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Abstract

Multiple-target tracking (MTT) poses difficult computational challenges related to the measurement-
to-track data association problem, especially in the presence of spurious and missing measurements.
Different approaches have been proposed to tackle this problem, including various approximations and
heuristic optimization tools. The Cross Entropy (CE) method and the related Parametric MinxEnt (PME)
method are recent optimization heuristics that have proved useful in many combinatorial optimization
problems. They are akin to evolutionary algorithms in that a population of solutions is evolved, however
generation of new solutions is based on statistical methods of sampling and parameter estimation. In
this work we apply the Cross-Entropy method and its recent MinxEnt variant to the multi-scan version
of the data association problem in the presence of misdetections, false alarms, and unknown number of
targets. We formulate the algorithms, explore via simulation their efficiency and performance compared to
other recently proposed techniques, and show that they obtain state-of-the-art performance in challenging

scenarios.

Index Terms

Target tracking, data association, combinatorial optimization, Kalman filtering, cross-entropy method,
Monte-Carlo methods

I. INTRODUCTION

Multiple-target tracking (MTT) is an essential component of surveillance-related systems. A general
formulation of the problem assumes an unknown and varying number of targets that are continuously
moving in a given region. In the single-sensor version, the states of these targets are sampled by the
sensor and the noisy measurements are provided to the tracking system. The detection probability is not
perfect and the targets may go undetected at some sampling intervals. In addition, there are spurious
reports of possible targets, or clutter measurements which arise independently of the targets of interest. A
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primary task of the MTT system is data association, namely, partitioning the measurements into disjoint
sets, each generated by a single source (target or clutter). The secondary goal is estimation of the states
based on the measurements originating from the targets of interest. The data association problem may
be formulated in several ways. In single scan data association the raw measurements are processed one
scan at a time and the target states are updated accordingly. Alternatively, several sets of measurements
may be collected and processed together in batch mode — this is the multi scan data association. For an
illustration see Fig. 4.

Several methods now exist to handle the data association problem. These may be roughly grouped
into two types: Bayesian and non-Bayesian. Among the Bayesian methods, there is the well known Joint
Probabilistic Data Association Filter (JPDA) [1], which is a single scan filter where the states of existing
targets are to be updated based on the latest set of measurements (scan). Data association is handled by
summing over the probabilities of all feasible partitions, where no two targets can share a measurement
and each target may be a source of at most one measurement per scan. A shortcoming of the basic JPDA is
its inability to initiate and terminate tracks. In addition, calculating the probabilities of all feasible events
is NP-hard [2] in the number of targets and measurements and the calculation becomes intractable even for
a moderate size of the problem. Another well known approach is the multiple hypotheses tracker (MHT)
[3], in which each hypothesis associates past observations with targets and, as a new set of observations
arrives, a new set of hypotheses is formed by augmenting the previous ones. The hypothesis with the
highest posterior is returned as a solution. MHT is capable of initiating and terminating tracks. However,
the number of hypotheses involved in the calculation grows exponentially over time. Thus, in order to
overcome this computational complexity, certain pruning and clustering methods must be used at expense
of optimality. Another method for handling data association in the Bayesian manner is the Probabilistic
Multi-Hypothesis Tracker (PMHT) [4]. The PMHT algorithm employs a more lenient measurement model
in comparison to PDAF and MHT. Whereas the latter assume that a target can generate at most one
measurement per scan, PMHT drops this constraint, and posits the measurement/target association process
as independent across measurements. Similarly to JPDA, the basic PMHT assumes a fixed and known
number of targets in the scenario under consideration.

The non-Bayesian approach is characterized by hard measurement-to-track association, such that some
cost function is maximized. The problem may then be reformulated as an integer programming problem
[5] or, more precisely, as a multidimensional assignment problem, which is NP-hard when the number
of sets (scans) to be assigned is greater than or equal to 3 [6]. Therefore, for the multi scan data

association, one should invoke some approximations schemes for the multidimensional assignment such
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as Lagrangian relaxation techniques that relax some of the problem constraints and solve the relaxed
problem by utilizing linear programming techniques [7]. Note, however, that when there are only two
sets of data to be assigned, there exist exact, polynomial time solutions which have been combined with
particle filter based algorithms in the context of multi-target tracking [8]. Additionally, an algorithm for
assigning a set of measurements to the set of predicted target states using the competitive Hopfield neural
network was proposed in the recent work [9]. Nonetheless, the simulations presented therein included
relatively small tracking scenarios.

Another option to solve the multi scan data association problem is by utilizing stochastic search
methods. In [10] the problem was solved by applying the Markov Chain Monte Carlo (MCMC) method
to obtain the partition with maximum posterior. Using the Metropolis algorithm, the authors proposed
a set of moves for modifying a partition of the measurements, such that sampling from the posterior
distribution was possible after a few thousands of moves. They showed a remarkable performance of
the algorithm in comparison to the MHT method in terms of accuracy of the solution and running time.
However, the algorithm is still susceptible to getting trapped in a strong local maxima. Such behavior is
typical of local search algorithms.

The main contribution of this paper is the development of feasible algorithms that solve the multi scan
data association problem and are capable of initiating and terminating a varying number of tracks. The
general setup and problem definition are very similar to those in [10]. In particular, the basic assumptions
for the data association problem are identical to those used in JPDA, MHT, and MCMCDA. Namely, we
assume that each measurement may either belong to at most one target or be classified as a false alarm,
and at most one measurement may be associated with a given target at a time. (A detailed discussion
of these assumptions is provided in section II). The solution approach, however, is different. We invoke
the Cross Entropy (CE) method [11] and the related Parametric MinxEnt (PME) method [12] in order to
obtain the partition with the highest posterior. CE based schemes are approaches for combinatorial and
continuous optimization, and (originally) for estimation of rare-events probabilities. They are inherently
global search methods and, therefore, may reduce the risk of getting stuck in shallow local maxima.
The main idea is representing the solution space with a set of parameters and defining a probability
distribution on these parameters. Then, two successive steps are iterated — sampling from the existing
distribution, and updating this distribution using a subset of elite (better-valued) samples. The underlying
principle of solution improvement is thus akin to evolutionary optimization algorithms (see, e.g. [13]), but
the solution generation mechanism is different, and the whole scheme has very few meta-parameters that

need to be tuned. The resulting Cross Entropy Data Association (CEDA) and Parametric MinxEnt Data
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Association (PMEDA) algorithms are applied here to challenging tracking scenarios, and show improved
performance relative to current state-of-the-art techniques.

The structure of this paper is as follows. We formally state the (discrete-time) general multiple-target
tracking problem in section II. In section III we outline the CE and PME methods for combinatorial
optimization. In section IV we present general purpose CEDA and PMEDA algorithms for multiple target
tracking. The algorithms are applied in simulation to dense tracking scenarios and their performance is

compared with several popular algorithms in section VI.

