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Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel

(Received 28 February 2014; revised 1 June 2014; accepted 23 June 2014)

Abstract
We present the first steps of a design of the optimal parameters for a full Bragg X-Ray free electron laser (BX-FEL).
Aiming towards a future source of coherent X-ray radiation, operating in the strong Compton regime, we envisage the
system to be the seed for an advanced light source or compact medical X-ray source. Here we focus on the design of
the accelerator parameters: maximum gradient, optimal accelerated charge, maximum efficiency, and ‘wake coefficient’,
which relates to the decelerating electric field generated due to the motion of a charged-line or train of charged-lines.
Specifically, we demonstrate that the maximum efficiency has optimal value and given the fluence of the materials, the
maximum accelerated charge in the train is constant. These two results might be important in any future design.
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1. Introduction

X-ray sources based on Compton scattering of a laser from a
relativistic counter-propagating electron beam (e-beam) have
recently drawn increasing interest due to several potential ad-
vantages over magnetostatic free electron lasers (FELs), such
as compact size, low-cost operation, and reduced e-beam en-
ergy requirements. Recent work[1] demonstrated that X-ray
radiation emitted by relativistic electrons scattered by a
counter-propagating laser pulse guided by an adequate Bragg
structure (spontaneous emission) surpassed by about two or-
ders of magnitude the intensity generated by a conventional
free-space Gaussian-beam configuration, given the same
e-beam and injected laser power in both configurations.
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Figure 1. Schematic of an all-Bragg system. On the left, the Bragg accelerator supports a co-propagating TM01 mode which accelerates the e-beam. The
latter is injected into another Bragg structure which supports a TEM mode (inside the vacuum core) counter-propagating to the electrons, which as a result
generates X-ray radiation.
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Based on this configuration, we proposed a Bragg
configuration based X-FEL operating in the collective
regime. The full system consists of three main components
(Figure 1): an optical injector bunches the electrons to
the accelerator Bragg structure which supports a TM01
mode. The co-propagating laser which accelerates the
electrons is dumped at the end. Next, the electrons are
transported into a second Bragg waveguide. This structure
supports a TEM laser mode in the vacuum core (TM mode
at the Bragg layers) counter-propagating to the e-beam –
the latter acts as an electromagnetic (EM) wiggler. The
scattering of free electrons with a counter-propagating TEM-
like laser mode generates X-ray radiation – inverse Compton
scattering.
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Figure 2. Planar Bragg waveguide with a vacuum region of width 2Dint.

In this study we focus on the Bragg accelerator. Structure-
based laser-driven linear accelerators have been the subject
of intense investigation, primarily for use with relativistic
particles, where obtaining high energies in compact geome-
tries is desired.

To accelerate particles efficiently, EM waves must be
guided or confined to the region in which the particles
travel. An electric field component in the direction of desired
acceleration is strictly necessary. Traditionally, EM waves
have been confined to a vacuum channel surrounded by
metallic structures. Field confinement can also be achieved
through surrounding dielectric layers where reflections from
different layers interfere constructively (Bragg reflection).

A planar Bragg waveguide[2] consists of dielectric lay-
ers surrounding a sub-wavelength vacuum region which is
symmetrical relative to the central plane (Figure 2). The
clearance is a vacuum region of width 2Dint, surrounding
alternating periodic layers (ε2 = 4, ε3 = 2.1).

The layers are made of two lossless dielectric materials;
the first layer has a relative dielectric coefficient ε1. For
single-mode operation: Dint = 0.25λL → 0.55λL . For an
optical accelerator having a vacuum core, the surrounding
layers must have, at the operating wavelength, an effective
dielectric coefficient smaller than unity, i.e., εeff < 1, thus
creating the need for a Bragg structure with a matching
layer[3].

The present study is organized as follows: A self-
consistent solution for maximum gradient is presented in
Section 2. In Section 3 we present the optimal charge of
the e-beam injected into the acceleration module from a
perspective of high efficiency. A charged-line moving in
a planar Bragg acceleration structure generates a reaction
field which, by virtue of linearity of Maxwell’s equations, is
related through the so-called, wake coefficient. We show a
detailed evaluation of the wake coefficient in Section 4 for a
single bunch and in Section 5 for train of micro-bunches.

