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Reliable Link Initialization Procedures

ALAN E. BARATZ anp ADRIAN SEGALL, FELLOW, IEEE

Abstract—It is known that HDLC and other bit-oriented DLC
procedures ensure data transmission reliability across noisy transmission
media provided that all frame errors are detected and the link processes
are synchronized at initialization. We show in this paper that the HDLC
initialization procedure does not ensure synchronization and allows
inadvertent loss of data. We then propose several new link initialization
procedures and prove that they do ensure synchronization.

I. INTRODUCTION

DATA link control (DLC) procedures are protocols that use
error detection and retransmission mechanisms to protect
data sent over a noisy transmission media from transmission
errors. The main role of such procedures is to accept data at
one end of a link and ensure their delivery at the other end in
the same order as accepted, without losses or duplicates. As
long as the link works properly, all data should arrive at the
receiving end in finite time. If data accepted by a DLC
procedure cannot be transmitted because of link failure,
appropriate notification should be submitted to the higher
layers. DLC procedures which guarantee these properties are
said to provide data reliability.

The most commonly used DLC procedures are the bit-
oriented DLC procedures such as HDLC [3], SDLC [4],
ADCCP [1], or alternating bit [2]. In these procedures, there
are three main situations that may result in undetected
transmission errors: 1) improper design of the DLC proce-
dure, 2) undetected frame errors, and 3) incorrect initialization
of the DLC procedure.

There is no way to ensure that undetected transmission
errors will never occur under any circumstance. There is
always the possibility that a logically correct program will
execute improperly due to hardware or system errors. More-
over, any error detection scheme has an inherent probability of
undetected errors. Consequently, all work on reliable DLC
procedures is directed towards minimizing the probability of
undetected transmission errors.

The first two issues above have received great attention in
the literature. Data reliability is ensured by HDLC and the
other bit-oriented DLC procedures as long as the DLC
processes are synchronized at initialization and all frame
errors are detected. Moreover, frame error detection has been
well studied and powerful cyclic redundancy checking
schemes are currently used to minimize the probability of
undetected errors. The main subject of this paper is to
introduce link initialization (LI) procedures for which the
possibility of incorrect initialization is significantly lower than
that for presently known initialization procedures.
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The best currently known LI procedures is the one used by
HDLC [11, [3], [7], [10]. However, in Section III, we
demonstrate scenarios where the HDLC LI procedures fail to
provide synchronization and allow inadvertent loss of data as a
result of nothing more than unpredictably long link delays
(e.g., due to long queueing caused by congestion); these
scenarios assume no loss of memory or failure of any other
type at the link stations. Moreover, it has been conjectured [8]
that even if the link stations work correctly, “‘if transmission
delays between processes are variable and finite, but no upper
bound is known a priori, then absolutely reliable techniques
for closing and opening a connection (i.e., LI procedures) do
not exist.”” In contrast, our new LI procedures completely
climinate such situations and ensure synchronization for all
cases of link malfunction, as long as there is no loss of
memory in the link station.

Our LI procedures possess two additional appealing fea-
tures. First, their implementation complexity is not greater
than that of the HDLC LI procedure. Second, they can be
adapted to cope with link station failures, provided only two
bits of nonvolatile memory exist in each of the stations (or only
in the primary station for the unbalanced mode). As mentioned
before, no procedure is completely failsafe against all types of
failures. In particular, if the nonvolatile memory fails, then
loss of synchronization and inadvertent loss of data may occur,
even with our new LI procedures. However, we have
considerably reduced the possibility of error as compared to
existing LI procedures.

In Section II, we formalize the notions of a link, a bit-
oriented DLC procedure, and an LI procedure. In Section III,
we show that the LI procedure used by HDLC does not ensure
synchronization and may lead to inadvertent loss of data with
no notification to the higher layers. Finally, in Section IV, we
present the new LI procedures.

11. THE MODEL

In this section, we formalize the notions of a link, a bit-
oriented data link control procedure, and a link initialization
procedure. We also introduce some terminology that will be
used throughout the remainder of the paper.

A. Basic Components

The configuration considered in this paper is given in Fig.
1. Data source is a generic name for some device, process, or
higher layer that produces data strings which have to be
transmitted over a communication link to a data sink. We
shall assume that the data strings are packetized and shall refer
to them as packets. Furthermore, we assume that the packets
are queued in a buffer at the data source and that they are
transferred in order to the DLC process at times dictated by
the DLC procedure. At the other end, the packets are
delivered by the DLC process to the data sink at times dictated
by the DLC procedure.

A bit-oriented data link control procedure is a pair of
processes, one at each station, that operate together using
some type of acknowledgment and retransmission scheme to
ensure data reliability over an error-prone transmission media.
A DLC process accepts packets from the data source,
transforms them into information frames by appending any
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Fig. 1. The communication system.

necessary control or sequencing information, and transfers
them to the transmitter. In addition, it accepts incoming
frames from the receiver, converts them back into packets,
and sends them on to the data sink. A more precise description
of the DLC procedure will be given in Section II-B.

The DLC processes are served by a point-to-point commun-
ication connection between two communicating stations. The
transmitter at one station receives the information frames and
transforms them into transmission units by appending to each
an error checking code. The units are then queued for
transmission in the same order as received. Units sent by the
transmitter may be lost, arrive at the receiver in error, (e.g.,
because of transmission noise), or arrive correctly after some
finite but unknown delay. We assume that all errors are
detected by the receiver and the units received in error are
discarded. Units that arrive correctly are assumed to arrive in
the same order as sent and are transferred, after deletion of the
error checking code, to the corresponding DLC process.
Thus, we assume that the transmission media preserves FIFO
ordering. However, we do not require that a bound on the
transmission delay is known a priori. Finally, we assume that
when the physical transmission media is operational, the
probability that a unit is lost or received in error is less than 1.

