
2.1

Learning in Complex Systems Spring 2011

Lecture Notes Nahum Shimkin

2 Dynamic Programming – Finite Horizon

2.1 Introduction

Dynamic Programming (DP) is a general approach for solving multi-stage optimization
problems, or optimal planning problems. The underlying idea is to use backward
recursion to reduce the computational complexity.

DP has been widely applied to problems of optimal control, graph search, multistage
planning, etc. This method was popularized in the 50's and 60's, mainly through the
work of Richard Bellman.

Our interest here is in optimal control problems that involve:

- possibly stochastic systems
- discrete time variable
- a finite number of states and actions (choices)
- additive cost structure

The standard model for such problems is Markov Decision Processes (MDPs).

We start in this chapter to describe the MDP model and DP for finite horizon problem.
The next chapter deals with the infinite horizon case.

References:
Standard references on DP and MDPs are:

 D. Bertsekas, Dynamic Programming and Optimal Control, Vol.1+2, 3rd. ed.

 M.L. Puterman, Markov Decision Processes, 1994.

The basic theory is also covered in Bertsekas & Tsistiklis (1996). The books of Sutton
and Barto (1998) and Powell (2007) present less rigorous introductions.

.

2.2

2.2 A Simple Graph-Search Example

The simplest demonstration of dynamic programming is probably finding longest (or
shortest) paths in a graph.

Suppose we wish to find the longest distance we can traverse from a given node in a
given graph in N steps.

The number of different paths is exponential in N, so trying them all is not feasible.
Instead, we can use backward recursion to compute the maximal distance from each
node to the end step, staring with T=N.

Using this recursion, the longest distance is easily seen to be 14 (and the shortest is 0).

51 -3

7

7

425 -2

0

1
2-2 5 3 4

3

T=1

T=0

T=N

2.3

2.3 The MDP Model

A Markov Decision Process defines an optimization problem with two ingredients:
(1) a controlled dynamic system, and (2) a cost (or reward) structure.

Controlled System Dynamics

The dynamic system we consider is specified by:

1. The time axis: {0,1, , }N=T … (a discrete-time, finite horizon problem).

2. A finite state space S .

3. A finite action set ()A s for each state s S∈ .

4. State transition structure { (' | ,) : , ' , ()}P p s s a s s S a A s= ∈ ∈

The state transition matrix defines a controlled Markov chain over the given state and
action sets. That is,

1(' | ,) (' | ,)t t tprob s s s s a a p s s a+ = = = =
and we also assume the Markov property:

1 1 1 1 0, 0(' | ,) (' | , , , , ,)t t t t t t t tprob s s s a prob s s s a s a s a+ + − −= = = …
It is naturally required that

(' | ,) 0p s s a ≥ , and ' (' | ,) 1s S p s s a∈ =∑ for all , ()s S a A s∈ ∈ .

Remarks:

1. It is will be convenient in theoretical developments to suppress the dependence of

()A s on s , and assume a single actions set A which applies to all states. This
entails no loss of generality, since we can always take ()sA A s= ∪ , with irrelevant
actions at each states duplicating the effect of existing ones.

2. The model defined above is stationary (or time invariant), as the dynamics does not

depend on time. In general, the system dynamics (and also the state and action sets)
can depend on the time index. That is, for each t∈T we have
 1{ (' | ,) : , , ' }t t t t tP p s s a s S a A s S += ∈ ∈ ∈
and
 1(' | ,) (' | ,)t t t tprob s s s s a a p s s a+ = = = = .
In the present chapter we will proceed with the non-stationary model.

3. The state dynamics can be equivalently defined via a state equation of the form

1 (, ,)t t t t ts f s a n+ = , where each tn is a random variable which is independent of the
past (namely of (, ,)k k ks a n for 1k t≤ −).

2.4

Graphical Notation:

Recall that a (stationary) Markov chain is defined by the state transition matrix

{ (' |) : , ' }P p s s s s S= ∈ . The state transition probabilities are often demonstrated via a
state transition diagram, such as:

A graphic description of a controlled Markov chain is a bit more complicated because
of the additional action variable. We then obtain the following diagram (drawn for state
s=1 only):

This means that (' 2 | 1, 1) 1p s s a= = = = , (' 1| 1, 2) 0.3p s s a= = = = , etc.