2. Accelerating gradient

For assessment of the accelerating gradient, we examine the
maximum energy flux that can be sustained by the structure;
typically, this occurs at the vacuum–dielectric interface,

where Sz,max(D+int) = 1
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Dielectric damage involves heating of conduction band elec-
trons by the incident radiation and transfer of this energy to
the lattice; damage occurs via conventional heat deposition.
Thus, we consider the threshold fluence (energy/area) of
the material, which, in turn, depends on the pulse duration.
An empirical fluence threshold of fused silica has been
published[4] by the LLNL group
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2 τp (ps) < 0.4.

(3)

It should be pointed out that the above empirical expres-
sion assumes a TEM mode impinging perpendicular to the
dielectric surface, whereas in our case the energy flows in
the parallel direction. It is assumed that since the electric
field is vertical to the surface the probability of flash-over is
reduced – therefore, adopting this criterion (Equation (3)) is
an underestimate of the fluence our structure can sustain.

In RF-based accelerators, the radiation wavelength is typ-
ically more than 10 cm in length, thus we may use 1010

electrons in a 100 µm bunch. Assuming similar dimensions
in the transverse directions, we realize that the density of
electrons is on the order of n ∼ 1023 m−3. If the density
is kept the same in the optical regime, say λL ∼ 1 µm, the
micro-bunch needs to be on the order of 30 nm long, 100 nm
high and, assuming a sheet-beam about 10 µm wide, then
the number of electrons in one optical micro-bunch is 300.
In spite of this clearly being a very rough estimate, in order
to accelerate a significant number of electrons, and keep the
electron density as in an RF machine, we need to use a
multiple number of periods of the accelerating mode, thus
the accelerated bunch is actually a train of micro-bunches.

Moreover, it is strictly necessary to use a pre-bunched
beam at optical wavelengths before injection into the optical
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Figure 3. (a) Gradient versus clearance of the accelerator structure. Red line for a single bunch and green line for M = 104. As the clearance is increased,
the gradient drops. (b) Gradient versus number of micro-bunches in the train. Red line for Dint = 0.25λL ; green line for Dint = 0.55λL , multiplied by a
factor (2.377) such that at M = 1 both curves coincide for G0 (Dint = 0.25λL ). There is a critical value at approximately M = 1000.

accelerator. Without the pre-bunching, the beam energy
spread is too large to be useful. Energy modulation converted
into a density modulation may also lead to increased effi-
ciency in the accelerator. A configuration of modulator and
chicane may be used as a pre-buncher injector to increase the
number of electrons in the optimal phase of the accelerating
laser. An efficient method for bunching the beam at optical
wavelengths was suggested in[5] and it was demonstrated
that a pre-bunched beam at optical wavelengths indeed
reduced the beam energy spread in laser accelerators[6]. We
are in the process of analysing a novel injector that generates
density-modulated beams at optical wavelengths, but this is
beyond the scope of this study.

An assessment of the laser pulse duration requires one
to take into consideration that the EM wave propagates at
the group/energy velocity whereas the electrons propagate
virtually at the speed of light in vacuum. For full overlap of
the two pulses, the duration of the EM pulse is

τp = Lgeo

c

(
1
βgr
− 1

)
+ Lbeam

c
, (4)

where Lbeam = (M − 1)λL is the train length, M represents
the number of micro-bunches in the train, and λL is the
laser wavelength in vacuum. The geometrical length of the
structure is Lgeo = γmec2/eG0, where γ = √λL/4λr is the
relativistic factor and is set by the resonance condition in an
EM wiggler. As an example, for a laser wavelength of 1
micron and a radiation wavelength of X-rays λX = 0.1 nm
we get γ ' 50.

