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Scattering by Rotating Optical Fibers

L. Schichter* and D. Schieber

Department of Electrical Engineering
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Haifa 32000, Israel

Abstract- Reflection from a rotating optical fiber is analyzed. It is shown that there are
angles where the variation in the reflected power due to rotation is significant and it may
be measurable even for relatively low angular velocities as 30m/sec. The total variation
in the reflected power is zero. We also determine the relation between the field (average)
angular momentum and the (average) power carried away by each angular harmonic.

L INTRODUCTION

Detection of accelerated motion is an essential requirement in navigation of air-
planes, missiles and satellites. Until recently the mechanical gyroscope was the
“heart” of such a navigation system, but for several years now it has been replaced
by its optical successor. Generally speaking, the optical device operates by mea-
suring the phase shift between two coherent anti-parallel waves which complete
an entire loop when propagating in an optical fiber. Bearing in mind the Sagnac
effect, it can be readily shown that this phase shift occurs due to the relative
motion of the wave and the fiber, and that it is proportional to the mechanical
angular frequency of the loop. This technique is not applicable in the case of very
small devices, since the detection system has to accompany the moving body. An
alternative method, free of the above drawback, consists of illuminating a rotat-
ing optical fiber and measuring the deviations in the spatial distribution of the
reflected power. While in the first method the motion is either parallel or anti-
parallel to the wave vector, here the latter is perpendicular to the local angular
velocity and the effect of motion is mainly reflected in the electroma.gnetlc field
amplitude.

The influence of rotation of different bodies on the electromagnetic scattering
process has been investigated in the past, and also quite recently [1-12]. These .
papers, however, were mainly concerned with the radio frequency domain, while
the present study deals with the optical and sub-optical domains. In extending
the frequency domain, changes across the dielectric cylinder must be taken into
consideration. Accordingly, in the second section the waves reflected from a di-
electric cylinder with a stepped—index cross-section are determined, while in the
third the same process is analyzed for the graded-index case; these two configu-
rations simulate some well-known optical fibers [13-16]. In the fourth section the -
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reflected waves calculated in the second section are considered in order to estab-
lish the power and angular momentum flow. It is shown that although the spatial
distribution of the scattered electromagnetic power is changed by the motion, the
total power is conserved. A relatively simple expression for one-harmonic power
and power flux-change due to the rotational otion is presented. The average an-
gular momentum is expressed in teFtus of the one-harmonic average power. The
feasibility of measuring this change is considered in the last section.

1I. STEPPED-INDEX CROSS.SECTION

A rotating optical fiber is illuminated by an electromagnetic plane wave, and

basically we are concerned with the reflection coefficient as measured by a remote

observer. For a systematic solafion of the problem, we adopt here a formulation

resorted to in & previous commuynication. [17). Let us therefore define the problem

more carefully: ek ctiiey s

(a)In the laboratory, we define &”cifcular cylindrical frame of reference
S(rya,z,t).

(b) The dielectric cylinder, whose axis is parallel to the z-direction, rotates uni-
formly at the circular mechanical frequency Q.
(c) When at rest, this éylind'ef is chna.ctensedby the relative dielectric coefficient
[ 0ST<Ry
E(T) = {/53, Ri<r< Ry

s

(2.1)

and by the relative magneﬁé’ ‘permeability unity (ur = 1), while its electric
. conductivity is vanishingly small.©

(d) Two additional frames. of -referemce are now defined; a Cartesian frame
- S(z,y,2,t) “rigidly” attached to dhe:laboratory, and a circular cylindrical
frame S'(r',a’, 2/, ') “rigidly” attachéd o the rotating fiber. A general trans-
formation from the rotating to the:rest. frame is not known. However, at to-
day’s technology the tangential speed of revolution of a macroscopic body is
much smaller than thephase yelocity. of a plane wave in vacuum, therefore, a

quasi~-Galilean transformation . - o
Tl =y a':a:—lﬂt; =z t'=t (2.2)

may be resorted to. Further, mthe rotating frame we assume the constitutive
~ equations to read o '