The entire system shown in Fig. 1, except for the data
sources and sinks, will be referred to as the communication
link. This includes the DLC processes and their storage, the
transmitters, the receivers, and the physical transmission
media.

The procedures used by the DLC processes to transmit data
reliability over the error-prone transmission media are re-
ferred to as DLC procedures. Each such procedure is
composed of two stages: initialization stage and connected
stage. The purpose of the initialization stage is to synchronize
the two DLC processes and clean the channel of old
information, while in the connected stage, the processes
exchange information data.

In the present paper, we are mainly concerned with the
initialization stage of the DLC procedure, although some
discussion about the connected stage will also be necessary.
Existing procedures implement the initialization stage by using
special control messages, acknowledges, and time outs. A
more detailed description will be presented in Section III, but
here we point out that one of the critical requirements of those
existing procedures is that the time-out period is larger than
the maximal roundtrip delay of the control messages. This
poses a major problem in the design of the time-out periods.
As shown in the examples of Section III, time outs that are too
short may result in nonreliable communication and inadvertent
loss of frames. On the other hand, time outs that are too long
result in a long setup time because the DLC process waits
longer than necessary before retransmitting control messages
that are lost. The time-out interval in the existing procedures
has to be set to a large enough value to ensure that the link is

free of old control messages before it expires, but such a value
may be much larger than it is normally necessary. Moreover,
DLC procedures are often used on transmission media like
satellite with on-board processing, gateways, local area
networks, etc., for which if is hard to determine a priori
bounds on the transmission delay. For such environments, it is
difficult to establish a time-out interval that is tight on one
hand and not exceeded by the round-trip delay on the other
hand.

The main purpose of this paper is to propose new
initialization procedures that work without the stringent
requirement that the time-out interval exceeds the roundtrip
delay. Their main property is that DLC process synchroniza-
tion and channel clearance are achieved under arbitrary
channel delays. Another feature of the proposed procedure is
that their complexity is similar to the one of the existing
procedures, so that the increased reliability is not achieved at
the expense of increased complexity.

B. The DLC Procedure

In this section, we define a general class of bit-oriented
DLC procedures to which we shall refer as window-DLC
procedures. Our description will focus on the interaction
required between the two DLC processes to transmit data from
one station (say A) to the other station (say B). To facilitate
our discussion, the DLC process at station A will be referred
to as the sender DLC and the DLC process as station B will be
referred to as the receiver DLC. Note that, in general, each
DLC process will be acting as both sender and receiver since
data will be transmitted in both directions. Except for some
minor notational differences, all known bit-oriented DLC
procedures (e.g., alternating bit, HDLC, SDLC, etc.) are
members of the class of window-DLC procedures.

In a window-DLC procedure, the sender DLC maintains a
send counter number, denoted! by VS, and the receiver DLC
maintains a receive counter number, denoted by VR. The
range of V'S and VR is between O and W — 1 where W is
some fixed integer (the quantity (W — 1) is called the window
size; the alternating bit protocol used W = 2 and the HDLC
protocol uses W = 8 or W = 128). Initialization of the
counter numbers is performed by the link initialization
procedure and will be discussed later. For now, it suffices to
say that the relation V'S = VR must hold at initialization.

Once the send counter number is initialized, the sender
DLC is allowed to accept W — 1 packets from the data
source. These packets are assigned consecutive sequence
numbers from VS to (VS + W — 2) modulo W. The sender
DLC transforms each accepted packet into an information
frame by appending a control header containing the assigned

! To avoid confusion, we point out that the quantity VS here is different
from V(S) of HDLC [3]. However, for our purpose, it is more convenient to
use this notation.
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sequence number (NS). An information frame is stored by the
sender DLC from the time the corresponding packet is
accepted until it is considered acknowledged, at which time it
is discarded. We leave unspecified and arbitrary the time when
the sender DLC may send copies of the stored frames. Various
DLC procedures dictate the instances when frames (and their
copies) are actually sent, but this is of no concern to us here.

When a frame with sequence number NS = VR is received
correctly at the receiver DLC, it is delivered (without the
control header) as a packet to the data sink and VR is
incremented by 1 modulo W. Frames received in error or
with sequence number NS # VR are discarded and no action
is taken. The receiver DLC also has some mechanism to
periodically send an information ACK frame containing
acknowledgment number NR = VR to the sender DLC.
Whenever an information ACK frame with acknowledgment
number NR # VS arrives at the sender DLC, VS is
repeatedly incremented modulo W until it reaches NR. Note
that VS is not incremented when frames are sent out, but
rather only when an appropriate ACK frame is received. In
addition, when VS is incremented from value K to K+ 1
mod W, the stored frame that carries sequence number K is
considered acknowledged and discarded. Then a new packet
is accepted from the data source and is assigned sequence
number (K — 1) mod W. Observe that at any time the sender
DLC stores at most W — 1 frames, with sequence numbers
from VSto (VS + W — 2) modulo W. As said before, we do
not specify here the times when the sender DLC is allowed to
send its stored frames or when the receiver DLC sends the
acknowledgment. However, the sender DLC process is
required to periodically send out the information frame with
sequence number NS = VS. Similarly, the receiver DLC
process is required to send out periodically an acknowledg-
ment. In other words, the stations are not allowed to be idle (in
the sense of not performing the DLC procedure) indefinitely.