Due to the constraint imposed by the fluence and for
the specified energy (γ ' 50), the maximum accelerating
gradient depends on two parameters: the clearance of the

Table 1. Typical Values of the Parameters for Dint = 0.3λL .
G0 〈PL 〉 τbeam τp F βgr Lgeo

(GV m−1) (kW) (ps) (ps) (J cm−2) (m)

M = 1 0.7 35.56 ∼0 171 18.83 0.424 0.038
M = 104 0.66 117.77 35 216 21.2 0.424 0.04

structure (Dint) and the number of micro-bunches in the
train (M). Note the interdependence between the various
parameters requires a self-consistent solution: the laser field
depends on the laser pulse duration, which in turn depends
on the train’s total charge and the gradient itself.

A self-consistent solution is illustrated in Figure 3. For
M < 103 micro-bunches, the gradient is virtually indepen-
dent of M (see Figure 3(b)). For larger values of M the
gradient decreases for the same clearance. Figure 3(a) shows
that it is advantageous to operate with the smallest possible
vacuum tunnel – leading to a maximum gradient of less
than 0.9 GV m−1. Further simulations show it is better to
use a lower dielectric coefficient for the first layer, and in
order to achieve a gradient of 1 GV m−1 we need to replace
the silica with a material whose typical fluence is higher by
a factor of 1.5 – assuming the pulse dependence is the same.
Typical values of the parameters for Dint = 0.3λL are given
in Table 1.

At this point it warrants making a comment regarding a
more realistic scenario: The wake generated by the acceler-
ated bunches tends to reduce the laser field – this is the well
known beam-loading effect. Consequently, in the presence
of the electrons, the field experienced by the structure is thus
reduced accordingly for a given fluence, the applied gradient
may be significantly higher. In the context of the fluence
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effect we consider the worst case scenario and ignore this
process. Taking it into consideration, we estimate that the
accelerating gradient will be enhanced.

3. Optimal charge

Given the accelerating gradient G0, which is evaluated
self-consistently, we now calculate the optimal number of
electrons in a micro-bunch injected into the acceleration
module. Optimum charge occurs for maximum efficiency
of the acceleration process. We can interpret the reason for
this optimum as follows: for a given accelerating gradient,
if the accelerated charge is small, the energy transferred is
negligibly small (zero). At the other extreme, when the
charge is large, beam loading may suppress the effective
accelerating gradient to zero; therefore, again, the transferred
energy is minuscule. Between these two ‘zeros’ the function
of energy transferred is expected to have a maximum.

3.1. Single bunch

In the single bunch case (M = 1), the efficiency of the
acceleration process may be determined as

η = 1Ukinetic

UEM
= 4ηmax

q
q0

(
1− q

q0

)
, (5)

where q0 = G0/κ is the charge for which the wake gen-
erated by the bunch balances the laser gradient – in other
words, there is no net acceleration. The maximum value of
efficiency, occurring for qopt = q0/2, is determined by the
projection of the total deceleration, represented by κ , on the
fundamental mode, represented in turn by κ1 – explicitly,
ηmax = κ1/κ ≡ W1; W1 is the weight function of the
first mode[7]. The maximum efficiency is dependent on the
clearance (Stupakov & Bane[8]):

ηmax(Dint) = 1
4ε0λ

2
Lκ

βgr

1− βgr

Z int

η0
, (6)

where κ , βgr , and Z int are dependent on the vacuum
clearance[2]. In the case of a dielectric planar Bragg
waveguide with a vacuum tunnel of 2Dint along which a
charged-line propagates, the wake coefficient associated with
the decelerating field is κ = E (dec)/q = 1/(4ε0 Dint) (see
Section 4).

The maximum efficiency itself has an optimum at Dint =
0.35λL (Figure 4). The reason for this optimum is a
combination of two facts: the wake coefficient and the
interaction impedance drop as the clearance is widened,
whereas the group velocity increases (Figure 5).

