and Power Considerations 
With the components of the EM field established, we now take one further step and 
examine the power exchange in the system. This will be done in three stages: first we 
calculate the power entering into the system, then we calculate the energies stored in the 
system and finally we integrate Poynting's theorem taking into account the results from 
the previous two stages. 
 
 (a) Poynting vector and power flow. 

Recall that the field components are   

0 0

0

= , =
sin ( )

1

cos

cos ( )

cos
,

rr r

r

r

r r

z y

r

x a
V c

x a
V c j

h Z a
E

c

H
h a

c

ω εω ε

ε ω εω

μμ

μ μ

⎡ ⎤−⎢ ⎥⎣ ⎦
⎡ ⎤−⎢ ⎥⎣ ⎦−

⎡ ⎤
⎢ ⎥⎣ ⎦

−
⎡ ⎤
⎢ ⎥⎣ ⎦

  (4.1.24) 

consequently, Poynting's vector at the input comprises one component only, namely  
*

* 0
=0 =0

0

0

1 1| = | =
2 2

1 tanz yx r rx x
V
h

Vj a
h Z

S H
c

E ω ε μ
⎡ ⎤⎡ ⎤− − ⎢ ⎥⎢ ⎥⎣ ⎦

⎛ ⎞
⎜

⎣ ⎝ ⎠⎦
⎟−        (4.1.25) 

*
yH  represents the complex conjugate of the magnetic field yH .   
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The total time-average power flowing into the system  

 2
=0 0

0

1 1= = | = | | tan ,
2x x r r

wP da S whS V a
jh Z c

ω ε μ⎡ ⎤⋅ ⎢ ⎥⎣ ⎦∫∫     (4.1.26) 

or using (4.1.19) i.e.  
0

in
0

1 1= =
tan tan /r r r r r r

ZZ
w j Cj a a a
h c c c

ω ω ωωε μ ε μ ε μ⎡ ⎤ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠

   (4.1.27) 

we obtain  

 *2
in0 0*

in

1 1 1= | | = .
2 2

P V V I
Z

    (4.1.28) 

This result clearly reveals that the Poynting vector describes the energy flux to or from 
the system. Moreover, the magnetic field is essential in the processes of storing (or 
draining) energy in (or from) a capacitor. 
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 (b) Energy stored in the system. 
Consider next the time-average magnetic energy stored in the system  

 

2
M M 00

2
2

0 0
2 2 0 20

2
0 0

2 2 2
0

1< >= < >= | |
4

( )sin| | 1=
4

cos

sin 2
( )| | 1=

2 24 cos

a

r y

r ra
r

r r

r r
r

r rr r

W dv w wh dx H

x a
wh V c dx

h Z a
c

a
wh V ca

h Z a
cc

μ μ

ω ε μ
μ μ

ω ε μ

ω ε μ
μ μ

ωω ε με μ

⎡ ⎤−⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦−⎨ ⎬⎡ ⎤ ⎪ ⎪

⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

∫ ∫

∫

 

i.e., defining sinc( ) sin( ) /x x x≡  

 
2

0
M 0 2

2

1 1 sinc 2
2| |1< >= ( )

4
cos

r r

r

r r

a
cVW wha

h a
c

⎡ ⎤⎛ ⎞− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞
⎜ ⎟
⎝ ⎠

ω ε μ
ε ε

ω ε μ
.    (4.1.29) 
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In a similar way the time-average electric energy stored within the system is given by   

 

2
E E 00

2
20

0 2 02

2
0

0 2
2

2
0

E 0 2

1< >= < >= | |
4

| |1 1= ( )cos4
cos

sin 2
| |1 1 1=

4 2 2cos

1 1 sinc 2
2| |1< >=

4

a

r z

a

r r r

r r

r r

r

r rr r

r r

r

W dv w wh dx E

Vwh x a
h ca

c

a
V cwh a
h a

cc

a
cVW

h

ε ε

ωε ε ε μ
ω ε μ

ω ε μ
ε ε ωω ε με μ

ω ε μ
ε ε

⎡ ⎤−⎢ ⎥⎡ ⎤ ⎣ ⎦
⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦+⎨ ⎬⎡ ⎤ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

⎛+

∫ ∫

∫

2
( ).

cos r r

wha
a

c
ω ε μ

⎡ ⎤⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞
⎜ ⎟
⎝ ⎠

(4.1.30) 

 
 
 
 



 84

With the aid of the last two expressions we are able to examine the ratio between the two 
forms of energy stored in the system, namely  

 ( )
( )

2

1 sinc< > = .
< > 1 sinc

r r

M

E u a
c

uW
W u ω ε μ=

⎡ ⎤−
⎢ ⎥+⎣ ⎦

 

At the quasi-static limit (4.1.20) i.e., 2 1r ru a
c
ω ε μ≡ � , we find that  

 
3 2

M

3E

sin( ) 11 1 ( )/< > 16= 2 1sin( ) 1< > 121 1 ( )/
6

r r

u u u uW u auW cu u u
u

ω ε μ
− − − ⎡ ⎤

⎢ ⎥⎣ ⎦+ + −
� � �   (4.1.31) 

implying that the magnetic energy stored in the system is much smaller than its electric 
counterpart, as one may expect for a capacitor. 
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 (c) Poynting's theorem in its integral form. 
In subsection (a) we have found that  

 2
0

0

1 1= = | | tan
2 r rP da S V ah cj Z

w

⎡ ⎤⋅ ⎢ ⎥⎣ ⎦∫∫
ω ε μ     (4.1.32) 

whereas in (b) we have found  

 
2

0
E 0 2

2

1 1 sinc 2
2| |1< >= ( ) ,

4
cos

r r

r

r r

a
cVW wha

h a
c

⎡ ⎤⎛ ⎞+ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞
⎜ ⎟
⎝ ⎠

ω ε μ
ε ε

ω ε μ
     (4.1.33) 

 
2

0
M 0 2

2

1 1 sinc 2
2| |1< >= ( ) .

4
cos

r r

r

r r

a
cVW wha

h a
c

⎡ ⎤⎛ ⎞− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞
⎜ ⎟
⎝ ⎠

ω ε μ
ε ε

ω ε μ
    (4.1.34) 

With these quantities defined we may now formulate the complex Poynting theorem in its 
integral form. Using Gauss' mathematical theorem by analogy to (3.1.10)  

 
 *12 [ ] = ,

2M E
V

da S j W W dvJ E⋅ + 〈 〉 − 〈 〉 − ⋅∫∫ ∫ω     (4.1.35) 
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so that in a sourceless space  
 [ ]E M2 < > < > = 0.da S j W W⋅ − −∫∫ ω     (4.1.36) 

Hence on substituting (4.1.32)–(4.1.36) we obtain 

2
2 0

0 0 2
2

0

2
0

0 2
2

1 1 sinc 2
2| |1 1 1| | tan 2 ( )

2 4
cos

1 1 sinc 2
2| |1 ( ) = ??

4
cos

r r

r r r

r r

r r

r

r r

a
cVV a j whah c hj Z a

w c

a
cV wha

h a
c

ω ε μ
ω ε μ ω ε ε

ω ε μ

ω ε μ
ε ε

ω ε μ

⎧ ⎡ ⎤⎛ ⎞+ ⎜ ⎟⎪ ⎢ ⎥⎪⎛ ⎞ ⎝ ⎠⎣ ⎦− − ⎨⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎪ ⎜ ⎟⎪ ⎝ ⎠⎩
⎫⎡ ⎤⎛ ⎞− ⎜ ⎟ ⎪⎢ ⎥ ⎪⎝ ⎠⎣ ⎦− ⎬⎛ ⎞ ⎪⎜ ⎟ ⎪⎝ ⎠ ⎭

 

i.e., 

2
2 0

0 0 2
2

0

sinc 2
| |1 1 1 1| | tan 2 ( ) 2 = 0

2 4 2
cos

r r

r r r

r r

a
V cV a j whah c hj Z a

w c

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠− − ⋅⎜ ⎟ ⎛ ⎞⎝ ⎠
⎜ ⎟
⎝ ⎠

ω ε μ
ω ε μ ω ε ε

ω ε μ
 

hence the solution clearly satisfies the integral complex Poynting theorem. 
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Conclusion. Within the framework of the electro-quasi-static (EQS) approximation, the 
energy stored in the electric field is much larger than that stored in the magnetic field 
( M E< > < >)W W� . One possible way to interpret this fact is to recall that the average 
magnetic field is proportional to 2

0Hμ  and since the energy stored in the magnetic field 
is negligible we may develop a simplified set of equations for the electro-quasi-static 
regime by taking “ 0 0→μ ” (or “ 2c →∞”). Explicitly, within the framework of phasor 
notation these equations read  

  

 

0

=

=

E
H J j D

D
ω

ρ

∇×

∇× +

∇ ⋅

�

    (4.1.37) 

Thus the complex Poynting Theorem for the Electro-Quasistatic regime may be stated in 
the form  

 
*12

2ES j W J Eω∇⋅ − − ⋅     (4.1.38) 
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4.2   Magneto-Quasi-Statics 
 

In this section we examine in detail a system in which the magnetic field plays a 
predominant role. For this purpose we consider the system reproduced in the figure. 
 
4.2.1 Assumptions and Notation Conventions 
 
1. The system is “infinite” along the y± -axis 0y⇒∂ ∼ . 
2. Along the z± -axis, the system is extremely narrow 0z⇒∂ ∼ . 
3. At =x a  the plates are electrically short circuited. 
4. The voltage at the input oscillates at an angular frequency ( )exp j tω ω⇒ . 
5. No sources exist within the inner space. 
6. ,r rε μ  stand respectively for the relative permittivity and for the relative permeability 

of the material. 
7. The electromagnetic field external to the device is assumed to be zero.  
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4.2.2   Approach to Solution 
 

The approach is entirely similar to that outlined in the previous section; thus from Gauss' 
charge law 0[ = 0]r E∇⋅ε ε  we find  

 = 0xE     (4.2.1) 
and from the equation of continuity of the magnetic induction [ = 0]B∇⋅  we find  

 0.xH �     (4.2.2) 
The electric field component in the y -direction, vanishes since ( = 0, ) = 0yE z h  and 

0z∂ � , i.e.  
 0.yE �     (4.2.3) 

From the z  component of Faraday's law 0[1 : = ]y zz x rE j H∂ − ωμ μ  we conclude, relying 
on (4.2.3) that  

 0;zH �     (4.2.4) 
in addition, from the y  component (of Faraday's law) we have  

 01 : = .z yy x rE j H−∂ − ωμ μ     (4.2.5) 
Finally the non-trivial component of Ampere's law yields  

 01 : = .y zz x rH j E∂ ωε ε     (4.2.6) 
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Substituting (4.2.6) in (4.2.5) we obtain the same expression as in (4.1.4):  

 
2 2

2 2 = 0zr r
d E
dx c
⎡ ⎤

+⎢ ⎥
⎣ ⎦

ωε μ                       (4.2.7) 

The general solution of (4.2.7) is  

 = exp expz r r r rE A jx B jx
c c
ω ωε μ ε μ⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
     (4.2.8) 

and here that the difference from the previous case arises:  as opposed to the vanishing of 
the tangential magnetic field, in this case the tangential electric field vanishes at =x a  
( →∞σ ) so that   

 ( = ) = exp exp 0z r r r rE x a A ja B ja
c c
ω ωε μ ε μ⎛ ⎞ ⎛ ⎞− + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
   (4.2.9) 

implying  

 = exp 2 r rB A ja
c
ω ε μ⎛ ⎞− −⎜ ⎟

⎝ ⎠
    (4.2.10) 

so that  

( ) = ( 2 ) exp sin ( ) .z r r r rE x j A ja x a
c c
ω ωε μ ε μ⎛ ⎞ ⎡ ⎤− − −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

    (4.2.11) 

With Eq. (4.2.5) we obtain   
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( )
0

0

0

1=

exp
= 2 cos ( )

y zx
r

r r

r r
r

r

H x E
j

ja
cA x a

c

ωμ μ
ω ε μ

ω ε μ
μ μ
ε ε

∂

⎛ ⎞−⎜ ⎟ ⎡ ⎤⎝ ⎠− −⎢ ⎥⎣ ⎦

    (4.2.12) 

The generator imposes at = 0x  a voltage 0V  and therefore, the electric field at the input is  

0

0

( = 0) = exp
2=

sin( = 0) = 2 exp sin

z r r

z r rr r r r

V jE x ja
h V cA

h aE x jA ja a
cc c

ω ε μ

ωω ω ε με μ ε μ

⎫ ⎛ ⎞− ⎜ ⎟⎪⎪ ⎝ ⎠⇒⎬
⎛ ⎞⎛ ⎞ ⎛ ⎞⎪− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎭

 

     (4.2.13) 
hence, finally    

0 0

0

sin ( ) cos ( )
1= , = .

sin sin

r r r r

z y

r r r r

x a x a
V Vc cE H j
h h Za a

c c

ω ωε μ ε μ

ω ωε μ ε μ

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦−
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (4.2.14) 
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4.2.3   Impedance Considerations 
 

The magnetic field in the region exterior to the system has been assumed to be zero, 
therefore at = 0,z h  a surface current density balances the discontinuity of the tangential 
magnetic field component excited: recall that  

 1 ( ) = .n a b sH H J× −  
If we now consider the upper plate  

 0

0

cos ( )
11 = 1 , = 0, = 1

sin

r r

n z a b y

r r

x a
V cH H j
h Z a

c

ω ε μ

ω ε μ

⎡ ⎤−⎢ ⎥⎣ ⎦−
⎡ ⎤
⎢ ⎥⎣ ⎦

    (4.2.15) 

hence  

 0
,

0

cos ( )
1( ) = .

sin

r r

s x

r r

x a
V cJ x j
h Z a

c

⎡ ⎤−⎢ ⎥⎣ ⎦−
⎡ ⎤
⎢ ⎥⎣ ⎦

ω ε μ

ω ε μ
    (4.2.16) 

The width of the system is w  and so the total current entering the system is  
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 0
in ,

0

( = 0) ctan .s x r r
V wI J x w j a
h Z c

ω ε μ⎛ ⎞= = − ⎜ ⎟
⎝ ⎠

    (4.2.17) 

With the input voltage introduced above, we define the input impedance of the system as  
0 0

in 0
0in

0

= = tan .
ctan

r r

r r

V V hZ jZ a
V wI w cj a
h Z c

ω ε μ
ω ε μ

⎛ ⎞≡ ⎜ ⎟⎛ ⎞ ⎝ ⎠− ⎜ ⎟
⎝ ⎠

   (4.2.18) 

In the quasi-static limit 1r ru a
c
ω ε μ≡ � , and therefore  

 0
in 0

0

,r
r r

r

hZ j a j L
w c

μ μ ω ε μ ω
ε ε

� ∼     (4.2.19) 

wherein 0 0= r
ahL
w

μ μ  stands for the static inductance of the system. Upon frequency 

increase, the sign of the impedance may change, a fact which implies that the system now 
exhibits capacitive characteristics. Based on Eq. (4.2.18) a resonator is obtained by either 
shortening the input i = 0nZ⇒ ⇒   

 =r ra n
c

±
ω ε μ π     (4.2.20) 

or by opening the input inZ →∞⇒   
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 =
2r ra n

c
±

ω πε μ π     (4.2.21) 

in both cases = 0, 1, 2n ± ± ; tacitly in the latter case radiation throughout the open region 
is discarded.  

Exercise: Show that in 0

tan
=

r r

r r

a
cZ j L

a
c

⎛ ⎞
⎜ ⎟
⎝ ⎠
ω ε μ

ω ω ε μ
. 
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4.2.4   Power and Energy Considerations 
 

 (a) Poynting's vector and power flow. 
With    

0 0

0

sin ( ) cos ( )
1= , =

sin sin

r r r r

z y

r r r r

x a x a
V Vc cE H j
h h Za a

c c

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦−
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

ω ωε μ ε μ

ω ωε μ ε μ
  (4.2.22) 

we have for the average energy flux 

2
* 0

2
20

sin ( ) cos ( )
| |1 1= =

2 2
sin

r r r r

z yx

r r

x a x a
Vj c cS E H
h Z a

c

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− −
⎡ ⎤
⎢ ⎥⎣ ⎦

ω ωε μ ε μ

ω ε μ
 (4.2.23) 

so that the time-average power 

 

2
0

=0 2
0

2
0

0

| | 1= | = ( ) ctan
2

1 1= | | ctan .
2

x r r

r r

VjP daS wh a
h Z c

wV j a
h Z c

ω ε μ

ω ε μ

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

∫∫

    (4.2.24) 
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Resorting to the definition of the input impedance, i.e.  

 i 0= tann r r
hZ jZ a
w c

⎡ ⎤
⎢ ⎥⎣ ⎦
ω ε μ     (4.2.25) 

one may write  

 
*

*0
0 0 in*

in

1 1= = ,
2 2

VP V V I
Z

    (4.2.26) 

an expression which represents the so-called complex power flow into the system. 
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 (b) Energy stored in the system. 
The time-average stored magnetic energy in the system is given by    

 

2
M M 00

2
0

0
2

1< >= < >= | |
4

1 1 sinc 2
2| |1= ( ).

4
sin

a

r y

r r

r

r r

W dv w wh dx H

a
cV wha

h a
c

μ μ

ω ε μ
ε ε

ω ε μ

⎡ ⎤⎛ ⎞+ ⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠⎣ ⎦
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

∫ ∫

(4.2.27) 

In a similar way the time-average stored electric energy is  

 

2
E E 00

2
0

0
2

1< >= < > = | |
4

1 1 sinc 2
2| |1= ( )

4 ( )sin

a

r z

r r

r

r r

W dv w wh dx E

a
cV wha

h a
c

ε ε

ω ε μ
ε ε ω ε μ

⎡ ⎤⎛ ⎞− ⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠⎣ ⎦
⎜ ⎟
⎝ ⎠

∫ ∫

    (4.2.28) 

 
 
 



 98

Note that the ratio  

 
2

E
1 sinc 2

< > 1= 1
< > 31 sinc 2

r r

r r
M

r r

a
W c a
W ca

c

⎛ ⎞− ⎜ ⎟ ⎡ ⎤⎝ ⎠
⎢ ⎥⎛ ⎞ ⎣ ⎦+ ⎜ ⎟

⎝ ⎠

ω ε μ
ω ε μ

ω ε μ
� �     (4.2.29) 

is much smaller than unity at low frequencies, implying that the system behaves as an 
inductor according to the prediction (4.2.19). Note also that the total time-average energy 
is given by  

 
2

0
total 0

2

| |1= =
4

sin
E M r

r r

V whaW W W
h a

c

ε ε
ω ε μ

⎛ ⎞+ ⎜ ⎟ ⎛ ⎞⎝ ⎠
⎜ ⎟
⎝ ⎠

          (4.2.30) 

whereas the ratio  

 M E

M E

< > < > =sinc 2
< > < > r r
W W a
W W c

− ⎛ ⎞
⎜ ⎟+ ⎝ ⎠

ω ε μ  

may be either positive or negative, according to whether the system behaves as an 
inductor or as a capacitor. 
 
Exercise: Determine the reduced set of equations for MQS as well as the relevant 
complex Poynting's Theorem. 
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4.3   Steady-State Field in a Conductor 
 

Within the realm of stationary conduction phenomena, we are used to think that the only 
manifestation of the finite conductivity of a metal is via its resistance, which is inversely 
proportional to the specific conductance and to the area ( A) across which the current 
flows being, however directly proportional to the extension (l ) of the conducting path, 
i.e. /R l A∝ σ . In this section we shall investigate a simple phenomenon associated with 
conductivity and EM fields at relatively high frequencies. For this purpose consider the 
system in the Figure   
 
4.3.1   Assumptions and Notation Conventions 
1. The system is “infinite” along the y± -axis 0y⇒∂ ∼ .  
2. Along the z -axis the system is extremely narrow 0z⇒∂ ∼ .  
3. The only possible variations are assumed along the x -axis.  
4. The time dependence is ( )exp j tω .  
5. No sources reside within the metallic medium.  
6. σ  is the conductivity of the medium; its other electromagnetic characteristics are 

assumed to be represented by 0 0,μ ε .  
7. Finally, 0σ ωε� .  
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4.3.2   Approach to Solution   
1. Gauss' law = 0xE⇒ .  
2. = 0 = 0xB B∇⋅ ⇒ .  
3. ( = 0, ) = 0yE z h  and 0 = 0yz E∂ ⇒∼ .  
4. = 0yE  and Faraday's law 0zH⇒ � .  
5. Faraday's law  

 01 : = .z yy x E j H−∂ − ωμ     (4.3.1) 
6. Ampere's law  

 0 01 : = = ( ) .y z zzz x H J j E j E− ∂ + +ωε σ ωε     (4.3.2) 
The first goal is, as in the previous two cases, to determine the field distribution inside the 
device. For this purpose we substitute (4.3.2) into (4.3.1) and assume that 0σ ωε�   

2 2

0 0 02 2= = ( ) = 0.y
z z z

d Hd dE j j E j E
dx dx dx

ωμ ωμ σ ωμ σ
⎡ ⎤

+ ⇒ −⎢ ⎥
⎣ ⎦

   (4.3.3) 

We assume a solution of the form sxe− ; for a non-trivial solution s  satisfies  
 2

0 = 0s jωμ σ−     (4.3.4) 
hence    
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/2 /4

0 0 0 0
1= = = = .

2
j j js j e eπ πωμ σ ωμ σ ωμ σ ωμ σ+ +

± + = ± ± ±    (4.3.5) 

We define the so-called  skin-depth δ   

 
0

2=δ
ωμ σ

                                            (4.3.6) 

thus  

 1= (1 ) .s j± +
δ

                                          (4.3.7) 

The general solution of (4.3.3) is now stated to be  

 ( ) = exp (1 ) exp (1 ) .z
x xE x A j B j
δ δ

⎡ ⎤ ⎡ ⎤− + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
    (4.3.8) 

In the present case the system is “infinite” along the x -axis, we therefore conclude that 
= 0B  (otherwise the solution diverges as )x →∞ ; hence  

 ( ) = exp (1 ) .z
xE x A j
δ

⎡ ⎤− +⎢ ⎥⎣ ⎦
    (4.3.9) 

Note that this type of solution is both decaying as well as oscillating. The second 
boundary condition is obtained looking at the generator, which imposes at = 0x  an 
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electric field component  

 0( = 0) =z
VE x
h

−                             (4.3.10) 

i.e.  

 0( ) = exp (1 ) .z
V xE x j
h δ

⎡ ⎤− − +⎢ ⎥⎣ ⎦
        (4.3.11) 

The relevant magnetic field component is in turn   

 ( )0

0 0

1 1( ) = exp 1y z
Vd j xH x E j

j dx j hωμ ωμ δ δ
+ ⎡ ⎤= − +⎢ ⎥⎣ ⎦

.    (4.3.12) 

Consequently, the surface current density along the confining plates is  

( )0 0
in, ,

0 0

1 1 1( ) = exp 1 = ( = 0) =s x s x
V Vj x j wJ x j I J x w

j h j hωμ δ δ ωμ δ
+ +⎡ ⎤− + ⇒⎢ ⎥⎣ ⎦

 

implying that the input impedance is  
0 0 0

in
0in

0

0

= = = = .1 1
1(1 )
2

V V j hZ Vj w j
h

hj
w wI

j

ωμ δ

ωμ δ

ωμ δ ω+
+

∝
+

    (4.3.13) 

Note that in spite the fact that the conductance is assumed to be frequency independent, 
the impedance is nevertheless frequency dependent. This fact is of particular importance 
at high frequencies. 
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4.3.3   Power and Energy Considerations 
 

Once the EM field components have been established, we are able to calculate the 
relevant quantities associated with power conservation:  the non-trivial Poynting vector 
component is 

 

( ) ( )

*

*
0 0

0

2
0
2

0

1=
2
1 1 1= exp 1 exp 1
2

| |1 1 1= exp 2 ,
2

z yxS E H

V Vx j xj j
h j h

V j x
h j

δ ωμ δ δ

ωμ δ δ

−

⎡ ⎤⎡ ⎤ −⎡ ⎤ ⎡ ⎤− − − + − −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
− ⎛ ⎞− −⎜ ⎟

⎝ ⎠
    (4.3.14) 

consequently, the average power at the input is    

 ( )
2 2

0 0
=0 2 2

0 0

| | | |1 1 1= | = ,
2 2

1 1x
j j

j
V V whP daS wh
h hωμ δ δωμ

− =
−

+∫∫    

 (4.3.15) 
the time-average electric energy is 

 
2

2 0
E E 0 00

1 1< >= < >= | | = ( /2)
4 4z

VW dv w wh dx E wh
h

ε ε δ
∞ ⎛ ⎞= ⎜ ⎟

⎝ ⎠∫ ∫   (4.3.16) 
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Similarly, the time-average magnetic energy is 

( )

2
2 0

M M 0 0 20
0

1 1 2< >= < >= | | = ( /2)
4 4y

VW dv w wh dx H wh
h

μ μ δ
ωμ δ

∞ ⎛ ⎞
⎜ ⎟
⎝ ⎠∫ ∫   (4.3.17) 

and finally, the dissipated power 

 
2

* 01 1= = ( / 2).
2 2D

VP dv J E wh
h

⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠∫ σ δ     (4.3.18) 

Some specific conclusions:   0 1 1
2

.E D

M M

W P
W W

ε ω
σ ω

= � ∼  

It is important to remember that for an oscillating field the EM field penetrates only to the 
extent of a characteristic depth δ , which may be quite small. As a practical example let 
us assume a 200MHz signal for copper 7 1 15 10 mσ − −× Ω∼  so that  

6 7 7
0

2 2= = 3 m.
2 (200 10 ) (5 10 ) (4 10 )−× × × × × ×

δ μ
ωσμ π π

∼  
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4.4   Transient Conduction Phenomena 
 

The behavior of quasi-static magnetic field differs 
significantly from that of a d.c. excited magnetic field. 
One of the most obvious phenomena is the “diffusion” of 
the magnetic field into a metallic slab. Quite a substantial amount of time is required for 
such a field to penetrate into a metal. This fact has several implications with regard to 
many electromagnetic phenomena:  
1. Let us assume that it is required to transfer a signal along a wire from point (a) to 

point (b). Conducting the experiment in a matter-free space, one finds that the time 
required is of the order of the distance to be covered divided by c . If, however, a 
metallic piece is in the close proximity of the wire, the signal will have to penetrate 
the metal, and this may cause a substantial delay in the propagation time of the signal.  

2. Another case arises when the finite penetration time may be of importance occurs in 
the grounding of a fast circuit: one is tempted to think that the charge associated with 
an impulse “dissolves” immediately into the ground. As we shall shortly see this is 
definitely not the case.  