We now note that different window-DLC implementations
employ various additional optimization techniques to achieve
efficient link utilization. Examples include appending the
ACK frame to information frames being sent in the opposite
direction, using NACK frames (selective reject) and/or check-
pointing and saving information frames with NS # VR for
later use while reducing the corresponding windows. Although
important from the performance point of view, these tech-
niques need not be discussed here. The properties of the
proposed initialization procedures will be shown to hold for
any window-DLC procedure.

In addition to normal operation (as described above), DLC
procedures must include mechanisms for detecting link fail-
ures, mechanisms for detecting link recoveries, and a reinitial-
ization protocol that will allow the resumption of normal
operation. The failure detection mechanism must have the
basic property that when the DLC process is in normal
operation, either every frame sent by the process is
considered acknowledged within finite time or a link
failure is detected. The most common failure detection
mechanisms are to declare a link as failed if a frame is not
acknowledged after a given number of retransmissions or after
a predetermined time. Whenever a DLC process detects a
failure, it declares any unacknowledged information frames as
possibly lost and forwards appropriate notification to the
higher layers. It then invokes a reinitialization protocol that
first probes the channel periodically for detection of link
recovery and then resynchronizes the system for resumption of
normal operation. When the reinitialization protocol termi-
nates, the DLC process resumes normal operation. In this
paper, we shall say that a DLC process is in connected state
when it performs normal operation and that it is in initializa-
tion mode otherwise (i.e., when it is executing the initializa-
tion procedure). The mechanism for detecting link failures is
active at a node during the time the DLC process is in
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connected state, but it is inhibited when the DLC process is in
initialization mode.

The following definition formalizes the notion of reliability
for a DLC procedure.

Definition: A bit-oriented DLC procedure is said to ensure
data reliability if it satisfies all of the following properties.

1) Delivery: Whenever a DLC process is in connected
state, all packets that have been produced by its data source
since it last entered connected state are delivered to the
corresponding data sink within finite time, provided the DLC
process does not enter initialization mode.

2) FIFO: Whenever a DLC is in connected state, all
packets accepted from its data source since it last entered the
connected state and considered acknowledged have been
delivered to the corresponding data sink and with no losses or
duplicates.

3) Crossing: If a DLC process (say A) enters initialization
mode at some time f,, there is a time ¢ after #,, but before A
next enters connected state, such that DLC process B is also in
initialization mode and no packet accepted by the sender DLC
at either end before time f can be delivered to the correspond-
ing data sink after time /.

4) Deadlock-Free: There exists a value 7 such that if a)
both DLC processes are in initialization mode at some time ¢
and b) during the interval of length 7 after ¢ there are no
channel errors and c) the delay for all frames (queueing +
propagation) is bounded, then at time ¢ + T, both processes
are in connected state.

The Delivery property states that if the DLC processes stay
in connected state forever, packets produced by data sources
eventually get delivered to the data sinks. FIFO states that
those packets that are considered acknowledged indeed have
been delivered correctly and in sequence. Crossing relaxes
and formalizes the usual notion of a ‘‘correct global initial
state’’ (see, e.g., [13]) where both processes are in connected
state with sequence numbers = O and the channel is empty.
However, it may be the case that one DLC process enters
connected state and starts sending frames before the other
enters connected state, so that strictly speaking, there is no
instant when the system is in a correct global initial state. In
this situation, we still think of the DLC procedure as reliable,
provided it satisfies the property indicated above under
Crossing. Finally, the Deadlock-Free property says that if the
channel works properly, the processes are not deadlocked in
initialization mode.

Observe that data reliability ensures the proper delivery of
packets corresponding to frames that are considered acknowl-
edged, but gives no indication as to the fate of unacknow-
ledged packets (there can be at most W - 1 of them). In
particular, if a DLC process enters initialization mode it
should notify the higher layers that these packets have not been
acknowledged and, consequently may have been lost.

In Section II-C, we will show that any window-DLC
procedure ensures data reliability if properly synchronized at
initialization. However, we must first formalize the notions of
synchronization and of a link initialization procedure.

C. The LI Procedure

The procedure that allows DLC processes to resynchronize
after a link failure is the main subject of this paper and will be
referred to as the link initialization (LI) procedure. An LI
procedure consists of a pair of processes, one residing in each
station, that communicate with each other through special LI-
control frames (the equivalent of a subset of the unnumbered
frames in HDLC [1], [3]). After appropriate frame exchange,
the LI procedure should bring both DLC processes into
connected state. The following definition formalizes the notion
of synchronization for an LI procedure.

Definition: An LI procedure working in conjunction with a
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bit-oriented DLC procedure is said to ensure synchronization
if it satisfies the following properties.

1) Clear: If a DLC process (say A) enters initialization
mode at some time ¢,, there is a time ¢ after ¢;, but before A
next enters connected state, such that DLC process B is also in
initialization mode and the communication link is devoid of
any information frames and any information ACK frames.

2) Reset: If a DLC process (say A) enters connected state
while the other DLC process (B) is already in connected state,
then the send (V'S) and receive counter numbers at A are
identical to the receive (VR) and send counter numbers,
respectively, at B.

3) Deadlock-Free: There exists a value T such that if a)
both DLC processes are in initialization mode at some time ¢
and b) during the interval of length 7| after t there are no
channel errors, and c) the delay for all frames (queueing +
propagation) is bounded, then at time # + 7 both processes
are in connected state.

The following theorem demonstrates the relationship among
a bit-oriented DLC procedure, its associated LI procedure,
and the notion of data reliability.

Theorem 2.1: If a window-DLC procedure has an LI
procedure which ensures synchronization, then the DLC
procedure ensures data reliability.

The above theorem has been proved for HDLC in several
previous works, e.g., [5], [13]. Here we prove reliability for
any window-DLC. The proof appears in the Appendix.