. B =)o B (23)
along with . s e

o B'=po H' (24)

Similarly, introducing the so-called refractive index n(r) = 1/e(r), we assume

for an observer stationed within the laboratory, the following constitutive re-

lations: E '
D=nleqB+@mt-1)TxE 2.5
=ne n 2 (2.5)
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= -‘ Fx E
B=pgH-(n%-1) 3 (2.6)

(¢) Finally, we assume that the cylinder is illuminated by a harmonic electromag-
netic plane wave (circular frequency w) of amplitude Eq — whose electric
field comprises mainly a z-component, i.e.,

| EP)(z,t) = Boe~t+ite (2.7)
the superscript p denoting the fact that this is a so-called primary wave.

The special geometry involved here favors recourse to a Bessel-Fourier series;
thus in the cylindrical frame of reference S(r,a,z,t) the incident wave reads

o0
EW = E k % (_r) e—ilwi—ka) (2.8)
k——eo
with the Bessel function defined as in [18]. Invoking the communication [17]
referred to above, it is found that the secondary field (superscript (s)) due to the
presence of the cylinder is a solution of

# 186 18
[ar‘f“f;aiﬂzaaz* ](') b Mcr<e (29)
# 18 18 w? 9] ()
[8r2+r81'+ 2ga2 T 2( 1)8_a+2"f"2]2"=0’ Bcr<ia
(2.10)
2
[82:-5-}-%% 12;;23“,2(,;1 1) —nl]E(‘)—o 0<r<R
(2.11)

with n% =¢; and n% = €g.
A solution of (2.9) which obeys the Sommerfeld radiation condition at r — oo
is determined up to an unknown coefficient I', and expressed by the series

0 .
E® = E, Y & H,(:) (‘_:_,.) e—iwi—ka) (2.12)
k=-o0

where H (1 )(wr/ ¢) is the Hankel function of the first kind [18], the circular mag-
netic ﬁeld linked to this electric field reads

[+ <]
7Y = Eo 3 48 ( ) ~i(wt—ka) (2.13)
0 k= ' )
the dot above the Hankel function denoting its derivative with respect to its argu- -

ment and 79 = y/pp/€p. In the domain of the dielectric cylinder, the secondary
field is again determined up to three unknown coefficients, namely, Ak,Bk a.nd
T}

(a) For R <r< .R2 the z-component of the electric field reads )
E® = Eo Z Ok [AkJ,, (n,c 2—1') + ByY; (m, 2—r)]' —i(wt-ka) (3 14)

“h=—00
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while the circula.r component of the magnetic field is
H(') =-=2 Z Nk, [A],Jk (n], 2—1‘) + BkYk (nk 2——1')] —i(wt—ka)

0 j=—co
(2.15)
The dynamic refraction coefficient deﬁne_,d_iu in [17] reeds

) =‘-\/ﬁ§ - (n3-1) 2kg— (2.16)

the dot denoting once mor_e_ the deﬁva._ti\(e of the cylindrical function with
respect to its argument. ‘

(b)For 0 < r < Ry we consider only a solution convergent at r = 0; hence the
z-component of the electnc ﬁeld reads

B =By }: # T 0y (g 2r) etk (2.17)
whereas the circular component of the magnetic field is given by
H'(') == 2 ng,14 T),J), (n;, 1--1‘) ~Hwi~hka) (2.18)
. v h—--°°
Once more ‘
ng1 = \/ﬂ% —(n}-1) 2k—g— (2.19)

The unknown coefficients I'y, A3, By, and T} are now determined by imposing
the tangential boundary conditions at » = R; and Rj;. Continuity of the 2-
component of the electric field at » = Ry yields