II. PROBLEM DEFINITION

A. Preliminaries

Consider a surveillance scenario of duration 7' € Z7T. There are K targets moving around the
surveillance region R for some duration [t ,t’;] C [1,T] for k = 1,..., K where K is an unknown
integer. The volume of R is V and it is scanned periodically by a single sensor having scan period T

normalized to one time unit. The notation [¢;,¢;] should be interpreted as {¢;,¢; +1,...,¢;}.

B. Target Model

In this subsection we describe the target modeling commonly used in the target tracking literature
(see e.g. [14]). Each target k starts at a random position in R at time tf, moves around R until t’; and
disappears. An existing target may disappear at each sampling time with probability p, and persists with
probability 1 — p,. The number of new targets arising at each time in R is modeled to have a Poisson
distribution with a parameter \,V, where ), is the birth rate of new targets per unit time and volume.
The initial position of a new target is uniformly distributed over R. We describe the motion of a target
by the discrete-time dynamics F' : R* — R%, where d is the dimension of the state variable, and z; € R?
is the state at time ¢. The target £k moves according to .I‘f = F(zF,wh), t = tf, . ,t’; — 1 where

wf € R? are white noise processes. In this work, we consider the same linear dynamical model for each

target, namely, if a target is observed ¢ times at ¢;, ¢ = 1,..., ¢, its dynamic model may be expressed as:
vy, = Altir, ti) e, + G(tivr, ti)wy,, (1)

where wy, is a white Gaussian noise with covariance matrix (). A and G are matrices of appropriate

sizes, with entries determined by the sampling interval (¢;,¢;41) for each i.

C. Sensor and Measurement Models

We assume that a single sensor scans the surveillance region periodically with scan time 75 of one

time unit. Noisy observations of the position of each target are obtained with detection probability P;.
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In addition, the sensor generates false alarms, whose number is assumed to have a Poisson distribution
with parameter AfV, where A is the false alarm rate per unit time per unit volume. The origin of each
observation (i.e. target or false alarm) is not a-priori known, since each observation is assumed to carry
only the cartesian position and the corresponding time tag.

Let n; be the number of observations at time ¢, including both noisy observations and false alarms. Let
yf € R™ denote the j-th observation at time ¢ for j = 1,...,ns, where m is the dimensionality of each
observation vector. Each target generates a unique observation at each sampling time if it is detected.
We assume a linear observation model, namely, an arbitrary observation at time t;, y{l, is generated as

follows:

C(ti)ze, + vy, yi is object originated
yti = ) (2)
U, otherwise

where v;, € R™ is a white Gaussian noise independent of w;, with covariance matrix R, C' is a matrix
of appropriate size, and u; ~ Unif(R) is the random process of false alarms, assumed to be uniformly

distributed in space.

D. Solution Space and Optimization Criteria

Dealing with hard (as opposed to soft) data association we seek for a partition of the measurements
into disjoint sets. One of these sets is the collection of false alarms and the others are collections of
measurements originating from the same target — one set per target. Let ¥; = {yf 3=1,... ,nt} be
the set of observations at time ¢, and Y7.;r = Ute (1,7} Y; be the set of all observations. €2 is defined to
be the set of partitions of Y7.7 such that, for w € :

) w={m,m,...,7K}

2) Uszo 1, = Yi.r and 7; N 7; = () for i # j, i.e., each measurement belongs to at most one target,

or is classified as a false alarm.

3) 7o is considered as the set of false alarms and 75, & > 1 is considered as the kth track — a set of

measurements that are attributed to the kth target!
Ti = {yg?yga?yi ‘] E Z+7t1 <t2 < < t]}’

i.e. each track is comprised of a subset of measurements ordered according to their time tags in

an increasing order.

"We shall refer to the above set of measurements as a track, although usually a track is the estimated trajectory, that is after
filtering (or smoothing) out the measurement noise.
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4) | NYy <lfork=1,...,K and t = 1,...,T. That is, each measurement belongs to one track
at most.

5) |mx| > 2 for k=1,..., K, where |7;| denotes the cardinality of 75. That is, a track must contain
at least two measurements.

We make two additional assumptions as part of the problem formulation.

A. The maximal velocity of any target is bounded by a known constant vmax.

B. The number of consecutive missing observations of any track is bounded by a known constant dy, .
This assumption may be used as a criterion to distinguish an event of a new targets appearance
from an event of a continuation of an existing track.

For further discussion of the last two restrictions the reader is referred to [10].

Any partition w in {2 is said to be valid or feasible. Once a partition w € §2 is chosen, the tracks
T1,...,Tk € w and the set of false alarms 79 € w are completely determined. We thus face a problem
of choosing the best (in some appropriate sense) partition w™* given the set of observations Yi.r. This is
the so-called measurement oriented approach to data association.

A natural criterion for this approach is the Maximum a-Posteriori probability [3], [10], [14]. That is,

looking for the optimal partition w* in the MAP sense:

w* =argmaxP{w | Y1.7}. 3)
we

E. The Posterior Probability

Expressions for the posterior probability P {w | Y1.7} are commonly used in the target tracking literature
[1], [3], [10], [14]. The expression (5) below can be obtained from that of [14] and the complete derivation
is available in [15]. For each partition w let m; denote the number of targets at time ¢, a; be the number of
new targets at time ¢, z; — the number of targets terminated at time ¢, d; — the number of target detections
at time ¢, u; — be number of undetected targets at time ¢ (according to w i.e. missing measurements
within a path), and f; be number of false alarms at time ¢. Bearing in mind that n; is the total number

of measurements obtained at time ¢, it may be easily verified that the following relations hold:
My = My—1 + Gy — 2 “)
Ut = My — dt

ft =ng —dy.
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The final expression reads,

I7|

P{w!leT}—* II TIN G ), Bi(n) (5)

TGw\{Tg}Z 2
'szt 1_ mf 1— 2 Pdt(l_ d)’lh)\gt)\ft’

where Zj is a constant that does not depend on w, N (z; i, X) is the Gaussian density with mean ;. and
covariance Y evaluated at x, 7(¢;) is the i-th measurement associated with track 7, 9, (7) is the i-th
predicted measurement obtained from the standard Kalman applied to the measurements associated with
track 7, and By, (7) is the corresponding innovation covariance.
III. BACKGROUND ON CE AND PME
A. The CE Method for Combinatorial Optimization
Let X be a finite set of elements and S(-) be a performance function defined on X. Our goal is to

find the maximum of S(-) over X. Namely?,

S(x*)=~"= max S(x). (6)

A convenient way to introduce the CE method is from the parameter estimation perspective. When solving
optimization problems using the CE method, one searches for a probability distribution concentrated near
the global extremum of the objective function. Assume we can define a parameterized probability density
function f(x;v) on the set x € X. The goal is to construct a sequence of parameter vectors vi, vy, ....
such that f(x;v;) becomes concentrated around the global optimum x* as ¢ increases. This goal is
achieved by sampling from f(x;v;) and constructing the next parameter vector v;;j as the Maximum

Likelihood estimate of the distribution parameter based on the elite samples. Namely,
{,t-i-l = &rgmaXlnf(Xl,...,XNp;V), (7)
v

where X, ...,XNp are the Np elite samples, achieving the best performance in the current set, and
f(f(l, e XNP; v) is the joint density evaluated at X1, ..., XNp. The new parameter vector defines a new
distribution from which we can sample again and repeat the procedure. Instead of updating the parameter
vector vy directly via the solution of (7) one may use the smoothed update which reduces the probability

that some components of v, will become degenerate at early stages,

Vi=avi+(1—a)vig, 0<a <, 8)

*Note that the variable x below is not related to the state variable x; defined in section II. We use this notation to comply
with conventions.
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where v; is the solution obtained from (7). The whole procedure is summarized in Alg. 1. The stopping

Algorithm 1 The CE Algorithm for Optimization.
1: Define vo = u. Set t = 1 (level counter)

2: Generate Xq,...,Xy from f(;vy_1) and compute the sample (1 — p)-quantile 4, of the perfor-
mances.

