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Relativistic electrons counterpropagating through the center of a radially polarized J1 optical Bessel
beam in vacuum will emit radiation in a manner analogous to the channeling radiation that occurs when
charged particles traverse through a crystal lattice. However, since this interaction occurs in vacuum,
problems with scattering of the electrons by the lattice atoms are eliminated. Contrary to inverse Compton
scattering, the emitted frequency is also determined by the amplitude of the laser field, rather than only by
its frequency. Adjusting the value of the laser field permits the tuning of the emitted frequency over orders
of magnitude, from terahertz to soft X rays. High flux intensities are predicted (∼100 MW=cm2). Extended
interaction lengths are feasible due to the diffraction-free properties of the Bessel beam and its radial field,
which confines the electron trajectory within the center of the Bessel beam.
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Channeling radiation was predicted by Kumachov [1] to
occur when a beam of relativistic positrons is launched
almost parallel to the symmetry planes of a solid-state
crystal. Classically, this phenomenon can be understood in
terms of the charged particle bouncing back and forth
between the atomic planes. This transverse oscillation
causes the particle to emit radiation. During the early
1980s, Andersen [2] and Klein [3] investigated this process
experimentally. A thorough review of activity during these
early years was compiled by Bazylev and Zhevago [4].
Quantum mechanically, in the transverse direction, the

particle may be conceived to move in an harmonic
oscillator [5]. A positron impinging parallel to the sym-
metry plane of the crystal populates only the lowest
eigenstate and, as such, will not radiate. However, when
its trajectory is tilted, it also populates the upper states.
Spontaneous radiation is emitted as it drops from an upper
to a lower energy state.
Throughout the years it has been suggested to replace the

crystalline lattice with a macroscopic transverse static field
[6] or a superposition of two intersecting laser beams [7]. In
the former case, the coupling of the electrons with the
radiation is relatively weak for typically available fields,
whereas in the latter case, the interaction length is limited
due to the small diameters of the crossing laser beams, the
need for tight focusing, and diffraction effects (see [8]).
In this Letter we present a new channeling radiation

paradigm in which a counterpropagating radially polarized
J1 Bessel beam (BB), see the top frame in Fig. 1, plays a
role analogous to that of the lattice. Contrary to the
aforementioned alternative schemes for replacing the crys-
tal lattice with an optical lattice, usage of a Bessel beam
permits long interaction lengths, which are not limited by
the usual diffraction of focused laser beams, and which do

not require high laser intensities. Moreover, as will be
shown, the electrons bounce back and forth (see inset in
Fig. 1) due to the radial force associated with the BB
profile, and emit radiation with a frequency proportional to
the amplitude of the BB field. The same mechanism
responsible for the generation of radiation also facilitates
the confinement of the e-beam over the entire length of
the BB. It should be mentioned that coherent channeling
radiation in vacuum is also possible, but this is beyond the
scope of this Letter.
Consider a “hollow” J1 BB (see the main frame in Fig. 1)

where the peak of the first lobe is at radius Rlaser and the
e-beam radius Rb is such that Rb < Rlaser; this is in order to
ensure that the electrons are propagating within the BB
where the radial force exerted by the potential is linear in r.
This region is between the vertical dashed lines depicted in
Fig. 1. The laser field components may be derived from
the longitudinal component of the electric field Ez ¼
E0 cos½ω0ðtþ z=vphÞ�, where E0 is the amplitude of the
laser field, ω0 is the laser frequency, and vph is the phase
velocity of the light wave.
The BB propagates in the opposite direction to the

electrons moving along z ∼ vt and, according to Maxwell’s
stress tensor, the time-averaged radial force density it
exerts is

hfriT ¼ −
ϵ0
2

�
ω0

c
E0 sin θ0

�
2

r; ð1Þ

where ϵ0 is permittivity and θ0 is the angle of the light ray
relative to the z axis, such that vph ¼ c=cos θ0. Denoting by
nel the electron density that is exposed to this BB, the
transverse components of the equation of motion read
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Ignoring energy exchange, the electrons oscillate in the
transverse direction with an angular frequency

Ω2 ≡ ω2
0

ðϵ0=2ÞðE0 sin θ0Þ2
nelγmc2

≡ 1

γ
Ω2

0; ð3Þ

implying that the average contribution of the transverse
motion to the kinetic energy is proportional to β2⊥ ¼
ðΩRb=2cÞ2. To gain an idea of the magnitude of Ω, assume
a laser wavelength of λ0 ¼ 1 μm, E0 ¼ 1 GV=m, γ ¼ 600,
sin θ0 ¼ 0.1, Rb ¼ 100 μm, and nel ¼ 109=½πR2

b × 1 cm�;
then, Ω=2π ∼ 5 THz → 60 μm.
There are two noteworthy observations that distinguish

our scheme from other efforts. First, as mentioned, BBs
possess the inherent property of maintaining a constant
transverse intensity distribution over distances not limited
by the Rayleigh length of regular focused laser beams.
Second, the “lattice potential” created by the BB radial field
exerts a confining force on the electrons, as revealed by
Eq. (1), that helps maintain the electron trajectory within
the channel formed by the BB.