In Section III, we will describe the LI procedure used by
HDLC and show that it does not ensure synchronization in
cases of link malfunction or unpredictable message delay. In
fact, we will show that HDLC link initialization allows
inadvertent loss of information frames and thus does not
ensure reliability. In Section IV, we will describe three new LI
procedures that do ensure synchronization, even if an upper
bound on the transmission delay is not known a priori. The
first of our procedures assumes that one of the stations is
predesignated as the primary station and the other as the
secondary. The second procedure assumes no such preassign-
ment, but begins by explicitly assigning primary/secondary
functions. In the third procedure, no preassignment is assumed
and no postassignment is performed. In addition to ensuring
synchronization, these three LI procedures also satisfy one
additional property that may be important in some environ-
ments.

Test: A DLC process in initialization mode should not enter
connected state before it observes that the roundtrip delay
across the communication link is within a prespecified bound
for at least one frame.

The purpose of the test property is to provide insurance that
the link stations will not unnecessarily oscillate between the
connected state and initialization mode.

D. Notation

In the remainder of this paper, we shall use finite state
diagrams (see Fig. 2) to describe the operation of various LI
procedures. The notation 7/A next to a state transition will
denote the fact that 7 is the trigger for that transition and A4 is
the action to be taken affer transition. The triggers will
generally be the receipt of particular LI-control frames or a
time out. We shall adopt the convention that receipt of any
frame other than those specified as triggers causes no action
(i.e., the message is disregarded and discarded). The term
reset will denote the resetting of all counter numbers and the
clearing of all memory associated with the communication link
at the given station.

In order to describe the sequence of events that may occur
across a link, we will use a timing diagram with two parallel
time axes (one for each link station) as shown in Fig. 3. An
arrow drawn from one axis to the other represents a frame sent
by one station and received by the other. An arrow that does
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Fig. 2. The HDLC link initialization procedure. (a) Primary station. (b)
Secondary station.
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Fig. 3. Examples of inadvertent loss of frames.

not terminate on a time axis represents a lost frame (e.g., a
frame that arrives in error and is discarded). The tail of each
arrow is labeled with the corresponding message type. LI-
control frames are represented by solid arrows and informa-
tion frames or information ACK frames are represented by
dashed arrows. I, represents an information frame with send
sequence number # and ACK,, represents an ACK frame with
acknowledge sequence number m.

III. THE HDLC LINK INITIALIZATION PROCEDURE

In this section, we describe the link initialization procedure
used by HDLC in the unbalanced normal response mode and
show that is does not ensure synchronization. The finite state
diagrams describing the HDLC link initialization procedure
are shown in Fig. 2 [7]. (Fig. 2 is the same as [7, sect. 5],
except it also shows time outs and exchange of messages with
the higher layer). Set normal response mode (SNRM),
disconnect (DISC), unnumbered acknowledgment (UA), and
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disconnect mode (DM) are the LI-control frames. NOTIFY
means ‘‘notify the higher layers’’ and RESET means ‘‘reset
sequence number.’’ Note that the actual operation of this LI
procedure is dependent on information obtained from a higher
layer, allowing for various versions of operation. In particu-
lar, transition from the failure detected and disconnected states
is triggered by the receipt of instructions SNRM.CMD or
DISC.CMD from a higher layer. However, we will show that
all versions of this LI procedure do not ensure synchroniza-
tion, independent of the action taken by the higher layers.
Consider the possible sequence of message exchanges
shown in Fig. 3(a).2 This sequence begins with the primary
station entering the Wait SNRM Ack state and the secondary
station in the disconnected state, a common configuration.
After sending an SNRM message, the primary times out.
When the timer expires, another SNRM is sent. Normally, the
timer is set such that if a UA is not received within its range,
there is a good chance that the SNRM or the UA has been lost.
However, as indicated in Section II-A, in some situations it
may be hard or inefficient to guarantee that this is always the
case. The situation considered in Fig. 3 is where the timer
expires twice before the UA for the first message is received.
Following detection of a link failure, the primary may send
either an SNRM or a DISC frame, depending on the
instructions received from the higher layer. Fig. 3(a) demon-
strates the situation where the primary sends a DISC frame.
This is followed by the receipt at the primary of an ACK,
frame that is interpreted to acknowledge an information frame
that, in fact, has been lost (the second I, frame). Fig. 3(b)
shows that the same problem may result when the primary
sends an SNRM frame after the failure detection. Notice that
two of the properties required to ensure synchronization (clear
and reset) are violated by this LI procedure no matter what
action is taken by the higher layers. Thus, the HDLC link
initialization procedure does not ensure synchronization and,
moreover, HDLC itself does not ensure data reliability.

IV. RELIABLE LINK INITIALIZATION PROCEDURES

One way to prevent the situation described in Section III and
correct the HDLC link initialization procedure is to use se-
quence numbers. The LI-control frames could carry correl-
ated sequence numbers. However, infinitely large sequence
numbers would be required to ensure synchronization. In this
section, we describe several new LI procedures that ensure
synchronization without the use of sequence numbers or time
stamps. In Section IV-A, we address the situation where one of
the link stations is predesignated as the primary and the other
as the secondary. In Section IV-B, we consider the case where
there is no such preassignment, but the LI procedure begins by
explicitly assigning primary and secondary functions. In
Section IV-C, we describe an LI procedure where no primary/
secondary preassignment is assumed and no postassignment is
performed (i.e., a fully balanced procedure). The last two
procedures have the property that the finite state machines in
each link station are identical.