3.2. Train of micro-bunches

For the case of train of M micro-bunches, the beam-loading
causes different micro-bunches to experience different effec-
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Figure 4. Maximum efficiency for a single bunch versus half clearance
width (Equation (6)).
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Figure 5. Wake coefficient, interaction impedance, and group velocity
versus half clearance width. Each of the parameters is normalized to its
maximum value.

tive accelerating gradients. In order to eliminate this effect,
the laser pulse must be tapered according to

G(t) = G0 + t
τP
κqmb(M − 1), (7)

where qmb is the charge in one micro-bunch; tacitly assuming
that all micro-bunches are identical. It is assumed that for
a sufficiently large number of M the weight function of the
first mode is dominant, i.e., κ1 ∼ κ . κ is the wake coefficient,
which depends on the structure and number of accelerated
micro-bunches. The wake coefficients for a single bunch
and train of micro-bunches are different; however, since the
laser is tapered, we consider the wake coefficient for a single
bunch and a single discontinuity.
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Figure 6. (a) Maximum efficiency versus number of micro-bunches in the train. Red line for Dint = 0.25λL and green line for Dint = 0.54λL . The optimum
value is 15% for M = 30. (b) Maximum efficiency normalized to the single bunch case versus clearance of the accelerator structure. For each clearance there
is an optimal value for M .

The EM energy injected into the system may be readily
calculated using

UEM =
∫ τp

0
dt PL(t) =

∫ τp

0
dt
|λL |2
Z int

G2(t), (8)

together with Equation (4). The efficiency in this case is
given by

η = 1Ukinetic

UEM
= ηmax(M = 1)

12Mq̄(1−q̄)
[3+3q̄(M−1)+q̄2(M−1)2]

1+ βgr
1−βgr

Lbeam
Lgeo

. (9)

By neglecting the geometric length dependence on the
charge, since it does not change significantly, the optimal
charge is

qopt(M) = q0
−3+√9+ 3(M − 1)(M + 2)

(M − 1)(M + 2)
≡ q0ξ(M).

(10)
Several facts are evident: (i) The maximum efficiency value
depends on two parameters – the clearance and the number
of micro-bunches in a train. Figure 6(a) illustrates the effi-
ciency and its maximum. (ii) For the case of a single bunch
(M = 1) we get ξ(M = 1) = 0.5, and get the maximum
efficiency which was calculated explicitly for a single bunch.
(iii) Comparing to the latter case, the efficiency more than
doubled for M ∼ 50. (iv) Figure 6(b) shows a weak depen-
dence of the maximum efficiency on the vacuum clearance
and a strong dependence on the number of micro-bunches.

Another perspective of the energy conversion efficiency is
the total amount of charge accelerated and its distribution
among the various numbers of micro-bunches. The number
of electrons in a train as a function of the number of micro-
bunches is almost constant ∼1 × 106. Thus, for larger
values of M , the number of electrons in a micro-bunch drops.
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Figure 7. Number of electrons in a microbunch (left y-axis) and number of
electrons in the train (right y-axis) versus the number of micro-bunches for
Dint = 0.25λL , 0.54λL .

Figure 7 reveals a weak dependence of qmb and Mqmb on the
vacuum clearance.

The average power per unit length (1y) of the tapered laser
is given by

〈PL〉 = UEM

τP
= 1
τP

∫ τP

0
dt PL(t)

= 1y
|λL |2
Z int

[
G2

0 +
α2

3
+ αG0

]
, (11)

where α = κqmb(M − 1). It has a maximum for M ∼ 700
(Figure 8). This maximum is the result of two contradicting
trends: the accelerating gradient increases for a reduction of
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M , whereas α decreases. As an example, for 1y = 10 µm
and 103 micro-bunches in the train, the average tapered laser
power is 117 kW, whereas for 1y = 1 µm the latter is only
11 kW. It should be pointed out that pulse shaping can be
done using several methods, such as spatial light modulators,
adaptive beam shaping and fixed masks[9, 10].

4. Wake coefficient – single bunch

In this section we determine and investigate the wake coef-
ficient (κ) for a single bunch (in the following section we
repeat this for a train of micro-bunches). Both are essential
for establishing the optimal charge in the micro-bunch and
determining the beam loading effect.