3: Find the MLE of the new parameter v; based on the set of the elite samples. Namely, solve (7).

4: Smooth the estimate via (8).

5. If stopping criteria are met - stop, otherwise set ¢t = ¢ + 1 and reiterate from step 2.

criteria in step 5 of Alg. 1 may be lack of significant improvement for several iterations, or convergence
to a degenerate distribution.

Assume now that X = (X1, ..., X},) is a random vector such that each X is a discrete random variable
that can assume a finite number of values {ai, ..., a,,}. The important observation that makes the CE
method very easy to apply to various optimization problems, such as the Traveling Salesperson and
MaxCut [6], [11], is that in this case there is a simple componentwise analytical solution to (7) that reads

[11] N
21 Lixy=a} L{s(x0)>4}

Sy Ls(x.)>40)

) ©)

B =

where X;; is the j-th element of the i-th sample X; drawn from f(x,v;—;) and 1y is the indicator
function of A. Namely, the updated value of each parameter is the relative frequency of the appearance

of the corresponding value in the current elite sample.

B. The PME Method for Combinatorial Optimization

Recall that the goal of the CEM was to find a “good” sampling density concentrated near the global
optimum of the problem at hand. Another option is to consider the (single constrained) Minimum Cross

Entropy (MinxEnt) program that reads

: _ f(x) _ fX)
Iﬁ;r)l{@(f]h) _/lnh(x) (x)dx =Ey [ln h(X)]} (10)
subject to the first moment constraint:
EfS(X) =1, (11)

where f and h are n-dimensional pdf’s, S(x) is the known performance function, x € R", and ~ is
a performance close to the optimal v* in (6). Assuming h(-) is a known pdf that incorporates all the

available prior information, the problem is to find the closest to h(x) density f(-) in the Kullback-Leibler
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sense subject to the moment constraint. If no prior information is available, h(x) is taken to be uniform.
We shall restrict ourselves to the discrete distributions f(x) and h(x) parameterized by parameter vectors
v, u respectively — f(x,v) and h(x,u). The solution of the MinxEnt program is [16]
h(x,u)exp {—S5(x)A\}

x,v") = ; (12)
T = e e 500N
where A is a constant (temperature) obtained from the following equation
By [exp {=5(X)A}] ’
and X ~ h(x,u). For v = ~*, the optimal temperature is A* = —oo and the optimal density f*(x) is

a Dirac delta function located at x*. Given a successful choice of v and obtaining the corresponding
value of A we could, in principle approximate the optimal x* by generating samples from (12). However,
sampling from such distribution is not a trivial task. In fact, no efficient methods are known to exist [17].
Thus, we shall approximate the distribution (12) as a product of marginal densities which will allow
easy sampling similarly to the basic CE method. Note that if h(x,u) is a discrete (multidimensional)
distribution with finite support, then so is f(x,v*) and, consequently, all its marginal distributions. Thus,
all these distributions are completely determined by their parameters which may be calculated as follows.
Assuming as before, that X = (X7, ..., X;,) is a random vector such that each X; is a discrete random

variable that can assume a finite number of values {ai, ..., a,, }, then the PME estimator of
A
vjk = P{X; = ax} = By [1(x,=0,)]

is [12]

SN Lx,—a) xp {—S(Xi)A}
Ciliep{-S(X)A}

It is readily seen that (14) is essentially the same as (9) with indicators 1 g(x,)>,) being replaced by

b = (14)

exponentials exp {—S(X;)A}. The optimal “temperature” parameter A is obtained from the (numerical)
solution of the stochastic version of (13) such that the single constraint in (11) is satisfied:
>, S(Xi) exp{—S(Xi)A} _
Zi]\;l exp {—S(X;)A}
Similarly to the CE method, we invoke a multi-stage procedure where a sequence of reference parameters

15)

{vt,t > 0}, a sequence of levels {;,¢ > 1} and a sequence of temperatures {\;,¢ > 1} are generated. As
before, we shall use the latest available information for the prior density. Namely, at stage ¢, h(x,u) =
f(x,vy). The whole optimization procedure is summarized in Algorithm 2.  For both CE and PME

optimization routines we expect the parameter vectors to converge to degenerate ones, such that by
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10

Algorithm 2 The PME Algorithm for Optimization.
1: Define vy = u. Set t = 1 (level counter).

2: Generate X1,..., Xy from f(-;¥v;_;) and compute the performance mean from §; = E, | S(X).

3: Use the same sample X1, ..., Xy and solve the stochastic program (15). Denote the solution by A
4: Update v; componentwise via (14).
5

. If stopping criteria are met - stop, otherwise set { = ¢ + 1 and reiterate from step 2.

sampling from the final distribution we shall always obtain optimal or near-optimal solutions. Unlike CE,
all samples are used to update the parameters in the PME method (although modifications are possible)
and the solution for A in (15) requires a line-search procedure and usually cannot be done analytically.
We thus expect each iteration of the PME method to be slower than its CE counterpart. All “tuning”

methods used for CE, such as smoothing and stopping rules, are directly applicable here as well.

IV. CE BASED DATA ASSOCIATION

In this section we develop a family of CE-based algorithms to solve the multi-scan multi-target tracking
problem. Since the only difference between the CE and PME methods for combinatorial optimization
is the updating scheme of the parameters, we shall describe both methods together and explain the
differences when needed. In order to apply the CE and PME methods to our problem we must specify
the parameterized family of pdfs {f(-;v)}, as well as the parameter vector v with respect to the data
association problem, and the procedure for sampling the solutions from it. We describe these in the
following subsections. To this end, we encode the optimization problem as a graph and introduce the

randomization on the graph’s edges or nodes [11].