A. An Unbalanced LI Procedure

In this section, we address the situation where one of the
link stations is predesignated as the primary and the other as
the secondary. The finite state diagrams describing the
algorithm performed by each station are given in Fig. 4. The
primary station begins by transmitting DISC control frames at
regular time intervals until receiving a DACK from the
secondary. It then transmits CLEAR control frames at regular
time intervals until receiving a CACK. Finally, it transmits
exactly one TEST frame and waits for a TACK. If the TACK
arrives within the specified time period, the primary transmits

2 All unnumbered frames considered here have the P/F bit set to 1 (see [3,
pp. 23-25] for details).
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Fig. 4. The new unbalanced LI procedure. (a) Primary station.
(b) Secondary station.

a SUCCESS frame, resets its send and receive counter
numbers, and enters the connected state. Otherwise, the entire
process is repeated beginning with the DISC frame. The
secondary station simply transmits a DACK, CACK, or
TACK frame whenever it receives a DISC, CLEAR, or
TEST, respectively. In addition, when the secondary receives
a SUCCESS frame, it resets its send and receive counter
numbers and then enters the connected state. A link station in
initialization mode ignores all information and information
ACK frames and inhibits the link failure detection mechanism.
Similarly, a link station in the connected state ignores all LI-
control frames other than DISC.

The LI procedure uses three types of TIME-OUT intervals:
between DISC messages, between CLEAR messages, and
after sending the TEST message. The DISC and CLEAR time
outs are arbitrary from a correctness point of view. The LI
procedure ensures synchronization for any values of these time
outs. The only reason not to make them too short is
performance, since this will unnecessarily clutter the channel
with DISC and CLEAR messages. The purpose of the wait
TACK state and the associated time out is to provide a certain
degree of insurance that the channel works properly before
returning to connected state. Without the wait TACK state, the
LI procedure would still ensure synchronization, but it may
bring the link up (to connected state) even if the link is very
bad. In the form given in Fig. 4, we are sure that the Test
property is satisfied, namely, at least one roundtrip delay
across the communication link did not exceed the bound
specified by the TEST time out. Therefore, the TEST timeout
should be set to comply with the required specification. In
fact, in various implementations, the wait TACK state and the
corresponding TIME OUT may be disposed of if no fest
property is needed or may be replaced by another ‘‘box’’ if
there is a different Test? requirement.

The procedure of Fig. 4 will be referred to as the
unbalanced LI procedure and the remainder of this section
will be devoted to proving its correctness. We will first show
that the procedure, as stated, ensures synchronization and
satisfies the Test property as long as the primary link station
does not fail execution of the LI procedure. We will then show
how to extend the protocol to handle environments in which
the primary station can fail during execution of the LI
procedure. This extension will require one bit of nonvolatile
memory at the primary.

In order to prove the correctness of the unbalanced LI
procedure, we first observe that every TACK frame received
by the primary must have been transmitted in response to some
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TEST frame by the secondary. Two messages related in this
way will be called a TEST-TACK pair. Note that whenever
the TEST frame in a particular TEST-TACK pair is processed
by the primary before the timer expires, the message pair is
said to constitute a successful TEST-TACK transmission
(see Fig. 5). The notion of a successful DISC-DACK
transmission and a successful CLEAR-CACK transmission
can be similarly defined. We shall use the term successful
roundtrip transmission as a general reference to any one of
these three types of successful transmission.

We now present a technical lemma which describes the
unbalanced LI procedure’s key operating property. We as-
sume that the primary link station does not fail during
execution of the LI procedure, but that the physical transmis-
sion media and the secondary link station may fail at any time.
When the primary beings operating, it enters the wait DACK
state. Every time the secondary comes up after a failure, it
enters the WAIT state.

Lemma 4.1: If the primary link station enters initialization
mode at a time when the communication link contains no DISC
or DACK frames, then when the primary next enters the
connected state it will be due to the receipt of a TACK frame
which belongs to a successful TEST-TACK transmission.

Proof: Since the secondary station enters WAIT state
after it recovers from a station failure, any failure of the
secondary link station will have no effect on the operation of
the LI procedure other than increased message delay or loss.
Similarly, failures of the physical transmission media is
equivalent to message loss on the media. Thus, we need only
consider the case where there are no media or station failures,
but there may be arbitrary message losses and arbitrary long
message delays. Now if there are no DISC or DACK frames in
the communication link when the primary station enters
initialization mode, then due to the FIFO property of the
transmission media, there can be only DISC or DACK frames
in the communication link when the primary first exists the
wait DACK state (see Fig. 6). In particular, there can be no
CLEAR or CACK frames in the link at this time. Thus, when
the primary next exists the wait CACK state, there can be only
CLEAR or CACK frames in the link. This implies that there
can be no TEST, TACK, DISC, or DACK frames in the
communication link when the wait CACK state is exited.
Therefore, if the primary receives a TACK frame while in the
wait TACK state, it must belong to a successful TEST-TACK
transmission. On the other hand, if the wait TACK timer
expires before a TACK frame is received, then there will be no
DISC or DACK frames in the communication link when the
wait TACK state is exited and the wait DACK state is
reentered. It now follows inductively that whenever the
primary next receives a TACK frame while in the wait TACK
state, it must belong to a successful TEST-TACK transmis-
sion. Thus, as long as the primary continues operating, it will
next enter the connected state as the result of processing a
TACK frame which belongs to a successful TEST-TACK
transmission.

Corollary 4.1: If the primary link station begins operating
at a time when the communication link contains no DISC or
DACK frames, then every time the primary completes
execution of the unbalanced LI procedure (and enters the
connected state), it will be due to the processing of a TACK
frame which belongs to a successful TEST-TACK transmis-
sion.