A laser pulse accelerates a point charge qmb moving in a
vacuum tunnel of planar Bragg acceleration structure and
generates an EM wake (Cerenkov radiation). Associated
with this wake there is a decelerating electric field which, by
virtue of the linearity of Maxwell’s equations, is proportional
to the charge, namely Edec = κq, where the wake coefficient
κ depends on the structure.

The vacuum–dielectric discontinuity generates a reflected
wave that can affect the point charge. Any reflection
occurring further away from the first discontinuity reaches
the structure’s axis only after the point charge has passed–
thus it may affect only trailing micro-bunches.

In the absence of reflections, the wake coefficient is
determined by the structure (Appendix A) and given as

κ = 1
4ε0 Dint

(
�

ms

)
. (12)

In the presence of reflections, for a single bunch, only
the first discontinuity affects a line-charge. However, we
demonstrate that quantitatively using a previously defined
formulation[2]. The effective wake coefficient on the first

bunch (τ̄ = 0) is

Edec , E (s)z (τ̄ = 0) =
[
κ

π

∫ ∞
−∞

dω̄
1

1−R(ω)
1+R(ω) + jω̄

]
λ̄ , κ̄ λ̄,

(13)
where the R(ω) is the reflection coefficient of the structure
– including the effect of the first (matching) layer as well as
the ‘Bragg layers’. Numerical evaluation of Equation (13)
reveals that κ̄ = κ , with an error of less than 0.1% – i.e.,
the wake coefficient for a single bunch including reflections
is almost equal to the wake coefficient with no reflections.
In fact, it is possible to demonstrate analytically that since
reflection reaches the axis behind the charged-line micro-
bunch, κ̄ = κ .

5. Wake coefficient – train of bunches

In the case of a train of micro-bunches the field spatial
distribution trailing the particle is strongly affected. The
Bragg dielectric structure allows energy to escape from the
structure through the layers, and the trailing bunches are
less affected by the wake field – except eigenmodes of the
structure.

For a train of M micro-bunches, of length Lmb each, sepa-
rated by one wavelength λL (Figure 9), the wake coefficient
in the case of a train of micro-bunches is strongly dependent
on the structure

κ̃ = κ
∫ ∞
−∞

dω̄ W (ω̄)sinc2
(
χ

2
ω̄

ω̄L

) sinc2(π ω̄
ω̄L

M
)

sinc2(π ω̄
ω̄L

) , (14)

where χ = 2πLmb/λL is the relative length of the micro-
bunch and W (ω̄) ≡ [ 1−R(ω)

1+R(ω) + jω̄
]−1 are the weights[2].

Several observations are evident: κ̃ decays as 1/M2 and
the ‘sinc’ function acts as a low-pass filter (Figure 10); higher
frequencies than the fundamental are suppressed (shorter
wavelengths). M has an effect on the non-fundamental
modes, i.e., κ̃ ' κ1. κ1 is independent of the number
of micro-bunches (M) and thus remains the same. The
projection of the wake on the fundamental mode (W1-
weight of the first mode) increases with the number of
micro-bunches in the train (since higher frequencies are
suppressed). Therefore, we should be able to enhance to
some extent the efficiency for M � 1, and increase the
amount of charge accelerated.

Our simplified model allows all n · ωL harmonics, since
the dielectric coefficient is independent of frequency. In
practice, the dielectric function is frequency dependent and,
as a result, the higher harmonics are also suppressed.

6. Conclusions

The maximum accelerating gradient is evaluated self-
consistently based on the constraints imposed by the pulse
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Figure 9. Planar waveguide acceleration module with a vacuum region of width 2Dint. The e-beam is accelerated by a co-propagating TM01 laser mode.
The macrobunch consists of a train of M line charges, separated by a laser wavelength.
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Figure 10. Spectrum of the decelerating field multiplied by
the ‘sinc’ function of the number of micro-bunches: h(ω,M) =
w(ω)sinc2(πωM/ωL )/sinc2(πω/ωL ) on a log–log scale. Frequencies
other than the fundamental are suppressed as the number of micro-bunches
in the train increases.

duration and fluence. It depends on two parameters: the
clearance of the structure (Dint) and the number of micro-
bunches in the train (M). In the worst case scenario, it may
reach levels of 1 GV m−1.