A. The Connectivity Graph

Let n = Y1_, |Vi| = |Yi.r| be the total number of observations (both noisy detections and false
alarms). We define G = (V, E) to be the basic connectivity graph of the problem, where the set of nodes

V = Yi.r is the set of all measurements as defined above, and the graph edges are

E={(yt,:Ut.) | Y., ¥, €Y, t1 < to, |y, — s, || < (t2 — t1)Vmax, t2 — t1 < dimax}- (16)

This graph connects every node (measurement) with any other node that can be an immediate successor in
a feasible track, subject to speed and separation constraints. A feasible track, which is a set of observations

with increasing time tags, is represented as a path in G, that is
r={yi=12....7| W yHeE i=1,...,j-1}.
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11

The nodes of the graph represent measurements (both noisy detections and false alarms), and the edges
represent the possible event that their endpoints are successive measurements from the same target. Note
that a node y that has no incoming and outgoing edges is a false alarm by default, and may be removed
from the graph and permanently added to the set of false alarms 7. Henceforth, we shall assume that all
such nodes have been removed from the graph. We identify each valid partition of the measurements with
the corresponding partition of the graph nodes. Thus, the goal is to find a partition of the the graph nodes
into a set of vertex-disjoint paths {7;,7 > 1} (which will represent tracks) and a set of isolated nodes 79
(which will represent false alarms) such that the posterior P {w | Y7.7}, defined in (5), is maximized. Let
S(w) = P{w | Yi.7} denote the cost of a partition w € 2.

In the discussion below we shall denote the graph nodes as n;, i = 1,...,|V|. When no confusion
occurs we shall use the notation i, i = 1,...,|V] to refer to n;. We shall assume that the nodes are
ordered according to the time stamps of the corresponding measurements. Namely, if n;, and n;, belong
to scans ¢; and t9 respectively, such that to > t1, then ¢3 > ;. The ordering of the nodes representing
measurements within the same scan is arbitrary. An edge between node n; and node n; (or, equivalently,

between i and j) will be denoted (7, j). An example of the connectivity graph is shown in Fig. 1(a).

B. Distribution of Feasible Partitions

Recall that we need to define a probability distribution on the set of feasible partitions €2, parameterized
by a parameter vector v. This vector will comprise of the following elements:
e py(i), i € V: The probability that measurement i, or equivalently node ¢ in the connectivity graph
G = (V, E), is an initial node in some path (including a single-node path, namely a false alarm).
o ps(i), i € V: The probability that a path that reaches node 7 terminates at it.
e pij, (i,7) € E: The probability that node j follows node 7 in a path that goes through i.

All probabilities are naturally required to be in [0, 1]. In addition, we require that
pri)+ Y py=1VieV
J:(i.5)€E
This means that a path going through node 7 has probability 1 of either continuing to a neighboring node

J or terminating in 4. The probabilities {ps(i), ¢ € V'} and {p;;, (¢,j) € E} define a stochastic matrix
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12

P which reads

0 pi2 p13 ... pr(1)
0 0 pa ... pf(Q)
P=|: @ o : A7)
0 0 0 ... pe(V)]
0 0 o ... 1

(the last line corresponds to an absorbing final state f which terminates each path). The probability of a
single path 7 = (i1,...,%y) in G will thus be proportional to

m—1
Proarn(T) = py(i) H pil,ml) Pfim). (18)

=1
Denoting by B the set of initial nodes of the paths {7y, ..., 7k} in a partition w = {79, 71, ..., Tic }, the
probability of a feasible partition w can now be specified as
1 K
Jwiv) = gPpathm) g(l — (i), (19)
where Z; is a normalization constant that does not depend on w. The probability of infeasible partitions
is identically set to zero.

The probability distribution (19) on the set of feasible partitions {2 is best interpreted through the fol-
lowing sampling process (the actual sampling process we use will be described later in subsection IV-D).
For each node i = 1,...,|V], an independent Bernoulli random variable with success probability pj(i)
is drawn and determines whether that node is a first node in a path. If it is, we start a random walk
from ¢ according to the transition probabilities {p;;} in (17), until the terminal state f is reached. These
paths correspond to the K tracks {71, ..., 7 }. All nodes that were not visited in any of these paths are
classified as false alarms and allocated to 7p. The resulting partition w is a valid sample if w € Q. If w
is not a feasible partition (i.e., it has intersecting paths or paths below the minimal required length), it is

rejected and the above procedure is repeated until a feasible partition is reached.

C. The Augmented Connectivity Graph

It will be convenient for illustration and implementation purposes to incorporate in a single graph
all the relevant options (and their probabilities), including track initiation and termination. This will
be done by augmenting the basic connectivity graph by introducing new nodes and edges. In order to
incorporate the possibility of termination of a target, we introduce an additional “sink” node f that

represents termination of a track. Each other node n; in the basic connectivity graph is connected to
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13

(a) The Connectivity Graph (b) The Augmented Connectivity Graph

Figure 1. An example of the connectivity graph (a) and of the ACG (b). Solid circles represent the actual measurements. Node
¢ is denoted as m;. Dashed circles are the nodes added to the connectivity graph to obtain the ACG.

f by a directed edge represents the event that n; corresponds to the last detection of the target prior
to termination. In order to handle target initiation in arbitrary time and place, we introduce additional
n ‘start’ nodes into the graph — one for each original node of the basic graph. These will be labeled
S1, 82, ..., Sp. Each new node s; has an outgoing edge leading to the corresponding node n; € V. The
event represented by this edge is that node n; is the first detection of a track. A path that represents
a track with j measurements now contains j + 2 nodes as follows — {s,,,n1,...,nj, f}. We call the
extended graph an augmented connectivity graph (ACG), denoted G4 = (V4, F4), and refer to the
original nodes in the basic connectivity graph (representing the actual measurements) as inner nodes. An
example of an ACG is shown in Fig. 1(b). For notational convenience, denote a generic node in the ACG

as nj, i = 1,...,|V4|. We order these nodes as follows:

(ﬁl, "'7ﬁ|VA|) = (81, ey Sy MLy ooy N,y f) (20)

Let G4 = (Va, E4) be the ACG of the problem. The parameter vector v 4 is now defined to comprise

of the following transition probabilities
va={p], (i,j) € Ea},
where pf} is the probability that node 7; follows node 7; in a path that goes through 7; in G 4. We set
Dijs if n; =n;, ny =n;
Pl = polj), if Ay =sj, 05 £ f 1)
pr(i), if g =ns, nj=f
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where {p;;,py(j), ps(i)} were defined in subsection IV-B. In addition, define psy = 1 (as before), and
P =1—-p(k) if = sp, 75 = f,

which simply complement to 1 the outgoing probabilities from nodes {s;}.
The augmented parameters p{} define a stochastic matrix P4, which has the following form (under the

assumed ordering of the nodes in (20))

0 B
Py = ; (22)
0 P
where P is defined in (17), and
po(1) 0 0 1-p(1)
0 (2 0 1—pp(2
. 2) @
0 0 - p(n) 1—py(n)
The two O matrices have n columns that correspond to the start nodes (s1, ..., S,).

Note that P4 may be interpreted as a one-step transition matrix of a directed random walk on the

augmented graph G 4.

D. Sampling of Candidate Solutions

We now describe how to sample a partition w from the distribution defined through the augmented
connectivity graph G 4 and the corresponding transition matrix P4. Our goal is to sample efficiently,
in the sense that the number of infeasible partitions that need to be rejected should be minimized. We
describe the sampling procedure in three stages. First, we describe sampling a single path in G4. We
then proceed with sampling multiple non-intersecting paths. We finally describe how to handle paths that
fall below the minimal required length.