- TpJiu(§) = AxJa(0) + BiYa(o) (2-20)
while that of the circular component of the magnetic field yields
e TeY(€) = m2 [444(0) + Baa(o)] (221)
" where ' ,
‘ €= "’k,l'c'Rl’ o= "k,2:-Rl - (2.22)
Similarly, at » = Ry we h&ve
300 + T 00 = A44Ju(v) + BiYa(¥) (2:23)
and
300 + T () =z [Aru(w) + Baa(v)] (2:24)
where @ w
‘ X = :Rz and v= nk’g—;Rg (2.25)

The coefficient corresponding to the scattered wave is given by the ratio
RO+ AY)] = meadi(x) [J) + aa¥i0)]
HEDOUME) + oY )] - mi 2B () [T40) + puda(v)]

(2.26)
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with . .
2 5(§)Jr(0) — m2,1Jw(§) Ta(0)
1 9Tk (€)Yi(0) — ng,1 Y3 (€)1 (o)
all other coefficients being obtainable from (2.20)—(2.21) and (2.23)-(2.24). Ob-
viously, (2.26)—(2.27) completely determine the reflection process; so that the
influence of rotation on the radiation pattern is readily calculated.

Before proceeding to do this, let us consider a more sophisticated model of an
optical fiber.

(227)

III. GRADED-INDEX CROSS-SECTION

An important member of the optical fibers group is that characterized by a graded
index. In this case, when the cylinder is at rest, the dielectric coefficient may be
expressed [13-16] as

e(r) = n3(r) = { at(a-a) /B, 0<r <R (3.1)

The secondary field in the domain of the cylinder is now a solution of
82 18 1 82 2 l/] wz 2 (a)
{or2+rar+r232+2' 2[ (r) — l]a ;—.;,-n(r)}E, =0 (3.2

while the scattered wave is identical to that expressed in (2.12)—(2.13), except
that 'y is now different. For the solution of (3.2) we assume the expression

o0
EQ) =Ey Y Ry(r)eilt—h) (3.3)
k=~o00 .

Ri(r) being, in turn, a solution of

(Leld B i 1]+ ) EXCET IO

_Using now the explicit expression for n2(r), this last equation can be cast in the
Wave-Bessel equation (as defined in [19]), namely

2 1d k? 2,2
{-d—pg+;d—p+ [—',’—2+1+A P]}Rk(f’)"o (3.5)
p= nk‘:c’-'r '(3'6)
. 0
ng = \/51 - 2’6; (61 - 1) (3'7)
1 1-2kQ/w ‘
A% = (e — &) (3.8)
- (wRng/c)*

%A solution of (3.5) is now determined, as in the preceding section, i.e., up to an
known coefficient T} ; it reads

Rilp) = TuTi(A,1,p)(6)* (3.9)
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where Jk(A 1,p) is the solution of the Wave-Bessel equation and is explicitly
defined in the Appendix. At the limit of a uniform dielectric coefficient A = 0,
this solution corresponds to

Th(A =0,1,p) = Jy(p) (3.10)
The procedure for determining I'; is the same as in the precedmg section, except
for two technical differences:

(a) In order to calculate the circular component of the magnetic field, we have
to replace in (2.17) the dynamic refraction coefficient ng,1 by the present
one, namely nj; further, the functional dependence is also changed, i.e., :

Jy(ngwr/c) instead of J),(n,c wr/e).

(b) The electromagg,etxc propertxes of this system are continuous throughout space
except at r = R; hence for a complete description it suffices to introduce only
two unknown coefﬁuents Ty and T which, in turn, may be determined by

imposing the boundé.ry conditions at r = R.

With the above in mind, the amplitudes of the scattered harmonics are found
to read

1, = - Jh00%(A, L max) = mu Ty (0)Ta(A,1,mkx)
HD 0T (A, 1,mx) - mHD Tu(A, 1,m%)

where like in (2.25) x = wR/c. Once more, the reflection process is completely
determined.