In order to examine transients associated with the penetration of a magnetic fields into 
metal, let us consider an impulse of current carrying a charge q  injected into a metallic 
layer. Evidently, the goal is to investigate the field as well as energy in the whole space. 
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Assumptions and Notation Conventions 
 
1. The system is “infinite” along the y± -axis 0y⇒∂ ∼ .  
2. Along the z -axis the system is extremely narrow 0z⇒∂ ∼ .  
3. Variations in the x -direction.  
4. The system is driven by an impulse of current i.e. ( ) = ( )I t q tδ .  
5. Electric properties of the medium: 0 0, ,σ ε μ .  

6.   0
0

0

1 ch
h

↔
ε σ ε

σ μ
� � .  

7. The electromagnetic field outside the device is zero.  
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4.4.2   Approach to Solution 
   

1. Gauss' charge law 0xE �   
2. 0 0xB B∇⋅ ⇒� �   
3. ( = 0, ) 0yE z h �  and 0 0z yE∂ ⇒∼ �   
4. 0yE �  and Faraday's law 0zH⇒ �   
5. Faraday's law  

 01 : = .y x z t yE H− ∂ ∂μ     (4.4.1) 
6. Ampere's law  

 01 : = .z x y z t z zH J E E− ∂ + ∂ε σ�     (4.4.2) 
With the last two equations we shall determine the EM field in the entire space. Let us 
first substitute (4.4.1) into (4.4.2)  

 
2

02 = .y yH H
x t
∂ ∂
∂ ∂

σμ     (4.4.3) 

It will be convenient to define  

 2
0

= , = ,x t
h h

ξ τ
σμ

    (4.4.4) 

a notation which enables one to rewrite the differential equation  
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2

2 =y yH H∂ ∂
∂ ∂ξ τ

    (4.4.5) 

along with the initial condition    

 02
0

( )( = 0, ) = = ( ) = ( ) ( )y
I t q qH x t t H
w w w h

δ δ τ δ τ
σμ

=     (4.4.6) 

wherein 2
0 0= / .H q w hσμ  At this point we may take advantage of the integral 

representation of the Dirac delta function i.e., ( )1( ) exp
2

d jδ τ τ
π

∞

−∞

≡ Ω + Ω∫  hence  

 ( )0( = 0, ) = exp .
2y
HH d jξ τ τ
π

∞

−∞
Ω Ω∫  

For a solution in the domain 0≥ξ  one may include in the integral the spatial variation of 
the form  

 ( ) ( )0( , ) = exp exp ,
2y
HH d j Kξ τ τ ξ
π

∞

−∞
Ω Ω −∫  

which being substituted in (4.4.5) entails that 2 =K jΩ ; consequently  

 ( )0( , ) = exp .
2y
HH d j jξ τ τ ξ
π

∞

−∞
Ω Ω − Ω∫  

Note that in this integral we chose only the solution that ensures convergence at →∞ξ .  
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This integral may be evaluated analytically resulting in  

 
2

0
1( , ) = exp ;

44yH H ξ ξξ τ
τ τπτ

⎛ ⎞
−⎜ ⎟
⎝ ⎠

 

substitute in (4.4.5) and show that indeed the last expression is a solution. 
The next two frames illustrate the diffusion of the dimensionless 0( / )yH H  magnetic 
field into the metallic medium.  

 
Normalized magnetic field at various times (left) and locations (right). 
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4.4.3   Power and Energy Considerations 
Our next step is to investigate the power flow:   

 2 21 1 1 1= = = =
2 2

y
x z y y y y

H
S E H H H H

x x h
∂⎡ ⎤ ∂ ∂

− − − −⎢ ⎥∂ ∂ ∂⎣ ⎦σ σ σ ξ
  (4.4.7) 

 

2 2
2
0

2 2

2
2
0

1 1( , ) = = exp
2 4 2

( , ) 2= 1 exp .1 4 2 2
2

x
hwP hwS H

h

PP w H

ξ ξξ τ
σ ξ τ πτ τ

ξ τ ξ ξ ξ
πτ τ τ

σ

⎡ ⎤⎛ ⎞∂ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞⎛ ⎞≡ − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
    (4.4.8) 

This quantity ( P ) is plotted in the next two frames.  
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In the next stage the energies are investigated. The energy stored in the magnetic field is 
given by  

 

2 22 2 2 /2
M 0 0 0 30 0

222 2 2 /2 20
0 0 01.5 3 30

/2

1 1= =
2 2 4
1 1 1=
2 4 32

y

u

W wh dxH wh H d e

whwh H duu e H

ξ τ

π

ξμ μ ξ
πτ

μμ
π τ π τ

∞ ∞ −

∞ − =

∫ ∫

∫
    (4.4.9) 

or explicitly, 

 
32

M
0 0

1= ,
4 2 ( )

qW
w Z ch

h
tπε π σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

    (4.4.10) 

where as before, 0 0 0/Z μ ε≡  is the wave impedance of the vacuum. Note that the 
dissipation of the magnetic energy decays algebraically, in spite the fact that at each 
frequency the field decays exponentially in space!! 
Similarly, for the electric field:  
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d W
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x h

H Hw d H H
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d H
d d

d

εε ξ
σ σ ξ

ε ξ
σ ξ ξ ξ

ε ξ
σ τ

ε
μ σ τ

∞ ∞

∞

∞

∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎡ ⎤∂ ∂⎛ ⎞∂
−⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

− = −

∫ ∫

∫

∫

 

Hence  

 ( )3/2
M2 2

0 0

E

M 0

1 1= 3 1
2

ln = ln =
( ) ( ) ( )

d dw
d

W
th d chW

τ
η σ τ η σ τ ση

−− −  (4.4.11) 

 
On very short time scales the electric energy stored in the system is dominant however, 
special attention should be paid to assumptions which may be violated in these 
circumstances. This may be understood in terms of the electric field linked to the charge 
deposited by the external source in the system. When this charge starts to “dissolve”, 
current flows thus the magnetic energy starts to dominate. 
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Finally we shall calculate the power dissipated:  

 2 2
0 M20 0 0

0 0 0

2 1 ( 1)= = = = 2
2 ( )D z z z z

dP wh dxJ E wh dxE dxE W
h dt

σσ σ ε
ε ε η σ

∞ ∞ ∞ −⎡ ⎤
⎢ ⎥⎣ ⎦∫ ∫ ∫  

 0 0

0M
M2 2

0

2
2 / 3 1ln

( ) ( ) 2
3D d W

h dt h
P

W t

σ
ε σ ε

η σ η σ τ

−
− ⎛ ⎞= = − =⎜ ⎟

⎝ ⎠
 

hence  

 
M

= 3.DP t
W

    (4.4.12) 

Consequently, the energy dissipated in the metal is three times the magnetic energy 
stored in the system. It is important to emphasize again that the energy which was 
injected in the metal “dissolves” quite slowly on a time scale of 3/2t−  - see (4.4.10). 
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4.4.4   Input Voltage 
A clear manifestation of the finite penetration time of the electromagnetic field in a metal 
is revealed when measuring the voltage, as the current impulse “hits” the metallic 
“ground”. From pure dc arguments one will be tempted to say that since this is a so-
called “ground” the voltage must be zero. This is clearly not the case, since the electric 
field is given by  

 1 1= = .y y
z

H H
E

x h
∂ ∂

− −
∂ ∂σ σ ξ

    (4.4.13) 

Based on this expression the voltage at the input may be defined as i = ( = 0)n zV hE x−  and   

 i
=0

1= ,y
n

H
V h

h
∂⎛ ⎞

− −⎜ ⎟∂⎝ ⎠ξσ ξ
    (4.4.14) 

which finally implies [recall that 2
0 0= /H q w hσμ  and 2

0= /t hτ σμ ] that  

 
2 /40

i
=0

1= = .n
H qV e

w t
−⎛ ⎞∂

⎜ ⎟∂⎝ ⎠
ξ τ

ξ

ξ
στ ξ σ

    (4.4.15) 

This result shows that the current impulse injected into the “ground” (lightning) generates 
a  long voltage transient which decays  algebraically in time. For 410q −∼ C, 210w −∼ m, 

7 1 110 Ohm m− −σ ∼  then i [V] 1 / [ ]nV t nsec∼  implying that there is a non-zero voltage for a 
period that is of the order of a few nano-seconds.  
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4.5 Transient Phenomena in a Capacitor 
 
In an early analysis it has been demonstrated that in steady-state the impedance of a 
capacitor of dimensions similar to the typical wavelength is  

1 1( ) = ,tan( )cZ
j C

ω ωτω
ωτ

 (4.5.1) 

wherein = r r
a
c

τ ε μ  and C  is the “dc” 

capacitance. It is therefore natural to examine 
now the effect associated with the term 
tan( ) /ωτ ωτ  as expressed in the frequency domain, but “translated” into the time-
domain. For this purpose consider the circuit  
If we assume 1ωτ �  (static approach) it is well known that  

 0
/( ) = 1 ( )c

t RCV t V e h t−⎡ ⎤−
⎣ ⎦

    (4.5.2) 

and  

 0
0

1 / /= = = .cdV Vt RC t RCI C V C e e
dt RC R

− −  

 

 

0x =  x a=  

x  

z  

0z =  

z h=

rμ →∞
0V

R0t =
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Let us now account for the effect of r r
a
c

τ ε μ⎛ ⎞≡⎜ ⎟
⎝ ⎠

. It is convenient to solve the problem 

in the frequency domain. The voltage source may be represented by  

 ( )0
1( ) = ( )exp

2sV dtV h t j tω ω
π

∞

−∞

−∫     (4.5.3) 

therefore the current in the circuit is  

 ( ) ( )( ) = = .1( )
tan( )

s s

c

V VI
R Z R

j C

ω ωω ωτω
ω ωτ

+ +
    (4.5.4) 

The current is given by  

 ( )( ) = ( ) 1
tan( )

sVj t j tI t d I e d e
R

j C

ωω ωω ω ω ωτ
ω ωτ

∞ ∞

−∞ −∞

=
+

∫ ∫     (4.5.5) 

Using the explicit expression for ( )sV ω  [Eq. (4.5.3)]  
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1 1 1( ) = ( )
21 cot( )

( )1 1= ( ) .
2 1 cot( )

s

s

j t j tI t d e dt V t e
R j

CR
j t tedt V t d

R j
RC

ω ωω τ πωτ

ω
ω τπ ωτ

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

′−′ ′
−

′−
′ ′

−

∫ ∫

∫ ∫
   (4.5.6) 

Let us now define the Green’s function  

 
( )1( | ) =

2 1 cot( )

j t teG t t d
j
RC

ω
ω τπ ωτ

∞

−∞

′−
′

−
∫     (4.5.7) 

with it  

 1( ) = ( | ) ( ).sI t dt G t t V t
R

∞

−∞

′ ′ ′∫     (4.5.8) 

The next step is to simplify ( | )G t t′ :  
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( )
( )

( )( ) 2( ) 11 1 1( | ) = 1 1 /2 2 21 1
2 1 /1 1
2

j t t jj t t e eeG t t d d
RCj j je e e

RC RCj
j jRC e e

ω ωτω
ω ωτ τωτ ωτπ π ωτ

τ τ
ωτ ωτ

∞

−∞

′− −′− −
′ =

−− ⎛ ⎞ −+ + − ⎜ ⎟+⎝ ⎠−
−−

∫ ∫  

     (4.5.9) 
In terms of geometric series  

 
=0

1 =
1

∞

− ∑ ν

ν

ξ
ξ

    (4.5.10) 

 (provided | |< 1ξ ) it entails  

[ ]{ }

=0

=0

1 1 1 /( ) 2 2( | ) = (1 )
2 1 /1

1 1 /= ( 2 ) 2( 1) .
1 /1

RCj t t j jG t t d e e e
RC

RC
RC t t t t
RC

RC

ν

ν

ν

ν

τω ωτ ωτωτ π τ

τ δ ντ δ ν ττ τ

∞ ∞

−∞

∞

⎡ ⎤−′ ⎛ ⎞− − −′ − ⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦+

−⎡ ⎤ ′ ′− − − − − +⎢ ⎥+⎣ ⎦+

∑∫

∑ (4.5.11) 
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Substituting in Eq. (4.5.8) we get  

 

{ }

=0

1 1 /( ) =
1 /1

( 2 ) [ 2( 1) ]s s

RCI t R
RC

RC
V t V t

ν

ν

τ
τ τ

ντ ν τ

∞ −⎡ ⎤
⎢ ⎥+⎣ ⎦+

× − − − +

∑
         (4.5.12) 

0

=0

( ) = ( )

1 1 /= ( )
1 /1

{ ( 2 ) [ 2( 1) ]}.

c

s

s s

V t V RI t

RCV t
RC

RC
V t V t

ν

ν

τ
τ τ

ντ ν τ

∞

−

−⎛ ⎞− ⎜ ⎟+⎝ ⎠+

× − − − +

∑                (4.5.13) 

These two quantities are illustrated for a source corresponding 
to a step function i.e., 0( ) = ( )sV t V h t .  

  
 
 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
ur

re
nt

τ/t

3.0/ =RCτ

1.0/ =RCτ

1.0/ =RCτ

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1.0

τ/t

N
or

m
al

iz
ed

 V
ol

ta
ge

3.0/ =RCτ



Chapter 5   Coupling Phenomena 
 

One of the main differences between a classical particle and a field is that the former is 
highly localized in space whereas the latter may cover a large volume and, in fact, in the 
case of radiating field it may occupy an infinite volume. In the case of an antenna, for 
example, we use this fact in order to transmit information. However, there are cases in 
which the field property to permeate large distances may alter the performance of the 
system. For example, if we wish to dispatch a signal along a wire from point A to point 
B, and the entire information content were to flow  within the wire there would have been 
no problem. However, since as indicated in the past, the wire actually serves only to 
guide the current, whereas the power flows outside the wire (see discussion on Poynting's 
theorem), this signal may reach points that are not the designated ones. This problem 
becomes quite severe as the frequency range is increased. In order to gain insight into 
some problems inherent to signal transfer we consider in the present chapter three 
coupling phenomena: electro-quasi-static coupling, conduction coupling and finally 
magneto-quasi-static coupling. 
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5.1   Electro-Quasi-Static Coupling 
 

In many fast circuits the current is low, primarily, in order to keep the dissipated power to 
a minimum. Consequently, the typical magnetic energy stored in the structure is 
significantly lower in comparison to the electric energy. In the present section we 
examine the coupling process associated with such systems. 

  
5.1.1   General Formulation 
Let us commence by examining the arrangement 
reproduced in the Figure; it consists of a set of metallic 
surfaces is  (electrodes) on each one of which the voltage 

iV  is imposed. The volume in which the electrodes 
reside is confined by means of a grounded conducting 
surface 0s . Our first goal is to determine the electric 
field permeating in the enclosed space; for this purpose 
we have to solve Laplace's equation  

 2 = 0∇ φ     (5.1.1) 
subject to  

 = on ,j jV sφ     (5.1.2) 
where = 1,2j N… . 

 

( )1 1,s V
( )2 2,s V

( ),N Ns V

0V =

,1n N

G

,11n

G

,21n

G
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By virtue of the  linearity of Maxwell's equations we are able to 
subdivide the solution into a series of solutions, jφ , each satisfying 
the equations  

 2 = 0j∇ φ  
 

 
=

on
=

0 on .
j j

j
i j

V s
s

φ
⎧
⎨
⎩

    (5.1.3) 

By superposition, these solutions yield the complete solution, i.e.  
 = .j

j
∑φ φ     (5.1.4) 

Let us assume (for the moment) that jφ  is known and we wish to calculate the charge 
upon each surface. Since within the volume of each electrode considered the electric field 
vanishes, the surface charge density on the i 'th electrode is  

 , 01 ;n i E⋅
G G

ε     (5.1.5) 
the unit vector ,1n i

G
 being the normal to the surface pointing inside the volume where the 

field exists. Its total charge being therefore given by the relation  
 0 0= =

i
i s

q da E da⋅ − ⋅∇Φ∫∫ ∫∫
GG Gw wε ε     (5.1.6) 

 

( )1 1,s V
( )2 2, 0s V =

( ), 0N Ns V =

0V =

,1n N

G

,11n

G

,21n

G
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and based upon (5.1.4) we obtain:  

 
0

=1

0
=1

.

i

i

n

i js
j

n

js
j

q da

da

= − ⋅∇

= − ⋅∇

∑∫∫

∑ ∫∫

G

G

w

w

ε φ

ε φ
 (5.1.7) 

We are now able to define the  capacitance matrix  

 
=1

= ,
n

i ij j
j

q C V∑     (5.1.8) 

where  

 
0

i
js

ij
j

da
C

V

ε φ⋅∇
≡ −

∫∫
Gw

    (5.1.9) 

The result in (5.1.8) indicates that the charge at the thi  port depends on the voltage at the 
thj  port. In other words, the off-diagonal terms of the capacitance matrix represent the 

coupling coefficients of the system. 
With the capacitance matrix defined in (5.1.9) it is possible to evaluate the total energy in 
the system:  

  

 

( )1 1,s V
( )2 2, 0s V =

( ), 0N Ns V =

0V =

,1n N

G

,11n

G

,21n

G
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N

3
0 0

2
0 0

0

0

0
,

, ,

1 1= = [( ) ( )]
2 2

1 1= ( ) =
2 20

1 1= =
2 2

1 1= =
2 2

i

i

i

i

E

i s
i

i j i js s
i j i j

i j ij i j
i j i

s

i

j

j

j

j

W d x E E dv

dv V da

V da V da

V V C VV
da

V

C

ε ε φ φ

ε φ φ

ε φ

φ φ ε φ

ε φ ε φ

⋅ −∇ ⋅ −∇

⎡ ⎤
⎢ ⎥∇ ∇ − ∇ − ⋅∇

− ⋅∇

⎢ ⎥≡⎣ ⎦

− ⋅ ∇ − ⋅

≡

∇

∫ ∫

∑∫ ∫∫

∑ ∑ ∑∫∫ ∫∫

∑ ∑∫∫
G

���	��

G G

G

G




G

w

w

w w     (5.1.10) 

Comment 1. Based on this last result we shall demonstrate that the capacitance matrix is 
symmetric. Intuitively, this seems reasonable since it is well known from algebra that a 
quadratic form which involves a symmetric matrix is always positive and also, that the 
electric energy is defined positive. So, let us assume that on one of the ports ( )k  the 
voltage is increased by kdV  without changing the charge. Such a conceptual increment 
entails a change in the stored energy  
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=1

= = = .
n

E
E k k k kj j k

jk

WdW dV Q dV C V dV
V

⎡ ⎤∂
⎢ ⎥∂ ⎣ ⎦
∑     (5.1.11) 

According to (5.1.10) the charge in the stored energy is  

 
, =1

1= ( ) ,
2

n

E ij i j k
i j k

dW C VV dV
V

⎡ ⎤∂
⎢ ⎥∂⎣ ⎦
∑     (5.1.12) 

which may be simplified bearing in mind that = ,i
ik

k

V
V

δ∂
∂

 wherein ijδ  is the Kronicker 

delta function hence  

 
, =1 =1 =1

=1 =1 =1

1 1 1= ( ) =
2 2 2

1 1 1= = ( ) .
2 2 2

n n n

E ij ik j jk i k jk j ki i k
i j j i

n n n

jk j kj j k jk kj k
j j j

dW C V V dV C V C V dV

C V C V dV C C dV

δ δ
⎡ ⎤ ⎡ ⎤

+ +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

+ +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑
  (5.1.13) 

Comparing the right term of Eq. (5.1.11) with the last term in Eq. (5.1.13) leads to 
1( ) =
2 jk kj kjC C C+   and finally  

 , ,=j i i jC C     (5.1.14) 
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Comment 2. The diagonal terms of the capacitance are also called the self-capacitance. 
Clearly, it is defined as the ratio of the charge and voltage at a given port when all the 
other ports are grounded. Applying a positive voltage implies presence of positive charge 
on the specific electrode and negative charge on all the grounded electrodes. 
Consequently, the self-capacitance is always positive whereas the mutual-capacitance  is 
always negative ,( )i j iC ≠ .  
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5.1.2   A Simple Configuration 
In order to obtain an 

intuitive feeling about the 
physical processes involved we 
consider a set of plates as 
illustrated in the Figure and 
calculate the capacitance 
matrix by ignoring edge effects. 

 
The basic assumptions resorted to for the solution of our problem to a first order 
approximation are:   
1.  The system is “infinite” along the y -axis so that we may assume that  0y∂ ∼ .  
2.  Time variations are much lower than the time it takes a plane electromagnetic wave to 

traverse the structure; this may be formulated as 
2 2

2 2 | |c
t L

∂
∂
ψ ψ� , defining 

2
10

8
3 10= = 10 sec 0.1
3 10

L
c

−
−×

×
τ ∼ ∼  nsec, this assumption is valid as long as the highest 

frequency involved is much smaller than 10GHz� .  
3.  Fringe-effects are neglected.  

1d

x

z y

0x =

0z =

x L=

2d

w

l

1v

2v
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The first order field solution is taken as  
 

 

1

1 21 2

1 2

2 1 21

2

22

0 < <
0 < <

< <
=

< <

< <
0 < < .

z

x L lv
z d dd d

L l x Lv vE
d z d dd
L l x Lv

z dd

−⎧ ⎧
− ⎨⎪ ++ ⎩⎪
⎪ −⎧−⎪−⎨ ⎨ +⎩⎪
⎪ −⎧⎪− ⎨
⎪ ⎩⎩

                         (5.1.15) 

 
 
 

1d

x

z y

0x =

0z =

x L=

2d

w

l

1v

2v
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The energy stored in the electric field  

( )

2 22
1 1 2 2

0 1 2 1 22
1 21 2

2 2
1 0 1 2 0 2 0

1 2 1 1 1 2

1= ( )( )
2

1 1 1= 2 .
2 2 2

E
v v v vW w d d L l wd l wd l

d dd d

L l l l l lv w v v w v w
d d d d d d

⎧ ⎫⎛ ⎞ ⎛ ⎞−⎪ ⎪+ − + +⎨ ⎬⎜ ⎟ ⎜ ⎟
+ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎛ ⎞−
+ − + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥+⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎣ ⎦

ε

ε ε ε (5.1.16) 

Bearing in mind that 12 21=C C  we conclude that  

11 0 22 0 12 21 0
1 2 1 1 2 1

= , = , = = .L l l l l lC w C w C C w
d d d d d d

ε ε ε
⎛ ⎞ ⎛ ⎞−

+ + −⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
   (5.1.17) 

Note that the off-diagonal term of the capacitance matrix, is  linear in l ; it will be shown 
that it is this term which accounts for the cross-coupling. Let us stress, once more, the 
fact that a very simple configuration along with a much simplified solution were 
assumed, in order to obtain source insight into capacitive cross-coupling.  

1d

x

z y

0x =

0z =

x L=

2d

w

l

1v

2v
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5.1.3   Coupling and Fringe Effect 
In the previous example we have developed the 
capacitance matrix by ignoring fringes effect. In 
the present example revisit this problem by 
consider a three electrodes system. The lower plate 
is grounded, the inner electrode is connected to a 
voltage source 1V  being placed at a hight 1d  above the ground plate, extending from 
0 < <z ∞ ; finally, the third plate is placed at an elevation 1 2d d+  being kept at an 
imposed voltage 2V . Formally the solution of the Laplace equatio reads 

( )

( )

( )

2
=1 1 21 2 1 2 1 2

1
1 2 1 1

=1 1 1 22 2 2

1
=11 1 1

< 0
sin exp

0

> 0
= ( ) sin ( ) exp

< <

> 0
sin exp

0 < <

n
n

xz nz nV x I
z d dd d d d d d

xz dV V V z d x II
d z d dd d d

xz zV x III
zd d d

ν
ν

μ
μ

π πα

πν πνβ

πμ πμγ

∞

∞

∞

⎡ ⎤ ⎛ ⎞ ⎧
+ + = ⎨⎜ ⎟⎢ ⎥ ≤ ≤ ++ + + ⎩⎣ ⎦ ⎝ ⎠

⎡ ⎤ ⎛ ⎞ ⎧−
Φ + − + − − = ⎨⎜ ⎟⎢ ⎥ +⎩⎣ ⎦ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
+ − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑

∑

∑
1d

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪ ⎧⎪ ⎨
⎪ ⎩⎩

 

     (5.1.18) 
 
Note that to each region we attributed a different index. 

2d

1d

1V

2V

0x =
z

x

( )I

( )II

( )III
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Within the context of the previous formulation we take first 
2 1= 0, 0V V ≠  and determine (1) ( , )x zΦ :  

( )

( )

( )

1

=1 1 21 2 1 2

1(1) 1
1 1 1

=1 1 1 22 2 2

1
1

=1 11 1 1

< 0
sin exp

0

> 0
= sin ( ) exp

< <

> 0
sin exp

0 < <

n
n

xnz n x
z d dd d d d

xz dV V z d x
d z d dd d d

xz zV x
z dd d d

ν
ν

μ
μ

π πα

πν πνβ

πμ πμγ

∞

∞

∞

⎧ ⎡ ⎤ ⎛ ⎞ ⎧
+ ⎨⎪ ⎜ ⎟⎢ ⎥ ≤ ≤ ++ + ⎩⎣ ⎦ ⎝ ⎠⎪

⎪ ⎡ ⎤ ⎛ ⎞ ⎧−⎪Φ − + − −⎨ ⎨⎜ ⎟⎢ ⎥ +⎩⎣ ⎦ ⎝ ⎠⎪
⎪ ⎛ ⎞ ⎛ ⎞ ⎧⎪ + − ⎨⎜ ⎟ ⎜ ⎟⎪ ⎩⎝ ⎠ ⎝ ⎠⎩

∑

∑

∑

(5.1.19) 

further, we establish (2) ( , )x zΦ  by taking 1 = 0V  and 2 0V ≠ :  

( )

( )

( )

2
2

=1 1 21 2 1 2 1 2

2(2) 1
2 1

=1 1 1 22 2 2

2

=1 11 1

< 0
sin exp

0

> 0
= sin ( ) exp

< <

> 0
sin exp

0 < <

n
n

xz nz nV x
z d dd d d d d d

xz dV z d x
d z d dd d d

xz x
z dd d

ν
ν

μ
μ

π πα

πν πνβ

πμ πμγ

∞

∞

∞

⎧ ⎡ ⎤ ⎛ ⎞ ⎧
+ + ⎨⎪ ⎜ ⎟⎢ ⎥ ≤ ≤ ++ + + ⎩⎣ ⎦ ⎝ ⎠⎪

⎪ ⎡ ⎤ ⎛ ⎞ ⎧−⎪Φ + − −⎨ ⎨⎜ ⎟⎢ ⎥ +⎩⎣ ⎦ ⎝ ⎠⎪
⎪ ⎛ ⎞ ⎛ ⎞ ⎧⎪ − ⎨⎜ ⎟ ⎜ ⎟⎪ ⎩⎝ ⎠ ⎝ ⎠⎩

∑

∑

∑

 (5.1.20) 

2d

1d

1V

2V

0x =
z

x

( )I

( )II
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the overall electrostatic potential being the superposition of the two 
solutions, i.e. (1) (2)=Φ Φ +Φ .  In what follows we determine the 
overall potential. 
     Obviously the goal is to the three sets of amplitudes ( ), ,n ν μα β γ  and for this purpose 
we impose the boundary conditions. For this purpose we impose the boundary condition: 
continuity of the  potential at = 0x  and 1 20 < <z d d+ : 

1 1
=11 1

2
=11 2 1 2 1

1 2 1 1 1 1 2
2 2

sin 0 < <
sin =

( ) sin ( ) < < .
n

n

zV z z d
d dz nzV

d d d d z dV V V z d d z d d
d d

μ
μ

ν
ν

πμγ
πα

πνβ

∞

∞

⎧ ⎛ ⎞
+⎪ ⎜ ⎟

⎛ ⎞ ⎪ ⎝ ⎠+ ⎨⎜ ⎟+ + ⎡ ⎤−⎝ ⎠ ⎪ + − + − +⎢ ⎥⎪ ⎣ ⎦⎩

∑
∑

∑
     (5.1.21) 
Resorting to the orthogonality of the trigonometric function ( )1 2sin /nz d dπ⎡ ⎤+⎣ ⎦  . 