1) Sampling a Single Path: Sampling a single random path from the graph G4 is performed by
picking uniformly at random (u.a.r.) i1 from {1,...,n} and generating a random walk on G4 starting at
s;, according to the transition matrix P4 until hitting f. Note that since G4 is a directed acyclic graph —
after at most 7" steps the sink node f will be reached and the process will terminate. The resulting path

isT7= {sil,nil, My [0 2> 1}, or {s;,, f}. In the latter case we declare the path as void. Otherwise,

the path represents a track through the nodes {ni17 ey T }
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2) Sampling Non-intersecting Paths: To sample a partition that avoids intersecting paths, we generate
n potential paths as described above, starting from the nodes {si,...,s,} in random order. To avoid
track intersection, we invoke an elimination principle similar to the one used in [11] in relation with
the Travelling Salesperson Problem. After each single path is sampled, we mark each of its nodes (save
for the sink node f) as occupied, and eliminate all incoming edges to these nodes, namely nullify the
probabilities on these edges. We then re-normalize the transition probabilities of the remaining outgoing
edges to 1. This elimination step is equivalent to eliminating the corresponding nodes from the augmented
transition matrix P4 in (22), and re-normalizing each row sum to 1. After all n paths have been generated,
the remaining internal nodes (that is, those measurements that have not been selected as part of any path)
are allocated to the set of false alarms 7.

3) Dealing with Short Paths: The partition w = {79, ..., Tk} obtained in the previous stage may still
be non-feasible, as some of the tracks 71, ..., 7x may be too short (recall that we require each feasible
track to contain some minimal number of measurements). Rather than rejecting these partitions, which
could still lead to a high rejection rate, we redefine measurements contained in short tracks as false
alarms, and append them to 7p. We note that this step entails some modification to our definition of the
probability distribution in (19); however the precise expression is not required as part of the algorithm.

Upon completion of these steps we are left with a feasible partition w. The sampling procedure is

formally summarized in Algorithm 3.

Algorithm 3 Basic Sampling Procedure.
Input: The augmented connectivity graph (G4 and transition matrix P4 defined in (22).

1: Initialize: Set S = {s1,...,s,} (remaining start nodes), k& = 1 (path counter), P = Pj.

2: Start k-th path: Let j = 1 (node counter). Pick s uniformly at random from S. Set S = S\ {s}.
Define v 1 = s to be the first node of the k-th path. Set u = vy (current node indicator). Set
T = {u}.

3: Modify transition matrix: Eliminate node u from P by setting the u-th column of P to 0 and
normalizing the rows to sum up to 1.

4: Sample next node: Generate vy ;1 from the distribution formed by the u-th row of P. If vy j 11 = f
go to 5. Otherwise set u = vy j4+1, T» = T, Uu, j = j + 1 and reiterate from 3.

5: Proceed to next path: If S = () go to 6. Otherwise, set kK = k + 1 and repeat from step 2.

6: Generate the FA set: Set 7 to the set of all inner nodes in {7y, ..., 7 }. Further, remove all single-
node paths from {71, ..., 7%}, and append them to 7y. Let K be the number of remaining paths.

Output: w = {79, 71, ..., 7K }.
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E. Parameter Update

In order to obtain the new parameter vector v 4 that will define the updated probability distribution,
we estimate its components using the best samples that were obtained in the previous iteration. Recall
that our goal is maximization of the posterior probability (5). Parameter update is performed by taking
the elite samples, according to the cost function (5), and calculating the Maximum Likelihood estimate
of v4. As is well known (e.g. [11, p. 139]), the MLE for each parameter p{} is given by

AA_Ni‘
pi; = N,

where N;; is the number of times the edge (4,j) was used in the elite sample and NN; is the number
of times node n; was visited in that sample. The PME updating is performed in a similar manner as
explained in section III. In addition, in our experiments we have used the smoothed update (equation

(8)) as described in section III.

F. Basic Initialization Scheme

To invoke the CE-based algorithm one should introduce an initial probability distribution on the set of
solutions, parameterized by the vector vy. In typical applications such as TSP or MaxCut, where no prior
information is available, the vector v is often chosen to induce a uniform distribution on the solution
space [11]. Our first initialization scheme takes a similar approach, with some required modifications
related to track initialization:

1) For internal nodes n;, ¢ = 1,...,n, we assign p,, the termination probability of a track, to the
edge connecting n; with f and equal probabilities to all outgoing edges from n;. In case the only
outgoing edge is the one leading to f, it is assigned a probability 1.

2) For start nodes s;, i = 1,...,n, we set py(i) (the probability that node s; starts a path) to pp, a
chosen initial probability which is equal for all nodes. The parameter p, may be empirically tuned,
and is related to the known birth rates of the new targets \,. The choice of p, = 0.3 was found to
work well in our initial experiments.

This simple initialization method works well in small problems, but is inefficient in large instances. A

more effective method, which utilizes the dynamical nature of the problem is described in subsection V-C.

V. IMPROVEMENTS TO THE BASIC ALGORITHM

The algorithm described in section IV provides a basic version of cross-entropy based data association.
However, the performance of this algorithm may be greatly enhanced by adding certain key improve-

ments to the sampling scheme, that make use of the specific problem characteristics. In the next three
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subsections we discuss (a) history-based sampling that takes account of the target’s dynamic model, (b)
bidirectional sampling that helps in sampling complete trajectories rather than their tails, (c) an improved
initializations scheme for the sampling distribution, and (d) elimination technique for unlikely tracks.
These modifications define our final algorithm as used in the simulation experiments. We end this section

by discussing the computational complexity of the modified algorithm.

A. History-Based Sampling

Recall that our basic sampling scheme is based the connectivity graph where each inner node cor-
responds to a single measurement, and the next node in a path is sampled according to a probability
distribution that depends only on the present node. Assume that measurements contain position estimates
only (but not velocity estimates), as is often the case. This essentially implies that the choice of next node
may depend only on the current target position, but not on other motion parameters such as the target
velocity (direction and speed), which may be estimated from the path sampled so far. To the contrary, the
dynamic target model assumed in this work (see equations (1)-(2)) implies that other components of the
state vector z; should be useful in estimating the next target position. These components typically include
the target velocity (direction and speed), and possibly higher position derivatives. For concreteness, let
us focus the discussion on target velocity.

To integrate target velocity into our sampling scheme, two options may be considered. One is to add
a (discretized) velocity variable to each node, which is estimated based on the sampled path so far, and
allow the next-node sampling distribution to depend on this variable as well. A simpler option, which
we pursue here, is to allow the next-node sampling distribution to depend on the recent two (or more)
nodes in the current path, rather than on the last node alone. Clearly, the position data in two sequential
nodes encodes the target velocity, position data from three nodes can encode the target acceleration, etc.

Thus, we modify the parametric distribution that underlies the CE and PME algorithms in the following
way. Instead of sampling the next node in each path based on the current node alone, we allow the
sampling probability to depend on the last r recent nodes (with » = 2 used in our simulations). To keep
our previous algorithms, it is useful to note that the above modification can be easily translated to an
expansion of the connectivity graph, where each possible sequence of 7 nodes in the original graph now
forms a node in the new graph. The actual sampling, initialization and updating schemes described in
sections IV-D, IV-F, and IV-E remain the same accept that they are applied to this extended graph.