(3.11)

IV. POWER AND ANGULAR MOMENTUM_CONSIDERATIONS :

Knowing the amplitude of the scattered wave, We now turn our attention to the
power density carried by this wave. In view of the special geometry, the only

reads
(S,-)--—-Re{ E® [H(‘)] } (4.1)

(* denotmg the complex conjugate of the quantity in brackets; far away from
the cylinder, this expresuon reduces to

Eol? 1 —~ ;
(Sy) = |20c|' ww,,. { Z Pmr;ewz(m—n)} (4.2)

m,n=—00

The radial component of the Poynting vector determines the radiation intensity
I emitted within an angle a, a + da and an interval § along the z-directio
through .
11drI i
ioas = (50) (4.3)
The differential cross-section is determined by the dimensionless ratio B
dI di/de 1 { (e
_— = Re r I\# ta(m n)}
de = (|Eol?/2n0)6(2Rz) ~ m(wRze) ,;, mne (
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Consxdermg the effect of rotation on thls quamtlty, we should note that: a.aaurmng
Ikl . L (4:8)

(which, as we shall see later in this sectlon, is fully justified in our ana.lysm), the
change in the refractlon coeﬁicxent is quite small, namely

manok(n-1)8 - )

n)w
With this approximation, we find for the scattered * amplitudes

]n L Tk

Lr(ng,15nk,2) = Ti(n13n2) — ["1 "l 0% By (n13m2)

= [ma- 2] fo (ima) (&)

Although we have used the parameter /w in the process of linearization, dif-
ferentiation with respect to n; or ny introduces (within a good approximation)
an additional term of the type wRj/c or wRy/c that multiplies ny in the argy-
ment of the Bessel functions; hence the correction term is proportional either. to
QIR /¢ or to R3/c, which obviously indicates that the change in the scattered
amphtude due to rotation, is proportional to the angular velocity. Accordingly,
it is more convenient for our purpose to consider the corresponding change.in the
average power density; to this end we define the dimensionless parameter

(5= (59 _ Re{Z [y + 1)) eiatmm)}
(S» (0)) Re { ) I\sg) (I‘S,O) ) eta(m—n) }

0 . 1) _g@ -1\ orl® -1\ or®@] .
where rﬁ,) = I'm(ny;ng) and I‘sn) =gm [(’—'}u——) -+ (-’-‘-};2—) —ﬁ{'}- +The
last expression involves an infinite summation, and a cutoff criterion which ensures

its convergence is discussed below.

© Another quantity of interest is the total reflected power, whose time-averaged
- value reads

8=

(48)

2%

(P)=§ da r(S,-) (4.9)
g.nd, again, it is more convenient to cons1der its relative variation, namely
(0) (p(Y* (9)* p)
(P) —(PO)y },,3 [P’" (P'") + (P"') r’"] |
()Y > |1=$2)|2

This quantity vanishes within our approzimation. In order to prove this statement

vabserve that r$,1,) is proportional to m and the term which -multiplies m in
summation is an even function of this variable. The fact that no change in

P (4.10)

hroughout this section we refer to the stepped-index case, in the view of its mathematical
hplicity.
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..component ((S;)) is identically zero.
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the total scattered power occurs is not surprising: (a) because the cylinder was
assumed to be made of a lossless material, and (b) because the angular velocity
of the cylinder is perpendicular to the propagation wave-vector.

Since the change in the radiation power due to rotation is proportional to the
angular velocity of the cylinder, it is now reasonable to investigate the average
angular momentum density of the scattered EM field [20]. In order to determine
the latter we have to complete the explicit description of the electromagnetic field;

thus, we note that (2.12)~(2.13) describe only two of its components, the third
being

oo (1)
(o) _ Eo ok By " (0r/€) it ka)
Hr = 0 E Pk k(‘l) (w—r/c)-—e (4.11)

k=—-o00

Accordingiy, the circular component of the average Poynting vector may be ex-
pressed as

1 *
(Sa) = 5 Re {E{Y [B1]"} (4.12)
the second component (Sy) has already been determined in (4.2), and the third