1s = 2s = 3s =

0.6p =

0.3p =0.4p =

0.7p =

1p =

1p =

0.3p =

1a =

2a = 0.2p = 2s =

0.5p =

1s = 3s =

2.5

Reward Structure

The reward structure for an MDP is specified by:

5. An immediate reward function { (,) : , }t t t tr r s a s S a A= ∈ ∈ for each t∈T . The
reward obtained at time t∈T is therefore (,)t t t tR r s a= .

6. A performance measure, or optimality criterion. The most common one for the

finite-horizon problem is the expected total reward:

0 0

(,)() ()
N N

t t t t
t t

J E R E r s a
= =

= =∑ ∑

Our goal is to maximize J , by an appropriate selection of actions.

Remarks:

1. Terminal rewards: At t N= , we often have (,) ()N Nr s a r s= . We refer to ()Nr s as

the terminal reward. We will henceforth assume that this is the case.

2. Stationary models: For a stationary model, we have (,) (,)tr s a r s a= for every

t∈T .

3. Cost functions: In some case it is more natural to work with a cost function (,)tc s a

instead of a reward function. Our goal then is to minimize the total expected cost

0()N
ttJ E C== ∑ .

The two formulations are of course equivalent: we can simply define t tr c= − to
transform the cost formulation into a reward formulation.

4. More general reward functions: In some cases the obtained reward may depend on

the next state as well: 1(, ,)t t t t tR r s a s += � . For control purposes, when we only
consider the expected value of the reward, we can reduce this reward function to the
usual one by defining

'(,) (' | ,) (, , ') (| ,)t t t t ts Sr s a p s s a r s a s E R s s a a∈ ≡ = =∑ ��

5. Random rewards: The reward tR may also be random, namely a random variable
whose distribution depends on (,)t ts a . This can also be reduced to our model for
control purposes by looking at the expected value of tR , namely

(,) (| ,)t t t tr s a E R s s a a= = = .

2.6

Control Policies

• A general control policy π is a mapping from each possible history

0 0 1 1(, , , , ,)t t t th s a s a s− −= … to ()t t ta hπ= .

• A Markov control policy π depends on the current state and time only: ()t t ta sπ= .

• A stationary control policy chooses the action depending on the current state alone:

()t ta sπ= . Such policies will play a major role in infinite-horizon problems.

• We denote the sets of general / Markov / stationary policies by Π / MΠ / SΠ ,

respectively

• We can also define randomized versions of the above. In a randomized control

policy, the action ta is chosen according to a probability distribution (|)t ta hπ over

tA . Randomized policies will not be required for the time being (but will be used in
the learning problem).

Given a control policy π and initial state 0s s= , together with the system description,
we obtain a probability distribution over the state-action sequence

0 0 1 1(, , , , , ,)N N N N Nh s a s a s a− −= … . We denote this probability distribution by
, ()sPπ ⋅ or 0(|)P s sπ ⋅ = . The corresponding expectation operator is denoted as
, ()sEπ ⋅ or 0(|)E s sπ ⋅ =

Remarks:

1. For most (non-learning) problems, Markov policies suffice to achieve the optimum.

2. Implicit in these definitions of control policies is the assumption that the current

state ts is fully observed. If this is not the case we consider the problem of a
Partially Observed MDP (POMDP), which is more involved.

2.7

2.4 Finite-Horizon Dynamic Programming

Recall that we consider the expected total reward criterion, which we denote as

()
()

00

1
00

(,) |

(,) () |

N
tt

N
t t t N Nt

J s E R s s

E r s a r s s s

π

π

π
=

−
=

= =

= + =

∑

∑

Here π is the control policy used, and s is a given initial state. We wish to maximize

(,)J sπ over all control policies, and find an optimal policy *π that achieves the

maximal reward *()J s . Thus,

* *() (,) max (,)J s J s J s
π

π π
∈Π

=�

A. The Principle of Optimality

The celebrated "principle of optimality" applies to a large class of multi-stage
optimization problems, and is at the heart of DP. As a general principle, it states that

The tail of an optimal policy is optimal for the "tail" problem.