A first-order estimate of the maximum normalized
emittance ϵmax

N , which still results in a stable trajectory,
can be provided by noting, as mentioned in the Fig. 1
caption, that the e-beam diameter must fit within the BB
potential well and that the β function associated with
this beam must, therefore, be c=Ω. Hence, ϵN ≪ ϵmax

N ≡
R2
bc=Ω. For the parameters given in the previous paragraph,

ϵmax
N ¼ 103 mmmrad, which is easily satisfied by typical
cathodes.
To calculate the incoherent radiation emitted by the

transverse oscillation of the electrons traversing through
the hollow laser beam, we designate β∥ as the ratio of
the longitudinal electron velocity to the speed of light
and define γ2∥ ≡ 1=ð1 − β2∥Þ≃ γ2=½Ω̄2

0 þ 1�, where Ω̄0 ≡
Ω0Rb

ffiffiffi
γ

p
=2c. Since, obviously, γ∥ ≥ 1, to ensure stable

motion whereby the electrons stay confined within the
center of the BB, we must have γ − γ−1 > ðΩ0Rb=2cÞ2; this
implies that for a given e-beam energy γ there is a limit to
the maximum value for Ω2

0. Explicitly, according to the
right-hand side of the last constraint, for a given γ, the ratio
of the energy density of the laser beam ð∝ E2

0Þ to the
e-beam energy density ð∝ nelÞ must be less than γ − 1=γ.
With the oscillation frequency and the preliminary

stability condition established, we may proceed to an
assessment of the amount of incoherent emission.
Defining the interaction length D as the distance the
electrons propagate through the BB, the angular and
frequency energy spectrum as well as the total energy
wtot radiated by Nel electrons are

dw
dωdΩ0 ∝ wtotsinc2

�
D
2c

�
ω

�
1

β∥
− cos θ

�
−
Ω
β∥

��
;

wtot ¼ Nel
e2

4πϵ0

�
Ω
c
γ∥

�
4 β∥
2
ðπR2

bDÞ; ð4Þ

where dΩ0 ¼ 2π sin θdθ. It is tacitly assumed that γ ≫ 1
and that the radiation is emitted in a narrow angle,
i.e., θ ≪ π.
According to Eq. (4), the peak frequency occurs in the

forward direction when the argument of the sinc function is
zero; thus,

ωθ¼0 ≃ 2c
Rb

γ
2Ω̄0

Ω̄2
0 þ 1

; ð5Þ

and it is important to note that this frequency is determined
by the amplitude of the BB as revealed in Eq. (3). Moreover,
it has a maximum when Ω̄0 ¼ 1; this, when combined with
the condition for stable transverse motion specified above,
implies that γ should be greater than

ffiffiffi
2

p
. Equivalently,

ðΩ0Rb=2cÞ2 ¼ 1=γ < 1=
ffiffiffi
2

p
, or, explicitly, for a given

electron density, the injected laser energy density is

limited to WB < WðmaxÞ
B ≡ ð1= ffiffiffi

2
p Þnelmc2ðω0Rb=2cÞ−2.

Vice versa, at a given BB energy density, for stable

FIG. 1 (color online). A radially polarized J1ðxÞ Bessel optical
beam, the intensity cross section of which is illustrated in the
main frame, counterpropagates against a narrow beam of elec-
trons. For stable transverse motion, the diameter of the electron
beam is smaller than the distance between the first lobes of the
J1ðxÞ Bessel beam; see vertical dashed (green) lines, jxj < 1.841.
In this range, the transverse motion of the electrons is determined
by the initial conditions and the effective potential, illustrated in
the inset at right. As the electrons oscillate transversely back and
forth, they generate “channeling” radiation.
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transverse motion, the electron density must exceed a
minimum value,

nel > nðminÞ
el ≡ ffiffiffi

2
p WB

mc2

�
ω0

c
Rb

2

�
2

; ð6Þ

wherein WB ≡ ϵ0ðE0 sin θ0Þ2=2 is proportional to the
energy density associated with the BB in the e-beam region.
One should not be misled by the fact that, according to