The Poynting vector determines the momentum density of the EM field outside
the cylinder domain namely Py = § /2, the subscript f indicating that we are
talking in field terms; thus the field angular momentum density may be now
defined to read 1

Ly=+x P,:c—z?x.? (4.13)

Since the system is “infinite” in the 2-direction, (Lgz) is the only non-zero

component of the time-averaged angular momentum density, (f)
Next, we determine the angular momentum along the circumference of a circle
of radius r; proceeding from the definition of (Lg,z), namely

18%L, 118%L,
Lt = 5020y = 57 Broa (4.14)

and integrating along this circle, we find that within the interval r, r + dr the
angular momentum per radial unit length is given by the derivative

1) 2
dL, 2 _[2% r? 1 E} Y ki 2IH£ (wr/c)]

Far away from the cylinder (r 3» R3) we may substitute the asymptotic expres-
sion for the Hankel function, so that the normalized angular momentum per unit
length, I;, is given by
c sz / dr 4 1 > 2 2 s
= — k||Tx]* =T~ 4.18
-?Eg(ngb‘) T (wRy/c)? kgl [I k" = Tl ] ( )

the latter can be simplified if we note that (2.9)—(2.11) are invariant under re:
placement of a by —a, which is equivalent to replacing k by —k,and 0 by

l:
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(—92). Hence, I'_3(R2) = y(—N). Substituting the last relations, we find for the
normalized angular momentum the expression .

(w R e )2 Zk [ITe@)? - Ta(-a)F] (417)

which emphasizes the fact that angula.r momentum of the field nmahel when the
cylinder is at rest. The contribution to I, linear in ), reads

b= kaz (= 25) oo 0P + (- 35) 2, ]

- (4.18)
Somewhat deeper physical insight is achieved if we consider the total average

intensity scattered by the cylinder. This quantity is readily calculated using (4.2),
and reads

2% 2
T=6[ dar(Sy)= -1-'7& L 5(2nRy) ,(;R/c) Z T2 (4.19)

It consists of the sum of the power associated with the mdxvxdua.l harmonics, i.e.,
I= E L.

Let us now determine the normalized average intensity scattered by the cylinder
when at rest, namely

- 0
R _ P
(E3/2m0) 6(2Ry) ~ §(wRa/c)
Substituting this expression in (4.18), we find the field angular momentum (like-

wise average, normalized, per unit length), l;, to be related to the (average and
normalized) power carried away by one harmonic, through the following expres-

sion:
40 /w 1)\ 8 3
1 (G Ead G B DL D

It was previously shown that the ifotal electromagnetic power scattered by the
cylinder is not affected by rotation of the latter. Now we have just shown that
the average angular field momentum per unit length is a convenient quantity for
expressing the influence of rotation on the electromagnetic field distribution.

Before concluding this section, let us consider the convergence of the expres-
sions involving infinite summation. At a given frequency and for a specified geom-
etry, the reflection coefficient may be approximated — resorting to correspondmg
expansions for Bessel functions — by the expression

1

1- 2](ewR2/2kc) ~2k

where e is the base of natural logarithms. Now, defining kco = wRze/(2¢c),
the reflection coeficient practically equals unity for |k| < kco and vanishes for
k| > keo. Obviously, there is a sharp cutoff at

k| ~ (4.23)

TkE

(4.20)

Ty ~ (4.22)
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whereby the infinite summations become finite, ensuring convergence of all ex-
pressions derived above. This cutoff, determined on the basis of information for
an ideally conducting cylinder, is a supremum and will in any case be smaller for
a dielectric material. .
Finally, the inequality in (4.5) may now be estimated: substituting (4.23) we

observe that the correction term in: (4.8) is proportional to the angular velocity
(k?-) = (4rg) 2~ 2Ry <1 (4.24)

@/ max ¢c 2w ¢

which is smaller than unity by at least 4 orders of magnitude for any macroscopic
body of interest.