1 1
1 20 0

=11 2 1 2 1 2 1 1 2

1 2 2 11
1 2 1 2 1

1 1=12 1 2 1 2 2

2= sin sin sin

( ) sin sin ( ) sin

d d

n

d d d d

d d

z z nz z nzdz V V dz
d d h d d d d d d d

z d z nzdz V V V V dz z d
d d d d d d

μ
μ

ν
ν

π πμ πα γ

π πνβ

∞

∞+ +

⎧ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ − +⎨ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥+ + + +⎪ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

⎡ ⎤ ⎛ ⎞ ⎡ ⎤−
+ + − − + −⎜ ⎟⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎝ ⎠ ⎣ ⎦

∑∫ ∫

∑∫ ∫
1 2

nz
d d
π ⎫⎛ ⎞⎪

⎬⎜ ⎟+ ⎪⎝ ⎠⎭

2d

1d

1V

2V

0x =
z

x

( )I

( )II

( )III



 133

Continuity of xD  in  each aperture  first in 10 < <z d :  

 
1 1 2 2 1 2

sin = sinn
n

n nz z
d d d d d dμ

μ

πμ πμ π πγ α
⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
∑ ∑  

     (5.1.22) 
and  second in 1 2 1< <d z d d+ :  

 1
2 2 1 2 1 2

sin ( ) = sin .n
n

n nz d z
d d d d d dν

ν

πν πν π πβ α
⎡ ⎤ ⎛ ⎞

− − ⎜ ⎟⎢ ⎥ + +⎣ ⎦ ⎝ ⎠
∑ ∑     (5.1.23) 

We resort to the orthogonality of ( )1sin /z dπμ  in the first expression and to that of 
[ ]1 2sin ( ) /z d dπν −  in the second to get the next two algebraic:  

 11
0

=11 1 2 1 2 1

2 sin sin
d

n
n

d n ndz z z
d d d d d dμ

π π πμγ α
πμ

∞ ⎛ ⎞ ⎛ ⎞
= − ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

∑ ∫     (5.1.24) 

2 12
2

1=12 2 1 1 2 2

2 sin sin ( )
d d

n d
n

d n ndz z z d
d d d d d dν

π π πνβ α
πν

∞ + ⎛ ⎞ ⎡ ⎤
= − −⎜ ⎟ ⎢ ⎥+ +⎝ ⎠ ⎣ ⎦

∑ ∫   (5.1.25) 

Based on these expressions it is convenient to define the source term S
G

 and the matrices 
M  and N   

2d

1d

1V

2V

0x =
z

x

( )I

( )II

( )III
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1
1 20

1 2 1 2

1 2 1 2 1
1 2 1 2

1 2 1 2 1 2

sin
2

( ) sin

d

n
d d

d

z z nzdz V V
h d d d d

S
d d z d z nzdz V V V V

d d d d d

π

π+

⎧ ⎫⎡ ⎤ ⎛ ⎞
−⎪ ⎪⎜ ⎟⎢ ⎥+ +⎪ ⎣ ⎦ ⎝ ⎠ ⎪≡ ⎨ ⎬

+ ⎡ ⎤ ⎛ ⎞−⎪ ⎪+ + − − ⎜ ⎟⎢ ⎥⎪ ⎪+ +⎣ ⎦ ⎝ ⎠⎩ ⎭

∫

∫
 (5.1.26) 

1

0
1 2 1 1 2

2 sin sin
d

n
nM dz z z

d d d d dμ
πμ π⎛ ⎞ ⎛ ⎞

≡ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
∫     (5.1.27) 

1 2
1

11 2 2 1 2

2 sin ( ) sin .
d d

n d

nN dz z d z
d d d d dν

πν π+ ⎡ ⎤ ⎛ ⎞
≡ − ⎜ ⎟⎢ ⎥+ +⎣ ⎦ ⎝ ⎠

∫     (5.1.28) 

With these definitions we are able to write the boundary conditions in algebraic form  

 

=1 =1

=1

=1

n n n n

n n
n

n n
n

S M N

n M

n N

μ μ ν ν
μ ν

μ μ

ν ν

α γ β

γ α
μ

β α
ν

∞ ∞

∞

∞

= + +

= −

= −

∑ ∑

∑

∑

    (5.1.29) 

Substituting the last two relations  and defining the matrix  
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 ' '
=1 =1

' '
nn nn n n n n

n nU M M N Nμ μ ν ν
μ ν

δ
μ ν

∞ ∞

′ ′≡ + +∑ ∑  

we obtain =U Sα
GG  and consequently  

 1= .U Sα − GG     (5.1.30) 

The figure illustrates the 
contours of constant potentials 
for a given geometry at several 
applied voltages. 
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Once the amplitudes have been established, we proceed to the calculation of the 
capacitance matrix, trying to estimate, in particular, the impact of the edge effect. For this 
purpose, let us assume that the electrodes have a total length 2 xΔ  i.e. < <x xx−Δ Δ , thus 
bearing in mind that the x -component of the electric field is  

=1 1 21 2 1 2 1 2

1
=1 1 1 22 2 2

=1 11 1 1

< 0
sin exp

0

> 0
= sin ( ) exp

< <

> 0
sin exp

0 < <

n
n

x

xn nz n x
z d dd d d d d d

x
E z d x

d z d dd d d

xz x
z dd d d

ν
ν

μ
μ

π π πα

πν πν πνβ

πμ πμ πμγ

∞

∞

∞

⎧ ⎡ ⎤ ⎛ ⎞ ⎧
− + ⎨⎪ ⎜ ⎟⎢ ⎥ ≤ ≤ ++ + + ⎩⎣ ⎦ ⎝ ⎠⎪
⎪ ⎡ ⎤ ⎛ ⎞ ⎧⎪ − −⎨ ⎨⎜ ⎟⎢ ⎥ +⎩⎣ ⎦ ⎝ ⎠⎪
⎪ ⎛ ⎞ ⎛ ⎞ ⎧⎪ − ⎨⎜ ⎟ ⎜ ⎟⎪ ⎩⎝ ⎠ ⎝ ⎠⎩

∑

∑

∑

  

whereas its z  directed counterpart reads  

2
=1 1 21 2 1 2 1 2 1 2

2 1 1
=1 1 1 22 2 2 2

1
=11 1 1 1

< 01 cos exp
0

> 01= ( ) cos ( ) exp
< <

> 01 cos exp
0 <

n
n

z

xn nz nV x
z d dd d d d d d d d

x
E V V z d x

d z d dd d d d

xzV x
d d d d

ν
ν

μ
μ

π π πα

πν πν πνβ

πμ πμ πμγ

∞

∞

∞

⎡ ⎤ ⎛ ⎞ ⎧
+ + ⎨⎜ ⎟⎢ ⎥ ≤ ≤ ++ + + + ⎩⎣ ⎦ ⎝ ⎠

⎡ ⎤ ⎛ ⎞ ⎧
− − + − − ⎨⎜ ⎟⎢ ⎥ +⎩⎣ ⎦ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
+ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑

∑

∑
1<z d

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪ ⎧⎪ ⎨
⎪ ⎩⎩
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The total electric energy stored is given by  

1 2
2 2

0
0

2 2
1 1 2 2

1 2 2 2

2 2 2

=1 =1 =

1 2
0

1

1= [ ( , ) ( , )]
2

1 1 1 12
1=
2

2

.

d d x

y x z

x

x
x x

y

n
n

W dx E x z E x z

V VV V
d d d d

n

d d

ν μ
ν μ

π α νβ μγ

ε

ε
∞ ∞

Δ+

Δ

∞

−

Δ +

⎧ ⎫⎛ ⎞ ⎛ ⎞Δ
+ Δ − + +

⎡ ⎤
+ +⎢ ⎥

Δ⎪ ⎪⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠⎪ ⎪Δ ⎨ ⎬
⎪ ⎪+⎪ ⎪
⎩ ⎣ ⎦ ⎭

∑ ∑

∫

∑

∫
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Ignoring the edge effects one has therefore 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2d

1d

1V

2V

0x =
z

x

( )I

( )II

( )III

(0)
11

0 1 2

1 1=
x y

C
d dε
+

Δ Δ  

(0)
22

0 2 1 2

1 1=
x y

C
d d dε

+
Δ Δ +  

(0) (0)
12 21

0 0 2

1= =
x y x y

C C
dε ε

−
Δ Δ Δ Δ  
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However, when the edge effects are considered,  

 
11 1 2 22 1 2

2 2
12 1 2 11 1 22 2 =1 , =11 2

= 2 ( = 1 , = 0) = 2 ( = 0, = 1)
1 1= [ ( , ) ] .
2 2 V V V V

C W V V V C W V V

C W V V C V C V− −
     

Consequently, the relative error associated with neglection of edge effect is 

[ ] [ ] [ ]
(0) (0) (0)

11 11 22 22 12 12
11 22 12(0) (0) (0)

11 22 12

% 100 , % 100 , % 100.C C C C C CC C C
C C C

δ δ δ− − −
≡ × ≡ × ≡ ×

 
 

The figure on the right shows this error as a function of 
N  -- the number of harmonics used. Evidently, for the 
chosen parameters this error is typically less than 3%; a 
different set of parameters leads towards a different error 
percentage. 
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Exercise: Repeat the analysis in Section (5.1.3) for the configuration illustrated in the 
figure below. A three electrode system: the lower one is grounded on the central one at 
voltage 1V  is imposed and 2V  on the top electrode. Note that in each region the dielectric 
coefficient is different. 
 

 
 

 
 
 

 

1V

z

x

 
3ε  

2ε

 
1ε  

1d

 
2d

zΔ1V

2V
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5.1.4   Dynamics of Coupling Process 
 
We now briefly examine the implications of the off-diagonal term ( 12 =C −χ ) in the 

capacitance matrix; we refer to this term as the "coupling term'' or the so-called ``mutual 
capacitance''. The other terms 11 22= = gC C C . Consider two gates (1) and (2)  as 
illustrated in the figure below   

 
 
 
 
 
 

1 2

1V 2V

1G 2G gR

χ

gR

1V 2V

gC gC
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In principle, the two gates should not be coupled (see left frame); however due to the  
proximity of the two there exists a mutual capacitance ( )−χ  which means that the 
capacitance matrix is given by  

 1 1

2 2

= .g

g

Cq V
Cq V
−⎛ ⎞⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

χ
χ

    (5.1.31) 

Each gate is characterized here by its capacitance gC  and by its resistance gR ; 1q  and 2q  
being the charge on each gate. When considering the coupling between the gates, the 
equivalent circuit is represented by the right-hand frame. Let us now examine the 
equivalent circuit of the system for two different regimes of operation. 

 
Case 1: DC condition. 1 =I I , current is injected into the first gate. The voltage on the 
resistor which represents gate #1 is = gV iR . On the second resistor the current and the 
voltage are both zero; however, on the coupling capacitor ( )−χ  the voltage is V ; this 
implies that charge is being stored on that capacitor which may eventually affect the 
operation of the second gate. 
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Case 2: Transient condition. No current is being injected into the second gate; however, 
current pulse ( )pI  of duration pτ  is injected into the first one. Ignoring coupling, the 

voltage on the capacitor increases during the pulse duration and then decays ( )g g gR Cτ =   

 
( )

( )

1 exp / 0

1 exp / exp

p g g p

C p
p g p g p

g

I R t t

V t
I R t

τ τ

τ
τ τ τ

τ

⎧ ⎡ ⎤− − < <⎣ ⎦⎪⎪= ⎨ ⎛ ⎞−
⎡ ⎤− − − >⎪ ⎜ ⎟⎣ ⎦ ⎜ ⎟⎪ ⎝ ⎠⎩

    (5.1.32) 

 
When taking into consideration the coupling capacitor we may expect it to drain part of 
the current from Gate 1  

 

1 1 2 1
11 1

2 2
22 2

2 1

( )Gate 1: = =

Gate 2 : = =

( )= .

C R
g

C R
g

dV V d V VI I I I C
dt R dt

dV VI I I C
dt R

d V V
dt

−
+ + + −

+ +

−
−

χ

χ

χ

χ

 

In the above equations the indices 1 and 2 were introduced in order to emphasize the 
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relation to the specific gate. From the first equation we obtain  

 1 2 1( ) = ,g
dV dV VC I
dt dt R

+ − +χ χ     (5.1.33) 

whereas the second implies the relation  

 2 1 2( ) = 0.g
g

dV dV VC
dt dt R

+ − +χ χ     (5.1.34) 

From the last expression we see that 2V  is driven by the derivative of 1V , the driving term 
being proportional to χ :  

 2 2 1( ) = .g
g

dV V dVC
dt R dt

+ +χ χ     (5.1.35) 

In order to solve equations (5.1.33)–(5.1.34) it is convenient to define = / gCχ χ , 

= / g gt R Cτ , 1,2
1,2 =

o g

V
V

I R
, so that these equations may be rewritten as   

 ( )2 2 1
1 21 (1 ) = (1 )dV V V I

dt
⎡ ⎤+ − + + + +⎢ ⎥⎣ ⎦

χ χ χ χ χ     (5.1.36) 

 ( )2 2 2
2 11 (1 ) = .dV V V I

dt
⎡ ⎤+ − + + +⎢ ⎥⎣ ⎦

χ χ χ χ χ     (5.1.37) 
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For a solution of this set we assume the driving current to 
be given by  

 ( 2)
0( ) ( ) / = .I I I e ττ τ τ − −≡  

A set of solutions is illustrated in the Figure below, for 
three values of the coupling coefficient ( = 0.5,1.0,2.0)χ . 
We conclude that capacitive coupling may generate a 
substantial voltage on the adjacent gate. Note that this 
coupling is inversely proportional to the distance between 
the gates as shown in (5.1.17) i.e.  

 1
distance between gates

∝χ  
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5.2   Conductive Coupling 
 

In this section we examine the coupling process 
associated with the flow of electric currents due 
to the presence of electric fields. We shall 
formulate this coupling in terms of a 
conductance matrix similar to capacitance 
matrix introduced in the previous section.  

 
5.2.1   General Formulation 
Assumptions:   

1. 
2 2

2 2 | |c
t L

∂
∂
ψ ψ� .  

2. σ  is uniform in space.  
3. js′  surface of electrodes at which jv  is imposed.  
4. js′′  denotes the remainder of the surface at which the normal current density is 

specified. If this boundary is insulated, then the normal current component is zero.  
5. No sources reside inside the medium.  

 

1i

2i

1v

2v
σ

ad
ad

's

's
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As in the electro-quasi-static case, we rely upon the fact that = 0J∇⋅

G G
 and thus 

= 0E∇⋅
G G
σ  implying  

 [ ] = 0,∇⋅ ∇
G

σ φ     (5.2.1) 
or if σ  is uniform  

 2 = 0∇ φ     (5.2.2) 
subject to  

 
= on

1 = on .
i i

n i i

V s

J s

′

′′− ⋅ ∇
G
φ

σ φ
    (5.2.3) 

By virtue of the superposition principle we may once more write  

 
=1

= ,
n

j
j
∑φ φ     (5.2.4) 

where each jφ  satisfies the requirements  

 

2 = 0
on =

=
0 on = .

j

j i
j

i

V s i j
s i j

φ

φ

∇
′⎧

⎨ ′⎩

    (5.2.5) 

'
js  is defined as the area over which the i 'th electrode contacts the conducting material, 
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and therefore the current at the i th electrode is given by  
 = .i si

I da
′
∇ ⋅∫

Gσ φ     (5.2.6) 

In terms of (5.2.4) we may write    

 
=1 =1 =1

= = = ,
n n

i j j ij js si ij j j
I da da G V∇ ⋅∇∑ ∑ ∑∫ ∫

G Gσ φ σ φ     (5.2.7) 

where the  conductance matrix is given by  

 1=ij jsi j

G d a
V

σ φ
′

⋅ ∇∫
G     (5.2.8) 

Note that this relation is similar to the expression for ,i jC  in (5.1.9) with σ  replacing 0ε .  
The power dissipated therefore reads  

 
=1 ,

= = = .
n n

i i i ij j ij i j
i j i j

P I V V G V G VV∑ ∑ ∑ ∑     (5.2.9) 

In Appendix 5.A an example is presented based on 
the configuration in the right.  
 
 
 

1v

2v

σ

hz =

0=z

0=x ax =

0=xEa

z
x
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5.3   Magneto-Quasi-Static-Coupling 
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Consider a distribution of N  wires (see figure in the right) each 
one carrying a current nI , located at ( , )n nx y  and having a radius 

nR . The total current carried by the wires is zero  

=1

= 0,
N

n
n

I∑  (5.3.1) 

otherwise the magnetic vector potential describing the field 
components in the system, diverges. In other words these wires form a series of loops, or 
whatever distribution of wires we may have there is at least one wire that ensures the 
flow of the return current. The current density linked to this current distribution is given 
by  

 2
=1

( , ) = ( , )
N

n
z n

n n

IJ x y h x y
R∑π

   (5.3.2) 

wherein the step function is defined as  

 
2 2

2 2

1 ( ) ( ) <
( , ) =

0 ( ) ( ) > .
n n n

n

n n n

x x y y R
h x y

x x y y R

⎧ − + −⎪
⎨

− + −⎪⎩
 

The magnetic vector potential generated by this current distribution is  
 

 

( )1 1,R I

( )2 2,R I

( )3 3,R I

( ),N NR I
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2 2
2 2

22
0

2 2 2
=1 2 2

2

( ) ( ) 0 ( ) ( ) <
( , ) =

4 ( ) ( )1 ln ( ) ( ) <

n n
n n nN

nn n
z

n n n n
n n n

n

x x y y x x y y R
RI RA x y

R x x y y R x x y y
R

⎧ − + −
≤ − + −⎪

⎪− ⎨
⎡ ⎤− + −⎪ + ≤ − + − ∞⎢ ⎥⎪ ⎣ ⎦⎩

∑μ
π

 

     (5.3.3) 
here we resorted to the well-known result of a single wire  

 

2

0
2

2 2

1 0 <
4( ) =

1 1 ln < ,
4 2

z

r r aIA r
ra a a a r
a

⎧ ≤⎪⎪− ⎨
⎪ + ≤ ∞
⎪⎩

μ
π

 

a  being the radius of the wire after imposing ( = 0) = 0zA r  and assuming that zA  at =r a  
is continuous. 
Before we proceed to the evaluation of the inductance matrix it is important to emphasize 
the implications of the condition in (5.3.1) . Firstly, it is evident that in case of a single 
“infinite” wire the magnetic vector potential diverges for r →∞ . Consequently, any 
arbitrary distribution of wires that do not satisfy (5.3.1) leads to a diverging magnetic 
vector potential.  
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With the magnetic vector potential established, we may proceed to the evaluation of the 
magnetic energy stored in an element zΔ   

 2 20= .
2M z x yW dx dy H H

∞ ∞

−∞ −∞

⎡ ⎤Δ +⎣ ⎦∫ ∫
μ     (5.3.4) 

Since the magnetic field components are given by  

 
0 0

1 1, ,z z
x y

A AH H
y xμ μ

∂ − ∂
= =

∂ ∂
    (5.3.5) 

 the total magnetic energy may be evaluated by substituting in  (5.3.4)  

 { }

2 2

0

2

0

=
2

1= ( ) ,
2

z z z
M

z z z z

A AW dx dy
y x

dv A A A A

∞ ∞

−∞ −∞

⊥ ⊥ ⊥

⎡ ⎤⎛ ⎞Δ ∂ ∂⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

∇ ⋅ ∇ − ∇

∫ ∫

∫
G

μ

μ
    (5.3.6) 

wherein ⊥∇  is the corresponding 2D operator. As indicated above, the condition in  
(5.3.1) implies that the contribution of the first term in the curled brackets is zero.  
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For proving this statement we use Gauss' mathematical theorem  
 ( ) = ( )z z z z

r

dv A A da A A⊥ ⊥ ⊥∇ ⋅ ∇ ⋅ ∇∫ ∫∫
G Gw  

The surface integral in the right hand side has two contributions; the first is associated 
with longitudinal variations  

 
N N

2 2

0 0 0 0

= =0

,

0 0

z z
z z

z zz

A Ad drr A d drr A
z z

∞ ∞

Δ

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥∂ ∂

−⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥∂ ∂⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥
≡ ≡⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

∫ ∫ ∫ ∫
π π

φ φ  

and it is identically zero.  The second term 
2

0

z
z z

r

Ar d A
r

→∞

⎧ ⎫∂⎡ ⎤Δ⎨ ⎬⎢ ⎥∂⎣ ⎦⎩ ⎭
∫
π

φ vanishes since = 0n
n

I∑  

implying that ( ) = 0zA r →∞ . Consequently, (5.3.4) is simplified to read  

 2

0

= ( )
2

z
M z zW dx dyA A

∞ ∞

⊥
−∞ −∞

Δ
− ∇∫ ∫μ

   (5.3.7) 

and with Poisson equation in mind, 2
0=z zA J⊥∇ −μ , we finally obtain  

 = .
2

z
M z zW dx dyA J

∞ ∞

−∞ −∞

Δ
∫ ∫  (5.3.8) 
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Exercise: Show that in general in the framework of the magneto-quasi-static regime the 

magnetic energy is given by .MW dx dy dzA J
∞ ∞ ∞

−∞ −∞ −∞

∝ ⋅∫ ∫ ∫
G G

 Determine the exact proportionality 

factor.  Repeat the exercise for electro-quasi-statics and show that .EW dx dy dzφρ
∞ ∞ ∞

−∞ −∞ −∞

∝ ∫ ∫ ∫  

Find the proportionality factor in this case too. 
 
   
 
Now back to our original problem. Substituting Eqs. (5.3.2)-(5.3.3) we obtain  

 
2

0
2 2

=1 =1

1= ( 1) ( , ) ( , )
2 4

N N
n n m

M z n n
n mn m

I R IW dx dy F x y h x y
R R

μ
π π

∞ ∞

−∞ −∞

⎡ ⎤ ⎡ ⎤
Δ −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ∑∫ ∫   (5.3.9) 

wherein  
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2 2
2 2 2

2

2 2
2 2 2

2

( ) ( ) 0 ( ) ( ) <
( , )

( ) ( )1 ln ( ) ( ) < .

n n
n n n

n
n

n n
n n n

n

x x y y x x y y R
R

F x y
x x y y R x x y y

R

⎧ − + −
≤ − + −⎪

⎪≡ ⎨
⎡ ⎤− + −⎪ + ≤ − + − ∞⎢ ⎥⎪ ⎣ ⎦⎩

 

In terms of the currents in the system the total energy stored in the system is  

 
, =1

1= ,
2

N

M nm n m
n m

W U I I∑    (5.3.10) 

wherein  

 
2

0
, 2 0

0

= ( cos , sin ).
(2 )

Rmz
n m n m m

m

U d drrF x r y r
R

− Δ
+ +∫ ∫

πμ
φ φ φ

π
   (5.3.11) 

For =n m the integral can be calculated analytically the result being  
2 42

0 0 0
, 2 2 2 2

0 0

= = 2 = .
(2 ) (2 ) 4 8

Rn
z z n z

n n
n n n n

RrU d drr
R R R R

− Δ − Δ − Δ
∫ ∫
πμ μ μ
φ π

π π π
   (5.3.12) 

In the Appendix 5.B it is shown that the off-diagonal terms ( )n m≠  are given by  

 0
, = 2 4 ln

8
z nm

n m
n

DU
R

⎡ ⎤⎛ ⎞Δ
− +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

μ
π

   (5.3.13) 
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2 2= ( ) ( )nm n m n mD x x y y− + −  denotes the distance between (center) of 
two wires, thus 

 0
,

1 =
=

2 4 ln .8
z

n m nm

n

n m
U D n m

R

⎧
Δ ⎪− ⎛ ⎞⎨ + ≠⎜ ⎟⎪

⎝ ⎠⎩

μ
π

 

With the exception of the general statement regarding convergence of the magnetic 
vector potential ( )zA  we have not used the condition  (5.3.1). This is the stage that we 
may calculate the self as well as the mutual inductance of a realistic system. Consider a 
three wires system and without significant loss of generality let us assume that the wire 
#3 is the return path of the current i.e. 3 1 2=I I I− −  thus  

 

2 2 2
11 1 22 2 33 3 12 21 1 2

13 31 1 3 23 32 2 3

2
11 1 12 1 2 22 2 2

( )1=
2 ( ) ( )
1 2
2

M
U I U I U I U U I I

W
U U I I U U I I

I I I I I

⎡ ⎤+ + + +
⎢ ⎥
+ + + +⎣ ⎦

⎡ ⎤≡ + +⎣ ⎦L L L     (5.3.14)  

  
hence  

 

( )1 1,R I

( )2 2,R I

( )3 3,R I
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11 11 33 13 31

22 22 33 23 32

12 33 12 21 13 31 23 32

= ( )
= ( )

2 = 2 ( ) ( ).