Proof: If the primary link station begins operating at a
time when the communication link contains no DISC or
DACK frames, then by Lemma 4.1 the primary will complete
its first execution of the unbalanced LI procedure (and enter
the connected state) due to the processing of a TACK frame
which belongs to a successful TEST-TACK transmission.
Moreover, at such time there will be no DISC or DACK
frames in the communication link. Combining this with the
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Fig. 5. A successful TEST-TACK transmission.
ONLY DACK SENT
SECONDARY DACK
ONLY DISC OR DACK
IN LINK
PRIMARY

DISC DISC DISC 0DISC
ONLY DISC SENT

Fig. 6. Timing diagram for proof of Lemma 4.1.

fact that the primary does not send any LI-control frames
while in the connected state, it follows that there will be no
DISC or DACK frames in the communication link when the
primary next begins execution of the LI procedure. Thus,
Lemma 4.1 can once again be applied to obtain the same result
for the primary’s second execution of the LI procedure. It now
follows inductively that every time the primary completes
execution of the unbalanced LI procedure (and enters the
connected state), it will be due to the processing of a TACK
frame which belongs to a successful TEST-TACK transmis-
sion.

Before proceeding, we should note that Lemma 4.1 ad-
dresses only one execution of the LI procedure, while
Corollary 4.1 addresses all executions which occur after the
primary station is brought up. In addition, we note that Lemma
4.1 does not hold if the primary link station can fail while in
initialization mode. The problem arises from the fact that the
primary might be restarted in a state other than the one it
was in when it failed. This issue will be addressed at the end of
this section. For the following theorem, we continue to assume
that the primary does not fail while in initialization mode.

Theorem 4.1: The unbalanced LI procedure ensures syn-
chronization and satisfies the test property if the primary link
station begins operating at a time when the communication link
contains no DISC or DACK frames.

Proof: If the primary link station begins operating at a
time when the communication link contains no DISC or
DACK frames, then from Corollary 4.1, it follows that every
time the primary completes execution of the LI procedure (and
enters the connected state), it must be due to the processing of
a TACK frame which belongs to a successful TEST-TACK
transmission. Thus, whenever the primary enters the con-
nected state, the secondary will be in the WAIT state and there
will be no information frames or information ACK frames in
the communication link. We now note that the secondary can
enter the connected state only after receiving a SUCCESS
frame. Combining this with the fact that the primary sends a
SUCCESS frame only when it completes execution of the LI
procedure, we conclude that the unbalanced LI procedure
satisfies the clear property. To see that the reset property is
satisfied observe, in addition, that a link station’s send and
receive counter numbers are reset to zero every time it enters
the connected state. Therefore, the primary sets V'S and VR to
zero when it sends the SUCCESS message. These sequence
numbers remain unchanged until the time the secondary
receives the SUCCESS message and enters connected state, in
spite of the fact that in the interim the primary may start
sending out information frames. This is because VS or VR can
change only when an information ACK frame or an informa-
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tion frame, respectively, is received, and the secondary does
not send out any such frames until it enters connected state. At
that time, the secondary also resets its counter numbers to
zero, and the reset property is satisfied. We now note that once
either link station enters initialization mode, return to con-
nected state will not occur until there is at least one successful
roundtrip transmission; hence, we have the test property.
Finally, if both link stations are in initialization mode and the
link becomes capable of performing at least four successive
successful roundtrip transmission, then both stations will
return to connected state. Thus, the unbalanced LI procedure
has the deadlock-free property, completing the proof of the
theorem.

Our discussion thus far has been based on the assumption
that the primary links station does not fail during execution of
the LI procedure. If we drop this assumption, there is the
question of what state does the primary station restart in. It is
easy to show that no matter which state is selected for restart,
Lemma 4.1 no longer holds. Thus, the unbalanced LI
procedure must be modified so that its operation is unaffected
by primary station failures. This can be easily accomplished if
the primary station maintains one bit of nonvolatile memory
which is set to 1 every time the wait CACK state is entered,
and reset to O every time the wait CACK state is exited.
Whenever the primary stations fails, it restarts in the wait
CACK state if the value of the bit is 1 and in the wait DACK
state otherwise. This modification will essentially leave the LI
procedure unaffected by primary station failures. This is
because if the station fails in wait DACK or wait CACK state,
it will come up in the same state. If it fails in connected or wait
TACK state, it will come up in wait DACK state, and this
transition is equivalent to FAILURE detected on the link or
TEST TIME-OUT expiration. Therefore, Lemma 4.1 and
Theorem 4.1 will once again apply.

B. A Function-Assigning LI Procedure

In the unbalanced LI procedure of the previous section, it
was assumed that the primary/secondary functions were
preassigned. This section considers the case where no such
preassignment exists, but the LI procedure is required to
assign primary/secondary functions to the stations. A proce-
dure of this type is necessary when the stations must use an
unbalanced operation mode in connected state (as in SDLC for
example). We note, however, that such an LI procedure can
also be used if the stations employ a balanced operation mode
in connected state by simply disregarding the assignment. The
advantage over the balanced LI procedure (to be presented in
the next section) is that fewer LI-control messages are used.
On the other hand, the balanced LI procedure must be used if
there is no ordering of the station identifiers or if there is an
explicit requirement that the activity of the LI procedure be
completely symmetric.

