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5 The Continuous-Time Kalman Filter

The Model: Continuous-time linear system, with white noises state and measure-

ment noises (not necessarily Gaussian).

Goal: Develop the continuous-time Kalman filter as the optimal linear estimator
(L-MMSE) for this system.

One way to develop the continuous-time filter is as the limit (with AT — 0) of the
discrete time case. The derivation below follows a direct approach, based on the

innovations process, introduced by Kailath, and will be somewhat informal.

A rigorous but very accessible treatment may be found in: M. Davis, Linear Es-
timation and Stochastic Control, 1977. However, this more advanced treatment is

only essential in the nonlinear estimation problem.



5.1 The continuous time model
We consider the state-space model

d
El't:Ft(Et“—wt, tZO

2z = Hyxy + vy
where:
e {w,;} and {v,;} are zero-mean white-noise processes, namely
E(waw?l) = Qi6(t —s), E(vwl) = R(t —s)
E(waw!) =0
e {w;}, {v;} and xy are uncorrelated.
e (xy) = To and cov(zg) = Py are given.

e We shall assume that R; is non-singular.

A simplifying assumption: We assume in the derivation below that 7o = 0, hence
Ty = E(xy) = 0. Otherwise, T, is given by 7; = F,7, and needs to be added in some

of the intermediate equations. The filter equations are the same.

Remark: The white processes above are not rigorously defined, due to the d-covariances,
and indeed their sample-paths are quite “hectic”. A rigorous definition of such pro-
cesses (and the above model) is based on their integral — e.g., a Brownian motion

in the Gaussian case.



State Covariance Propagation: II; := cov(z;) satisfies

d
Eﬂt = [LIL + HtFtT + Q¢ (1)

with Iy = cov(zg).

Proof: A naive proof approach by differentiating E(z;x!) inside the expectation runs
into trouble, because of the unusual properties of w;. The following two options lead

to the correct answer:

1. As a limit of the discrete-time case, with the approximation:

T(k+1)e = (I + EFk’e)xke + Wge, with E(wkewle) = er‘efsk’la and € — 0.

2. Explicitly solving for x;: Let ®(¢,s) denote the n X n state transition matrix,

namely the unique solution (for each s) of

d
Eq)(ta S) = Eq)(t’ S)a (I)(S, 8) = (2)
Then .
xy = P(t,0)xo +/ (¢, s)wsds . (3)
0
This can be used to derive the covariance equation. [

Example: Consider the stationary case — the system and covariance matrices are
time independent.

Then the white noise processes have constant spectral densities:
Suw)=Q, Sy(w)=R
and the noise-to state transfer function is
T(s) = Tysel(s) = (s — F)~".

When this system is stable, the state spectral density is given by S, (w) = T'(jw)QT*(jw),
and the measurement spectral density is S, (w) = HS,(w)HT + R.



5.2 Filter Derivation

Let Z; = {z,, s <t}. We need to calculate #; = EL (2, Z,).

Define the innovations process:
gt =2t — EL(Zt’Zt) (4)

Observe that
2t = Zt — HtEL($t|Zt) = Hti't + V¢ (5)

where 7; = x; — ;.

Properties of Z;:

Z; is a zero-mean white noise process (exercise). Its covariance equals:
E(ZzD) = Rt —s). (6)

Note: same covariance as z; !

It can also be shown that Z, and Z; are linearly equivalent, so that

E*(:|Z) = E*(-|Z,).
It follows that Z; can be expressed as a linear function of Z;:

@:A}@@@k (7)

The kernel g(t, s) is easily computable via the orthogonality principle. Since Z; :=
(xy — ) L Z, for s < t,

Bz i) = Ag@wﬂzgmr

t
= / g(t,r)o(s —r)Redr = g(t,s)Rs, s<t.
0

Therefore,

t
Ty = / E(x 2D R, 2 ds (8)
0
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Differentiate to obtain a differential equation for z:

d t
0

Now, define K, = E(z;Zl)R; !, substitute 4, from the state equation, note (8), and
that E(w;zl') = 0 for s < t. These give

d
%i’t = F;gii't -+ Ktét = Fti.t -+ Kt(zt — Hti.t) . (10)

Using (5)
K, = E(z 3R = E(x,#7)H R, +0 = BHT R} (11)

where P, := E(7;zl).

Calculating P;:

Recall that 7; = z; — ;. Using (10),

d . N
Emt = (Ft — Kth).Tt + wy — Kﬂ)t . (].2)
As in (1), this implies
d
%Pt = (Fy — K H,) P, + P(F; — Kth)T +Q + KthKtT (13)

with Fy given.

An alternative expression: by substituting K; from (11) and rearranging,

d
TP =FP+ PFI +Q, — K,R K. (14)

This is the (differential) Riccati Equation - a quadratic matrix differential equation.



To summarize: The filter equation is given by (10)
d R . . X
Ext = Ftl‘t + KtZt = Ftl’t + Kt<Zt - Htxt)
with the gain (11)

K; = E(x2)R;' = BHIR;".
The covariance may be computed by (the Joseph form)

d
Ept = (F, — KiH,)P, + P,(F; — Kth)T + Q¢ + KthKtT

or (14)

d
P =FP+ PF +Q, — KiR K/ .

Note: if the state and measurement noises are correlated, namely
E(wl) = Sid(t — s),

then the gain in (11) becomes K; = (P,H! + S;)R; ', and the covariance update
(13) should be modified by adding —(S; K} + K;S!') on the right.