U U U U
U U U U

U U U U U U U

+ − +
+ − +
+ + − + − −

L
L
L     (5.3.15) 

In our special case 0
11 22 33 0= = =

8
zU U U L μ

π
Δ

= − −  hence  

130 0 0 13 23
11 22 12

121 3 2

23

33

1 1 1ln , ln , 2 ln
4 4 4

z z z D D
DR R R R

D D
R

μ μ μ
π π π

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤⎛ ⎞Δ Δ Δ
= + = + = +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

L L L

The matrix  

 11 12

=
21 22

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

L L
L

L L
   (5.3.16) 

is the inductance matrix with 12 21=L L .  
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Appendix 5.A: Example of Mutual Conductance 
 

Resorting to the superposition principle we establish 
the field in this system, assuming 2 = 0v :  

 2
1 = 0∇ φ (5.A.1) 

subject to the following boundary conditions 

 

( )
( )
( )
( )

1

1

1 1

1

0, 0

, 0 0

,

, 0x

x z

x z

x z h V

x a z

φ

φ

φ

φ

= =

= =

= =

∂ = =

   (5.A.2) 

thus 1 sinh( ) jkx jkxkz Ae Beφ − +⎡ ⎤∝ +⎣ ⎦  and  

 
1

1

=

( = 0) = 0 = 0

= 0 = 0.jka jka

x a

x A B

Ae Be
x

φ
φ − +

⇒ +

∂
⇒ −

∂

   (5.A.3) 

The latter is a direct result of the fact that ( = ) = 0 ( = ) = 0x xJ x a E x a⇒ . These 
expressions imply that  

1v

2v

σ

hz =

0=z

0=x ax =

0=xEa

z
x
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 cos( ) = 0 = ; = 0, 1, 2
2

ka ka n n⇒ + ± ±
π π    (5.A.4) 

Thus, after having imposed three out of four boundary conditions, we have  

 1
=0

( , ) = sinh sin .
2 2n

n

z xx z A n n
a a

∞ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ π πφ π π     (5.A.5) 

On the electrode a voltage 1V  is imposed, thus 1 1( , = ) =x z h Vφ , or explicitly  

1 1
=0

= ( , = ) = sinh sin (2 1) .
2 2n

n

h xV x z h A n n
a a

∞ ⎡ ⎤⎛ ⎞ ⎡ ⎤+ +⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
∑ π πφ π     (5.A.6) 

Taking advantage of the orthogonality of the trigonometric functions one can show (it is 
recommended to do so) that  

 1 4/=
2 1sinh (2 1)

2

n
VA

hn n
a

π

π+ ⎡ ⎤+⎢ ⎥⎣ ⎦

    (5.A.7) 

so that  

1 1
=0

sinh (2 1)
4 1 2( , ) = sin (2 1) .

2 1 2sinh (2 1)
2

n

z n
xax z V n

hn an
a

∞
⎡ ⎤+⎢ ⎥ ⎡ ⎤⎣ ⎦ +⎢ ⎥+ ⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

∑
π

πφ
π π

    (5.A.8) 
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By a similar approach, one may calculate the potential for the case 1 = 0V . The result is 
actually straightforward since one has only to replace 1v  with 2v , and instead of z  one 
takes the difference, h z− , so that  

2 2
=0

( )sinh (2 1)
4 1 2( , ) = sin (2 1) .

2 1 2sinh (2 1)
2

n

h z n
xax z V n

hn an
a

∞

−⎡ ⎤+⎢ ⎥ ⎡ ⎤⎣ ⎦ +⎢ ⎥+ ⎡ ⎤ ⎣ ⎦+⎢ ⎥⎣ ⎦

∑
π

πφ
π π

   (5.A.9) 

Based upon the definition of the conductance matrix in (5.2.8), we conclude that the 
mutual conductance is given by   

 

2
12 20 0

=0=2 2

=0

(2 1)4 2= = sin (2 1)
2(2 1)sinh (2 1)

2
4 1 1= ( ) cos (2 1) 1

2 2(2 1)sinh (2 1)
22

a ay y

nz h

y

n

n xaG dx V dx n
hV z V an n
a

n
ha nn

aa

π
σ σφ π

π π

σ π π
ππ π

∞

∞

+Δ Δ∂ ⎡ ⎤+⎢ ⎥∂ ⎡ ⎤ ⎣ ⎦+ +⎢ ⎥⎣ ⎦
Δ ⎡ ⎤× − + −⎢ ⎥⎡ ⎤ ⎣ ⎦++⎢ ⎥⎣ ⎦

∑∫ ∫

∑  

     (5.A.10) 



 161

i.e.  

 12
=0

4 1= .
(2 1)sinh (2 1)

2

y

n
G

hn n
a

σ
π π

∞Δ

⎡ ⎤+ +⎢ ⎥⎣ ⎦

∑     (5.A.11) 

1.  The result includes edge effects (infinite number of eigen-functions).  
2.  If only the first term is considered, i.e. ( / )h a  is sufficiently large, then  

 1
1,2

8
sinh

2
y hG

a
σ

π
π

−Δ ⎛ ⎞
⎜ ⎟
⎝ ⎠

�  

which implies that the mutual conductance decays exponentially with the ratio h
a

.  

Comment 1. In analogy to the case analyzed under the heading of ``mutual capacitance'', 
the mutual conductance may couple between two or more ports. 
Comment 2. The self-conductance iiG  is always positive. 
Comment 3. The mutual-conductance ,[ ]i j iG ≠  is also always positive. In order to 
understand this statement envision the case that on one port we apply a positive voltage 
all the others being grounded. With no exception the current at all ports must be positive, 
therefore , > 0i j iG ≠ .  
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Appendix 5.B: Off-diagonal terms of the matrix 
=

U  
 
The off-diagonal term is given by  

 

2
0

, 2 2
0 0

2 2 2
0

2 2 2
0 0

2 2
0

2 2 2
0 0

2= ( cos , sin )
2(2 )

( cos ) ( cos )2= 1 ln
8

2 cos( )2= 1 ln
8

Rm
z

n m n m m
m

Rm
z m n m n

m n

Rm
z nm nm

m n

U d drrF x r y r
R

x x r y y rd drr
R R

D r rd drr
R R

π

π

π

μ φ φ φ
π

μ φ φφ
π

μ φ φφ
π

Δ
− + +

⎧ ⎫⎡ ⎤− Δ − + + − +⎪ ⎪+⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤− Δ + + −⎪ ⎪+⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫

∫ ∫

∫ ∫ ,  

     (5.B.1) 

wherein 2 2= ( ) ( )nm n m n mD x x y y− + −  and , = arctan n m
n m

n m

y y
x x

⎛ ⎞−
⎜ ⎟−⎝ ⎠

φ . 

Bearing in mind that  

 
2

=1

1 cos( )ln =
1 2 cos

∞⎡ ⎤
⎢ ⎥

+ −⎢ ⎥⎣ ⎦
∑ ν

ν

νψ ξ
νξ ξ ψ

    (5.B.2) 
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we conclude that  

 

2 2

2 2

2

2
=1

ln 1 2 cos( )

cos[ ( )]= ln 2 .

nm
nm

n nm nm

nm nm

n nm

D r r
R D D

D r
R D

∞

⎧ ⎫⎡ ⎤
+ − −⎨ ⎬⎢ ⎥

⎣ ⎦⎩ ⎭

⎛ ⎞ ⎛ ⎞−
−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑

ν

ν

φ φ

ν φ φ
ν

    (5.B.3) 

The integration over φ  is straightforward therefore,  

 0
, = 2 4 ln .

8
z nm

n m
n

DU
R

⎡ ⎤⎛ ⎞− Δ
+⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

μ
π

    (5.B.4) 



Chapter 6   Some Fundamental Theorems 
 

In this chapter we further investigate three fundamental concepts associated with 
Maxwell’s equations: the first is the  linearity of Maxwell's equations allowing one to 
resort to the principle of  superposition by representing each source in the form of a 
distribution of point-like sources leading, in turn to the total solution being represented by 
the sum of solutions of each individual point-source. The second basic topic to be 
considered, is  uniqueness of a given solution within the framework of a static or quasi-
static regime. The question in this case is the following: let us assume that by some 
means we have found a certain solution. How do we know it to be the only one? The 
uniqueness theorem shows that once a solution has been found, it is unique and any other 
solution is just a different  representation of the same solution. The third concept 
considere, is the concept of reprocity. 
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6.1   Green's Theorem 
 

In this section we shall examine some implications of the linearity of Maxwell's 
equations. The first step is to note that they are  first order partial vector differential 
equations  

 
0 0

0 0

= , = 0

= , = ,

E H H
t

H J E E
t

μ μ

ε ε ρ

∂
∇× − ∇ ⋅

∂
∂

∇× + ∇ ⋅
∂

    (6.1.1) 

which may be written in the form of a  second order differential equation by following 
the next steps: 
Step I: taking the curl of Faraday law we get   

2

0 0 2 2

1( ) = ( ) ( ) .E H E J E
t t c t

μ μ∂ ∂ ∂
∇× ∇× − ∇× ⇒ ∇× ∇× = − −

∂ ∂ ∂
  (6.1.2) 

Step II: in a Cartesian system of coordinates  
22

2

0 2 2( ) = 1 .) (( ) =E E J E
t t

E
c

E E μ ∂ ∂
⇒ ∇ ∇⋅∇× ∇× ∇ ∇ ⋅ − − − −

∂ ∂
∇ ∇   (6.1.3) 
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Step III: Introducing now Gauss' law 0( = )E∇⋅ε ρ  one obtains the relation  

 
2

2
0 2 2

0

1= JE E
t c t

⎛ ⎞ ∂ ∂
∇ −∇ − −⎜ ⎟ ∂ ∂⎝ ⎠

ρ μ
ε

    (6.1.4) 

Step IV: We substitute the result in Eq.(6.1.4) in Eq.(6.1.3) so that finally  

 
2

2
02 2

0

1 1= .JE
c t t

μ ρ
ε

⎡ ⎤∂ ∂
∇ − + ∇⎢ ⎥∂ ∂⎣ ⎦

    (6.1.5) 

Exercise: Show that in a similar way, starting from Ampere’s equation we obtain the 
following expression for the magnetic field:  

 
2

2
2 2

1 = .H J
c t

⎡ ⎤∂
∇ − −∇×⎢ ⎥∂⎣ ⎦

    (6.1.6) 

These are non-homogeneous vector wave equations. In the past we have demonstrated 
forr the potential functions similar equations, one being a vector equation  

 
2

2
02 2

1 = ,A J
c t

⎡ ⎤∂
∇ − −⎢ ⎥∂⎣ ⎦

μ     (6.1.7) 

whereas the other being a scalar equation  

 
2

2
2 2

0

1 = .
c t

⎡ ⎤∂
∇ − −⎢ ⎥∂⎣ ⎦

ρφ
ε

    (6.1.8) 
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Within the framework of quasi-static approximations we may limit the discussion to  

 2 2
0

0

1= and =JE H J
t

∂
∇ + ∇ ∇ −∇×

∂
μ ρ

ε
    (6.1.9) 

or  

 2 2
0

0

= and = ,A J∇ − ∇ −
ρμ φ
ε

    (6.1.10) 

which are all equations of the Poisson type, i.e.  
 2 = ( , , ),s x y z∇ −ψ     (6.1.11) 

wherein ( , , )x y zψ  represents either one of the Cartesian components of the vectors ,E H  
or A or the scalar electric potential φ ; ( , , )s x y z  stands for the corresponding source term 
of the Poisson equation.  
 
Before turning to the general approach, we illustrate a simple case: consider a single 
point charge iq  located at ir  i.e., = ( )iq r r− −ρ δ  . Its potential in free-space is well 
known to be given by  

( ) ( ) ( )2 2 2
0 0

1 1( ) = ,
4 | | 4

i i
i

i i i i

q qr
r r x x y y z z

φ
πε πε

=
− − + − + −

    (6.1.12) 
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 Potential generated by a point-charge and several point-charges at a given place.  

 
 
and therefore a distribution of discrete particles generates a potential  

 
0

1( ) = ( ) = .
4 | |

i
i

i i i

qr r
r r−∑ ∑φ φ

πε
    (6.1.13) 

If in a unit volume VΔ  there is an infenitisimal charge qΔ  such that we may postulate the 
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charge density = q
V

ρ Δ
Δ

 one may replace the sum by an integral:  

 .... ..... = .....i
i

dqq dV dV
dV

ρ→∑ ∫ ∫  

or explicitly, for a continuous distribution ( )rρ , the summation is replaced by  
 

( ) ( ) ( )2 2 2
0 0

1 ( ) 1 ( ', ', ')( ) = ' ' ' ,
4 | | 4 ' ' '

'
'

'
r x y zr dr dx dy dz

r r x x y y z z

ρ ρφ
π ε επ

=
− − + − + −

∫ ∫  

     (6.1.14) 
wherein we represent the volume of integration by 'dr , a notation which will turn out to 
be more convenient for the approach that follows. 
 
Comment: Note the similarity to the transfer function. 
 
The last expression is the so-called Green's function associated with Poisson's equation 
[Eq.(6.1.10)] in the boundless, i.e.  

 1( | ) = .
4 | |

'
'G r r

r r−π
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Let us now return to the general approach. We employ the superposition principle in the 
sense that any source ( , , )s x y z  may be “divided” into a distribution of point-sources. We 
denote by G  the field “generated” by such a point charge subject to the  boundary 
conditions of the original problem. In other words if we denote by sr  the location of the 
source then G  satisfies the equation  

 2 ( | ) = ( ).s sG r r r r∇ − −δ     (6.1.15) 
Two comments are of importance: 
1. Integration of the right-hand side of (6.1.15) over the entire volume leads to -1. 
2. According to its definition, G  is symmetric with respect to the two variables  

 ( | ) = ( | ).s sG r r G r r       (6.1.16) 
To proceed, we now multiply (6.1.11) by G  and  (6.1.12) by ψ . The resulting two 
expressions are subtracted, i.e.  

2 2( | ) ( ) ( ) ( | ) = ( | ) ( ) ( ) ( )s s s s s s s s s sG r r r r G r r G r r s r r r r∇ − ∇ − + −ψ ψ ψ δ   (6.1.17) 
Integrating now over the whole space (with respect to the variable with index s - source), 
one obtains the relation  

2 2[ ( | ) ( ) ( ) ( | )] = ( | ) ( ) ( ) ( )

= ( | ) ( ) ( ).

s s s s s s s s s s s s s

s s s

dV G r r r r G r r dV G r r s r dv r r r

dV G r r s r r

ψ ψ ψ δ

ψ

∇ − ∇ − + −

− +

∫ ∫ ∫
∫

 

Using the fact that 2 = ( )s s s s sG G G∇ ∇ ⋅ ∇ −∇ ⋅∇ψ ψ ψ  we now obtain that  
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[ ]

2 2[ ( | ) ( ) ( ) ( | )]

( | ) ( ) ( | ) ( )

s s s s s s s

s s s s s s s s
s

dV G r r r r G r r

G r r r G r r r
dV

ψ ψ

ψ ψ

∇ − ∇

∇ ⋅ ∇ − ∇ ⋅∇
=

∫

∫ [ ]( ) ( | ) ( ) ( | )s s s s s s s sr G r r r G r rψ ψ−∇ ⋅ ∇ + ∇ ⋅∇

{ }= ( | ) ( ) ( ) ( | )s s s s s s s sdV G r r r r G r rψ ψ

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

∇ ∇ − ∇∫

  (6.1.18) 

resorting now to Gauss’ mathematical theorem, i.e.  

 [ ]

2 2( | ) ( ) ( ) ( | )

( | ) ( ) ( ) ( | )

[ ( | ) ( ) ( ) ( | )]

s s s s s s s

s s s s s s s s

s s s s s s s

dV G r r r r G r r

dV G r r r r G r r

da G r r r r G r r

ψ ψ

ψ ψ

ψ ψ

⎡ ⎤∇ − ∇⎣ ⎦

= ∇ ⋅ ∇ − ∇

= ⋅ ∇ − ∇

∫
∫
∫∫

    (6.1.19) 

we obtain the relation  
( ) = ( | ) ( ) [ ( | ) ( ) ( ) ( | )]s s s s s s s s s sr dv G r r s r da G r r r r G r r+ ∇ − ∇∫ ∫∫ψ ψ ψ   (6.1.20) 

and with (6.1.16) one finally finds that  
( ) = ( | ) ( ) [ ( | ) ( ) ( ) ( | )].s s s s s s s s s sr dv G r r s r da G r r r r G r rψ ψ ψ+ ∇ − ∇∫ ∫∫  (6.1.21) 
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This is the scalar Green's theorem and several comments are now in order:   
1. ( | )sG r r  is called Green's function of the specific problem.  
2. In a sense, ( | )sG r r  is the equivalent of a matrix since if we identify the continuum 

integration with a discrete summation we can write  
 = ( ) = ( = | = ) ( = )i i i j j ij j

j i
r G r r r r s r r G s′ ′ ≡∑ ∑ψ ψ  

3. Even if the source term is zero ( = 0)s , ψ  is not necessarily zero provided that at 
some boundary ψ  or ∇ψ  are nonzero [Neumann or Derichlet conditions].  

4. We may generalize (6.1.21) to include slow time-variation of the source terms. Since 
the geometric parameters are typically much smaller than the characteristic 
wavelength of the electromagnetic field, the ``information'' traverses the 
device/system instantaneously; therefore, in the quasi-static case (6.1.21) reads  

( , ) = ( | ) ( , ) [ ( | ) ( , ) ( , ) ( | )].s s s s s s s s sr t dv G r r s r t da G r r r t r t G r rψ ψ ψ+ ∇ − ∇∫ ∫∫  
     Here the time t  is no more than a parameter.  
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6.2   Magneto-Quasi-Static Example 
 

In order to illustrate the concepts presented in the previous 
section we examine the magnetic field linked to a current flowing 
in a metallic strip of width b  its center being located at 

, 0x d z= = ; the flow is in the y-direction.  The electromagnetic 
field is confined between two plates consisting of a fictitious 
material of “infinite” conductivity; their separation is denoted by 
a. Our goal is to characterize the system namely, to determine its 
inductance, employing the approach introduced above.  

  
 

The basic assumptions, relevant to the model   
1. A current density ( , , )yJ x z t  is imposed.  
2. No variations along the y  axis, i.e. 0y∂ � .  
3. σ →∞  on the two walls implies zero magnetic vector potential i.e. ( = 0, ; ) = 0yA x a z .  

4. Magneto-quasi-statics 1a
c

⇒
ω � .  

 

a

d

x

yz

b
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A current density in the y  direction is linked to a y -component of the magnetic vector 
potential  

 
2 2

02 2 ( , , ) = ( , , ).y yA x z t J x z t
x z

⎡ ⎤∂ ∂
+ −⎢ ⎥∂ ∂⎣ ⎦

μ     (6.2.1) 

Following Green’s function approach we shall calculate the function ( , , )s sG x z x z  which 
is a solution of  

 

2 2

2 2

1( , , ) = ( ) ( )

( 0, , , ) 0

s s s s
y

s s

G x z x z x x z z
x z

G x a z x z

δ δ
⎡ ⎤∂ ∂

+ − − −⎢ ⎥∂ ∂ Δ⎣ ⎦
= =

    (6.2.2) 

It is convenient to express the function in terms of a complete set of orthogonal functions 
that satisfy the boundary condition  

 
=1

( , , ) = ( , )sin .s s n s s
n

nxG x z x z g z x z
a

π∞ ⎛ ⎞
⎜ ⎟
⎝ ⎠

∑      (6.2.3) 

After ensuring the the boundary conditions are satisfied we proceed to ensure that the last 
expression satisfies (6.2.2) thus   

22

2

1( , )sin = ( ) ( ).n s s s s
n y

d n nxg z x z x x z z
dz a a

π π δ δ
⎡ ⎤⎛ ⎞ ⎛ ⎞− − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ Δ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑   (6.2.4) 
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Use of the orthogonality of the trigonometric functions leads to  
22

2

2 1 1( , ) = sin ( ) ( ).s
n s s s n s

y y

nxd n g z x z z z z z
dz a a a

ππ δ χ δ
⎡ ⎤ ⎛ ⎞⎛ ⎞− − − = − −⎢ ⎥⎜ ⎟ ⎜ ⎟ Δ Δ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

  

          (6.2.5) 
and it is left as an exercise to demonstrate that the solution of the last equation is 

 ( , ) = exp .
2

n
n s s s

ng z x z z zn a
a

χ π
π

⎛ ⎞− −⎜ ⎟
⎝ ⎠

 (6.2.6) 

 Since the resulting Green’s function 

 
=1

sin sin
1 2( , , ) = exp

2

s

s s s
ny

nxnx
na aG x z x z z zna a

a

ππ
π

π

∞
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ − −⎜ ⎟Δ ⎝ ⎠
∑  (6.2.7) 

  
satisfies the boundary condition, the magnetic vector potential is given by 
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( ) ( )

( )

0
0

0
=1 0

, ( , , ) ,

sin
2 sin exp ,

2

a

y s y s s s y s s

a
s

s s s y s s
n

A x z dx dz G x z x z J x z

nx
nx na dx dz z z J x zna a a

a

μ

π
π πμ π

∞

−∞

∞∞

−∞

= Δ

⎛ ⎞
⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠= − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∫ ∫

∑ ∫ ∫
(6.2.8) 

Now that we have a general expression for the potential we may proceed to calculate the 
inductance. For this purpose we determine the magnetic energy bearing in mind that the 
current in the strip is  

 ( )
0

,
a

s s y s sI dx dz J x z
∞

−∞

= ∫ ∫  (6.2.9) 

and since the magnetic energy is  

 ( ) ( )2

0

1 1 , ,
2 2

a

M y y yW LI dx dzA x z J x z
∞

−∞

= = Δ∫ ∫  (6.2.10) 

we conclude that  
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( ) ( )

( )

( ) ( )

( )

( )

0 0 0
02 2

0 0

=10 0

0

, , , ( , , ) ,

, ,

sin sin
2,

a a a

y y y s s y s s y s s

a a
y

s s y s s s s y s s

s
a a

y s s
n

dx dzA x z J x z dx dzJ x z dx dz G x z x z J x z
L

dx dz J x z dx dz J x z

nxnx
a adx dzJ x z dx dz

a

μ

ππ

μ

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞

−∞ −∞

∞ ∞ ∞

−∞ −∞

⎡ ⎤Δ⎣ ⎦
= =

Δ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

=

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∑∫ ∫ ∫ ∫ ( )

( )
2

0

exp ,
2

,

s y s s

a

s s y s s

n z z J x zn a
a

dx dz J x z

π
π

∞

−∞

⎡ ⎤
⎟⎢ ⎥⎛ ⎞⎢ ⎥− −⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦
∫ ∫

  (6.2.11) 
For simplicity sake, let us assume that the strip is extremely narrow in the vertical 
direction and the current is uniform in the horizontal direction or explicitly, 

 ( ) ( )
1 / 21,
0 / 2y

x d b
J x z I z

x d bb
δ

⎧ − <
= ⎨ − >⎩

 (6.2.12) 

implying 
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2/ 2

=10 / 2

2 2

=1

1 1 1 sin

4 1 1sin sinc
2

d b

ny d b

n

L nxdx
n b a

d bn n
n a a

π
μ π

π π
π

+∞

−

∞

⎡ ⎤⎛ ⎞= ⎢ ⎥⎜ ⎟Δ ⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∫

∑
 (6.2.13) 

  
The figure below shows that maximum inductance occurs for / 2d a=  - for a symmetric 
configuration. In this case numerical 
evaluation shows that  

0

20.6 ln
3y

L b
aμ

⎛ ⎞− ⎜ ⎟Δ ⎝ ⎠
 (6.2.14) 

 
 
 
Exercise: Repeat this evaluation for the case 
when the strip is vertical  rather than 
horizontal. 
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6.3   Uniqueness Theorem 
 

So far it was tacitly assumed that once a solution aψ  of the equation of the type  
 2 = with = ona a i is S∇ −ψ ψ ψ      (6.3.1) 

was found this is the  only solution. Let us show that this is a valid assumption. For this 
purpose let us assume the opposite namely, that another solution bψ  exists which also 
satisfies the relations  

 2 = with = on .b b i is S∇ −ψ ψ ψ     (6.3.2) 
By virtue of the superposition principle, we may now define the difference of the two 
solutions d a b≡ −ψ ψ ψ  as a solution which, evidently, must satisfy the relation  

 2 = 0 with = 0 on .d d iS∇ ψ ψ     (6.3.3) 
If dψ  satisfies Laplace's equation then it cannot reach a maximum or minimum but on the 
boundaries. This means that "moving'' from one boundary to another the function dψ  
must monotonically increase or decrease. But since on the boundaries = 0dψ  one must 
conclude that dψ  is  zero in the entire volume, including the boundaries. Hence  

 = .a bψ ψ      (6.3.4) 
Conclusion: ,a bψ ψ may be different representations of the same solution. 
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6.4   Two Simple Examples 
 

In what follows we shall examine two examples to illustrate the implications of this last 
theorem:  
6.4.1   Example #1 
It is well known that the potential aϕ  of a point charge q  is given, in free and unbounded 
space, by the expression  

 
2 2 2

0

1( , , ) =
4a

qx y z
x y z+ +

ϕ
πε

    (6.4.1) 

i.e. (6.4.1) is  the solution of  

 
2 2 2

2
2 2 2

0

= = ( ) ( ) ( ).a a a
a

q x y z
x y z

∂ ∂ ∂ −
∇ + +

∂ ∂ ∂
ϕ ϕ ϕ

ϕ δ δ δ
ε

    (6.4.2) 

However, without loss of generality we may write (6.4.2) in a circular cylindrical 

coordinate system taking advantage of the azimuthal symmetry 0∂
∂φ
∼ , i.e.  

 
2

2
0

1 1= ( ) ( ) ,
2

b b qr r z
r r r z r

∂ ∂∂ ⎛ ⎞ + −⎜ ⎟∂ ∂ ∂⎝ ⎠

ϕ ϕ
δ δ

ε π
    (6.4.3) 

where r  is the radial coordinate extending from the location of the source, 2 2r x y≡ + . 
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The solution of this differential equation may be written as  

 ( )00
0

( , ) = ( )exp ,
4b

qr z dkJ kr k zϕ
πε

∞
−∫     (6.4.4) 

where ( )
2

0 0

1( ) exp cos
2

J d j
π

ξ ψ ξ ψ
π

≡ −∫ is the zero order Bessel function of the first kind. 

The expression in (6.4.4) is a different  representation of the solution in (6.4.1) so that in 
fact the identity with the previous definition that  

 ( )0 2 20

1( )exp =dkJ kr k z
r z

∞
−

+
∫     (6.4.5) 

follows. Let us now utilize this formulation in order to 
calculate the potential of a point-charge ( )q  located at a 
height h  above a grounded (metallic), infinitely extending 
plane. Based on the previous observation, the potential of 
the source (subscript s ) excited in the absence of the plane 
boundary is conveniently written as  

 ( )00
0

= ( )exp .
4s

q dkJ kr k z hϕ
πε

∞
− −∫     (6.4.6) 

In the presence of the plane there is an additional contribution to the electrostatic 
potential. This contribution must be a solution of the homogeneous eq. (subscript h )  
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 2 = 0,h∇ ϕ     (6.4.7) 
since the source has been already accounted for. Consequently, choosing an expression 
“coherent” with the exciting one, we assume  

 ( )00
0

( , ) = ( ) ( )exp .
4h

qr z dkA k J kr k zϕ
πε

∞
−∫     (6.4.8) 

In order to establish ( )A k  we impose on the total solution  
 t ( , ) = ( , ) ( , )otal s hr z r z r z+ϕ ϕ ϕ     (6.4.9) 

the boundary condition total( = 0)ϕ  at = 0z  for any r , i.e.  