The function-assigning LI procedure uses a fairly simple
rule for primary/secondary assignment. The station that enters
first initialization mode becomes the primary, except for the
case when each of the two stations enters initialization mode
before finding out that the other station has entered this mode
as well. In this latter situation, the station with higher identity
number becomes the primary. The finite state diagram for
station A is shown in Fig. 7. Station B has the same diagram
except that A and B are interchanged. The idea is that a station
(say A) which detects a link failure while in connected state
enters wait DACK state and attempts to become the primary
by sending DISC messages to the other station. If it receives a
DISC message while in this state, it recognizes that station B
has done the same, and if B > A, it yields the primary
function to the other station by sending DACK and entering
WALIT state. Otherwise, station 4 will receive DACK and
declare itself the primary.

The correctness of the function-assigning LI procedure
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DISC/DACK
CLEAR/CACK
TEST/TACK

DISC AND 8>A /DACK

TIME QUT/DISC

TIME QUT
/D1SC

CONNECTED
PRIMARY

TACK/SUCCESS RESET

WAIT TACK
Fig. 7. The function-assigning LI procedure (for station A).
follows directly from the proofs for the unbalanced LI
procedure and several additional observations. Consider first
the case where the stations do not fail and whenever a station
begins operating it enters the wait DACK state. Then note the
following.

e A station (say B) can enter WAIT state only if it receives
a DISC frame and this can be sent only if the other station is in
wait DACK state; WAIT state can be left only by entering
connected secondary state.

e A station (say A) can make the transition to the wait
CACK state only of it receives a DACK message and this can
be sent only if the other station is in WAIT state.

These observations imply that after any station (say A)
enters wait CACK state (and until both stations enter con-
nected state), the stations operate exactly as in the unbalanced
LI procedure with A the primary and B the secondary!
Therefore, all properties of Section IV-A hold here as well.

If the stations may fail while in initialization mode, each
needs two bits of nonvolatile memory to indicate if the failure
occurs in WAIT state, in wait CACK state, or elsewhere. The
station will then restart in WAIT state, wait CACK state, or
wait DACK state, respectively. The argument why this leaves
the LI procedure unaffected by station failures is the same as in
the last paragraph of Section IV-A.

C. Balanced LI Procedure

The unbalanced LI procedure described in Section IV-A can
be easily modified to obtain a balanced LI procedure for which
no primary/secondary assignment is required or performed.
The finite state diagram describing the algorithm performed by
each link station is given in Fig. 8. Notice that this procedure
essentially consists of two independent executions (one in each
direction across the link) of the unbalanced procedure de-
scribed in Section IV-A. The only difference is the introduc-
tion of a wait hold state which guarantees that the two link
stations reenter the connected state at about the same time.
More specifically, neither station can enter the connected state
until both stations have entered the wait hold state. The
correctness of this protocol follows directly from the correct-
ness of the unbalanced protocol.
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TIME OUT/DISC

TIME OUT/CLEAR
DISC/DACK
CLEAR/CACK
TEST/TACK

WAIT CACK

FAILURE/DISC

TIME OUT/DISC

CONNECTED

WIAT TACK

HOLD/RESET

DISC /DACK
CLEAR/CACK
TEST/TACK

WIAT HOLD

TIME OUT/HOLD
DISC/DACK
CLEAR/CACK
TEST/TACK

Fig. 8. The new balanced LI procedure.

V. CONCLUSIONS

In this paper, we have presented a new class of link
initialization procedures that can be used in conjunction with
any bit-oriented DLC procedure to achieve data reliability.
These LI procedures were shown to ensure synchronization
without the use of sequence numbers or time stamps.
Moreover, they do not rely on special properties of the physical
transmission media such as finite life of messages or line
flushing mechanisms. The LI procedures provide, in fact, the
flushing mechanism for the entire communication link.

The LI procedures were shown to provide insurance that the
link stations do not return to the connected state before the link
is capable of reasonable operation. The procedures described
in this paper have been designed to comply with the test
requirement of one roundtrip transmission within a specified
interval. However, they can be easily modified to perform any
desired test sequence. The new mechanism can simply be
“‘plugged’’ into the LI procedure in place of the wait TACK
state. On the other hand, if there is no test requirement, the LI
procedures may be simplified by removing the TEST and
TACK messages and the wait TACK state.

In order to ensure synchronizations across station failures,
our LI procedures require one or two bits of nonvolatile
memory. One obvious question that arises is whether there
exist any LI procedures that can achieve the same goal without
nonvolatile storage. Although we have no proof at present, we
strongly believe that indeed no such procedure exists.

Before concluding, we note that DLC procedures are often
used to provide the lower layer link protocol that serves
various distributed network protocols and applications [9],
[11], [12]. In this environment, the data sources and sinks of
Fig. 1 are the node algorithms that perform the distributed
protocols and the packets are the protocol control messages
exchanged by the node algorithms. In order to perform
correctly, the distributed algorithms require the lower layer
link protocols to possess certain properties. These properties
are precisely Delivery, FIFO, Crossing, and Deadlock-Free
as defined in this paper. Consequently, window bit-oriented
DLC procedure such as HDLC, combined with the LI
procedures proposed in this paper, can provide the link-level
protocols for distributed network algorithms.

APPENDIX: PROOF OF THEOREM 2.1

Consider any window-DLC-procedure (i.e., a procedure
that has the properties indicated in the first four paragraphs of
Section II-B). Suppose that the LI procedure ensures synchro-
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nization, i.e., suppose that it has the clear, reset and deadlock-
free properties indicated in Section II-C. We need to prove that
the DLC procedure has the Crossing, FIFO, and Delivery
properties.

Proof of Crossing

The clear property of the LI procedure defines a time ¢
when there are no information frames or information ACK
frames in the link and when both DLC processes are in
initialization mode. Therefore, at that time in the entire system
there are no information frames at all. This means that no
frame containing any packet accepted from any source before
time ¢ exists in the system. Therefore, no packets accepted
from any data source before time ¢ can arrive to any DLC
process from the link after that time; hence, we have the
Crossing property.