Eq. (6), the electron density has only a lower limit. To
establish the upper limit, we need to keep in mind that if the
electron density is too high, the transverse emittance will
become space-charge dominated. In order to avoid this
situation, we require that the expelling space-charge force
density that acts near the e-beam envelope e2n2elRb=ϵ0γ2∥ be
smaller than the radial force density exerted by the BB
[Eq. (1)]; consequently,

nel < nðmaxÞ
el ≡ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ 4n22

q
− n1

�
≃ n2; ð7Þ

wherein n1 ≡ γWBðω0Rb=2cÞ2=mc2 and n22 ≡
WBγ

2ϵ0ðec=ω0Þ−2. For most cases of interest, n2 ≫ n1;

therefore, nðmaxÞ
el ≃ n2.

Now we return to the radiation characteristics. The
bandwidth Δω of the emitted incoherent radiation has
several contributions: (i) the finite interaction length D,
(ii) the angular spread Δθ, and (iii) the energy spread Δγ.
For the resonance occurring at the peak of the sinc function,
the full width at half maximum occurs when the argument
of sinc is ≃π=2. Hence, assuming zero angular and energy
spread, the relative bandwidth due to finite interaction
length is ðΔω=ωÞθ;Δθ;Δγ¼0 ≃ 2π

ffiffiffiffiffi
γ0

p
=ðΩ0D=cÞ. For com-

parison, in a free-electron laser (FEL) [9], the relative
bandwidth is ðΔω=ωÞFELθ;Δθ;Δγ¼0 ≃ λw=D, which is virtually
identical to our case; λw is the wiggler’s period and D is the
wiggler’s length.
In the same way, assuming zero energy spread and

“infinite” interaction length, the relative bandwidth
due to the angular spread of the electrons is
ðΔω=ωÞθ;Δγ¼0;D→∞ ≃ 2γ2∥Δθ2, a result which is identical
to a FEL. Finally, for the energy spread effect we find
ðΔω=ωÞθ;Δθ¼0;D→∞ ≃ ð3=2ÞΔγ=γ0; the corresponding
value for a FEL is 4Δγ=γ∥. Hence, the overall relative
bandwidth is the quadrature sum

Δω
ω

≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2πc

ffiffiffiffiffi
γ0

p
Ω0D

�
2

þð2γ2∥Δθ2Þ2þ
�
3Δγ
2γ0

�
2

s
: ð8Þ

Equation (8) indicates that achieving narrow band
emission favors a long interaction length D and relatively
low e-beam energy. For example, assuming D ¼ 10 cm,
λlaser ¼ 532 nm, and a 76-MeV e-beam, such as
the one available at the Brookhaven National

Laboratory Accelerator Test Facility (ATF) [10],
ðΔω=ωÞθ;Δθ;Δγ¼0 ≃ 2.3 × 10−4. For Δθ ¼ 5 mrad,
ðΔω=ωÞθ;Δγ¼0;D→∞ ≃ 5.7 × 10−4. The ATF e-beam has a
typical energy spread of 0.03% [11]; thus,
ðΔω=ωÞθ;Δθ¼0;D→∞ ≃ 3.0 × 10−6. Therefore, substituting
these values into Eq. (8) gives a relative bandwidth of
6.2 × 10−4. The fact that this narrow bandwidth was
achieved with an interaction length of only 10 cm attests
to the potential compactness of our scheme. Note this
bandwidth is over 2 orders of magnitude smaller than the
spontaneous emission from an undulator, and is compa-
rable to a FEL. It is also comparable to the bandwidth of
inverse Compton scattering (ICS) [12].
A similar approach may be employed to determine the

impact of the various quantities that determine the effective
wiggler (Ω̄0) impact on the relative bandwidth

Δω
ω

≃ j1 − Ω̄2
0j

1þ Ω̄2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ΔE
E

�
2

þ
�
Δω0

ω0

�
2

þ
�
Δnel
nel

�
2

s
: ð9Þ

Note that the impact of the channel on the bandwidth is
small if the condition for maximum frequency [in Eq. (5)]
is satisfied (Ω̄0 ≃ 1). Commercial diode-pumped, mode-
locked Nd:YAG lasers are available with pulse-to-pulse
output power stabilities of ≤ 0.2%, implying ΔE=E ≤
0.001, and they have a typical frequency linewidth
of order 1 cm−1, corresponding to Δω0=ω0 ∼ 10−4. The
microbunch charge stability from photocathode-driven
linacs is ∼0.4% [13]; hence, Δnel=nel is 4 × 10−3. Thus,
a typical value for the radical in Eq. (9) is ∼4 × 10−3.
The wavelength λrad [based on Eq. (5)] and flux S of the