 ( ) 0
0

[ ( ) exp ] ( ) = 0,
4

q dk A k kh J kr
πε

+ −∫     (6.4.10) 

thus  
 ( )( ) = exp .A k kh− −     (6.4.11) 

In other words, the presence of the metallic plane has generated an additional 
contribution to the potential due to the point-charge alone (6.4.6) which has the form  

 ( )00
0

( , 0) = ( )exp .
4h

qr z dkJ kr k z hϕ
πε

∞−
⎡ ⎤≥ − +⎣ ⎦∫     (6.4.12) 

Comparing to (6.4.5) we conclude that we can represent this solution as  
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2 2

0

1( , 0) = ,
4 ( )

h
qr z

r z h
−

≥
+ +

ϕ
πε

    (6.4.13) 

which may be interpreted as an  image charge ( )q−  located at =z h− . Finally, the 
potential in the upper half-space ( 0)z ≥  only, is given by  

 
2 2 2 2

0 0

1 1( , 0) = .
4 4( ) ( )

q qr z
r z h r z h

−
≥ +

+ − + +
ϕ

πε πε
   (6.4.14) 

 
6.4.2   Example #2 

 
The second example to be considered consists of 
a point-charge located between two plates as 
illustrated on the right. We put forward three 
different representations of the same solution 
starting from the simple field-solution in integral 
form, which, by virtue of an adequate expansion 
is in fact equivalent to an infinite series of charge 
images; finally, a third representation, which 
converges quite rapidly, is also presented.   
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Integral Representation. As in the previous case, the potential is a superposition of the 
non-homogeneous  

 00
0

( , ) = ( )exp
4s

qr z dkJ kr k z bϕ
πε

∞
⎡ ⎤− −⎣ ⎦∫     (6.4.15) 

as well as of the homogeneous solution  

( ) ( )00
0

( , ) = ( ) ( )exp ( )exp .
4h

qr z dkJ kr A k kz B k kzϕ
πε

∞
⎡ ⎤+ +⎣ − ⎦∫     (6.4.16) 

The two amplitudes ( )A k  and ( )B k  are established by imposing the boundary conditions 
at = 0z  and =z a ; at both locations the total potential is zero. For = 0z  we have  

 ( )t 00
0

( , = 0) = ( )[exp ] = 0,
4otal

qr z dkJ kr kb A Bϕ
πε

∞
− + +∫     (6.4.17) 

which must be satisfied for any k ; therefore  
 ( )exp ( ) ( ) = 0.kb A k B k− + +     (6.4.18) 

The potential function is zero also on the second plate and thus  

[ ] ( ) ( ){ }t 00
0

( , = ) = ( ) exp ( ) exp exp = 0
4otal

qr z a dkJ kr k a b A ka B kaϕ
πε

∞
− − + − + +∫ (6.4.19) 

i.e.  
 [ ] ( ) ( )exp ( ) exp exp 0.k a b A ka B ka− − + − + + =     (6.4.20) 
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Using (6.4.18) and (6.4.20) we find that  

 ( )sinh[ ( )] sinh( )( ) = , ( ) = exp .
sinh( ) sinh( )

k a b kbA k B k ka
ka ka
−

− − −     (6.4.21) 

The total scalar potential in the integral representation is therefore given by  
| |

00
0

sinh[ ( )] sinh( )( , ) = ( ) .
4 sinh( ) sinh( )

k z b kz kz kaq k a b kbr z dkJ kr e e e e
ka ka

∞ − − − −⎧ ⎫⎡ ⎤−
− −⎨ ⎬⎢ ⎥

⎣ ⎦⎩ ⎭
∫ϕ

πε
(6.4.22) 

 
Image Charges Series Representation. From this integral representation we may 
develop an infinite series of image charges as may intuitively be deduced. In order to 
obtain this infinite series we use the relation  

 (2 1)
2

=0

1 1 2= = = 21sinh( ) 1[ ]
2

ka
n ka

ka
ka ka n

e e
ka ee e

− ∞
− +

−
− −−

∑     (6.4.23) 

with this expression in mind and taking into consideration that 
( ) ( )sinh = exp exp / 2u u u⎡ ⎤− −⎣ ⎦  we find  
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| | ( ) ( ) (2 1)
00

=00

( ) (2 1)

=0

( , ) = ( )
4

.

k z b kz k a b k a b n ka

n

k z a kb kb n ka

n

qr z dkJ kr e e e e e

e e e e

∞∞ − − − − − − − +

∞
− − − +

⎧ ⎡ ⎤− −⎨ ⎣ ⎦⎩
⎫⎡ ⎤− − ⎬⎣ ⎦ ⎭

∑∫

∑

ϕ
πε

(6.4.24) 

At this point we employ the identity in (6.4.5) namely, 

( ) 2 2
00
( )exp = 1/dkJ kr k z r z

∞
− +∫ , obtaining  

 

2 2 2 2 2 2
=0 =00

2 2 2 2
=0 =0

1 1 1( , ) =
4 ( ) [ 2 ] [ 2( 1) ]

1 1 .
[ 2( 1) ] [ 2( 1) ]

n n

n n

qr z
r z b r z b na r z b n a

r z b n a r z b n a

∞ ∞

∞ ∞

⎧⎪ − +⎨
+ − + + + + − + +⎪⎩

⎫⎪− + ⎬
+ + − + + − − + ⎪⎭

∑ ∑

∑ ∑

ϕ
πε

 

     (6.4.25) 
The summations correspond to the potential of an infinite series image charges outside 
the plates >z a  or < 0z ; the first two terms correspond to image charges located at < 0z  
whereas in the case of the last two, the image charges are located at >z a . 
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Eigen-function Representation. The expressions in 
(6.4.22)  and (6.4.25) are two different representations of 
the  same potential. In fact, we are in a position to establish 
a  third representation of this potential distribution using 
the fact that the boundary conditions are satisfied by a set 
of orthogonal functions. Recall that we have to solve the 
equation  

 
2

2
0

1 1= ( ) ( )
2

qr r z b
r r r z r
⎡ ⎤∂ ∂ ∂

+ − −⎢ ⎥∂ ∂ ∂⎣ ⎦
ϕ δ δ

ε π
    (6.4.26) 

subject to the boundary conditions  
 ( , = 0) = 0 and ( , = ) = 0.r z r z aϕ ϕ     (6.4.27) 

Based on the last constraint we have  

 
=1

( , ) = ( )sin .n
n

nzr z F r
a

∞ ⎡ ⎤
⎢ ⎥⎣ ⎦

∑ πϕ     (6.4.28) 

Note that the trigonometric functions form a set of orthogonal functions in the region 
0 < z d≤ . In order to determine now the equation for ( )nF r  we substitute (6.4.28) in 
(6.4.26)  
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2

=1 0

1 1sin ( ) ( ) = ( ) ( ).
2n n

n

z d d n qn r F r F r r z b
a r dr dr a r

∞ ⎧ ⎫⎪ ⎪⎛ ⎞ ⎡ ⎤ ⎛ ⎞− − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎪ ⎪⎩ ⎭
∑ ππ δ δ

ε π
  (6.4.29) 

Resorting now to the orthogonality of the trigonometric functions, i.e.  

 ,0

1 1sin sin =
2

a

n m
nz mzdz

a a a
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫
π π δ     (6.4.30) 

we obtain  
2

0

1 1( ) ( ) = ( )sin .
2 2n n
a d d n q nbr F r F r r

r dr dr a r a
⎧ ⎫⎪ ⎪⎡ ⎤ ⎛ ⎞ ⎛ ⎞− −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

π πδ
ε π

   (6.4.31) 

The solution of the homogeneous equation ( = 0)r  has the form  

 0 0( ) = ,n n n
nr nrF r A I B K
a a

⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
π π     (6.4.32) 

where 0 ( )I ξ  is the zero order modified Bessel function of the first kind; 0 ( )K ξ  is the zero 
order modified Bessel function of the second kind. For 1ξ�   

 0 0( ) ; ( ) .e eI K
−ξ ξ

ξ ξ
ξ ξ

∼ ∼     (6.4.33) 

Since our charge is at = 0r , we conclude that = 0nA  otherwise the solution diverges, 
implying that 0( ) = ( / )n nF r B K nr aπ . In order to establish nB  we integrate (6.4.31) in the 
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vicinity of 0r →   

00 0 0

000 0

0
0 00

1 2 1 1( ) ( )sinlim
2

2 1= sinlim
2

2 1= sin .lim
2

n

n

n

d d q nbdrr r F r drr r
r dr dr a r a

d d nr q nbB dr r K
dr dr a a a

d nr q nbB r K
dr a a a

πδ
ε π

π π
ε π

π π
ε π

Δ
Δ

Δ→

Δ

Δ→

Δ

Δ→

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎛ ⎞ ⎛ ⎞−⎢ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣

∫ ∫

∫    (6.4.34) 

The modified Bessel function for small arguments ( 1)ξ�  varies as 0 ( ) ln( )K −ξ ξ�  
consequently  

 1ln = = 1d
d

− − −ξ ξ ξ
ξ ξ

    (6.4.35) 

and assuming that exactly at = 0r  this value is zero (contemplate a uniform distribution 
of charge between = 0r  and =r Δ ) we have for the left hand side of  (6.4.34) 

 000
= ( 1).limn n

d nrB drr K B
dr a

Δ

Δ→

⎡ ⎤⎛ ⎞ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∫
π     (6.4.36) 

Hence  
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0

2 1= sin ,
2n

q nbB
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠
π

ε π
    (6.4.37) 

or  

 0
=10

4( , ) = sin sin .
4 n

q nb nz nrr z K
a a a a

∞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ π π πφ
πε

    (6.4.38) 

For large arguments the modified Bessel function varies as 0 ( )K e−ξξ � ; consequently, 
we realize the immediate advantage of this  third representation of the potential: the sum 
converges  rapidly. 

The potential in Eq. (6.4.38) contains the singularity expressed by Eq. (6.4.1). In 
order to prove that it is convenient to express the two trigonometric functions as  

1sin sin = cos ( ) cos ( ) .
2

b z n nn n z b z b
a a a a

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎡ ⎤ ⎡ ⎤− − +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎩ ⎭

π ππ π    (6.4.39) 

For our purpose we shall consider only the first term (why?) and evaluate the limit when 
the boundary conditions are not important (a →∞ ) hence  

 0
=1

4 1( , ) = lim cos ( ) .
4 2a no

q n nr z z b K r
a a a

∞

→∞

⎧ ⎫⎡ ⎤ ⎛ ⎞−⎨ ⎬⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎩ ⎭
∑ π πφ

πε
    (6.4.40) 

Using the fact that  
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 0 20

1cos( ) ( ) =
2 1

d V K
V

∞

+
∫

πξ ξ ξ     (6.4.41) 

and that at the limit of a →∞  the sum may be replaced by integration we obtain  

( ) 0
=10

00
0

1/ 22

00
0 0

2 2
0

2, = lim cos ( )
4

2= cos[ ( )] ( )
4

2 1 2 1cos ( ) 1
4 4 2

1=
4 ( )

a n

qr z n z b K nr
a a a

q dk k z b K kr

q z b q z bd K
r r r r

q
r z b

π π πφ
πε π

πε π

πξ ξ ξ
πε π πε π

πε

∞

→∞

∞

−
∞

⎡ ⎤ ⎛ ⎞− ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

−

⎡ ⎤⎡ ⎤− −⎛ ⎞ ⎛ ⎞= = +⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎢ ⎥⎣ ⎦

+ −

∑

∫

∫
 (6.4.42) 
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Exercise 1: Determine the total charge on each one of the plates 00
[ ( ) = 1]d K

∞

∫ ξξ ξ . 

Exercise 2: Calculate the force acting between two particles located at two arbitrary 
locations between the grounded plates. Compare your result with the force acting 
between the same point-charges when in free-space. Is there a difference? Explain!! 
Exercise 3: The charge density of a charged loop of radius R  located parallel to the 
electrodes at =z b  is given by  

 1( , ) = ( ) ( ).
2

r z q r R z b
r

− −ρ δ δ
π

    (6.4.43) 

  
(a) Show that the potential associated with this charge density is  

0 0

=10
0 0

>
4= sin sin

4
<n

r RK n I n r R
a aq b zn n

a a a r RI n K n r R
R a

∞

⎧ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎪⎛ ⎞ ⎛ ⎞

⎨⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎛ ⎞ ⎛ ⎞⎪ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

∑
π π

φ π π
πε

π π
  (6.4.44) 

Note that 0 1 0 1( ) = ( ) ( ) = ( )d dK K I I
d d

−ξ ξ ξ ξ
ξ ξ

 and 0 1 1 0
1( ) ( ) ( ) ( ) =I K I K+ξ ξ ξ ξ
ξ

.  

Plot the contour-lines of constant potential.  
(b) Show that the force acting on the loop when = / 2aΔ  is zero.  
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(c) Calculate the capacitance of the loop. Hint: consider the limit a →∞ .  
(d) What is the potential of an azimuthally symmetric charge distribution ( , )r zρ ?  
(e) What is the potential of an azimuthally symmetric charge distribution ( , )r zρ  if on the 

electrode at =z a  we impose a voltage 0 0V ≠ ?  
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6.5 Reciprocity Theorem 
 
The Lorentz reciprocity theorem is a useful theorem for solution of 
electromagnetic problems, since it may be used to deduce a number of 
fundamental properties of practical devices. It provides the basis for 
demonstrating the reciprocal properties of electronic microwave circuits 
and for showing that the receiving and transmitting characteristics of 
antennas are the same. 
  
To derive the theorem, consider a volume V  bounded by a closed surface S . Let a current 
source 1J  in V  produce a field 1 1,E H  which satisfies 

 1 0 1 1 0 1 1= =t tE H H E Jμ ε∇× −∂ ∇× ∂ +     (6.5.1) 
while a second source 2J  produces a field 2 2E ,H  which is a solution of  

         2 0 2 2 0 2 2= = .t tE H H E J∇× −∂ ∇× ∂ +μ ε  (6.5.2) 
Expanding the relation 1 2 2 1( )E H E H∇⋅ × − ×  and using Maxwell's equation show that  

1 2 2 1 1 2 2 1 2 1 1 2

2 1 1 2

( ) = ( ) ( ) ( ) ( )

= .

E H E H E H H E E H H E

J E J E

∇⋅ × − × ∇× ⋅ − ∇× ⋅ − ∇× ⋅ + ∇× ⋅

− ⋅ + ⋅ (6.5.3) 
Integrating both sides over the volume V  and using Gauss' theorem  
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1 2 2 1 1 2 2 1

2 1 1 2

( ) = ( )

= ( ) ,       

S
V

V

E H E H dV E H E H ndS

E J E J dV

∇⋅ × − × × − × ⋅

⋅ − ⋅

∫ ∫∫

∫    (6.5.4) 

where n  is the unit outward normal to S . 
 
There are at least two important cases where the surface integral vanishes: in the first 
case of radiating fields (we shall not discuss here) and in the case of quasi-state fields 

when 2

1E
r

∝  and 2

1H
r

∝ . Since the surface of integration is proportional to 2r  at the 

limit r →∞  the surface integral clearly vanishes, therefore (6.5.4) reduces to  
 1 2 2 1= .

V V

E J dV E J dV⋅ ⋅∫ ∫     (6.5.5) 

If 1J  and 2J  are infinitesimal current elements (Dirac delta functions), then  
 1 2 2 2 2 1 1 1( ) ( ) = ( ) ( ),E J E J⋅ ⋅r r r r     (6.5.6) 

which states that the field 1E  produced by 1J  has a component along 2J  that is equal to 
the component along 1J  of the field generated by 2J  when 1J  and 2J  have unit 
magnitude. The form (6.5.6) is essentially the reciprocity principle used in circuit 
analysis except that E  and J  are replaced by the voltage V  and current I . 



Chapter 7    EM Field in the Presence of Matter 
 

In this chapter we consider to a certain extent the effect of matter on the field 
distribution and also to some degree the effect of the field on the distribution of matter. 
Although a variety of topics are presented, they constitute only a very small fraction of 
the array of phenomena engineers may encounter, and, therefore, we mainly emphasize 
for each case the conceptual approach.  

 
7.1   Polarization Field 
So far we have postulated that the relation between D

G
 and E

G
 is linear and given by the 

simple relation 0= rD E
G G

ε ε  where rε  stands for the relative dielectric coefficient. We 
consider in this section a simple model, which provides some basic insight as to the 
source of this result as well as its limitations. 
Step 1: A point-charge in free space generates a potential  

 
0

( ) = .
4

qr
r

ϕ
πε

    (7.1.1) 

Two such point-charges 1 2( , )q q  located at 1 2( , )r rG G  generate a potential which is a 
superposition of two single particle potentials namely, 
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1

0
2 2

1 1 1

2

0
2 2 2

2 2 2

4( ) =
( ) ( ) ( )

4
( ) ( ) ( )

q

r
x x y y z z

q

x x y y z z

πεϕ

πε

− + − + −

+
− + − + −

G

 (7.1.2) 

For the sake of simplicity, we assume that 1 2= =q q q−  and that their coordinates are 
1 2 1 2= = 0, = = 0x x y y  and 1 = / 2z d , 2 = / 2z d−  respectively -- see Figure ; explicitly  

 0 0
2 2

2 2 2 2

4 4= .

2 2

q q

d dx y z x y z

πε πεϕ −
⎛ ⎞ ⎛ ⎞+ + − + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (7.1.3) 

Consider now an observer located at a distance 2 2 2=r x y z+ +  which is much larger 
than the distance d  between the two charges ( )r d� . This observer will measure a  
scalar electric potential   

 

+

−

z

x

y

d

rG
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0 0
2 2

2 2 2 2 2 2

2

2 2
0

4 4=

4 4

1 1 ,
4

q q

d dx y z zd x y z zd
r

q
r zd r zd

πε πεφ

πε

−

+ + − + + + + +

⎧ ⎫
−⎨ ⎬

− +⎩ ⎭

��	�


�  

   (7.1.4) 
hence 

2 2 3
0 0 0

2 2

1 1 1 11 11 14 4 2 2 41 1
2 2

q q zd zd q zd
zd zdr r r r r
r r

φ
πε πε πε

⎡ ⎤
⎢ ⎥ ⎡ ⎤− + − +⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥− +
⎣ ⎦

� � �   (7.1.5) 

In polar coordinates = cosz r θ  therefore  

 2
0

1 cos ;
4
qd

r
φ θ

πε
�     (7.1.6) 

the quantity p qd≡  is called the  dipole moment. Contrary to the potential of a single 
charge, that of a dipole decays as 2r−  (rather than 1r− ); furthermore it is θ  dependent. 

 

+

−

z

x

y

d

rG
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Step 2: In a more general case the potential of a charge distribution is 
a superposition of all charges  

 
0

1 ( )( ) =
4 | |

r 'r dv
r r '

′
−∫
GG

G G
ρϕ

πε
 (7.1.7) 

as illustrated in the Figure. Here rG  represents the observer location whereas r 'G  is the 
coordinate of the source.  If, as previously, we assume an observer positioned far from 
the charge distribution  we may approximate (7.1.7) by the following expression   

 

2
0 0

2

2
0

1 ( ) 1 1( ) ( ) 1
4 41

1 1 1( ) ( ) .
4

r r r 'r dv dv r '
r r ' r rr

r

dv r r dv r ' r '
q p

r r

ρϕ ρ
πε πε

ρ ρ
πε

′ ⋅⎡ ⎤′ ′ +⎢ ⎥⋅⎡ ⎤ ⎣ ⎦−⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥

′ ′ ′+ ⋅⎢ ⎥
⎢ ⎥
⎣ ⎦≡≡

∫ ∫

∫ ∫

G G GG G
G G

G G G
��	�
 ��	G�


� �

�

  (7.1.8) 

According to this result we generalize the concept of electric dipole-moment, and in the 
case of a general distribution, we define it as  

 ( )p dv r' r'ρ′≡ ∫
G G G     (7.1.9) 

z

x

y

( )'rρ G

rG

'rG
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hence 

2 2
0 0 0

1 1 1 1 1 ˆ( ) = = .
4 4 4

p r qr q p r
r r r r

ϕ
πε πε πε

⋅⎡ ⎤+ + ⋅⎢ ⎥⎣ ⎦

G GG G  (7.1.10) 

In many cases of interest the system is neutral ( = 0)q  (e.g. atom) and 
the only field we can measure is that of a dipole ignoring higher order 
terms in the expansion, i.e.  

 3
0

( ) .
4

p rr
r

⋅
G GGϕ
πε

�     (7.1.11) 

Step 3: So far we hade demonstrated that even a neutral body may exert a potential far 
away from its location due to its dipole moment. Now we shall examine the opposite case 
namely, we demonstrate that an external field exerted on a neutral body, it may 
generate a dipole moment. For this purpose, consider an electron at the microscopic 
level  and we limit the analysis to one dimension. In the absence of the external electric 
field this charge is assumed to be in equilibrium, i.e. no net force acts on it. As the 
external electric field is applied, the force which acts on it, is given by qE  and since the 
particle moves a distance x  from equilibrium (1D model) the equation of motion may be 
approximated by  

 
2

2
( ) = ( ) ,d x tm kx t qE

dt
− +     (7.1.12) 

z

x

y

( )'rρ G

rG

'rG
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where m  stands for the mass of the charge, and kx  represents the 
internal reaction force to the deviation ( )x ; therefore the “new 
equilibrium” occurs when  

 0 = .qx E
k

 (7.1.13) 

Based on the previous definition of the dipole moment we may use 0x  to define the 
equivalent dipole moment as   

 0= .p qx     (7.1.14) 
Clearly, by substituting (7.1.13) in the latter one finds that this dipole is proportional to 
the local electric field  

 0 0= = ,p qx Eε α     (7.1.15) 
wherein 2

0/q k≡α ε  is a parameter that has units of volume and it is a measure of the 
electrostatic force relative to the internal forces represented by the coefficient k . In a 
macroscopically small volume the contribution of all the dipoles ( ip ) determines the 
polarization field = i ii

P n p∑  where in  is the  volume density of dipoles of type i 'th  
 0 0= = = ,i i i i i i

i i i
P n p n E E n∑ ∑ ∑ε α ε α     (7.1.16) 

wherein it was assumed that each type of dipole ip  is also characterized by a parameter 
iα . Now postulating the relation between the polarization field ( )P  and the electric 

+

0x

0E =

0E ≠ −
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induction ( )D   

 0 0 0= = =i i r
i

D E P E n E E
⎡ ⎤⎛ ⎞

+ +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑ε ε α ε ε     (7.1.17) 

we conclude that = 1 = 1r e i in+ +∑ε χ α  wherein eχ  is called the electric susceptibility. 
It should be pointed out that the above relation has been derived subject to the 
assumption of a 1D system. Further assuming an isotropic material it is possible to 
generalize this result to a 3D system namely  

 0= .rD E
G G

ε ε     (7.1.18) 
 
Comment 1: There are cases where the dipoles are preferentially aligned in a specific 
direction and their net contribution to the polarization field is non-zero even in the 
absence of external electric fields: 0 0,= i ii

P n p∑ . In this case the material is considered to 
be permanently polarized. 
 
Comment 2: The distribution of the dipoles in space is non-uniform. In such a case the 
field equations may differ significantly. Consider for example Maxwell's equations when 
the dielectric coefficient is space dependent ( )rε   
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0

0

0

0

( )

=

=

[ ] =
= 0.

( )

E H
t

H J r

r

E
t
E

H

μ

ε

ε ρ

ε

ε
μ

∂⎧ ∇× −⎪ ∂⎪
∂⎪∇× +⎨ ∂⎪

∇ ⋅⎪
⎪ ∇ ⋅⎩

G G G

G G G

G G
G G

G

G
    (7.1.19) 

Clearly they look similar to the vacuum case however, both Poisson, Laplace or the wave 
equation differ. In order to envision this fact let us introduce the magnetic vector 
potential A

G
, which defines the magnetic induction =B A∇×

GG G
 and the scalar electric 

potential Φ , which together with A
G

 determines the electric field ( = )E A
t
∂

− −∇Φ
∂

GG
. 

Assuming a Lorentz-like gauge  

 2

( ) = 0rA
c t

∂
∇ ⋅ + Φ

∂

GGG ε     (7.1.20) 

it can be shown that A
G

 and Φ  satisfy  

 
2

2
02 2

( ) ( ) ln ( ) =r A A r J
c t

⎡ ⎤∂
∇ − − ∇ ⋅ ∇ −⎢ ⎥∂⎣ ⎦

G G GG GGε ε μ     (7.1.21) 

and 
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2

2
02 2

( ) ln ( ) = / ( ),r E r r
c t

⎡ ⎤∂
∇ − Φ − ⋅∇ −⎢ ⎥∂⎣ ⎦

G G G Gε ε ρ ε ε     (7.1.22) 

which differ from the case of a uniform dielectric medium. 
 
Exercise #1: Prove (7.1.21)-(7.1.22) based on (7.1.19)-(7.1.20) and the definitions of E

G
 

and B
G

 in terms of A
G

 and Φ . 
 
Step 4: In Eq. (7.1.17) the relation between the electric induction and the polarization 
was postulated: 0=D E P+

G G G
ε . In fact, this relation can be concluded from the relation in 

(7.1.10). With this goal in mind, let us assume that in a given region of space there is a 
free charge distribution of charge ( )f r 'Gρ  and a polarization field ( )P r '

G G  however, 
contrary to the expressions in (7.1.10) these are macroscopic quantities hence  

3
0

3
0

1microscopic: ( ) =
4

( )1 ( ) ( )macroscopic: ( ) = ' .
4 | | | |

f

q p rr
r r

r ' P r ' r r 'r dr
r r ' r r '

ϕ
πε

ρ
ϕ

πε

⋅⎡ ⎤+⎢ ⎥⎣ ⎦

⎡ ⎤⋅ −
+⎢ ⎥− −⎣ ⎦

∫

G GG

GG G G GG G
G G G G    (7.1.23) 
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Based on this last expression, we observe that  

3

( ) ( ) 1 ( ) 1= ( ) = ( )
| | | | | | | |

P r ' r r ' P r 'P r ' P r '
r r ' r r ' r r ' r r '

⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ − ′ ′ ′⋅∇ ∇ − ∇ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠⎝ ⎠

G GG G G GG G G GG G
G G G G G G G G  (7.1.24) 

implying  

 
0 0

( )1 1 ( )( ) =
4 | | 4 | |

f r ' P r 'r dr ' dr '
r r ' r r '
ρ

ϕ
πε πε

′−∇ ⋅
+

− −∫ ∫
G GG GG G G

G G G G     (7.1.25) 

since the polarization is assumed to vanish at infinity. Consequently, this is a potential 
generated by an effective charge distribution eff = f P−∇⋅

G G
ρ ρ  since  

 
0

1 1( ) = ( ) ' ( ) .
4 | | fr dr ' r ' P r '

r r '
⎡ ⎤−∇ ⋅⎣ ⎦−∫

G GG G G G
G Gϕ ρ

πε
    (7.1.26) 

Bearing in mind that in a static regime =E −∇
G

φ  we conclude  

 0
0

1= ( ) [ ] =f fE P E P∇⋅ −∇ ⋅ ⇒∇⋅ +
G G G G G G

ρ ε ρ
ε

    (7.1.27) 

implying  
 0= ,D E P+

G G G
ε     (7.1.28) 

which is exactly the vector form of the relation in a left-hand side of (7.1.17).  
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7.2   Free and Bound Charge 
 
Gauss’ law states that the divergence of the electric displacement equals the free-charge 
density ρ  i.e.  