Clearly, the proposed extension increases the number of parameters to be estimated by the CE and

Parametric MinxEnt methods. For r = 2, the increase is proportional to the average out-degree of the basic
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connectivity graph representing the problem. While the number of parameters increases proportionally,
the performance improvement is dramatic.

The preceding extension may also be motivated by considering the sequential sampling schemes used
in CE based algorithms as a useful approximation to the full probability distribution. The following
discussion may be related to some recent ideas found in [17]. Consider for example the solution for
the MinxEnt program (12), which specifies some probability density f*(x) over the components of

x = (21,2, ...,x,). In general, one may write f*(x) in sequential form:

) = fa(@alz?™h) - fal@alar) - filzy), (23)

where we have used the shorthand notation :pf = (@i, Tig1, ey CCj). The idea behind CE and Parametric
MinxEnt is to approximate each element in this product by a parameterized distribution, with simplified
dependence on past component. The simplest approximation assumes that the components of x are
independent. The next approximation, which is commonly used for path-sampling ( [11], [18]), employs

the (first-order) Markov chain structure:
[ (%) & hp(zp|Tn-1) - hp—1(Tp_1]xn_2) - - - ha(z2|z1) - h1(21), (24)

where the ith component depends on the corresponding parameter v;. This is the approximation used
in our basic scheme, where the components z; correspond to the nodes in the connectivity graph, and
transitions on that graph are sampled via conditional probabilities of the form p,, (x;+1|x;). Alternatively,
we may use a less crude approximation by allowing the distribution of the next node in the path to

depend on two (or more) previous nodes (second-order Markov chain structure), as follows
T (%) & hn(2p|Tn—1,Tn2) - Pn_1(Tn_1|Tn_2, Tn3) - - - h3(x3|@2, 21) - ha(w2|21) - h1(21).

This representation translates to the two-node based sampling scheme as proposed above.

B. Bidirectional Path Sampling

Recall that we sample paths by picking at random an s; node and generating a random walk forward
in time, starting at s; and ending at f. If the node s; (or n;) happen to fall in the middle of an actual
path, we will clearly miss the first part of this path. Thus, most of the paths sampled in such manner will
be “truncated” since only their tails will be sampled. In other words, in order to obtain good solutions
with tracks beginning at the actual appearance times of the targets, we might need sufficiently many
samples and many iterations of the algorithms. This limitation may be efficiently resolved by allowing

bidirectional sampling from the starting node s;. That is, in additional to sampling a forward path in the
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usual manner, we also sample backward in time from s;. The two sampled halves are joined to form one
complete path.

Sampling backward paths is carried out using a separate structure, which is composed of a backward
connectivity graph with suitable sampling parameters. The backward connectivity graph is simply obtained
from the connectivity graph by reversing the direction of the graph edges. We augment this graph with a
new final node f’ (see Fig. 2). However, the start nodes nodes (s;) are shared with the forward connectivity
graph. The relevant sampling parameters for the reverse graphs are as usual the transition probabilities
between adjacent edges.

Sampling a complete path now starts, as before, by picking at random a start node s. From that node,
a forward path is sampled over the forward connectivity graph, and a backward path is sampled using
the reverse graph. Finally, the two halves are concatenated at s to create the complete path. The rest of
the algorithm proceeds essentially as before: Paths are valuated according to the cost function (5), and
the parameters are updated independently for the forward and backward graphs.

The improved initialization scheme of the next subsection uses the dynamical model of the target state
evolution. For the reverse connectivity graph, we use the following “backward” version of the dynamical
model (1), namely

— A7 (i, ) G (tigr, ti)wy,

i

T = A_l(tlurl, ti)l’t

i

(25)

i+1
Here we assume that the dynamics matrix A(¢;41,¢;) is invertible (which valid in our simulation models,

in particular).

Figure 2. An example of the bi-directional sampling scheme. s1, s2,..., 56 are shared by the original and the backward
connectivity graphs. The sampled forward path is s3 — ng — n4a — ns — f. The sampled backward path is s3 — n3 —
na — f’. The resulting path is comprised of the nodes na — n3 — n4 — ns.
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o

(a) The actual measurements (b) The corresponding graph nodes

Figure 3. Example of the initialization scheme. (a) Solid circles represent measurements, dashed circle represents predicted
measurement. (b) The corresponding part of the connectivity graph is shown.

C. Likelihood-Based Initialization

We next present an improvement on the basic initialization scheme introduced in subsection IV-F.
Recall that a uniform initial distribution may be used when no prior information is available. In our
case, however, prior information on possible target paths is embedded in the dynamical and measurement
models (1)-(2).

For example, if all targets are assumed to obey the (nearly) constant velocity model [19] and the
measurement model is accurate, high probability should be assigned to edges that connect nodes rep-
resenting co-linear measurements. Initialization of the nodes {sj, ..., s, } that was described in subsec-
tion IV-F remains unaltered, and the proposed modification refers to the inner nodes of the graph —
n;, © = 1,...,n, where n is the number of the inner nodes representing the actual measurements. We
describe the initialization procedure for these nodes with respect to the history-based sampling described
in subsection V-A.

To initialize the nodes representing the actual measurements we apply a Kalman Filter to every three (or
possibly more — depending on the target model) neighboring nodes of GG 4 that represent three consecutive
measurements. The filter is initialized with the first two measurements using the two-point differencing
technique [19]. Namely, we initialize the position as that of the first measurement and the velocity as the
difference between the two measurements divided by the difference in their time tags. We can now use
the Kalman filter equations to obtain the expected position and covariance of the third measurement. The
corresponding probability p{} of each edge of the graph is set proportional to the likelihood function of
the corresponding measurements relative to that prediction.

To illustrate, consider the situation depicted in Fig. 3. Assume that we have initialized a KF using y;
and yo that were obtained at two consecutive sampling times, and ¢ is the resulting predicted measurement

to the next sampling time. Assume that the neighbors of no (representing the measurement y) in the
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connectivity graph are ns, ng and ns (representing the measurements ys3, y4, and ys respectively), that
carry the same time tag as ¢. The probabilities on the edges connecting ny to ns, ng, and ns, are p§‘3,
p§‘4, and p‘245. These are determined on the basis of the distance between ¢ and ys, y4, y5 respectively,
using the assumption that the true measurement deviates from the predicted one according to a Gaussian

distribution. Mathematically, this reads,

where B is the innovation covariance obtained for . Clearly, some edges cannot be initialized in such
manner, e.g., the edges n; — ny and n; — ng in the above example since n; has no possible predecessor.
We assign those a uniform distribution. In our example p{,, = p7x = 0.5.

As in the basic initialization scheme, the probabilities on the edges linking the inner nodes to f are
initialized to the termination probability p., which was introduced in section II. The probabilities on the
other edges calculated via the above procedure are then re-normalized to sum to 1. In case the only

outgoing edge is the one leading to f, it is assigned a probability 1.