Optimum charge occurs for maximum efficiency of the
acceleration process. For a train of micro-bunches, two
constraints must be satisfied: the laser pulse duration must be
longer than the macro bunch length and the laser’s envelope
must be tapered to compensate for the beam loading, ensur-
ing uniform gradient acceleration of all micro-bunches. The
maximum efficiency has an optimal value (∼15%) which
depends on two parameters: a weak dependence on the
vacuum clearance and a strong dependence on the number
of micro-bunches.

The optimal number of electrons to be accelerated is
determined by the laser field and the maximum efficiency
requirement. For M = 1000, the number electrons in a
micro-bunch is ∼1150, while the total number of electrons

in the train is almost constant (∼106). There is weak
dependence of qmb and Mqmb on the vacuum clearance.

The optimal charge in the micro-bunch and the beam
loading effect are also determined by the wake coefficient.
The latter is a property of the structure and refers to the
decelerating field. The maximum efficiency increases with
the number of micro-bunches in the train since higher fre-
quencies are suppressed.
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Appendix A

We investigate the wake field, separating the wake into two
components, as developed in Refs. [5] and [7]. For the
primary we consider a line charge, infinite in the y direction,
moving with a constant velocity v in the z-direction inside
the vacuum core of the planar Bragg acceleration. All
field components are excited by the current density Jz =
−λ̄vδ(x)δ(z − vt), where λ̄ = q/1y is the charge per unit
length.

The EM field is derived from the nonhomogeneous wave
equation of the magnetic vector potential, subject to the
Lorentz gauge ∇ · A + (ε/c2)∂tφ = 0, thus[

∇2 − ε

c2
∂2

∂t2

]
Az = −µ0 Jz . (A 1)

On the one hand this primary field is generated by a charged-
line in free space, whereas on the other hand the secondary
field is the reaction to the presence of the surrounding
structure. It is this secondary field which is responsible for
the decelerating force which acts on the charged-line.

Using the time Fourier transform defined by Az(x, τ = t−
z/v) = ∫ +∞−∞ dω e jωτ Az(x, ω) and its corresponding source
term Jz(x, ω) = λ̄δ(x)/2π , Equation (A1) reads
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[∂2
x − (ω/cβγ )2]Az(x, ω) = µ0λ̄δ(x)/2π, (A 2)

and the general solution has the form

A(p)z (x, ω) =


a exp

(
−|ω|x

cβγ

)
x > 0

b exp
(
+|ω|x

cβγ

)
x < 0.

(A 3)

By integrating both sides of the equation ∂x Az(0+, ω) −
∂x Az(0−, ω) = µ0λ̄/2π , the constants are a = b =
−µ0λ̄cβγ /4π |ω|. Finally,the magnetic vector potential for
the primary field is

A(p)z (x, z, t) = −µ0λ̄

4π

∫ +∞
−∞

dω
γ v

|ω|
× exp

[
− j

ω

v
(z − vt)− 1

vγ
|ωx |

]
. (A 4)

The magnetic vector potential for the secondary field is
determined using the dielectric coefficient of the first layer
adjacent to the vacuum core (ε1 > 1). This is the condition
for Cerenkov radiation. Moreover, we assume that the charge
does not experience any reflection from higher layers.

A(s)z (x, τ ) = −µ0λ̄

4π

∫ +∞
−∞

dω
γ v

|ω| exp( jωτ)

×


A1 exp[−Γ (x − Dint)] x > Dint

A0 cosh
( |ω|
γ v

x
)

|x | < Dint

A2 exp[Γ (x − Dint)] x < −Dint,

(A 5)

where Γ = |ω|
√

1− β2ε/v, and due to symmetry (A2 = A1)

we may solve the equation only for the half-space x > 0.