1.20 Y T T — T
1.00
0.80

< Pk> 0.60

0.40

0.20

000 1 1 ] | 1 |
0.00 1000 20.00 30.00 40.00 50.00 60.00 70.00

k

Figure 1. “Cuxhﬁla.tive” contribution of spatial harmonics to normalized
scattered power. Above k =~ 50 the contribution is negligible
and (P(o))/Po equals unity.

V. NUMERICAL EXAMPLE

Construction of electro-mechanical micro-devices is feasible today by means of
standard VLSI techniques (e.g., [21]). Because of their size (order of microns!),
it will be quite difficult in the future to measure the angular velocity of such
devices by mechanical or electrostatic methods. A possible “non-destructive”
solution (in the sense that the main process is not significantly affected dusi g
the measurement) may be based on the analysis just put forward; an a.dditio:?is

‘advantage is that, in principle, both the illumination source (the laser) and t
detectors can be set up in close proximity to the device.



Scattering by Rotating Optical Fibers ‘ 617

In the remainder of this communication we consider a typical device, and the
feasibility of measuring the influence of rotation on the scattered field is demon-
strated numerically.

To illustrate this influence in the case of a stepped-mdex dielectric cylinder,
we consider values of wRz/c = 50 and wRj/c = 25 (eg, A ~ 10um and
Rj ~ 0.1 mm). For communication applications of optical fibers it is necessary to
minimize the dispersion and the refraction coefficients n; and ny have to be as
close as possible to unity; this however is not the case here, and we take n; = 4.0
and ng = 2.0. In order to estimate the frequency ratio Q/w, we assume the
normalized a.ngular velocity to be very small, namely, (R/c)Rz ~ 105 g0 that
finally we arrive at a case for which 2/w =10, :

2.00e-03 T T T T 0.16
0.12
1.00e-03
0.08
S, So
0.00e+00
0.04
-1.00e-03 ) 1 L 0.00
90.00 92.00 94.00 96.00 98.00 100.00

o

Figure 2. Angular distribution of normalized scattered flux S; and its
corresponding change S;.

As first step, let us demonstrate that the reflection as calculated for the cylinder
at rest, is not affected by summing a large number of rapidly varying (Bessel)
functions. The effective surface of the cylinder “seen” by the incident wave is
6(2R2) the initial average power impinging on the cylinder is therefore (Pp) =
(E3/2n0)6(2R3). K we now normalize the average scattered power with respect
to thls quantity, we expect by virtue of energy conservation that

(0) ‘
(o szz/c Z o (51)

-0
iould be exactly unity. In Fig. 1, we descnbe the accumula.tldn process as each

armonic k is added, i.e., we plot (P) = |I‘(0)|2 as function of k.

w2 |
oting that the contribution of the harmonics w1th mdex above 50 is neghglble

accordance with the cutoff criterion in the preceding section, we take in the
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0.15 . . ;
oo | :
0.08- - - E F L . : 7
S ) ; 4 i ik
0.00 -
008, ' ‘ ) -
_o'lo i) ‘ 1 L 1
90.00 92.00 - -----94.00 96.00 98.00 100.00 .

04

Figure 3. Angular distribution of relative change of scattered flux, s (see
(4.8)), a = 90°-100°.

‘0-20 T T T T . T

0.10

0.00 .

-0.10. -

s : : :

02 ) .

030 : -

0S50

9000 9500 10000 10500 11000 11500 120.00
Pigure 4.  Angular’ distribution 'of relative change of scattered flux o =
o 90°-120°, - - e