D. Elimination of Unlikely Tracks

The basic procedure of section IV together with the improvements described above produce a feasible
solution to the multi-scan data association problem having high posterior probability. However, it is
possible that among the actual tracks found by the algorithm, several false tracks, or ghosts, will be
generated. These tracks are patterns of consecutive false measurements that constitute feasible tracks
according to the definition of subsection II-D.

To reduce the number of such false tracks we apply additional likelihood-based test as follows. For
each track 7 in the final partition w we compute its likelihood ¢(7), and also ¢y(7) which is the likelihood
of all measurements in 7 classified as false alarms. If ¢(7) exceeds ¢o(7) we exclude 7 from the tracks
{71, ..., 7K} of w and add its measurements to the set of false alarms of w — 7. This procedure may only

increase the posterior probability of the partition w, thus resulting in a better score of the final solution.

E. Computation Complexity

We now evaluate briefly the running time of the proposed algorithms. The total running time is
determined by the number of iterations (sampling-evaluation-updating cycles) until convergence — n¢g.
Each iteration is determined by the number of sampled candidate solutions — /N, the time required to

generate each solution, the time required to evaluate the cost of solution, and the time to update the
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parameters for the following CE or PME iteration. Recall that n is the number of inner graph nodes
representing the actual measurements of the problem, and 7' is the duration of the surveillance scenario,
namely the number of scans to be assigned (see subsection II-A). In the following we summarize the time
complexity (in terms of the number of elementary operations) of various procedures. First, we provide
the computational requirements of the basic algorithm of section IV and then proceed with the improved
scheme of section V.

1) Computational Complexity of the Basic Algorithm:

o The complexity of sampling a candidate solution is O(7n?).
« The complexity of evaluation of the cost of a solution is O(nT?).
o The complexity of updating the distribution is O(Nn?).

o The complexity of calculation of the initial distribution is O(n?).

The overall procedure time requirements are summarized as O(ncg(NTn? + NnT? + Nn?) + n?).

2) Computational Complexity of the Improved Algorithm: The improved scheme differs from the basic
one by an increased number of graph nodes and an increased number of parameters to be estimated. The
increase is proportional to the average out-degree of the basic connectivity graph. Denoting this quantity

by n, we obtain the following worst case complexity.

o The complexity of sampling a candidate solution is O(7n?).

o The complexity of evaluation of the cost of a solution is O(nT?).

o The complexity of updating the distribution is O(Nnn?).

o The complexity of calculation of the initial distribution is O(nn?).
Note that the time required for sampling a single candidate solution and evaluating its cost remain
unchanged since the path maximal length is not affected by the improved sampling scheme, nor is the
maximal number of the paths in the augmented connectivity graph. The complexity of updating the
distribution at each iteration, however, increases due to the increased number of parameters and nodes.

The overall procedure time requirements are summarized as
O(ncp(NTn? + NnT? + Non?) + nn?). (27)

For dense scenarios, where = O(n) and T < n the above time complexity becomes O(ncgNn?).
Although ncpg, the number of iterations of CE-based algorithms, cannot be bounded in advance, in all
our experiments convergence has been obtained within 7 to 10 iterations. A similarly low number of

iteration till convergence seems to be typical of other CE applications as well [11].
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(a) A single scan (b) All scans
Figure 4. An example of a typical scenario. Target detections and FAs from all 10 scans are shown (a), FAs from a single

scan are shown (b).

VI. SIMULATION RESULTS

A. General Simulation Setup

We consider a similar simulation setup to that in [10]. A rectangular region on a plane, R = [0, 1000] x

[0,1000] C R? is taken to be the surveillance region (to be specific, length units can be taken as meter

and time units as seconds). Each target has a 4-component state vector with position and velocity in the

x and y directions, that is z; = [pgt, Vxt, Pyt ’uyt]T. We have used the Discrete White Noise Acceleration

(DWNA) model [19] for the targets dynamics. Namely,
i1 = Az + Guy,

where
T

0 1

A =diag [F1, 1], I =

In addition, the vector process noise is wy = [wys wy]? with covariance @ = diag(c2, 02), and

1pa 13

2 1 2

COV(th) =0y dlag(Qh Q1)7 Ql = ° °
13 g2
2Ts Ts

The measurement equation is

Dzt

Yt = = Czy + vy,

pyt
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where
1000
C= ,
0010
and the (vector) measurement noise is v; = [vy vy|] with covariance matrix R = diag(o2, 02). We

have used a surveillance duration of 7" = 10 scans. Targets appear at a uniformly chosen position from
the left bottom or right bottom quadrants of R respectively. They all move diagonally (in straight lines)
with constant velocity randomly chosen between 0.2vp.x and 0.9vnay. Each target’s appearance and
disappearance times are chosen uniformly from the first and last quarters of the surveillance interval

respectively. An example of a typical scenario is shown in Fig. 4.

B. Performance Measures

To the best of our knowledge, a standard definition of performance measures for evaluation of MTT
algorithms is an open question. Performance evaluation of single-target tracking algorithms (both with
and without measurement origin uncertainty) may be quantified by means of the Mean Square Error
(MSE). Such criteria are problematic when dealing with association algorithms, since the MSE may
provide meaningful insight on the performance only provided the data association is perfect. We thus
adopt the following, rather intuitive, measures for performance evaluation suggested in [10].

1) The normalized correct associations (NCA), that is, the number of correct associations made by

the algorithm divided by the true number of associations.

2) The incorrect-to-correct association ratio (ICAR) which measures the ratio of incorrect to correct

associations.
An association here means two consecutive measurements on the same track. Mathematically, for each

partition w € 2, the set of all associations in w is represented as
SA(w) ={(r,t],t; ) :i=1,...,|7| = 1,7 € w}
where t7 is the time of the i-th observation in track 7. The set of correct associations in w relative to
w*, which is the true partition, is
CA(w) ={(7,t,s) € SA(w) : 7(t) = 77(t), 7(s) = 7"(s), for some 7" € w*}, (28)
where 7(¢) is the measurement at time ¢ associated with track 7. The above measures now read:
_ [CA(w)] _ [SAW)[ — [CA(w)]

= SAWIL T 1cAR(w) = , 29
SAWY) ) CAw) @)

NCA (w)
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where |A| is the cardinality of the set A. From the definition, NCA varies between 0 and 1 and it provides
a measure of the number of correct associations. In case of perfect associations, NCA = 1. NCA does
not account, however, for false tracks. On the other hand, ICAR is a positive measure not bounded from
above and, informally, it counts false associations — both false tracks and false continuations of true
tracks. When no incorrect associations are made, ICAR = 0. These performance measures are illustrated

in Fig. 5. In addition, we record the number of tracks estimated by the algorithms. For the CEDA and

7 7
/A True detection
O False Alarm
6| — — — Association ZREEE 61 7l
/ /
/ /
5 VAN 1 5¢ A
/ /
/ /
/ /
4 N 4 N
/ /
/ A/
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/ /
b b2
0 0
0 2 4 6 0 2 4 6

Figure 5.  An example of performance measures. NCA = 1, ICAR = i (left), NCA = %, ICAR = g (right)

PMEDA algorithms we split this number into true and false tracks.