Based on the Lorentz gauge, the electric scalar potential is

∂z Az+ jωε
c2 ϕ = j

ω

v
Az+ jωε

c2 ϕ = 0→ ϕ = c2

εv
Az, (A 6)

thus
Ez = −∂zϕ − jωAz = − jω

(
1− 1

εβ2

)
Az

Hy = − 1
µ0
∂x Az,

(A 7)

or, explicitly,

E (p)z = µ0λ̄

4π

∫ +∞
−∞

dω
jωγ v
|ω|

(
1− 1

β2

)
× exp

[
jωτ − 1

vγ
|ωx |

]

E (s)z =
µ0λ̄

4π

∫ +∞
−∞

dω
jωγ v
|ω| exp( jωτ)

×



(
1− 1

εβ2

)
A1 exp [−Γ (x − Dint)]

x > Dint(
1− 1

β2

)
A0 cosh

( |ω|
γ v

x
)

|x | < Dint.

(A 8)

Similarly, the magnetic field satisfies

H (p)
y = −µ0λ̄

4π

∫ +∞
−∞

dω
1
µ0

exp
[

jωτ − 1
vγ
|ωx |

]
sign(x)

H (s)
y =

µ0λ̄

4π

∫ +∞
−∞

dω
1
µ0

exp( jωτ)

×


−γ

√
1− β2εA1 exp [−Γ (x − Dint)]
x > Dint

A0 sinh
( |ω|
γ v

x
)
|x | < Dint.

(A 9)

Imposing boundary conditions, from the continuity of
Ez on the vacuum-dielectric interface E (p)z (x = D−int) +
E (s)z (x = D−int) = E (s)z (x = D+int) we obtain

exp
(
−|ω|
vγ

Dint

)
+ A0 cosh

( |ω|
γ v

Dint

)
= εβ2 − 1
ε(β2 − 1)

A1,

(A 10)
whereas the continuity of Hy entails H (p)

y (x = D−int) +
H (s)

y (x = D−int) = H (s)
y (x = D+int)

−exp
(
− 1
vγ
|ω|Dint

)
+ A0 sinh

( |ω|
γ v

Dint

)
= −γ

√
1− β2εA1. (A 11)

The solution for the amplitude in the vacuum region from the
above two equations is

A0 = 2
�−1
�+1 exp

(
2 |ω|
γ v

Dint
)− 1

, (A 12)

where � = −
√

1− β2ε/[γ ε(1− β2)] = −γ
√

1− β2ε /ε.
Accordingly, the decelerating field is the secondary field
acting on the charged particle in the vacuum core

Edec , E (s)z (x = 0, z = vt, t)

= µ0λ̄

4π

∫ +∞
−∞

dω
jωγ v
|ω|

(
1− 1

β2

)
A0

= −µ0λ̄

4π
2Re

{∫ +∞
0

dω
jv
γβ2

2
�−1
�+1 exp

(
2 |ω|
γ v

Dint
)− 1

}

= −µ0λ̄

4π
2Re

{
2γ v
2Dint

jv
γβ2 ln

(
1−�

2

)}
. (A 13)
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Having in mind that∫ +∞
0

dω
1

u1 exp(u2|ω|)− 1

= 1
u2

ln
(

1− exp(−u2|ω|)
u1

)∣∣∣∣∞
0

= 1
u2

ln
(

u1

u1 − 1

)
and tacitly assuming that � is independent of ω, as well as
taking the relativistic limit (γ � 1) for confinement, we may
write

1−� = 1+ γ
√

1− β2ε/ε ' 1+ jγ
√
ε − 1/ε2.

With Taylor expansion for x→∞ ln(1+ j x)=− ln(1/x)+
j/x , together with ln(− jς)= ln(ς)− jπ/2, the deceleration
field is

Edec = − λ̄

2πε0 Dint
Re

{
j ln

(
1+ jγ

√
ε − 1
ε2

)}
γ→∞' λ̄

2πε0 Dint

π

2

= λ̄

4ε0 Dint
, (A 14)

implying that the decelerating field for a given charge is
Edec (V/m) = κ (�/ms) q (C) and, as a result, the wake
coefficient is

κ = 1
4ε0 Dint

(
�

ms

)
. (A 15)
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