For a more precise statement which applies to our model, let *

0 1(, ,)Nπ π π −= … denote
an optimal Markov policy. Take any state 'ks s= which has a positive probability

under *π , namely , (') 0s
kP s sπ = > . Then the tail policy 1(, ,)k Nπ π −… is optimal for

the "tail" cost ()(, ') | 'N
k t kt kJ s E R s sππ == =∑ .

2.8

B. Dynamic Programming for Policy Evaluation

As a "warmup", let us evaluate the reward of a given policy.

Let 1 1(, ,)Nπ π π −= … be a given Markov policy. Define the following reward-to-go
function, or value function:

()() |N
k t kt kV s E R s sπ π

== =∑

Observe that 0 () (,)V s J sπ π= .

Lemma 1 ()kV sπ may be computed by the backward recursion:

{ }
1

1' ()
() (,) (' | ,) (')

k
k

k k k ks S a s
V s r s a p s s a V sπ π

π+
+∈ =

= +∑ , 1, ,0k N= − …

starting with () ()N NV s r sπ = .

Proof: Observe that:

()
()()

()
1

1

11

1 1

1'

() , ()

, (), , ()

(,) () , ()

(, ()) (' | , ()) (')

|

| |
|

k

N
k k t k k kt k

N
k t k k k k k k kt k

k k k k k k k

k k k k ks S

V s E R R s s a s

E E R R s s a s s s s a s

E r s a V s s s a s

r s s p s s s V s

π π

π π

π π

π

π

π π

π

π π
+

= +

+= +

+ +

+∈

= + = =

= + = = = =

= + = =

= +

∑

∑

∑



Remark: With the more general reward function (, , ')tr s a s� , the recursion takes the
form

{ }
1

1' ()
() (' | ,)[(, , ') (')]

k
k

k k k ks S a s
V s p s s a r s a s V sπ π

π+
+∈ =

= +∑

A similar observation applies to all Dynamic Programming equations below.

2.9

C. The Dynamic Programming Algorithm

We next define the optimal value function:

()*() max |N
k t kt kV s E R s sπ

π =
= =∑

Note that the maximum should be taken over "tail" policies 1(, ,)k

k Nπ π π −= … that

start from time k . Obviously, * *
0V J= .

Theorem 2 (Finite-horizon Dynamic Programming)
(i) Backward recursion: * () ()N NV s r s= , and

{ }
1

* *
1'() max (,) (' | ,) (')

kk
k k k ks Sa A

V s r s a p s s a V s
+

+∈∈
= +∑ , 1, ,0k N= − …

(ii) Optimal policy: Any Markov policy *π that satisfies

{ }
1

* *
1'() arg max (,) (' | ,) (')

k
k

k k k ks S
a A

s r s a p s s a V sπ
+

+∈
∈

∈ +∑ , 0, , 1k N= −…

 is an optimal control policy. Furthermore, *π maximizes 0 ()V sπ simultaneously
 for every initial state 0s s= .

Proof :
(i) * () ()N NV s r s= follows from the definition. We proceed by backward induction.
Assume that the required equality holds for ' 1k k≥ + . We need to show that

*() ()k kV s Z s= , where { }
1

*
1'() max (,) (' | ,) (')

k k
k a A k k ks SZ s r s a p s s a V s

+
∈ +∈+∑� .