emitted channeling radiation in the forward direction
(θ ¼ 0) are plotted in Figs. 2(a) and 2(b), respectively,
as a function of the laser field for three different e-beam
energies. Flux S is calculated from Eq. (4) as the energy
wtot emitted from the e-beam over a cross section πR2

b and
length Δz, i.e., S ¼ wtotc=πR2

bΔz. The other parameter
values for the plots shown in Fig. 2 are Rb ¼ 20 μm,
D ¼ 0.10 m, Nel ¼ 1.87 × 1010 (3 nC), Δz ¼ 3 mm
(electron bunch duration ¼ 10 ps), sin θ0 ¼ 0.10, and
λlaser ¼ 0.532 μm. For an indication of the required laser
peak power, consider a Gaussian laser beam in vacuum,
E ¼ E0 exp½−ðr=w0Þ2�, with waist w0 ∼ 100 μm, which
is larger than the e-beam radius of 20 μm; then,
E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Plaser=πϵ0cw2

0

p
, or, explicitly, if E0 ¼ 109 V=m,

then the laser peak power is of the order Plaser ∼ 40 MW.
This peak power is readily available from solid-state lasers.
As seen in Fig. 2(a), a wavelength-tuning range of

many orders of magnitude is possible by simply varying
the laser intensity. Depending on the e-beam energy,
this range can be from the terahertz (THz) regime for
low-energy e-beams down to soft X rays for high-energy
e-beams (e.g., several GeV). Each curve displays a

PRL 114, 195501 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
15 MAY 2015

195501-3



minimum wavelength that can be achieved for a given
e-beam energy. This minimum can be readily under-
stood in terms of the maximum that ωθ¼0 reaches
[see Eq. (5)] if Ω̄0 ¼ ffiffiffi

γ
p Ω0Rb=2c ¼ 1, in which case

ωmax
θ¼0¼2cγ=Rb. For a 500-MeV e-beam and Rb¼20 μm,

this implies λmin
θ¼0 ¼ 64 nm, which agrees with the mini-

mum wavelength indicated in Fig. 2(a) for the 500-MeV
e-beam.
In Eq. (4), the energy spectral density was determined

in terms of the total energy emitted, wtot. We have
calculated the total number of photons emitted by a
single electron during the process. When operating at
ωmax
θ¼0, the number of photons emitted per electron is ðNph=

NelÞ≃ 2παD=γ0Rb; α≡ e2=4πϵ0ℏc is the fine-structure
constant. As in the case of the relative bandwidth, it is
interesting to contrast this with the corresponding ratio for
FELs. For example, a 2-MeV beam would produce 57
photons per electron forD ¼ 0.1 m. However, for a FEL of
similar length, only ∼0.05 photons per electron are pro-
duced, assuming Bw ¼ 1 T and λw ¼ 1 cm. This implies
that the channeling radiation in vacuum scheme can be
more efficient at generating photons for a given e-beam
current.

Figure 2(b) demonstrates that high flux is also obtain-
able. For the parameter values chosen, the flux levels off at
69 MW=cm2 regardless of the e-beam energy. This level-
ing off of the flux is expected, since wtot is a function of
Ω=γ∥ and γ∥ depends on Ω. Recall that Ω depends also on
the laser field E0. Hence, at sufficiently high values of E0

relative to the e-beam energy, the flux becomes indepen-
dent of the laser field. This also implies that high fluxes are
possible even at low-energy e-beams, subject to the
condition in Eq. (6).
Although the BB counterpropagates with respect to the

e-beam as in ICS, our process is fundamentally different
from ICS in several ways. First, in our scheme, the on-axis
laser field is zero, whereas it is maximized for ICS. In that
regard, we are relying on the fact the interaction via ICS is
negligible. Second, the electron oscillation is in the trans-
verse direction in a potential well (harmonic oscillator)
whose eigenfrequency is proportional to the energy density
of the laser. In other words, the emitted photon is
determined not just by the frequency of the laser, as it is
for ICS, but also by the intensity of the BB. This is a
noteworthy characteristic, since it means that one can
control the frequency spectrum of the emitted radiation
with the laser intensity. Finally, the emitted frequency
also varies in a manner inversely proportional to the
square root of the density of the electrons, which is unlike
ICS.
In conclusion, we have analyzed a novel radiation source

that resembles channeling radiation, but which occurs in
vacuum as a result of oscillation of electrons in the field of a
counterpropagating Bessel beam. Consequently, extended
interaction regions, which require only moderate laser peak
power, are feasible. Contrary to inverse Compton scatter-
ing, the tunability of the emitted radiation is controlled
primarily by the amplitude of the Bessel beam.
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