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3 The Wiener Filter

The Wiener filter solves the signal estimation problem for stationary signals.

The filter was introduced by Norbert Wiener in the 1940’s. A major contribution

was the use of a statistical model for the estimated signal (the Bayesian approach!).

The filter is optimal in the sense of the MMSE.

As we shall see, the Kalman filter solves the corresponding filtering problem in

greater generality, for non-stationary signals.

We shall focus here on the discrete-time version of the Wiener filter.
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3.1 Preliminaries:
Random Signals and Spectral Densities

Recall that a (two-sided) discrete-time signal is a sequence

x := (. . . , x−1, x0, x1, . . . ) = (xk, k ∈ ZZ) .

Assume xk ∈ IRdx (vector-valued signal).

Its Fourier and (two-sided) Z transforms:

X(ejω) =
∞∑

k=−∞

xke
−jωk , ω ∈ [−π, π]

X(z) =
∞∑

k=−∞

xkz
−k , z ∈ Dx

A random signal x is a sequence of random variables. Its probability law may be

specified through the joint distributions of all finite vectors (xk1 , . . . , xkN ).

The correlation function is defined as:

Rx(k,m) = E(xkx
T
m) .

The signal is wide-sense stationary (WSS) if, ∀k,m
(i) E[xk] = E[x0]

(ii) Rx(k,m) = Rx(m− k).

We then consider Rx(k) as the auto-correlation function.

Note that Rx is even: Rx(−k) = Rx(k)
T .

The power spectral density of a WSS signal:

Sx(e
jω)

.
= F{Rx} =

∞∑
k=−∞

Rx(k)e
−jωk , ω ∈ [−π, π]

It is well defined when
∑∞

k=−∞ |Rx(k)| < ∞ (component-wise).

Basic properties:

• Sx(e
−jω)T = Sx(e

jω)

• Sx(e
jω) ≥ 0 (non-negative definite).

In the scalar case, Sx(e
jω) is real and non-negative.
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Two WSS stationary processes are jointly-WSS if

Rxy(k,m)
.
= E(xky

T
m) = Rxy(m− k) .

Their joint power spectral density is defined as above:

Sxy(e
jω)

.
= F{Rxy} = Syx(e

−jω)T

.

A linear time-invarant system may be defined through its kernel (or impulse re-

sponse) h:

yn =
∞∑

k=−∞

hn−kxk .

In the frequency domain this gives (for a stable system):

Y (ejω) = H(ejω)X(ejω) .

If xk ∈ IRdx and yk ∈ IRdy , then H is a dy × dx matrix.

The system is (BIBO) stable if
∑∞

k=−∞ |hk| < ∞. Equivalently, all poles of (each

component of) H(z) are with |z| < 1.

When x is WSS stationary and the system is stable, then y is WSS and

Sy(e
jω) = H(ejω)Sx(e

jω)H(e−jω)T ,

Syx(e
jω) = H(ejω)Sx(e

jω) = Sxy(e
−jω)T .

The power spectral density can be extended to the z domain, and similar relations

hold (wherever the transforms are well defined):

Sx(z)
.
= Z(Rx) =

∞∑
k=−∞

Rx(k)z
−k

Sxy(z
−1)T = Syx(z)

Sy(z) = H(z)Sx(z)H(z−1)T .

White noise: A 0-mean process (wk) with Rw(k) = R0δk is called a (stationary, wide

sense) white noise.

Obviously, Sw(ω) = R0: the spectral density is constant.
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A common way to create a ‘colored’ noise sequence is to filter a white noise sequence,

namely y = h ∗ w. Then

Sy(z) = H(z)R0H(z−1)T .

3.2 Wiener Filtering - Problem Formulation

We are given two processes:

• sk, the signal to be estimated

• yk, the observed process

which are jointly wide-sense stationary, with known covariance functions: Rs(k),

Ry(k), Rsy(k).

A particular case is that of a signal corrupted by additive noise:

yk = sk + nk

with (sk, nk) jointly stationary, and Rs(k), Rn(k), Rsn(k) given.

Goal: Estimate sk as a function of y. Specifically:

• Find the linear MMSE estimate of sk based on (all or part of) (yk).

There are three versions of this problem:

a. The causal filter: ŝk =
k∑

m=−∞

hk−mym.

b. The non-causal filter: ŝk =
∞∑

m=−∞

hk−mym.

c. The FIR filter: ŝk =
k∑

m=k−N

hk−mym

The first problem is the hardest.