Proof of FIFO

Consider the time ¢ defined in the clear property of the LI
procedure and suppose that after time ¢, some DLC process A
is the first to go to connected state. The clear property implies
that until time 7, when the other DLC process B also goes to
connected state, no information or information ACK frames
can be accepted at either process from the other. This is
because a) the second process is still in initialization state and
it will discard any information frames, and b) the first process
will not receive before ¢, information or ack frames because
the second does not send any. The reset property says that at
time #,, the counter numbers are synchronized, and without
loss of generality, we can take them to be 0. For symmetry
reasons, it is enough to look at information data flowing in one
direction only, from A to B say. Packets accepted by station 4
from the local data source will be numbered for identification
purposes by consecutive increasing number P(0), P(1), - - -
(not modulo W) where P(0) is the first packet accepted after
entering connected state. Also, without loss of generality,
assume that the sequence number assigned to P(/) is (/ mod
w).

First observe that the window-DLC mechanism dictates that
a frame can be considered acknowledged (and discarded) by A
only as a result of receiving an ACK frame and no more than
(W — 1) frames can be discarded as a result of receiving a
given ACK frame. Also, consecutively discarded frames
contain consecutive packets. An ACK frame whose receipt at
the sender DLC results in discarded information frames will
be called an active ack. Observe that an ack is labeled as
active or not active only upon being received by 4. More
precisely, an ACK with number NR received by A is active if
NR # VS, and not active otherwise. The packet correspond-
ing to the /ast discarded frame when an active ack is received
will be referred to as correlated with the active ack. The
FIFO property will be proved if we prove the following result.

Lemma A.1: Suppose an ACK arrives at the sender DLC
and is labeled active. At the time that the ACK was sent by the
receiver DLC, all packets up to and including the correlated
packet and only those have been delivered to the data sink in
order, with no duplicates and no gaps.

Proof: The following follow directly from the window-
DLC properties and will be used in the proof.

a) No frame containing packets prior to and including
P — (W — 1)) can be sent by the sender DLC after
accepting packet P(/) and, consequently, no such frame can
be received by the receiver DLC after the receipt of any frame
containing P(I).

b) No frame containing packets following and including
P(I + (W — 1)) can be sent by the sender DLC before the
time when the frame containing packet P(J) is discarded.

Consider Fig. 9 where NR1, NR2 denote the ACK
numbers of two consecutive active acks. By the window-DLC
properties, NR1 # NR2 and let ¢, t; and #,, ¢, denote the
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Fig. 9. Timing diagram for proof of Lemma A.1.

respective arrival and departure times. Let P(/), P(I + K ) be
the packets correlated with the two consecutive active acks.
Wehave 0 < K <= W — 1, Imod W = (NR1 — 1) mod W,
and (/ + K) mod W = (NR2 — 1) mod W. The induction
step consists of showing that, if all packets up to and including
P(I) and only those have been delivered in order, with no
duplicates and no gaps until time 7,, the same is true for all
packets up to and including P(/ + K') until time #. Consider
the interval of time from ¢, to ¢,. First note that since P(/ + 1)
is discarded at time ¢;, b) above implies that no frame
containing packets following and including P(/ + W) can
arrive at the receiver DLC during the interval [#,, #4]. Also, a)
above says that for all J holds that, after a packet P(J) arrives
at the receiver DLC, no frame containing P(J — (W — 1)) or
preceding packets can arrive at the receiver DLC. Now take J
tobe, I + 1, ---, I + (W — 1). We obtain that in the
considered interval, the following must be true: the only
frame with send sequence number NS = NR|1 that can arrive
is the one containing P(I + 1); if the frame containing P(I +
1) arrives, the only frame with NS = (NR1 + 1) mod W that
can arrive afterwards contains P(/ + 2); and so on, if the
frame containing P(I + (W — 2)) arrives, the only frame
with NS = (NR1 + (W — 2)) mod W that can arrive
afterwards contains P(I + (W — 1)), and if the latter arrives,
no frame with NS = (NR1 + (W — 1)) can arrive
afterwards. Since the receiver DLC accepts frames only with
consecutive send sequence numbers modulo W, only P(I + 1)
to P + (W — 1)) can be accepted in this interval in order
and with no gaps or duplicates. Since VR at time ¢, is NR2,
the packets that have, in fact, been accepted in the interval [#;,
ts} are P(I + 1) up to and including P(/ + K'), completing the
induction step.

Now, since at time £, there are no information ACK frames
in the link, the first received active ACK is sent after that time,
at time ¢’ say, and let NR’ be its ACK number. As before,
NR’ # 0 and only frames containing P(0) to P(W — 2) can
be received by the receiver DLC. Finally, the same argument
as before shows that the ones that have been indeed accepted
are P(0) to P(NR’ — 1) in order and only once, completing
the proof of the lemma and of the FIFO property.

Proof of Delivery

Suppose the sender DLC sends a frame with sequence
number VS and let that frame contain packet P(J). From
Lemma A.1 follows that when the frame is sent, all packets up
to and including P(I/ — 1) have been already accepted.
Therefore, the receiver DLC will not change VR until that
packet is correctly received. We have assumed in Section II-B
that the probability of frame loss or error is less than 1, and
hence, if the frame is repeatedly sent, it will eventually arrive
correctly at the receiver DLC. When this happens, the
corresponding packet is delivered to the data sink. Similarly,
the corresponding ack frame will eventually be received
correctly at the sender DLC, causing the acknowledged frames
to be discarded and new packets to be accepted from the data
source. This completes the proof of the theorem.
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