 = .D∇⋅
G G

ρ     (7.2.1) 
In the previous sections it was shown that  

 0=D E P+
G G G

ε     (7.2.2) 
therefore  

 0 = .E P∇⋅ −∇ ⋅
G G G G
ε ρ     (7.2.3) 

This result indicates that the divergence of the electric field has two sources: the free 
charge density ρ  and the bound (polarization) charge density pρ ,  

 0 p= ,E∇⋅ +
G G
ε ρ ρ     (7.2.4) 

where  
 p .P≡ −∇ ⋅

G G
ρ     (7.2.5) 

This result has implications on the boundary conditions since in the past we have shown 
that  

 ( )( ) ( )1 = ,a b
n sD D⋅ −
G G G

ρ     (7.2.6) 
therefore, we can now define the polarization charge surface density ,( )s pρ  by means of 
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which we are now able to write  
 ( )( ) ( )

0 0 ,1 = .a b
n s s pE E⋅ − +
G G G

ε ε ρ ρ     (7.2.7) 
Note that in terms of the polarization field in the two regions ,s pρ  is being expressed as  

 ( )( ) ( )
, = 1 .a b

s p n P P− ⋅ −
G G G

ρ     (7.2.8) 
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7.3   Artificial Dielectrics 
 

We have previously indicated [Section 7.1] that the macroscopic 
dielectric coefficient may be interpreted as a superposition of  
microscopic dipoles. In principle we can “construct” macroscopic 
dipoles and build in this way an artificial dielectric material. Let 
us assume a series of metallic spheres embedded in a dielectric 
medium rε . For simplicity we shall assume that the radius of the spheres is much smaller 
than the distance between them. In this way it is possible to determine the field in the 
vicinity of a single sphere and extrapolate for an entire ensemble of spheres. 
In order to commence with the analysis, we assume a  grounded sphere of radius R  
surrounded by a dielectric material rε , residing in a space permeated by an imposed 
uniform, constant electric field, 0=zE E . 
 
In absence of the sphere the “primary” (superscript p ) potential is  

 ( )
0 0= = cos .p E z E r− −φ θ     (7.3.1) 

The presence of the metallic sphere generates a secondary field which is a solution of the 
partial differential equation  
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2 2

2 2 2 22

1 1 1( ) sin = 0 .
sin sin

r
r r r r
∂ ∂ ∂ ∂⎛ ⎞+ +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

φ φφ θ
θ θ θ θ ϕ

    (7.3.2) 

Since both the initial field as well as the sphere exhibit azimuthal symmetry, we assume 

the same for the secondary field (superscript s ), i.e. 0∂
∂ϕ

∼ . The solution outside the 

sphere is readily checked to read  

 ( )
2

1= cos .s A
r

φ θ     (7.3.3) 

The coefficient A is determined by the condition that the total potential at =r R  is zero 
(grounded sphere), thus  

 

( ) ( )

2 3
0 0

( = , ) = ( = , ) ( = , ) = 0
cos ( / )cos = 0 = ,

p sr R r R r R
E R A R A E R

+ ⇒
− + ⇒

φ θ φ θ φ θ
θ θ     (7.3.4) 

 
hence  

 
2

( )
0= cos .s RE R

r
⎛ ⎞
⎜ ⎟
⎝ ⎠

φ θ     (7.3.5) 

In (7.1.6) we have shown that the potential of a dipole positioned at the origin of a system 
of spherical coordinates reads  
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 ( )
2

0

cos=
4

s

r

p
r
θφ

πε ε
    (7.3.6) 

and therefore, we conclude that this sphere “generates” an effective dipole moment  
 3

0 0= 4 .rp E Rπε ε     (7.3.7) 
In order to determine the polarization field we assume that the average distance between 
spheres (dipoles) is d , which implies that the average volume density of the dipoles n  is 
of the order of  

 3
1 .n
d

�     (7.3.8) 

Consequently, the intensity of the polarization P  is  

 ( )
3

3
0 0 0 03

1= = 4 = 4r r
RP np E R E

d d
⎛ ⎞
⎜ ⎟
⎝ ⎠

πε ε πε ε     (7.3.9) 

and finally we may estimate the contribution to the electric displacement (D
G

) is given by    

 
3

0 0 spheres 0 0 0 e 0= = 1 4 =r r ff
RD E P E E
d

ε ε ε ε π ε ε
⎡ ⎤⎛ ⎞+ +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

G G G G G
    (7.3.10) 

which implies that we obtain a small artificial increase in the effective dielectric 
coefficient of the material: 
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3

eff 1 4r
R
d

⎡ ⎤⎛ ⎞≡ +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

ε ε π  

For comparison, if instead of metallic spheres we consider air bubbles, the outer solution 
has the same form:  

 o 2

1= cosut A
r

φ θ     (7.3.11) 

but the inner reads  
 i = cos .n Brφ θ     (7.3.12) 

Continuity of the Eθ  at =r R  implies  

 0 3

1= sin sin = sin ,AE E B
r R
∂

− ⇒ − +
∂θ
φ θ θ θ
θ

    (7.3.13) 

hence  

 03= .AB E
R

−     (7.3.14) 

In a similar way the continuity of the radial component of the displacement is  

 0 0 03

2( cos cos ) = cos ,rE A B
R

+ −θ θ ε ε θε     (7.3.15) 

hence  
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 0 3= 2 .r
AB E
R

⎛ ⎞− +⎜ ⎟
⎝ ⎠

ε     (7.3.16) 

From Eqs. (7.3.14) and (7.3.16) we find  

 3
0

1= .
2 1

r

r

A R E −
−

+
ε
ε

    (7.3.17) 

The potential is therefore  

 
2

( )
0 2

1( > ) = cos ,
2 1

s r

r

Rr R E R
r

−
−

+
εφ θ
ε

    (7.3.18) 

implying that the dipole moment of the bubble is  

 2
0 0

1= 4 .
2 1

r
r

r

p E R R−
−

+
επε ε
ε

    (7.3.19) 

Using the same approximations as in (7.3.8) we are able to estimate the intensity of the 
polarization:  

 2
0 03

11= = ( 4 ) ,
2 1

r
r

r

P np E R R
d

⎡ ⎤−
+ −⎢ ⎥+⎣ ⎦

επ ε ε
ε

    (7.3.20) 

which finally implies that the effective dielectric coefficient is smaller than rε    
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0 0
3

0 0 0 0

3

0 0

=

1= ( 4 )
2 1

1= 1 4 ,
2 1

r

r
r r

r

r
r

r

D E P

RE E
d

R E
d

+

−⎛ ⎞+ − ⎜ ⎟ +⎝ ⎠

⎡ ⎤− ⎛ ⎞−⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦

G G G

G G

G

ε ε

εε ε π ε ε
ε

εε ε π
ε

    (7.3.21) 

hence 
  

 
3

eff
11 4

2 1
r

r
r

R
d

⎡ ⎤− ⎛ ⎞≡ −⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦

εε ε π
ε

  

 
Exercise #2: Determine the effective dielectric coefficient of an ensamble of dielectric 
spheres ( )sε  embeded in an uniform background ( )rε . As above, the radius of one sphere 
is R  and their typical spacing is d .



 214

7.4   Unisotropic Medium 
 

In the first section it was indicated that applying an electric field may “induce” a dipole 
moment p  that in the framework of the one dimensional theory employed, was written as 
(Eq. (7.1.5)) 0=p Eε α . Extending this approach to a full three dimensional analysis, we 
may conceive a situation in which the reaction of a material to an applied field is not 
identical in all directions. For example, applying a field of the same intensity in one 
direction ( )x  will induce a dipole xp , whereas the same field intensity when applied in 
the z  direction induces zp  and x zp p≠ . Moreover, a field component in one direction xE  
may induce a dipole in the z -direction i.e. zp . Consequently, in the framework of a linear 
theory a general constitutive relation describing a linear unisotropic (but non-polarized) 
material is given by  

 0= .
x xx xy xz x

y yx yy yz y

z zx zy zz z

D E
D E
D E

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠��������	�������


ε

ε ε ε
ε ε ε ε

ε ε ε
    (7.4.1) 

For envisioning the field distribution in unisotropic materials, let us examine a simple 
case of a point charge ( )q−  in a uniform but unisotropic medium. For the sake of 
simplicity we assume that the dielectric matrix is  
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0 0

= 0 0 ,
0 0

xx

yy

zz

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

ε
ε ε

ε
    (7.4.2) 

wherein = = =xx yy zz⊥ε ε ε ε ε&. Bearing in mind that in the static case Faraday's law 
reads = 0E∇×

G G
 we may assume that this field may be derived from a static electric 

potential  
 =E −∇

G
φ     (7.4.3) 

therefore, with Gauss' law  
 0= = /x x y y z zD E E E⊥ ⊥ ⊥∇ ⋅ ⇒ ∂ +∂ + ∂

G G
ρ ε ε ε ρ ε     (7.4.4) 

we conclude that this potential satisfies  

 
2 2 2

02 2 2 = / .
x y z⊥

⎛ ⎞∂ ∂ ∂
+ + −⎜ ⎟∂ ∂ ∂⎝ ⎠

ε φ φ ε φ ρ ε&     (7.4.5) 

This equation may be readily brought to the regular form of the Poisson equation by first 
dividing the last equation by ⊥ε   

 
2 2 2

2 2 2
0

= ( ) ( ) ( )q x y z
x y z⊥ ⊥

∂ ∂ ∂
+ + +

∂ ∂ ∂

εφ φ φ δ δ δ
ε ε ε
&     (7.4.6) 

and further defining /z ⊥≡ξ ε ε&   
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( )
2 2 2

2 2 2
0 0

/
= ( ) ( ) / = ( ) ( ) ( ).

qq x y x y
x y

ε εφ φ φ δ δ δ ξ ε ε δ δ δ ξ
ξ ε ε ε

⊥
⊥

⊥

∂ ∂ ∂
+ +

∂ ∂ ∂
&

& (7.4.7) 

This result indicates that within the framework of the “new” coordinate system ( , , )x y ξ , 
we have an effective charge eff = /q q ⊥ε ε&  with the potential satisfying the Poisson 
equation  

 
2 2 2

eff
2 2 2

0

= ( ) ( ) ( ).q x y
x y

⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟∂ ∂ ∂⎝ ⎠

φ δ δ δ ξ
ξ ε

    (7.4.8) 

Consequently, from the solution of this equation in isotropic space  

 eff
2 2 2

0

( , , ) = ,
4

qx y
x y
−

Φ
+ +

ξ
πε ξ

    (7.4.9) 

or  

 
0 2 2 2

1( , , ) = .
4

qx y z

x y z
⊥

⊥

Φ −
⎛ ⎞

+ + ⎜ ⎟⎜ ⎟
⎝ ⎠

πε ε ε ε
ε

&

&

    (7.4.10) 

Note that contours of a constant potential are ellipsoids  
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22 2 2

0

1= .
4

x y z q

⊥ ⊥ ⊥

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ φε ε ε πε ε&

    (7.4.11) 

 
Exercise #3: What is the potential if the same charge is located at a height h  from a 
grounded electrode. 
Exercise #4: Based on Maxwell equations show that if the matrix ε  is symmetric i.e. 

=ij jiε ε , then the energy density is given by  

 0
1= .
2EW E E

G G
ε ε     (7.4.12) 
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7.5   Electro-Quasi-Statics in the Presence of Matter 
 

The purpose of this section is to illustrate a quasi-dynamic effect associated with the slow 
motion of a dielectric layer; the term “slow” implies here that the velocity is much 
smaller than c . 

 
At = 0t  the capacitor - see Figure - is 
charged so that 0( = 0) =cV t V . The 
question posed is: what is the velocity 
( )v  of the dielectric slab ( )rε  in the x -
direction which leaves the voltage across 
the capacitor unchanged. 
 
In order to solve this problem we first 
have to find an adequate description of its electro-quasi-static characteristics; we start 
from the calculation of the total electric energy stored between the two metallic plates. 
Since the z  component of the electric field ( )/zE V h∼  is continuous, and, further 
ignoring edge effects, we have  
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2 2

0 0
1 1= ( ) .
2 2

c c
E y r y

V VW xh L x h
h h

⎛ ⎞ ⎛ ⎞Δ + − Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ε ε ε            (7.5.1) 

This expression determines the capacitance of the system as 21=
2E cW CV  and therefore  

 [ ]0( ) = ( ) .y
rC x x L x

h
Δ

+ −ε ε     (7.5.2) 

The equivalent circuit of the system is a capacitor ( )C x  in series with a resistor R , 
subject to the initial condition ( = 0x  at = 0t ) as well as 0( = 0) =cV t V . The equation 
describing the voltage dynamics in this circuit is  

 = 0,cV IR+     (7.5.3) 
wherein I  is the current linked to the time-variation of charge stored in the capacitor, i.e. 

= /I dQ dt , hence  

 = = ( ).c c
dQ dV R R CV
dt dt

− −     (7.5.4) 

Here we observe for the first time that the capacitance varies in time. Explicitly (7.5.4) 
reads  

 1 = 0.c
c

dC
dt

dVRV CR
R dt

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

    (7.5.5) 
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At this point it is interesting to observe two facts:   
1. Time variations in the capacitance play a similar role in the 

circuit as the conductance.  
2. Contrary to conductance, which is always positive, C�  may be negative. This implies 

that capacitance variations may cause energy to be transferred to the circuit (recall 
that an ordinary passive resistor always dissipates power!!).  
 

We may now use the explicit expression (7.5.2) for the capacitance and, further bearing 
in mind that the dielectric slab moves, i.e. x  varies in time, we may write  

 0 0= ( ) = ( 1) ;y y
r r

dC dx dx dx
dt h dt dt h dt

Δ Δ⎡ ⎤+ − − −⎢ ⎥⎣ ⎦
ε ε ε ε     (7.5.6) 

Further, for simplicity (and reality) we assume at the outset that the slab moves at a 
constant velocity ( )v , being much smaller than the speed of light (v c� ), hence 
Eq. (7.5.5) may be explicitly written as  

 0 0 11 ( 1) = 0,y c
r c

dVvtR v V R C C
h L dt
Δ⎡ ⎤ ⎡ ⎤− − + −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

ε ε     (7.5.7) 

wherein    

 0 0 1 0= , = ( 1)y y
r r

L L
C C

h h
ε ε ε ε

Δ Δ
−     (7.5.8) 



 221

The requirement of constant voltage = 0cdV
dt

⎛ ⎞
⎜ ⎟
⎝ ⎠

 clearly implies 

that the first term square brackets on the left hand side of (7.5.7) must vanish, i.e.  

 01 ( 1) = 0y
rR v

h
Δ

− −ε ε     (7.5.9) 

so that  

 

0

01= .
1r y

hv c
R− Δ

μ
ε

ε
    (7.5.10) 

For 3 40
6

0

1 12030, / 10 , 10
4 10r yh

R
− −Δ

×
μ πε
ε

∼ ∼ ∼ ∼  we obtain 1v∼ m/sec. When the 

condition in Eq. (7.5.9) is not satisfied the equation may be rewritten in the form  

 
0 1

0

= 0.
1 ( 1)

c
c

y
r

vtR C C
dV L Vvdt R

h

⎛ ⎞−⎜ ⎟
⎝ ⎠ +

Δ
− −ε ε

    (7.5.11) 

We now define a new variable  
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0
0

1 ( 1) ,y
r

vt R
RC h

Δ⎡ ⎤
≡ − −⎢ ⎥

⎣ ⎦
τ ε ε              (7.5.12) 

as well as the coefficient  

 
1

1
0

0 0

1 1 ( 1) .y
r

C v R v
C L RC h

−
Δ⎧ ⎫⎡ ⎤

≡ − −⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭

ξ ε ε     (7.5.13) 

With these definitions (7.5.11) reads  

 (1 ) = 0c
c

dV V
d

− +ξτ
τ

 

yielding therefore the solution   

 

[ ]1/

1/

0

1

1= ln = ln (1 ) ( ) = (0) 1
1

( ) = (0) 1 .

c
c c c

c

c c

dV d V V V
V

C vtV t V
C L

ξ

ξ

τ ξτ τ ξτ
ξτ ξ

− − ⇒ −
−

⎡ ⎤
−⎢ ⎥

⎣ ⎦

x

  (7.5.14) 

Note that according to the sign of ξ  i.e. 
0

1 ( 1) y
r

R v
h c
Δ

− −ε
η

, the voltage across the 

capacitor may increase or decrease. In case the velocity is below its critical value 
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determined by (7.5.10), i.e. > 0ξ , the voltage decreases 
whereas above this value, it actually increases. The former 
case implies dissipated power whereas the latter implies that there is net energy 
conversion from kinetic energy (the slab) into electric energy. A similar approach may be 
resorted to in the synthesis and in the analysis of micro-mechanical detectors. 
 
Exercise #5: Calculate the electric energy stored in the capacitor, the power dissipated in 
the resistor and the power provided by the moving dielectric slab.  
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7.6   Magnetization Field 
 

7.6.1   Dipole Moment 
For the magnetic field we follow an approach similar to 
that introduced in Section 7.1. The main difference in this 
case is the experimental lack of a magnetic monopole. As a 
result, the magnetic field depends on the electric current 
density whose divergence in quasi-statics is zero namely, 

= 0J∇⋅
G G

. 
 
In a boundless space the magnetic vector potential, in Cartesian coordinates, is given by  

0
2 2 2

( , , )( , , ) = .
4 ( ) ( ) ( )

J x y zA x y z dx dy dz
x x y y z z

′ ′ ′
′ ′ ′

′ ′ ′− + − + −
∫

GG μ
π

    (7.6.1) 

Let us consider for simplicity a rectangular loop in the z -plane, its dimensions being 
x ya a× . Explicitly the current density is given by  
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   (7.6.2) 

Based on the previous relation, the relevant magnetic vector potential reads  
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∫�

�

(7.6.3) 

where we have defined here the  magnetic dipole moment as  
 .z x ym Ia a≡    (7.6.4) 
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In a similar way  
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(7.6.5) 

and finally  
 ( , , ) = 0.zA x y z     (7.6.6) 

Based upon these results we find that  

 0
3= ,

4
A m r

r
×

G G Gμ
π

    (7.6.7) 

and the definition of the mG , the  magnetic dipole moment can be generalized to its vector 
form  
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 1= ( ).
2

m dx dy dz r J r′ ′ ′ ′ ′×∫
GG G G    (7.6.8) 

Relying on (7.6.7) the magnetic induction  

 0 0
3 3

31 ( 1 )= = =
4 4

r rm mB A m r
r r

μ μ
π π

⋅ −⎡ ⎤∇× ∇× ×⎢ ⎥⎣ ⎦

G GG GGG G G G G      (7.6.9) 

In our particular case ˆ= zm m zG   
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    (7.6.10) 

consequently, the magnetic induction components form an ellipsoid  

 
22 22

0
3

1 1= .
3 3 2 2 4

yx zzBB mB
r

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞+ + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

μ
π

    (7.6.11) 

 
Exercise # 6: Plot the contours of constant magnetic field in the various planes. 
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Exercise # 7: In order to avoid breakdown, the secondary parts of a transformer are 30 
cm apart. Assuming that the wires form a square loop carrying 500 Amp of current, show 
that the magnetic induction 10 meters away is of the order 88 10−×  [T], or 0.08 [mG].  
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7.6.2   Force on a Magnetic Dipole 
 

The Lorentz force acting on a negative electric charge moving in an  external field ( )B  is 
given by  

 = v .F q B− ×
G GG     (7.6.12) 

For a distribution of particles of density n , the force density is given by  
 = ( v) .f qn B− ×

G GG     (7.6.13) 
Bearing in mind that the current density linked to a flow of charge is defined by 

=J qnv−
G G , we have for the force on the entire ensemble  

 = ( , , ) ( , , ).F dx dy dz J x y z B x y z′ ′ ′ ′ ′ ′ ′ ′ ′×∫
G G G

    (7.6.14) 
Assuming that the magnetic field varies slowly in the region of the current distribution 
we may expand, obtaining  

 '=0 '=0 '=0 '( , , ) = (0) ' ( ) 1 ' ( ) 1 ' ( ) 1x r x y r y z r zB x y z B r B r B r B′ ′′ ′ ′ + ⋅ ∇ + ⋅ ∇ + ⋅ ∇G G G
G G GG G G G G  (7.6.15) 

For dc or quasi-static currents (flowing in closed loops) the integral over the current 
density is zero i.e. ( , , ) = 0dx dy dz J x y z′ ′ ′ ′ ′ ′∫

G
 therefore,  

{ }=0 =0 =0= ( , , ) ' ( ) 1 ' ( ) 1 ' ( ) 1x r x y r y z r zF dx dy dz J x y z r B r B r B′ ′ ′ ′ ′ ′⎡ ⎤′ ′ ′ ′ ′ ′ × ⋅ ∇ + ⋅ ∇ + ⋅ ∇⎣ ⎦∫ G G G
G G GG G G G G  (7.6.16) 
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Following each component separately (using the fact that = 0B∇⋅
G G

) we find 
 ( ) = ( ) ( ) ( )F m B m B m B m B= ×∇ × ∇ ⋅ − ∇ ⋅ = ∇ ⋅

G G G G G G GG G G G     (7.6.17) 
This directly implies that the mechanical energy associated with the presence of a 
magnetic dipole moment in the magnetic field:  

 = ,M m B− ⋅
GG

E     (7.6.18) 
since 

 = .MF −∇
G

E     (7.6.19) 
 
Exercise # 8: Prove the steps that lead to (7.6.17). 
Exercise # 9: Show in a similar way that for an electrostatic dipole moment in an electric 
field, the energy is =E p E− ⋅

GG
E . 
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7.6.3   Bound Magnetic Charge 
 

If we assume that at the  microscopic level a magnetic dipole moment is represented by 
imG , then the magnetization  

 = i i
i

M n m∑
G G     (7.6.20) 

with this definition, and similar to Gauss' law and the electric polarization, we may define 
the magnetic induction as  

 0= ( ),B H M+
G G G

μ     (7.6.21) 
where M

G
 is the magnetization and we recall that  

 = 0 .B∇⋅
G G

    (7.6.22) 
Consequently,  

 0 0=H M∇⋅ −∇ ⋅
G G G G

μ μ     (7.6.23) 
and it is therefore convenient to define the magnetization charge density m( )ρ :  

 m 0= M−∇ ⋅
G G

ρ μ     (7.6.24) 
and, correspondingly, the magnetization charge surface density ,s mρ  is  

 ( )( ) ( )
, 0= 1 .a b

s m n M M− ⋅ −
G G G

ρ μ     (7.6.25) 
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7.6.4   Magneto-Quasi-Statics in the Presence of Matter 
 

Magnetization fields are widely used for data 
storage. In this sub-section we consider a simple 
model for the process of signal retrieval from a 
pre-magnetized tape as well as the 
electromagnetic process associated with it. A 
schematic drawing of the system is illustrated in 
the Figure.  Its essence, the magnetic flux 
imprinted in a moving tape is measured as voltage by a suspended loop. 
 
The magnetization of a  motionless thin tape (thickness d ) is in the z -direction and is 
taken to be periodic along the y -axis:  

 0= cos( )1 ;zM M ky
GG

    (7.6.26) 
the tape is infinite in both y  and x  directions.  At an elevation h  above the tape a 
rectangular (A) loop is positioned. The tape moves in the y -direction with a velocity v  
and the question is what voltage V  is induced by the moving tape in this loop.  
The first step is to ``translate'' the moving magnetization into the (rest) frame of the loop. 
By virtue of the non-relativistic transformation i.e.,  

 = vy y y t′→ +     (7.6.27) 
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we conclude that in the laboratory frame of reference  
 0= cos[ ( )]1 .zM M k y vt+

GG
    (7.6.28) 

Explicitly this means that in the laboratory frame of reference the magnetization varies 
periodically in time with characteristic angular frequency  

 = v.kω     (7.6.29) 
Since for practical purposes we have assumed  

 v ,c�     (7.6.30) 
we are able to calculate the magnetic field in the entire space assuming v = 0. After 
calculating the magnetic field in the entire space we shall make the adequate 
transformation to account for the motion of the tape. 
 
The magnetic scalar potential ψ  from which the magnetic field is derived is a solution of 
the Laplace equation therefore,  

 
( )

( )

exp / 2 cos( ) / 2

( , ) = sinh( ) cos( ) | |< / 2
exp / 2 cos( ) / 2,

A k z d ky z d

y z B kz ky z d
A k z d ky z d

ψ

⎧ ⎡ ⎤− − ≥⎣ ⎦⎪⎪
⎨
⎪ ⎡ ⎤− + ≤ −⎣ ⎦⎪⎩

    (7.6.31) 

where use has been made of the fact that zH  is an even function of z  which implies that 
ψ  has to be an odd function of z . 
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Let us now examine the boundary conditions associated 
with this problem:   
(a) The condition that the tangential magnetic field is continuous at = / 2z d±  implies  

 = sinh( / 2).A B kd     (7.6.32) 
(b) The divergence of M  is zero throughout the space therefore there exists at the 

discontinuity a magnetic surface charge density  
 , 0 0= cos( ) .s m M kyρ μ     (7.6.33) 

 
As indicated earlier, ,s mρ  determines the discontinuity in the normal component of the 
magnetic field ( )zH  hence  

 0 0 0 0= 0 = 0 = cos( )
2 2z z
d dH z H z M ky⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
μ μ μ     (7.6.34) 

therefore, bearing in mind that =zH
z

∂
−
∂
ψ , we obtain  

 0 0 0 0cosh( / 2) =kA kB kd M+ +μ μ μ     (7.6.35) 
and the solution of (7.6.32), (7.6.35) reads  

 ( ) ( )0 0= exp /2 , = sinh( /2)exp /2 .M MB kd A kd kd
k k

− −     (7.6.36) 

The scalar magnetic potential in the upper half-space for a  motionless tape is given by  
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( )0( , / 2) = exp sinh( /2)exp / 2 cos[ ].
2

M dy z d k z kd kd ky
k

ψ ⎡ ⎤⎛ ⎞ ⎡ ⎤> − − −⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦
 (7.6.37) 

When the tape  moves  

[ ] ( )0( , ; ) = exp ( /2) sinh( /2)exp /2 cos[ ( )] .My z t k z d kd kd k y vt
k

ψ ⎡ ⎤− − − +⎣ ⎦  (7.6.38) 

The magnetic  flux through the loop is  
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∂
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∂
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∫ ∫ ∫

∫ (7.6.39) 

By virtue of Faraday's law (in its integral form) = d dE dl da B
dt dt

⋅ − ⋅ ≡ − Φ∫ ∫
GG GGv  we 

observe that the magnetic flux induces in the loop a voltage given by V ∝Φ�  
consequently,  

0 0
/2( ) = (2 )v sinh ( / 2) sin ( / 2)sin ( ).kd khV t lM kd e e kl kvtμ − −⎡ ⎤− ⎢ ⎥⎣ ⎦

 (7.6.40) 
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Comments:  
1. The amplitude of this voltage is a linear 

function of the velocity ( )v  and of the 
magnetization of the tape.  