To establish *() ()k kV s Z s≤ , it is enough to show that () ()
k

k kV s Z sπ ≤ for any (general,

randomize) "tail" policy kπ . Consider then any "tail" policy 1(,)k
k Nπ π π −= … . Note

that (|)k k ka a sπ∼ , 1 1 1(| , ,)k k k k ka a s a sπ+ + +∼ , etc. For each ks S∈ and ka A∈ , let

(| ,)k s aπ denote the policy from time 1k + onwards which is obtained from kπ when
,k ks s a a= = . Proceeding as in page 2.9 (value iteration for a fixed policy), it follows

that

{ }
1

(| ,)
1'() (|) (,) (' | ,) (')
kk

k k

s a
k k k k ka A s SV s a s r s a p s s a V sππ π

+
+∈ ∈= +∑ ∑

But since *
1kV + is optimal we have that (| ,)*

1 1(') (')
k s a

k kV s V sπ
+ +≥ , so that

{ }
1

*
1'() (|) (,) (' | ,) (') ()

k

k k
k k k k k ka A s SV s a s r s a p s s a V s Z sπ π

+
+∈ ∈

≤ + ≤∑ ∑ .

We next show that *() ()k kV s Z s≥ . For that purpose, it is enough to find a policy kπ so

that () ()
k

k kV s Z sπ ≥ . Define kπ as follows: Choose ka a= so that

{ }
1

*
1'arg max (,) (' | ,) (')

k
k

k k ks S
a A

a r s a p s s a V s
+

+∈
∈

∈ +∑

2.10

and then after observing 1 'ks s+ = proceed with the policy 1kπ π += which maximizes

1(')kV sπ
+ . For this policy we obtain:

1

1

1

1'

*
1'

() (,) (' | ,) (')

(,) (' | ,) (')

k k

k

k

k k ks S

k ks S

V s r s a p s s a V s

r s a p s s a V s Z

π π +

+

+

+∈

+∈

= +

+

∑
= =∑

This completes the proof of (i).

(ii) (Outline – exercise). Let *π be the (Markov) policy defined in (ii). Using value
iteration for this policy, prove by backward induction that

* *
k kV Vπ = . �

Note that optimal control policy obtained as above is a deterministic Markov policy.

To summarize:

• The optimal value function can be computed by backward recursion. This recursive
equation is known as the Dynamic Programming Equation, Optimality Equation,
or Bellman's Equation.

• Computation of the value function in this way is known as the value iteration
algorithm, or just value iteration.

• The value function is computed for all states at each stage.

• An optimal policy is easily derived from the optimal value.

• The optimization in each stage is performed in the action space. The total number
of minimization operations needed is | |N S× – each over | |A choices. This
replaces "brute force" optimization in policy space, with tremendous computational
savings as the number of Markov policies is | || |N SA .

2.11

D. Some Operator Notation

 Define the operator *

kT over the space of functions : kV S → R (equivalently: the

space of vectors | |kSV ∈ �R),

{ }*
'()() max (,) (' | ,) (')

kk
k k ks Sa A

T V s r s a p s s a V s∈∈
= +∑

Similarly, for a given decision function :k k kS Aπ → ,

'()() (, ()) (' | , ()) (')k

k
k k k kk s ST V s r s s p s s s V sπ π π∈= +∑

Note that *()() max { ()}k
kk kT V s T V sπ

π= .

We will now use the shorthand vector notation * max k

kk kT V T Vπ
π= , and rewrite the

Dynamic Programming equations in this notation. This gives:

 Policy evaluation:

1

1
k k

k
k kkV T Vππ π +

+= .

 Optimality equation: * * *

1k k kV T V += .

 Optimal policy: * *

1arg max k

k

k kkT Vπ

π
π +∈

E. The Q function

Define

*
'(,) (,) (' | ,) (')

k
k k k ks SQ s a r s a p s s a V s∈= +∑

This is known as the (optimal) state-action value function, or simply as the Q-function.
(,)kQ s a is the expected total reward from stage k onward, if we choose ka a= and

then proceed optimally.

It is easily seen that

*() max (,)
k

k k
a A

V s Q s a
∈

=

and
*() arg max (,)

k

k k
a A

s Q s aπ
∈

∈

Furthermore, in terms of Q the optimality equation reads:
*

1
''

(,) (,) (' | ,) max (', ')
k

k k k k
a As S

Q s a r s a p s s a Q s a+
∈∈

= + ∑

The Q function allows an immediate computation of the optimal actions at each stage. It
will form the basis for Q-learning algorithm, which is one of the basic Reinforcement
Learning algorithms.