Now we can consider the u’lrgﬁla‘;i"iq:‘lui,lfribution of the average power flux, (Sy)
and its variation due to rotation. ‘These two quantities are described in Fig. 2, one

curve referring to Sp = (S,(Qo)) (r/Rg)8(2R2)/{Py) and the other line — the corres- -
ponding change of the scattered power. ) = (S5))(r/R2)6(2Ry)/(Py), within s
limited interval of a. We observe.that S, has minima at different angles, hence
the influence of rotation is brought out when consideting the relative change in the
power flux (s of (4.8)). This is clearly illustrated in Fig. 3, where we present two
peaks of s; a relative change of 12,5% is measurable at 92° and almost 10% near
97°. The higher peak (-50%) was calculated near o = 116° where S is very
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small — see Fig. 4. The smoothness of S; as presented in Fig. 2 is misleading; it
is mainly due to the limited angular interval chosen. When the latter is extended,
the picture changes — see e.g., Fig. 5. In gpite of this “noisy” behavior, when the
sum of all the contributions is taken around the:cylinder, the result is closer to
zero than might be expected, namely p (see (4.10)) was.found to be 10~1% while
the calculation error in evaluating the zero-order Bessel function is of order 10~8
— see [19],

5.0%'03 T T T ‘ T 1

2.50e-03

S 0.00e400 i \ N -

-2.50¢-03

T
i

-5.00e-03 L L . . L
0.00 3000 60.00 90.00 120.00 150.00 180.00

o

Figure 5. Angular distribution of relative change of scattered flux a =
0°-180°.

0-20 T I < T 1 ]

0.10 + ¢ . : 1

S. 000 F e o A

-0.10 ‘ ]

-0'20 1 1 1 1 I3 R
0.00 30.000 6000 90.00 120.00 150.00 180.00

(04
Figure 8. Relative change of scattered power at 5° interval a = 0°-175°.
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Let now an array. of detectors measure the electromagnetic power emitted over
angular intervals of 8% The dots in Fig. 6 illustrate the accumula.-ﬁed normal-
ized change of the scatteted power due to rotation, Sj(a) = f:"’s do! $1(a'),
as determineéd by this- array.’ Note that this diagram ‘reproduces the absolute
variation not the relative ‘one as in Fig. 3. Our calculations reveal that the
largest change cortésponds to the interval between 140° and 145°: +15.09%;
a similar result (+14.7%) is obtained at 135° < a < 140°. For other inter-
vals the change may be negative, e.g., for 75° < a < 80°, §; = —12.56% and
80° < a < 85°, 5 = —11.65%.

From the values presented above, we realize that even the angular velocity is
decreased by two orders of magnitude, i.e., (R/c)Ry ~ 10~7 and Qfw = 1078,
we still obtain a change of order of 0.1% in the normalized power flux, which is
within the limit of dete¢tion. ;

VI. CONCLUSIONS

Reflection from i rotating ¢ylinder with non-uniform cross-section was considered;
it was shown that the total variation in the reflected power is zero. We also
determined the relation between the field (average) angular momentum and the
(average) power carried away by each angular harmonic. Finally, it was shown
that the change in the distributed power flux is measurable even for relatively low

angular velocities as QRp/c ~ 10~7.

APPENDIX

The expression for: jk(S, 4y4,p) (tabulated in [19], p. 173) is given by
© ( \m k) (o\2m
3 _ k- (C)"dm’ (8)
Jk(A’q)_[qp/zl 2 m!(m——k)!
m=0
with
'qz[ZJO...OO 0 )
A? g% [4} . 0 0 0
dg)_{ 0 A2 &2 6] 0 o0 0 |
0 0 0 .. A2 @ [2m-1)
(0 0 0 ... 0 A? qa
where

[2] = [(k +2)% — k%] = 4(k + 1)
[4] = [(k +4)% — k] = 8(k + 2) .

[2m] = [(k + m)? — ¥?] = 4m(k + m)
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Explicitly, the first terms of the power-series expansion read -

jk(A’ vP) (qp/z)

(ap/2)? (‘1”/2)4 1- 4(’°+1)Ar] (ap/2)% [1 - 4(3k+5)-T]

I=wks) Y T AREDRF2)  BEFDEF2(FETI)

Comparing (3.5) with the correspondmg equat:on in [19] (p. 172, (7.28)), it is
readily seen that in our case ¢ = 1.
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