2. Storing more information along a given length implies a larger value of k . This, in 
turn, implies that h  has to be reduced 0

khM e−⎡ ⎤⎣ ⎦  or that 0M  must increase.  
3. If / 2 1kA �  ( no significant field variation across the magnetic tape) then  

 2
0 0

/2= ( )( ) sinh( / 2) sin( )kd khV kv M l kd e e kvt− −⎡ ⎤−
⎣ ⎦

μ  

the first term is the angular frequency as defined in (7.6.4) and 2
0 0M Aμ , is the 

maximum flux crossing the rectangular loop.  
4. The term ( )sinh( /2)exp /2kd kd− , for large / 2kd , tends asymptotically to 1 / 2 , 

whereas for / 2 1kd � , it equals / 2kd . Consequently, the smaller the value of d , the 
lower the induced voltage.  
  



 237

7.7   Field in the Vicinity of an Edge 
 

In the chapter on quasi-statics we have discussed extensively the transition from statics to 
dynamics with regard to the characteristics of devices. It has been pointed out that one 
criterion of deciding between quasi-statics and dynamics is the ratio between a typical 
geometric parameter and the exciting wavelength. So far we have considered primarily 
low frequency devices, but the concepts of quasi-statics are valid even if we consider 
optical wavelengths (1μm), provided the geometric parameter is smaller than 100 nm. 

  
7.7.1   Metallic Edge  
Consider for example the case when the wavelength 
is much longer than the radius of curvature of an 
edge ( )Rλ�  as illustrated in the figure on the 
right. 
 
For example, one may conceive a laser beam 
( 1 )mλ μ∼  illuminating a nano-meter size probe ( 10nm)R∼ . Based on this assumption 
the electric field in the vicinity of the edge is a solution of the Laplace equation since  
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2
2

2 2
1
c t

∂
∇ −

∂
= 0

⎡ ⎤
Φ⎢ ⎥

⎢ ⎥⎣ ⎦
  (7.7.1) 

or explicitly  
2 = 0.∇ Φ   (7.7.2) 

Assuming that the system is infinite in the z -direction and so is 
the excitation, then  

2

2 2

1 1 = 0r
r r r r
⎡ ⎤∂ ∂ ∂

+ Φ⎢ ⎥∂ ∂ ∂⎣ ⎦φ
  (7.7.3) 

is the equation to be solved subject to the zero potential on the walls  

( , = / 2) = 0 and , = 2 = 0.
2

r r⎛ ⎞Φ Φ −⎜ ⎟
⎝ ⎠

αφ α φ π  (7.7.4) 

The solution has the form  

 ( ) ,j jAe Be r−Φ +νφ νφ ν∼  

thus imposing the boundary conditions  
/2 /2= / 2 : = 0

(2 /2) (2 /2)= 2 / 2 : = 0,

j jAe Be
j jAe Be

−+
− − −− +

να ναφ α
ν π α ν π αφ π α

    (7.7.5) 

 

x  

y

α
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or in a matrix form  

 
/2 /2

= 0.
(2 /2) (2 /2)

j je e A
j j Be e

−⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟− − −⎢ ⎥⎝ ⎠⎣ ⎦

να να

ν π α ν π α
 

A non-trivial solution is possible provided the determinant of the matrix is zero implying  
 sin[ (2 ] = ,) 0ν π α−     (7.7.6) 

hence  
 (2 ) = = 1,2,3n n− …ν π α π  

or  

 1/ 2= .
1 / 2

nν
α π−

 (7.7.7) 

According to the boundary conditions  
 /2 /2 = 0 = ,j jjAe Be B Ae−+ ⇒ −να νανα     (7.7.8) 

thus  
 ( , ) sin[ ( /2)]r rνφ ν φ αΦ ∝ −     (7.7.9) 

and finally the general solution may be written as  
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=1

22, < < 2 = sin .
2 2 2

n

n
n

r A n r
∞

⎡ ⎤−⎢ ⎥ −⎛ ⎞ ′Φ −⎜ ⎟ ⎢ ⎥−⎝ ⎠ ⎢ ⎥
⎣ ⎦

∑
παφα α π αφ π π

π α
   (7.7.10) 

It is important to point out already at this stage that the angle of the edge determines the 
curvature of the potential. The figure in 
the right illustrates the contour of constant 
potential for = / 6α π .  

 
  

For a thorough analysis let us examine the 
field components linked to the first 
harmonic: the potential is given by  

1 1
2 2= sin

2
A r

⎡ ⎤−⎢ ⎥ −Φ ⎢ ⎥−⎢ ⎥
⎣ ⎦

α πφ
π απ

π α
        (7.7.11) 

and the corresponding field components 
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1 1

1
2 2= = sin

2 2rE A r
r

⎡ ⎤ −−⎢ ⎥∂ −− Φ − ⎢ ⎥∂ − −⎢ ⎥
⎣ ⎦

α πφπ π απ
π α π α

    (7.7.12) 

 1

11 2 2= = cos .
2 2

E A r
r

⎡ ⎤ −−⎢ ⎥∂Φ −− − ⎢ ⎥∂ − −⎢ ⎥
⎣ ⎦

φ

α πφπ π απ
φ π α π α

    (7.7.13) 

One of the most intriguing properties of this field is that at the limit 0r → , if <α π , then 
the electric field diverges nevertheless, the energy is finite. The first part of this statement 
is evident from Eqs.  (7.7.12)-(7.7.13) whereas for the second part, one needs to examine 
the energy in a finite volume around the edge. Explicitly this is given by  

2 /2
2 2 2

0 0 0 1
/2 0

2
1 1 1 2=
2 2 2 2

R

z r zW d drr E E A R
π α

φ
α

π
π π αφ ε ε ε

− ⎡ ⎤ −Δ + = Δ⎢ ⎥⎣ ⎦∫ ∫     (7.7.14) 

Consequently, regardless the value of α , the power of R  is positive  

 2 > 0,
2 −

π
π α

    (7.7.15) 

therefore, at the limit of 0R →  the energy is finite. Clearly, assuming that the voltage is 
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known, and it is proportional to A, it is possible to determine the capacitance in the 
system. In order  to have some feeling as of the cappacitance associated with the metallic 
edge let us define the voltage as the potential at , r Rφ π= =  thus Eq.(7.7.11) reads  

 1 0 1 0
2 2 2= sin or

2
rV A V R
R

α π πφ
π α π απ

π α

⎡ ⎤ −−⎢ ⎥⎛ ⎞ − −Φ =⎢ ⎥⎜ ⎟− ⎝ ⎠⎢ ⎥
⎣ ⎦

 (7.7.16) 

consequenly, subject to this definition of the voltage, the capacitance is independent of 
the angle of the wedge 

 0 0
2 / / 41=

2 zCW CV ε πΔ =⇒ . (7.7.17) 
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7.7.2   Dielectric Edge 
 

A similar approach may be followed to investigate the field distribution 
in the vicinity of a dielectric edge. Based on the knowledge of the field 
in the vicinity of a metallic edge, the character of a typical solution may 
be anticipated to be symmetric relative to the x -axis. Specifically, 

    
 ( = 0) = 0 ( , ) = cos( )E r A r⇒Φφ ε

νφ φ νφ     (7.7.18) 
 ( = ) = 0 ( , ) = cos[ ( )] .vE r B r⇒Φ −φ

νφ π φ ν π φ     (7.7.19) 
Since we have taken care of the symmetry, we impose the boundary conditions only at 

= / 2φ α . 
Continuity of Φ  entails  

 cos( / 2) = cos[ ( / 2)],A B −να ν π α     (7.7.20) 
whereas continuity of Dφ   

 sin( / 2) = sin[ ( / 2)].A B− −ε να ν π α     (7.7.21) 
For a non trivial solution, this equation system formulated next in a matrix form  

 
cos( / 2) cos[ ( / 2)]

= 0
sin( / 2) sin[ ( / 2)]

A
B

− −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠

να ν π α
ε να ν π α

    (7.7.22) 
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entailing the determinant ought to vanish i.e.  

cos sin sin cos = 0
2 2 2 2

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

α α α αν ν π ε ν ν π  

 
tan

2= .
tan

2

⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦−
⎛ ⎞
⎜ ⎟
⎝ ⎠

αν π
ε

αν
    (7.7.23) 

Clearly, the curvature parameter depends on the dielectric coefficient of the medium. 
Note that at the limit →∞ε  the first solution is  

 = 0 =
2 2 2
α π πν π ν

π α
⎛ ⎞− + ⇒⎜ ⎟ −⎝ ⎠

 

identical to the result in (7.7.7) .  The figure on 
the right illustrates the dependence of curvature 
parameter on the dielectric coefficient. 
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7.7.3   Capacitance in the Vicinity of an Edge 
 

Previously we have made a rough estimate of the 
capacitance associated with the presence of a metallic 
edge imposing a certain voltage.  In this section we shall 
determine the capacitance in a self-consistent way. 
Consider an electrode that is infinite in the z -direction, 
infinitesimally thin and it has an angular spread 

| |<
2

−
βφ γ .   A voltage 0V  is applied to this electrode, all 

the other surfaces being grounded – including the edge ( )α  and the surrounding surface 
see Figure. Consequently, the potential is given by  

ext
ext

ext

=1

< <
( , ) = sin

2
0 ,

n

n

n

n nRrA R r R
R r

r n
nrB r R

R

ν ν

αφ ν φ
ν

∞

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎢ ⎥−⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠⎢ ⎥⎡ ⎤⎛ ⎞ ⎝ ⎠⎣ ⎦Φ − ⎨⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎛ ⎞ ≤ ≤⎪ ⎜ ⎟
⎝ ⎠⎩

∑ (7.7.24) 

wherein as before, ν  is given by =
2 −
πν
π α

. Continuity of Φ  at =r R  implies  
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 ext

ext

= .n n

n nRRA B
R R

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥− ⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

ν ν
 (7.7.25) 

Therefore, we may rewrite the potential  

 
=1

( , ) = ( )sin ,
2n n

n
r U R r n

∞ ⎡ ⎤⎛ ⎞Φ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ αφ ν φ  (7.7.26) 

wherein  

 
ext ext

ext< <
( ) =

0

n

n n
r r

R R
R r Rn nR r R R

nr r R
R

−⎧⎛ ⎞ ⎛ ⎞
⎪ −⎜ ⎟ ⎜ ⎟
⎪⎝ ⎠ ⎝ ⎠⎪ −⎨ −
⎪

⎛ ⎞⎪ ≤ ≤⎜ ⎟⎪ ⎝ ⎠⎩

ν ν

ν ν

ν
    (7.7.27) 

and 
ext

RR
R

≡ . In order to determine the amplitude it is assumed that the electrode is 

infinitesimally thin, thus the charge-density reads  
 ( , ) = ( ) ( )sr r R−ρ φ ρ φ δ     (7.7.28) 

entailing that the discontinuity in the electric induction rD  is  
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0

0 01 1( , ) = ( , ),
0 0

R R
drr r r drr r

r r rR R

+ +
∂ ∂

Φ −
∂ ∂− −

∫ ∫φ ρ φ
ε

 (7.7.29) 

thus  

 

0

0

01= ( , )
= 0 = 0 0

1= ( ).s

R
r r drr r

r rr R r R R

R

+
∂Φ ∂Φ⎡⎡ − −⎢⎢ ∂ ∂⎣ ⎣+ − −

−

∫ ρ φ
ε

ρ φ
ε

(7.7.30) 

Substituting  (7.7.26) we get  

 
=1 0

( ) ( ) 1sin = ( ),
2 = 0 = 0

n n
n s

n

dR r dR rR U n R
dr drr R r R

∞ ⎡ ⎤ −⎡ ⎤⎛ ⎞− −⎜ ⎟ ⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦ + −⎣ ⎦
∑ αν φ ρ φ

ε
(7.7.31) 

or explicitly based on the definition of ( )nR r  in Eq. (7.7.27)  

 2( ) ( ) = 2= 0 = 0 1
n n

d d nR r R r ndr dr Rr R r R R

−⎛ ⎛
−⎜ ⎜

⎝ ⎝+ − −

ν
ν     (7.7.32) 

and using the orthogonality of the trigonometric function we find  
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0

2
221 2= 1 ( )sin

2 2 2

2

n s
nRU R d n

n

−
⎡ ⎤⎛ ⎞⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥−⎝ ⎠ ⎝ ⎠⎣ ⎦∫

απ
ν αφρ φ ν φ

ε ν π α α
   (7.7.33) 

implying that if the surface charge-density, ( )sρ φ , on the electrode is known, the 
potential may be established. However, in practice the opposite is the case; we know the 
voltage on the electrode  

 0= , | |< =
2

r R V⎛ ⎞Φ −⎜ ⎟
⎝ ⎠

βφ γ     (7.7.34) 

based on which the surface-charge distribution should be determined. The exact solution 
requires solving an integral equation that is beyond the scope of this lecture. 
Nevertheless, we may proceed to an approximate solution by replacing the continuous 
electrode with N  line charges located at certain angles iφ  i.e.  

 
=1

1( ) = ( ).
N

s i i
i z

Q
R

−
Δ∑ρ φ δ φ φ

β
    (7.7.35) 

In this way the unknown charges may be readily established by imposing the potential in 
N  points on the electrode  
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=1

=10

= ( = , = ) = sin
2

21 2 11 sin .
2 2 2

j j j
n

N

i j
iz

r R n

nR R Q n
n R

∞ ⎡ ⎤⎛ ⎞Φ Φ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞× − −⎜ ⎟ ⎜ ⎟⎢ ⎥− Δ⎝ ⎠ ⎝ ⎠⎣ ⎦

∑

∑

αφ φ ν φ

ν αν φ
ε ν π α β

(7.7.36) 

By defining the matrix  

=10

21 2 1 (1 )sin sin ,
2 2 2 2ji j i

nz

n
R n n

n

∞ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞≡ − − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥Δ − ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ νπ α αχ ν φ ν φ

πε β π α ν
(7.7.37) 

we realize that  

 
=1

= ,
N

j ji i
i

QΦ ∑χ     (7.7.38) 

or 

 1

=1

= [ ] .
N

i ij j
j

Q − Φ∑ χ     (7.7.39) 

Bearing in mind that for any j , 0=j VΦ  implies that the potential is known in the entire 
space. Moreover, it is possible to calculate the capacitance since the total change on the 
electrode is  
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 total
=1

=
N

i
i

Q Q∑ , then  

 1 1total
total 0

=1 =1 , =10

= [ ] = [ ] .
N N N

ij ij
i j i j

QQ V C
V

χ χ− −⇒ ≡∑∑ ∑     (7.7.40) 

A simpler approach to the solution of the potential in Eq. (7.7.26) subject to the charge 
distribution that determines nU  in Eq. (7.7.33) is possible if we assume that the charge is 
uniformly distributed on the electrode. Explicitly, the surface charge density sρ  is 
assumed to be given by  

 ( ) =
2 2s

z

Q h h
R

⎡ ⎤⎛ ⎞ ⎛ ⎞− + − − −⎜ ⎟ ⎜ ⎟⎢ ⎥Δ ⎝ ⎠ ⎝ ⎠⎣ ⎦

β βρ φ φ γ φ γ
β

    (7.7.41) 

implying  

0

21 2 1= (1 ) sinc sin .
2 2 2 2n

z

nQU R n n
n

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥Δ − ⎝ ⎠ ⎝ ⎠⎣ ⎦

ν π αν β ν γ
πε ν π α

   (7.7.42) 

For the evaluation of the total charge Q  we again impose the condition in Eq.  (7.7.34) , 
or if to be more precise, since we assumed that the surface charge density is uniform, the 
potential on the electrode is expected to vary. Therefore, we shall assume that the 
average potential on the electrode equals the voltage 0V  i.e.  
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0
=1

=1

2 21 1= ( = , ) = sin
2

2 2
1= sinc sin ,
2 2

n
n

n
n

V d r R U d n

U n n

∞

∞

+ +
⎡ ⎤⎛ ⎞Φ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

− −

⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑∫ ∫

∑

β βγ γ
αφ φ φ ν φ

β ββ βγ γ

ανβ ν γ   (7.7.43) 

consequently, the charge  
0

2 2

=10

= ,
21 2 1 1(1 )sinc sin2 2 2 2nz

VQ
n

R n n
n

∞ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥Δ − ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ νπ ανβ ν γ

πε π α ν

  (7.7.44) 

whereas the normalized capacitance  

2 20 0

=1

= .
22 2 1 1(1 )sinc sin2 2 2

z

n

QC
nV R n n

n

∞
≡

Δ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥− ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ νπε π ανβ ν γ

π α ν

 (7.7.45) 

The potential distribution associated with this electrode, in the framework of this last 
approximation, is illustrated in the Figure below  and the dependence of the capacitance 
on the various parameters follows.   
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 253

With the capacitance established, it is possible to determine the energy stored in the 
system.  

 2
ext ext 0

1( , , , , , ) = ( , , , , , ) .
2z zW R R C R R VΔ Δα β γ α β γ     (7.7.46) 

Assuming that the voltage 0V  is set, we may determine the force on the electrode. For 
example, the radial force on the electrode is  

 = ,r
WF
R

∂
−
∂

    (7.7.47) 

whereas the azimuthal force is  

 1= .WF
R
∂

−
∂φ γ

    (7.7.48) 

 
Exercise #10: Calculate the resistance per unit length between 
the edge and the electrode. Analyze the effect of the various 
parameters on this quantity. 
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7.8   EM Field in Superconducting Materials 
 

Superconducting materials play an important role in low noise devices or intense 
magnetic field devices (MRI, levitation trains and particle accelerators). In order to 
understand the basic process occurring in a superconductor, let us examine a simplified 
model which describes the conduction in regular metals. In  vacuum the motion of an 
electron subject to an electric field E  is given by  

 v = .d e E
dt m

−     (7.8.1) 

In a  metal, the electron encounters collisions therefore, if we denote by τ  the typical 
time between two collisions, then the dynamics of the particle is determined by  

 vv = .d e E
dt mτ

− −     (7.8.2) 

From this relation we may deduce that the average velocity of the electron is given by  

 v = e E
m
τ

−     (7.8.3) 

hence, the current density  

 
2

= v = = = ,e e nJ en en E E E
m m
τ τ σ⎛ ⎞− − −⎜ ⎟

⎝ ⎠
    (7.8.4) 
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wherein  

 
2

= e n
m
τσ     (7.8.5) 

represents the conductivity. 
 
For  superconductors →∞τ  therefore we end up with a situation similar to vacuum 
therefore  

 v = = ,d e e AE
dt m m t

∂⎛ ⎞− − −⎜ ⎟∂⎝ ⎠
    (7.8.6) 

where A is the magnetic vector potential; we have ignored the electric scalar potential 
and consequently we may assume a typical velocity  

 v = .e A
m

    (7.8.7) 

Based on this relation we may define the current density associated with the 
superconducting electrons as  

 s s= v = ,c sc c
eJ en en A
m

− −     (7.8.8) 

where scn  is the density of the "super-conducting'' electrons. Note that as in 
semiconductors, the mass is not necessarily the mass of a free electron. 
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An important observation is that the relation in (7.8.8) dictates in the static case the gauge 
since charge conservation entails = 0J∇⋅

G G
 hence = 0A∇⋅

GG
 also dictating zero electric 

scalar potential as it reflects from (7.8.6). Equation (7.8.8) dictates the so called London's 
equations for the microscopic electric and magnetic field  

 s
s2 2= = = c
c

sc sc

JA m mE J
t t e n e n t

⎛ ⎞ ∂∂ ∂
− − −⎜ ⎟∂ ∂ ∂⎝ ⎠

GGG G
    (7.8.9) 

and  

 s s2 2
0 0 0 s

1 1= = = .c c
sc c

m mH A J J
e n e n

⎛ ⎞ −
∇× ∇× − ∇×⎜ ⎟

⎝ ⎠

GG G G G G G
μ μ μ

    (7.8.10) 

Combining the last equation with Ampere's law ( = )H J∇×
G G G

 and neglecting the 
contribution of the electric induction D

G
 we find  

 2
2

0
=0

( ) =

= sc

H J
e nH H H

m

∇× ∇× ∇×

⎛ ⎞∇ ∇ ⋅ −∇ −⎜ ⎟
⎝ ⎠
��	�


G G

G G G G
μ

    (7.8.11) 

hence  
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2

2
2 2

0

1 1= = .sce nH H H
m c

∇
G G G

ε λ
  

  (7.8.12) 
λ  – is called the Meisner coefficient and it describes the penetration 
depth of the magnetic field in a superconducting material. In order to 
illustrate the effect consider a 1D problem, where we set 

0( = 0) =zH x H , all other components being identically zero:  

 
2

2 2
1 = 0.z

d H
dx
⎡ ⎤

−⎢ ⎥
⎣ ⎦λ

 (7.8.13) 

 
Consequently / /= x x

zH Ue W e− +λ λ  and since the solution needs to converge at x →∞  we 
conclude that = 0W  therefore  

 /= .x
z oH H e− λ     (7.8.14) 

In order to have an idea of the penetration depth consider 27 310scn m−∼  hence  

 
19 27

2 6 12 14
1 1.6 10 10 1 1=

0.51 10 8.85 10 2.7 10

−

−

× ×
× × ×λ

∼  

 
 710 m 100nm.−λ ∼ ∼     (7.8.15) 
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Note that although the electric field may be zero (dc) the current density is nonzero, and 
in spite of the static condition the magnetic field does not penetrate the material.   
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7.9   EM Field in the Presence of Moving Metal 
 

When a metallic film moves in the vicinity of a magnet, currents are induced in the film. 
These currents have two effects firstly they dissipate power and secondly, they generate a 
decelerating force J B×

G G
; the two are related and in this section we shall consider this 

relation. The example to be examined in this section relies on the observation based on 
the Coulomb force for a motionless charge  

 =F qE
G G

    (7.9.1) 
and its extension to a moving charge 

 
 = ( v )F q E B+ ×

G G GG     (7.9.2) 
we can extend the constitutive relation in a motionless metal  

 =J E
G G

σ     (7.9.3) 
to  

 = ( v )J E Bσ + ×
G G GG     (7.9.4) 

when the metal moves at a velocity v , in the Figure we show a simple example to be 
considered consisting of a periodic magnet and a metallic layer. 
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In the absence of the moving metallic layer the 
magnetic field generated by the periodic 
magnets may be roughly approximated by  

( )
0= cos 2 exp 2
2

p
y

L x zA B
L L

π π
π

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

       (7.9.5) 

therefore the magnetic field components read    

 
( )

( )
0

2= = cos exp 2
p

yp
x

A x zB B
z L L

π π
∂ ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

    (7.9.6) 

 
( )

( )
0

2= = sin exp 2 ;
p

yp
z

A x zB B
x L L

π π
∂ ⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

    (7.9.7) 

the superscript p  indicates that this is a  primary field. The presence of the moving 
metallic layer generates a  secondary magnetic vector potential (superscript p ) which is 

a solution of the Laplace equation 2
L c

⎛ ⎞
⎜ ⎟
⎝ ⎠
π ω� . Between the magnets and the metallic 

layer ( )sec
yA  is  

( )
1 2

2( ,0 < < ) = exp 2 exp 2 sinsec
y

z z xA x z h A A
L L L

ππ π⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
  (7.9.8) 

and  
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( )

3
2( , > ) = exp 2 sin .sec

y
z h xA x z h A

L L
ππ −⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
    (7.9.9) 

Since the magnets which impose the primary 
magnetic vector potential may be represented by a 
surface current density and assuming that the 
secondary field is weak enough such that it does not affect this current,  

 ( )
1 2( = 0) = 0 = 0sec

xH z A A⇒ −     (7.9.10) 
and consequently  

 ( )
1( ,0 < < ) = 2 cosh 2 sin 2 .sec

y
z xA x z h A
L L

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
π π     (7.9.11) 

The amplitudes 1A  and 3A  are next determined by imposing the boundary conditions at 
=z h . First the ( )sec

yA  has to be continuous 1 2[ ( ) = 0]n B B⋅ −
G GG  at =z h :  

 1 32 cosh 2 =hA A
L

⎛ ⎞
⎜ ⎟
⎝ ⎠
π     (7.9.12) 

and second the x -component of the secondary magnetic field is discontinuous. The 
discontinuity is determined by the current which flows in the metallic layer  

 ,( = 0) ( = 0) = .x x s yH z h H z h J+ − −     (7.9.13) 
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Based on (7.9.4) and bearing in mind that = 0E , 
we conclude that  

( ) ( )
,= v = vp p

y z s y zJ B J Bσ σ− ⇒ −Δ              (7.9.14) 
hence   
 

 
( )

0 0= 0 = 0

3 1

0 0

1 1 = v

2 2sin 2 2 sinh 2 sin 2

2 2= v sin exp 2
2

p
y y z

z h z h

A A A
z z x

x h xA A
L L L L L

L x hB
L L L

σ
μ μ

π ππ π π

π πμ σ π
π

+ −

∂ ∂ ∂
− + −Δ

∂ ∂ ∂

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞+ Δ −⎜ ⎟
⎝ ⎠

(7.9.15) 

Explicitly this reads  

 3 1 0 0
2 2 2 sinh 2 = v exp 2h hA A B
L L L L
π π π μ σ π⎛ ⎞ ⎛ ⎞+ Δ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
    (7.9.16) 

and together with (7.9.12) we can determine the two amplitudes: 

( )1 0 0
1= v exp 4
2 2

L hA B
L

μ σ π
π

⎛ ⎞ ⎛ ⎞Δ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      (7.9.17) 
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and 

( )3 0 0= v exp 4 cosh 2 .
2
L h hA B

L L
μ σ π π

π
⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

      

(7.9.18) 
Consequently, the secondary magnetic field reads   

( ) ( )

0 0

=

sinh 2 exp 4 0 <
= ( v )sin 2

exp 2 4 cosh 2 >

sec sec
x yB A

z
z h z h
L LxB

L z h h h z h
L L L

π π
μ σ π

π π π

∂
−
∂

⎧ ⎛ ⎞ ⎛ ⎞− − ≤⎜ ⎟ ⎜ ⎟⎪⎪ ⎝ ⎠ ⎝ ⎠⎛ ⎞Δ ⎨⎜ ⎟ −⎝ ⎠ ⎛ ⎞ ⎛ ⎞⎪ − −⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

 (7.9.19) 

( ) ( )

0 0

=

cosh 2 exp 4 0 < <
= ( v )cos 2

exp 2 4 cosh 2 > .

sec sec
z yB A

x
z h z h
L LxB

L z h h h z h
L L L

π π
μ σ π

π π π

∂
∂

⎧ ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎪⎪ ⎝ ⎠ ⎝ ⎠⎛ ⎞Δ ⎨⎜ ⎟ −⎝ ⎠ ⎛ ⎞ ⎛ ⎞⎪ − −⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩
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     (7.9.20) 
7.9.1   Power and Force  

 
The power dissipated in the metallic layer is given by   

2
2 2

00 0

1 1= v exp 2 2sin
L L

y y y
h xP dx J B dx
L L

σ π π
σ σ

⎡ ⎤⎛ ⎞ ⎛ ⎞Δ Δ Δ Δ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫�   (7.9.21) 

hence 

 
2

0
1= v exp 2 .