Note: We consider in this chapter the scalar case for simplicity.
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3.3 The “FIR Wiener Filter”

Consider the FIR filter of length N + 1:

ŝk =
k∑

m=k−N

hk−mym =
N∑
i=0

hiyk−i .

We need to find the coefficients (hi) that minimize the MSE:

E(sk − ŝk)
2 −→ min

To find (hi), we can differentiate the error. More conveniently, start with the or-

thogonality principle:

E[(sk − ŝk)yk−j] = 0 , j = 0, 1, . . . , N

This gives

N∑
i=0

hiE[yk−iyk−j] = E(skyk−j)

N∑
i=0

hiRy(i− j) = Rsy(j) .

In matrix form:


Ry(0) Ry(1) . . . Ry(N)

Ry(1)
. . . . . . . . .

. . . . . . . . . Ry(1)

Ry(N)
. . . Ry(1) Ry(0)




h0

...

...

hN

 =


Rsy(0)
...
...

Rsy(N)


or

Ryh = rsy ⇒ h = R−1
y rsy .

These are the Yule-Walker equations.

• We note that Ry ≥ 0 (positive semi-definite), and non-singular except for de-

generate cases. Further, it is a Toeplitz matrix (constant along the diagonals).

There exist efficient algorithms (Levinson-Durbin and others) that utilize this

structure to efficiently compute h.
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The MMSE may now be easily computed:

E[(ŝk − sk)
2] = E[(ŝk − sk)(−sk)] (orthogonality)

= Rs(0)− E(ŝksk)

= Rs(0)− hT rsy

3.4 The Non-causal Wiener Filter

• Assume that ŝk may depend on the entire observation signal, (yk, k ∈ Z).

• The “FIR” approach now fails since the transversal filter has infinitely many

coefficients. We therefore use spectral methods.

The required filter has the form:

ŝk =
∞∑

i=−∞

hi yk−i .

Orthogonality implies: (ŝk − sk)⊥ yk−j , j ∈ Z. Therefore

E(sk yk−j) = E(ŝk yk−j) =
∞∑

i=−∞

hiE(yk−i yk−j) ,

or

Rsy(j) =
∞∑

i=−∞

hiRy(j − i) , −∞ < j < ∞ .

Using (two-sided) Z-transform:

H(z) =
Ssy(z)

Sy(z)
.

This gives the optimal filter as a transfer function (which is rational if the signal

spectra are rational in z).
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3.5 The Causal Wiener Filter

We now look for a causal estimator of the form:

ŝk =
∞∑
i=0

hiyk−i .

Proceeding as above we obtain

Rsy(j) =
∞∑
i=0

hi Ry(j − i) , j ≥ 0.

This is the Wiener-Hopf equation.

Because of its “one-sidedness”, a direct solution via Z transform does not work.

We next outline two approaches for its solution, starting with some background on

spectral factorization.

3.5.1 Some Spectral Factorizations

A. Canonical (Wiener-Hopf) factorization:

Given: a spectral density function Sx(z).

Goal: Factor it as

Sx(z) = S+
x (z)S

−
x (z) ,

where S+
x is stable and with stable inverse, and S−

x (z) = S+
x (z

−1)T .

Note: this factorization gives a “model” of the signal x as filtered white noise (with

unit covariance).

Example: X(z) = H(z)W (z), with H(z) = z−3
z−0.5

, and Sw(z) = 1 (white noise).

Then

Sx(z) = H(z) · 1 ·H(z−1) =
(z − 3)(z−1 − 3)

(z − 0.5)(z−1 − 0.5)

and

S+
x (z) =

z−1 − 3

z − 0.5
, S−

x (z) =
z − 3

z−1 − 0.5
.

Theorem. Assume:

(i) Sx(z) is rational.
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(ii) Sx(z) = Sx(z
−1)T (hence, Sx(e

jω) = ST
x (e

−jω)).

(iii) Sx has no poles on |z| = 1, and Sx(e
jω) > 0 for all ω.

Then Sx may be factored as above, with S+
x (z):

(1) stable: all poles in |z| < 1.

(2) stable-inverse: all zeros of det S+(z) in |z| < 1.

Assume henceforth that Sy(z) admits such a decomposition.

Remark: In the non-scalar case, obtaining this decomposition by transfer-function

methods is hard. For rational transfer functions, the most efficient methods use

state-space models (and Kalman filter equations).

B. Additive Decomposition:

Suppose H(z) has no poles on |z| = 1.

We can write it as

H(z) = {H(z)}+ + {H(z)}− ,

where: {(H(z)}+ has only poles with |z| < 1,

{H(z)}− has only poles with |z| > 1.

By convention, a constant factor is included in the { }+ term.

Suppose H(z) is a (two-sided) Z transform of a finite-energy signal: h(k) ∈ ℓ2(IR).

Then the above decomposition corresponds to the “future” and “past” projections

of h(k):

{H(z)}+ = Z{h+(k)} , h+(k) = h(k)u(k)

{H(z)}− = Z{h−(k)} , h−(k) = h(k)u(−k + 1)
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3.5.2 The Wiener-Hopf Approach

Recall the Winer-Hopf equation for h:

Rsy(j) =
∞∑
i=0

hiRy(j − i) , j ≥ 0 .

Define

gj = Rsy(j)−
∞∑
i=0

hiRy(j − i) , −∞ < j < ∞ .

Obviously, gj = 0 for j ≥ 0.

Assume that gj → 0 as j → −∞ (which holds under “reasonable” assumptions on

the covariances).

It follows that G(z) = Z{gj} has no poles in |z| < 1.

Defining hj
.
= 0 for j < 0, we obtain:

G(z) = Ssy(z)−H(z)Sy(z) .

Using the canonical decomposition Sy = S+
y S

−
y gives:

G(z) [S−
y (z)]

−1 = Ssy(z) [S
−
y (z)]

−1 −H(z)S+
y (z) .

Note that the first term has no poles with |z| < 1, and the last term has no poles

with |z| > 1. Applying { }+ to both sides gives:

0 =
{
Ssy(z) [S

−
y (z)]

−1
}
+
−H(z)S+

y (z)

and

H(z) =
{
Ssy(z) [S

−
y (z)]

−1
}

+
[S+

y (z)]
−1 .

Remark: A similar solution holds for the prediction problem:

• Estimate s(k +N) based on {y(m), m ≤ k}.
The same formula is obtained for H(z), with an additional zN term inside the { }+.
The required additive decomposition can usually be handled using the time-domain

interpretation.
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3.5.3 The Innovations Approach
[Bode & Shannon, Zadeh & Ragazzini]

The idea: “whitening” the observation process before estimation.

Let

G(z) := [S+
y (z)]

−1 , (gk) = Z−1{G(z)} .

Then ỹk := gk ∗ yk has Sỹ(z) ≡ I. That is, ỹ is a normalized white noise process.

Note that G(z) is causal with causal inverse, so that ỹ holds the same information

as y.

Consider the filtering problem with white noise measurement {ỹ}.
The Wiener-Hopf equation for the corresponding filter h̃ gives:

Rsỹ(j) =
∞∑
i=0

h̃iRỹ(j − i) = h̃j , j ≥ 0 .

Thus,

H̃(z) = {Ssỹ(z)}+

Now

Ssỹ(z) = Ssy(s)G(z−1)T = Ssy(z)[S
−
y (z)]

−1 ,

and H(z) = H̃(z)G(z) gives the Wiener filter.

We note that ỹk is the innovations process corresponding to yk.
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3.6 The Error Equation

For the optimal filter, the orthogonality principle implies the following expression

for the minimal MSE:

MMSE = E(st − ŝt)
2 = Rs(0)−Rŝs(0)

Therefore

MMSE =
1

2π

∫ 2π

0

[Ss(e
jω)− Sŝs(e

jω)]dω

where Sŝs(z) = H(z)Sys(z) = H(z)Ssy(z
−1) since ŝ = Hy.

This can also be expressed in terms of the Z-transform: Let

z = ejω, hence dω =
dz

jz
.

Then

MMSE =
1

j2π

∮
C

[Ss(z)− Sŝs(z)]z
−1dz

where C is the unit circle. This expression can be evaluated using the residue

theorem.
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3.7 Continuous time

The derivations for continuous-time signals are almost identical.

The causal filter has the form:

ŝt =

∫ t

−∞
ht−t′yt′ dt

′ .

The above derivations and results hold by replacing the Z transform with Laplace,

z with s, |z| < 1 with Re(s) < 0, etc.

In particular, the solution for the prediction problem:

ŝt+T =

∫ t

−∞
ht−t′yt′ dt

′ .

is given by

H(s) =
{
Ssy(s) [S

−
y (s)]

−1esT
}

+
[S+

y (s)]
−1 .

Remark: For the simple (scalar) problem of filtering in white noise:

yt = st + nt ; n⊥s , Sn(s) = ρ2

with Ss(s) strictly proper, the Wiener Filter simplifies to

H(s) = 1− ρ

S+
y (s)

.
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