2y
h LP B
L

σ π
σ
⎡ ⎤⎛ ⎞Δ Δ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    (7.9.22) 

Recall that the power is the product of the force and velocity, consequently the 
decelerating force which acts on the metallic layer is  

 2
0 0

0

1 1= ( ) v exp 4 .
2x y

hF B L
L

μ σ π
μ

⎡ ⎤ ⎡ ⎤⎛ ⎞Δ Δ Δ −⎢ ⎥ ⎜ ⎟⎢ ⎥Δ ⎝ ⎠⎣ ⎦⎣ ⎦
    (7.9.23) 

Note that this force is proportional to the magnetic field stored in the metal, it is 
proportional to the velocity and the conductivity and it decays exponentially with the 
height ( )h . 



Chapter 8   Some Basic Electrodynamic Concepts 
 
 

8.1   Plane Waves in Non-Conducting Medium 
So far we have seen that energy can be transferred by an electromagnetic field when the 
latter is guided by wires or plates. One of the most important features of Maxwell's 
equations is that they support solutions which carry energy in free space without 
guidance. The simplest manifestation of such a solution is the plane wave. It deserves its 
name from the fact that the locus of its constant phase is a plane; the solution has the 
form  

 ( )exp ;j t jk rω − ⋅      (8.1.1) 

k  being the wave number and at this stage we shall assume that all its three components 
are real.  Substituting in Maxwell's equation we find immediately several features: 
 
1. Faraday's law 

  

 0
0

1= = ,r
r

E H H k E
t
μ μ

ωμ μ
∂

∇× − ⇒ ×
∂

    (8.1.2) 

i.e. E&H  are perpendicular. 
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2. Gauss' law 
 0 = 0 = 0r E k Eε ε∇ ⋅ ⇒ ⋅     (8.1.3) 

implying that k  and E  are perpendicular. 
 

3. Conservation of the magnetic induction 
  0 = 0 = 0 ,r H k Hμ μ∇ ⋅ ⇒ ⋅     (8.1.4) 

thus k  is perpendicular to H  too. If we go back to (8.1.2) we observe that ,k E  and H  
are three orthogonal (in space) vectors. 

 
4. The complex vector Poynting 

 

* *

0

* * 2

0 0=0

1 1 1( )
2 2

1 1( ) ( ) = | | ,
2 2

r

r r

S E H E k E

E E k E k E E k

ωμ μ

ωμ μ ωμ μ

⎡ ⎤
≡ × = × ×⎢ ⎥

⎣ ⎦
⎡ ⎤

= ⋅ − ⋅⎢ ⎥
⎣ ⎦

    (8.1.5)  

where we used the fact ( ) = ( ) ( )a b c a c b a b c× × ⋅ − ⋅ . Therefore the complex vector 
Poynting is  real and parallel to k . Note that = 0S∇⋅ . 
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5. Magnetic and electric energy density 

 
*

0
1=
4E rw E E⋅ε ε     (8.1.6) 

 
( )

* *
0 0 2

0

1 1 1= = ( ) ( ) ,
4 4M r r

r

w H H k E k E⎡ ⎤⋅ × ⋅ ×⎣ ⎦μ μ μ μ
ωμ μ

   (8.1.7) 

where we have substituted (8.1.2). Now we can take advantage of the fact that  
 ( ) ( ) = ( )( ) ( )( )a b c d a c b d a d b c× ⋅ × ⋅ ⋅ − ⋅ ⋅     (8.1.8) 

and obtain  
2 2

* * *2
02 2

0 =0

1 1 1 1( )( )
4 4M r

r r r

k cw k E E k E k E E Eε ε
ω μ μ ω μ ε

⎡ ⎤
= ⋅ − ⋅ ⋅ = ⋅⎢ ⎥

⎣ ⎦
  (8.1.9) 

Since we have shown that = 0S∇⋅  we anticipate that = 0E MW W−  which implies  

 
2

2= .r rk k
c

⋅
ω ε μ     (8.1.10) 

6. Wave equation:  

 0
0

1= = .t r
r

H E E k Hε ε
ωε ε

∇× ∂ ⇒ − ×     (8.1.11) 

We may now multiply (8.1.2) by k :  
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0
=00 0

( ) 1= = = ( ) ( )r
r r

k EE k H k k E k k k E
⎡ ⎤×

− × × ⋅ − ⋅⎢ ⎥
⎣ ⎦

ε ε ω
ωμ μ ωμ μ

   (8.1.12) 

hence  

 
2

2 = 0,r rk k E
c

⎡ ⎤
⋅ −⎢ ⎥

⎣ ⎦

ω ε μ     (8.1.13) 

which is the wave equation and for a non-zero solution, it implies  

 
2

2= .r rk k
c

⋅
ω ε μ     (8.1.14) 

This result is identical to that in (8.1.11) obtained from energy considerations. 
 

7. Phase velocity.   In case of a plane wave the temporal and spatial variations of the 
field are according to cos( )t kz− +ω ψ . Clearly, the region in space of constant phase is 
determined by a plane (from here the name plane wave) =t kz const−ω . For an external 
observer to measure this constant phase it needs to be stationary with this plane i.e. 

= 0t k zΔ − Δω  thus its velocity ought to be  

 ph = ;zV
t k

Δ
≡
Δ

ω     (8.1.15) 

this is the phase-velocity. 
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8. Group velocity. Consider two plane waves  
 ( , ) = cos( ) cos( )z t t k z t k z+ + − −− + −ψ ω ω     (8.1.16) 

of two different frequencies =± ± Δω ω ω  and their corresponding wave numbers 
=k k k± ± Δ . Using trigonometric identities we have  

 ( , ) = 2cos( )cos( ).z t t kz t kzΔ − Δ −ψ ω ω     (8.1.17) 
 Now, assuming that | |Δω ω  and | |k kΔ  we may consider cos( )t kzΔ − Δω  as a 
slowly varying amplitude. Therefore, we may ask what is the speed an observer needs to 
move in order to measure a constant amplitude. Similar to the previous case, 

= constt kzΔ − Δω . This is to say that, = 0t k zΔ − Δωδ δ , or at the limit 0t →δ  we may 
define the so-called group velocity  

 gr = .V
k

∂
∂
ω     (8.1.18) 

 In the simple configurations discussed here both phV  and grV  are constant satisfying  
 2

gr ph = / .r rV V c ε μ     (8.1.19) 
This is not the case in general. 
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9. Dispersion.   Consider an electromagnetic pulse that when monitored at = 0z  has a 
known form, for example a pulse (though the next steps are not dependent on this specific 
form):  

 0 0

1 | |< /2
( = 0, ) = ( , ),

0 | |> /2
p

x p
p

t
E z t E E p t

t
τ

τ
τ

⎧
≡⎨

⎩
    (8.1.20) 

where pτ  is the pulse duration. The question is what will measure a different observer 
located down the road at =z d  equipped with an identical probe.  
 
In order to address this question it is convenient to define the Fourier transform of the 
signal at = 0z  i.e.  

1( = 0, ) = ( ) ( ) = ( = 0, ).
2x x

j t j tE z t d e dt e E z t
∞ ∞

−∞ −∞

′−′ ′⇔∫ ∫ω ωω ω ω
π

E E   (8.1.21) 

With the spectrum established we may proceed and determine the functional dependence 
of this pulse in space, assuming it propagates along the positive direction of the z -axis  

 ( )( 0, ) = ( ) .x
j t jk zE z t d e

∞

−∞

−≠ ∫ ω ωω ωE     (8.1.22) 

Substituting Eq. (8.1.21) we obtain  
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1 ( )( 0, ) = ( = 0, )
2

1 ( ) ( )= ( = 0, ) .
2

x x

x

j t j t jk zE z t d dt e E z t e

j t t jk zdt E z t d e

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

⎡ ⎤′− −′ ′≥ ⎢ ⎥
⎣ ⎦

′− −′ ′

∫ ∫

∫ ∫

ω ω ωω
π

ω ωω
π

  (8.1.23) 

The expression  

 1 ( ) ( )( , | ) =
2

j t t jk zG t z t d e
∞

−∞

′− −′ ∫ ω ωω
π

    (8.1.24) 

may be conceived as Green's function i.e.,  

 ( 0, ) = ( , | ) ( = 0, ).x xE z t dt G t z t E z t
∞

−∞

′ ′ ′≥ ∫     (8.1.25) 

Evidently, the shape of the pulse at > 0z  will be preserved only if Green's function 
becomes a Dirac delta function and the only case where it happens is, if the phase 
velocity of all frequencies is the same. In order to prove this statement consider Eq. 
(8.1.10) which entails  

 1( , | ) = exp =
2 r r r r

z zG t z t d j t t t t
c c

ω ω ε μ δ ε μ
π

∞

−∞

⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′− − − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫  

or 
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 ( 0, ) = 0, = .x x r r
zE z t E t t
c

⎛ ⎞′≥ −⎜ ⎟
⎝ ⎠

ε μ     (8.1.26) 

This is to say that the pulse propagates at a velocity / r rc ε μ  which in case of vacuum is 

c . And the pulse reaches the point =z d  after = r r
dt
c

Δ ε μ . 

In order to understand how important the fact is that all the waves have the same phase 
velocity, let us assume without loss of generality that = 1rμ  and a dielectric coefficient 
which is frequency dependent. For the sake of simplicity, we shall assume that it equals 

rε  for frequencies below a critical value ( )crω  and unity otherwise  

 
| |<

( ) =
1 | |> .

r cr

cr

⎧
⎨
⎩

ε ω ω
ε ω

ω ω
    (8.1.27) 

This is to say that waves of low frequency have a phase velocity / rc ε , whereas high 
frequency waves have the same speed as if in vacuum. We may now evaluate ( , | )G t z t′  
subject to the assumption above i.e.  
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[ ]1( , | ) = exp ( ) ( )
2

1= exp ( ) ( )
2

exp ( )

1= exp ( )
2

exp ( )

cr

cr

r

cr

cr

G t z t d j t t jk z

d j t t j z
c

d j t t j z
c

d j t t j z
c

d j t t j z
c

ω

ω

ω

ω

ω ω ω
π

ωω ω ε ω
π

ωω ω

ωω ω ε
π

ωω ω

∞

−∞

∞

−∞

−

−∞

−

∞

′ ′− −

⎡ ⎤′− −⎢ ⎥⎣ ⎦

⎧ ⎫
⎪ ⎪⎡ ⎤′− −⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪
⎪ ⎪⎪ ⎪⎡ ⎤′+ − −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪
⎪

⎫⎪ ⎪⎡ ⎤′+ − − ⎬⎪ ⎢ ⎥⎣ ⎦⎪⎪ ⎭⎩ ⎭

∫

∫

∫

∫

∫
⎪
⎪
⎪
⎪

(8.1.28) 

Without loss of generality we may add and subtract 
( )1

2

cr

cr

j t t j z
cd e

−

′− −

∫
ω

ω

ωω
ω

π
, in which 
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case  
 

( ) 1 1, ; ' = exp exp
2 2

1 exp
2

= sinc sinc

cr

r

cr

cr

cr

cr cr
cr r cr

z zG t z t d j t t d j t t
c c

zd j t t
c

z z zt t t t t t
c c c

ω

ω

ω

ω

ω ω ω ω ε
π π

ω ω
π

ω ωδ ω ε ω
π π

∞

−∞ −

−

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′− − + − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞′− − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′− + + − + − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫

∫   

   (8.1.29) 
wherein sinc( ) sin( ) /≡ξ ξ ξ . Substituting in Eq. (8.1.25) we get  
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 ( )

( , ) = ( , | ) (0, )

= 0, '

sinc si

0,

nc

x x

x
cr

x

cr r cr

E z t dt G t z t E t

dt E tz

z zt t t t

E

c c

t
c

ω
π

ω ε ω

∞

−∞

∞

−∞

′ ′ ′

′+

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′× − + − − +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎦ ⎣ ⎦⎩ ⎭

∫

∫  

clearly indicating that the pulse does not preserve its shape. This phenomenon when a 
pulse changes its shape because waves at different frequencies have different velocities is 
called dispersion. The equation that determines the relation between the wave number k  
and the angular frequency ω  is called the dispersion relation. Equation (8.1.14) or 

= r rk
c
ω ε μ  is the simplest manifestation of a dispersion relation. 

Comment: It is important to point out that the dispersion is not only a result of frequency 
dependence of the material but also the geometry of the structure where the wave 
propagates. 
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8.2   White Noise and Cerenkov Radiation 
 
The source of electromagnetic waves is always charged particles. Let us now investigate 
the waves attached to a moving point-charge  

 1( , , ) = ( ) ( )
2zJ r z t qV z Vt r

r
δ δ

π
− −     (8.2.1) 

that moves in a dielectric medium (e.g. glass ). It is convenient to determine the Fourier 
transform of the current density 

 
1( , ; ) = ( , , )

2
1 1= ( ) ( ) ( )

2 2

1 1 1= ( ) ( )
2 2

( )= .
2 2

z z
j tJ r z dte J r z t

j tqV r dte z Vt
r

j z
VqV r e

r V

j zq r Ve
r

ωω
π

ωδ δ
π π

ω

δ
π π

ω
δ

π π

∞

−∞

∞

−∞

−

−− −

−
−

−−

∫

∫

    (8.2.2) 
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Here we observe that the spectrum of a moving point charge is constant (frequency 
independent); this is one possible interpretation of  white noise. This particle moves in a 
dielectric medium 1r ≥ε  and = 1rμ . The z -component of zJ  excites the z -component of 
the magnetic vector potential ( , ; )zA r z ω  which is a solution of:  

 
2

2 0
02

( )( , ; ) = ( , ; ) = exp .
2 2z zr
q rA r z J r z j z

c r V
μω δ ωε ω μ ω
π π

⎡ ⎤ ⎛ ⎞∇ + − −⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦
 (8.2.3) 

The term exp j z
V
ω⎛ ⎞−⎜ ⎟

⎝ ⎠
 dictates that ( , ; )zA r z ω  is given by  

 ( , ; ) = ( )expz zA r z a r j z
V
ωω ⎛ ⎞−⎜ ⎟

⎝ ⎠
    (8.2.4) 

hence 
  

 
2

0
2 2

1 1 ( )( ) = ,
2 2r z
qd d rr a r

r dr dr c r
⎡ ⎤⎛ ⎞

− −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

μω δε
β π π

    (8.2.5) 

where = /V cβ .   
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The general solution of this equation is  

 1 22 2
1 1( ) =z o r o ra r C K r C I r

c c
⎡ ⎤ ⎛ ⎞

− + −⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠

ω ωε ε
β β

    (8.2.6) 

but ( )( 1) exp /oK ξ ξ ξ−  and ( )( 1) exp /oI ξ ξ ξ . Consequently 2 = 0C  
otherwise the solution diverges for r →∞ . In order to determine 1C  we can integrate 
(8.2.5) in the interval : 0r →δ   

 0
1 2 20

1 1 = ,
(2 )o r
qd dC drr r K r

r dr dr c
⎡ ⎤

−⎢ ⎥
⎣ ⎦

∫
δ μω ε

β π
    (8.2.7) 

hence  

 0
1 2 2

0

1 = .
(2 )o r

r

qdC r K r
dr c

ε

μω ε
β π

= →

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 

It was previously indicated that for small argument ( 1) ln( )oK ξ ξ−  therefore  

 0
1 1 1 2

1( ) = ( ) = = .
(2 )o
qdC K C C

d
⎡ ⎤ ⎡ ⎤

− −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

μ
ξ ξ ξ

ξ ξ π
    (8.2.8) 

The magnetic vector potential reads  
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 0
2 2

1( , ; ) =
(2 )z o r

j zq VA r z K r e
c

ω
μ ωω ε
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−⎛ ⎞
− −⎜ ⎟

⎝ ⎠
    (8.2.9) 

and for large arguments  
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0
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1exp
( , ; ) exp .
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V
r

c
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βμ ωω

π ω ε
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    (8.2.10) 

1. In vacuum ( = 1)rε  the field decays exponentially in the radial direction.  

2. If 2
1 > 0r−ε
β

 i.e. p< = /h rV V c ε  then the behavior is similar to that in vacuum.  

3. If 2
1 < 0r−ε
β

 i.e. p< = /h rV V c ε  then the particle emits a wave which propagates 

at an angle  
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2
2

1

tan = = 11

.1cos =c
r

r

r
c

c

ω ε
β

θ ε βω
β

θ
β ε

−
− ⇒

 

This is called Cerenkov radiation and cθ  is the 
Cerenkov angle.  
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8.3   Radiation from an Oscillating Dipole 
 

Among the simplest and at the same time widespread 
manifestation of radiation emission is the one occurring when 
two charges oscillate. In Chapter 7 we examined the potential of 
two stationary charges. In this section we allow them to oscillate. 
Here are the main assumptions of the problem we analyze:   
1. The charges oscillate at an angular frequency ω . The motion of the charges is in the 

z -direction only generating a current density 1= ( ) ( )
2 2z
dJ j q r z

r
ω δ δ

π
. In free space 

(no boundary conditions) this current density generates magnetic vector potential zA .  
2. The system has azimuthal symmetry 0⇒∂φ .  
3. By virtue of a Lorentz gauge = 0Φ .  
4. ( , )z zA Φ Πx   

 
2

2
02 = / .z zP

c
⎡ ⎤
∇ + Π −⎢ ⎥
⎣ ⎦

ω ε     (8.3.1) 

Away from the source  

 ( )
2 2

2 2

1 = 0z z
d r

r dr c
Π + Π

ω     (8.3.2) 
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and the solution is  

 
exp

= .z

j r
cA

r

ω⎛ ⎞−⎜ ⎟
⎝ ⎠Π  (8.3.3) 

In order to determine the amplitude A recall that the potential of 
a static dipole is [see Eq. (7.1.6)]  

 2
0

1= cos ,
4

p
r

Φ θ
πε

    (8.3.4) 

where p qd≡ .  According to the definition in (2.3.8)  

 = z

z
∂Π

Φ −
∂

    (8.3.5) 

which for = 0ω  reads  

 2

1= = cos .A A
z r r
∂ ⎛ ⎞Φ − ⎜ ⎟∂ ⎝ ⎠

θ     (8.3.6) 

Comparing with (8.3.4) we obtain  

 
0

1=
4

A p
πε

 

hence  

 

+

−
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0

1= exp .
4z

p j r
r c

ω
πε

⎛ ⎞Π −⎜ ⎟
⎝ ⎠

 (8.3.7) 

The next step is to determine the emitted power. For this purpose 
we have to calculate the Poynting vector  

 * *1= .
2rS E H E H⎡ ⎤−⎣ ⎦θ ϕ ϕ θ  (8.3.8) 

The only terms which contribute to the total power are those which decay as 1/ r  hence  

2 2
0

2
0

0

1= = exp
4

= = exp exp cos
4

1 exp cos .
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z z
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pA j j j r
c c r c

p j r j r j r
z r c c c

pj j r
c r c

ω ω ω
πε

ω ω ω θ
πε

ω ω θ
πε

⎡ ⎤⎛ ⎞Π −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤∂Π ⎛ ⎞ ⎛ ⎞Φ − − − − − −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

  (8.3.9) 

Since electric scalar potential Φ  is ϕ  independent and the magnetic vector potential A 
has no component in the azimuthal direction we conclude that = 0Eϕ  which implies that  

 *1= .
2rS E Hθ ϕ     (8.3.10) 
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In cylindrical coordinates  

 0 = ,zAH ∂
−
∂ϕμ
ρ

    (8.3.11) 

where 2 2=r z+ρ , therefore the azimuthal component of the magnetic field is given by    
2

0 2 3
0 0

1 1= exp exp sin
4 4

p pH j j r j r
c r c c r cϕ
ω ω ω ωμ θ

πε ρ πε
⎡ ⎤ ⎡ ⎤∂ ⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (8.3.12) 

Next we calculate Eθ . In principle it is given by = (1 / ) /E r j A− ∂Φ ∂ −θ θθ ω  but since 
the first term is proportional to 21 / r  we shall consider only the second one. Thus  

 sinzA Aθ θ     (8.3.13) 
and consequently   

 
2

2
0

1= = sin exp sin
4z

pE j A j A j r
c r cθ θ
ω ωω ω θ θ

πε
⎡ ⎤⎛ ⎞− − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

  (8.3.14) 

According to (8.3.10) we now obtain  
2 2

2 2
0 0 0

24
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2
0 0
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2 4 4

1 1= sin2 4
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c r c c r c
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ω ω ω ωθ θ
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⎧ ⎫⎧ ⎫−⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎨ ⎬⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭⎩ ⎭

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8.3.15) 



 285

and the total average power reads  
2 2

22 32
20 0 0

0 0 0 0

1 1 2= sin = sinsin2 4 2 4
p pP r d d d

c r c c
π π πω π ωϕ θ θ θ θ θ

μ πε μ πε

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫ ∫  (8.3.16) 

The integral can be evaluated analytically 
3 2 3

00 0

1 2 4= [sin sin ] = 2 | = 2 =sin cos cos3 3 3
d d ⎛ ⎞− + −⎜ ⎟

⎝ ⎠∫ ∫
π π πθ θ θ θ θ θ θ  

hence 

 
2 22 2

2 2
0 0 0

1 4 1 8= 2 = .
2 4 3 2 4 3o

p pP
c c c

ω ω ππ
μ πε η πε

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (8.3.17) 

Denoting the current associated with the oscillation of the dipole by I q≡ ω  we obtain  
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21 1= .
2 6oP I d

c
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
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ωη
π

    (8.3.18) 

Comment 1: Based on this observation we may define the impedance of this radiating 
dipole  
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ωη
π
⎛ ⎞
⎜ ⎟
⎝ ⎠

    (8.3.19) 
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Comment 2: Another interesting observation relies on the fact that the average power 
emitted per period of the radiation field = = 2 / ,W PT Pπ ω  hence 

 
3

2
0 2

1= .
2

W p
c
ωη  (8.3.20) 

Bearing in mind that the energy of a single photon is expressed in terms of Planck's 
constant is given by 34( = 1.054 10 Joule sec)−× ⋅  ph = ,W ω  then the number of emitted 
photons by the dipole is given by  

  

 
2 22

ph
ph 0

2 1 2= = =
3 4 3

W p e pN
W e c c e c

ω π π ωα
πε

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
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    (8.3.21) 

wherein 
2

0

1 1
4 137

e
c

≡α
πε

 is the so-called fine structure constant and 191.6 10 [ ]e C−≡ ×  

is the electron's charge. Examining this relation (8.3.21) for a single dipole reveals that 
the number of photons emitted per dipole is very small bearing in mind that typically the 
size of the dipole is much smaller than the wavelength. 
 
Comment 3: We may now re-examine one of the basic assumptions of the analysis in 
Section (8.3). Namely, the fact that the oscillating dipole has a constant complitude d . It 
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is possible to conceive this dipole as a harmonic oscillator which when its radiation is 
ignored satisfies  

 
2

2 = 0,dm Z KZ
dt

+     (8.3.22) 

wherein m is the mass and K  is the "Hook coefficient'' representing the binding potential 

– whatever its characteristics are. Multiplying by dZ
dt

 we obtain  
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POTKIN
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WW

d m dZ K Z
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⎡ ⎤
⎢ ⎥⎛ ⎞ +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
⎣ ⎦

    (8.3.23) 

which is the energy conservation when the radiation emitted is ignored. Note that based 
on Eq. (8.3.22) the oscillating frequency is = /K mω . It is therefore evident that the 
oscillatory motion is  

 ( ) = cos( )
2
dZ t t +ω ψ     (8.3.24) 

implying, according to Eq. (8.3.23), that the total energy  

 
2

TOTAL KIN POT= =
2 2
m dW W W ⎛ ⎞+ ⎜ ⎟
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ω     (8.3.25) 
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is constant. This is justified as long as we ignore the electromagnetic energy emitted by 
this dipole. When accounting for this energy namely, assuming that the change in the 
total energy TOTAL( )W  equals the emitted (em) energy then  

 
2

0
TOTAL TOTAL2

2= = .
3

Id W P W
dt mc

⎡ ⎤
− − ⎢ ⎥

⎣ ⎦

η
π

    (8.3.26) 

Since in the past we denoted =I eω  and assuming now that e  is the charge of an 
electron, then  

 2
TOTAL TOTAL

2= (2 ) ,
3

erd W W
dt c
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ω     (8.3.27) 

wherein 152.8 10 [m]er
−×  is the so-called classical radius of the electron  
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    (8.3.28) 

According to Eq. (8.3.27) the energy of the dipole is not constant but decays 
exponentially with a time-constant  
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8 erc
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    (8.3.29) 

At 1[GHz] this time-constant is 45[min] whereas at 100[THz] it is less than 1[μ sec]. 
Consequently, for most practical purposes the decay process is negligible on the scale of 
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a few periods of the oscillation. 
 
Comment 4: Subject to the far-field approximation we have concluded that the amplitude 
of the oscillating dipole is not constant. From the perspective of the oscillating charge 
this implies that in addition to the “binding” force there is another force associated with 
the radiation field. 
 
Evaluation of this field is facilitated by three straightforward observations: First we know 
the total average emitted power  
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2 6

P I d
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    (8.3.30) 

as evaluated in the framework of the far-field approximation. Second, this radiation is 
emitted in a loss-less medium implying that the far-field power equals the power 
generated by the dipole or according to the Poynting theorem  

 1= Re .
2

P dvJ E∗⎧ ⎫− ⋅⎨ ⎬
⎩ ⎭∫     (8.3.31) 

Third, the current density which generates this power is  

 1 1 1( ) ( ) ( ) ( )
2 2 2 2z
dJ q j z j p zω δ ρ δ ω δ ρ δ

πρ πρ
⎛ ⎞= − = −⎜ ⎟
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    (8.3.32) 



 290

implying that the power in (8.3.31) is  

 ( rad)1 1= Re .
2 2 zP j p E⎧ ⎫− ⎨ ⎬

⎩ ⎭
ω     (8.3.33) 

Using the definition of the dipole-moment ( = )p qd  and comparing (8.3.33) with (8.3.30) 
we find that the radiation reaction is proportional to the dipole moment and cubic with 
the frequency  
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    (8.3.34) 