C. Compared Algorithms

The performance of the CE based algorithms was compared to the following data association schemes.
First, is the Multiple Hypotheses Tracker (MHT) for which results have been reported in [10]. The
authors have used the implementation from [20], [21], which implements pruning, gating, clustering,
N-scan-back logic and k-best hypotheses (see [20] for details on these techniques). Second, is the
greedy tracker proposed in [10]. It is a batch-mode nearest neighbor multiple-target tracking algorithm.
It generates candidate tracks by picking measurements nearest to the predicted states until there are no
unused measurements left. Finally is the Markov Chain Monte Carlo Data Association (MCMCDA) also
proposed in [10]. The MCMCDA algorithm allows sampling from complex distribution by simulating an

ergodic Markov chain which converges to the desired limiting distribution. In [10] the authors constructed
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a Markov chain on the set of all feasible partitions of the measurements (see subsection II-D) with the
posterior (5) as the limiting distribution. Using a small set of elementary moves (e.g. track birth, track
termination, track splitting etc.) sampling from the posterior was possible after a few thousands of moves.
Then, a sample with the highest posterior was returned as the solution. The initial state of the Markov
chain was provided by the output of the Greedy algorithm. For the performance comparison we have
reconstructed the results for the MCMCDA and the greedy algorithms and used the results reported in
[10] for the MHT.

D. Experiments and Results

In this section we test the performance of the proposed algorithms by comparing them with the
performance of the methods mentioned in the previous subsection. The algorithms are compared to each
other using the performance measures NCA, ICAR and the estimated number of targets described above.

Several options exist to challenge a data association algorithm. The first is by increasing the false
alarm rate A¢V. In addition, one can decrease the detection probability F; and increase the density of
tracks K. Closely moving targets, low detection probabilities and high false alarm rate make the problem
more difficult. In the following we perform three different test sequences in which we modify different
parameters to evaluate the performance of the algorithms — the false alarm rate Ay, the density of tracks
K, and the detection probability P;. Additional simulation tests including the influence of the process
and measurement noises, the segment length and robustness to the target model are available in [22]. In
all simulations presented below the results are averaged over 8 repeated runs with new measurements
generated independently at each run.

1) Number of Targets: In this sequence we modify the track density. The number of targets K in the
scenario is varied between 10 and 75, while keeping the clutter rate low and the detection probability high.
Each target moves at constant velocity uniformly chosen between 30 and 120 m/s. All other parameters
are fixed as well, namely — A\;V =1, P; = 0.999 and vyax = 140 m/s, p, = 1072, and A,V = 1 such
that, on average, there is a single new target at each scan. The average NCAs, ICARs and number of
tracks are presented in Fig. 6. It is readily seen that both cross-entropy based algorithms score higher
than Greedy and MCMCDA in NCA and better in ICAR, introducing no significant difference between
CEDA and PMEDA. Note that MCMCDA improves only slightly the performance achieved by the greedy
algorithm. All algorithms outperform the MHT.

2) False Alarms Rate: Here we keep a constant number of K = 10 tracks, with targets moving

at constant velocity each uniformly chosen between 30 and 120 m/s. The clutter rate varies between
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Figure 6. Simulation results for various values of K, the number of targets.

AfVo=1and A\fV = 100. Py = 0.999, vpmax = 140 m/s, p, = 1072, and ),V = 1. Namely, in this
experiment we test our algorithms in heavily cluttered environment, keeping the detection probability
high and the number of targets low. The results are depicted in Fig. 7. Clear superiority of PMEDA may
be noticed with nearly 90% of correct associations. The CEDA algorithm behaves similarly at low and
moderate clutter rates, but degrades in NCA performance at high clutter rates. However, false tracks are
not produced keeping the ICAR relatively low. We may conclude that, in this application, the updating
rule of the PMEDA algorithm, which uses all the samples obtained at a given iteration rather than the
elite samples used by CEDA, is preferable. As reported in [10], the MHT algorithm does not make
any associations when A;V" > 80 resulting in zero NCA and unreported ICAR. This is due to various

heuristics used in the specific implementation of the MHT which are necessary for finite running times.
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Figure 7. Simulation results for various values of A\yV. The actual number of targets is 10.

Additional discussion of the behavior of the MHT in the discussed experiments is provided below. The
MCMCDA algorithm being initialized with the output of the greedy algorithm, removes many of the
false tracks found at the initialization stage, thus improving the ICAR, but at the same time it degrades
the NCA performance by changing some of the correct associations. As a result, the obtained NCA
is lower than that of the greedy algorithm by a few percent. The greedy algorithm achieves reasonable
performance in terms of the NCA with more than 80% of correct associations, but results in unacceptably
large ICAR due to generation of high number of false tracks which also increase the ICAR.

3) Detection Probability: There is a constant number of K = 10 tracks, which move at constant
velocity each uniformly chosen between 30 and 120 m/s. The clutter rate is kept constant at A\;V = 1.

The probability of detection varies between P; = 0.3 to Py = 0.9. Due to lower detection probabilities we
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Figure 8. Simulation results for various values of Py.

have set d,ax = 5 since many consecutive missed detections may occur (recall that dp,,x is the maximum
number of consecutive missing observations of any track that was defined in section II). The probability
of track termination is p, = 0.01 and the appearance of new tracks is modeled by A,V = 1. The results
are depicted in Fig. 8. Both cross entropy based algorithms outperform all other algorithms with some
superiority of the PMEDA over CEDA. Unlike the previous tests, the greedy algorithm performs poorly
with less than 50% of correct associations. MCMCDA scores better than MHT, but much worse than

cross entropy based algorithms especially at very low detection probabilities.

E. Discussion

It it noticeable in the first and second experiments that MCMCDA does not introduce significant

improvement in terms of the NCA in comparison to the greedy tracker with which it has been initialized.
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This occurs when the greedy algorithm finds a solution that is a strong local maximum of the problem,
and MCMC, being a local search method, needs many steps to escape from this strong local extremum.
Although in theory the MCMC method is considered a global optimization method, it turns out in this
experiment that at this level of problem complexity it quickly got trapped in local minima, from which
it could not get out in any reasonable computation time. Thus, MCMC effectively reduces here to local
search, while CE based algorithms maintain a more global flavor as witnessed by their performance.
Another interesting phenomenon is the relatively poor performance of the MHT algorithm as reported
in [10]. Although in theory MHT is an optimal solution in the MAP sense it performs poorly when the
detection probability is low or the false alarm rate is high due to the necessary heuristics used in the
algorithm. These heuristics are required as part of all practical implementations of MHT since without
them the number of hypotheses grows exponentially fast. MHT with such heuristics may work well when
a few hypotheses carry most of the weight. However, when the detection probability is low or the false
alarm rate is high, there are many hypotheses with low weight and there is set of dominating hypotheses,
so MHT cannot perform well. This explains the poor behavior of the method when tested in the extreme
cases illustrated in Fig. 7 and Fig. 8. Similarly, for high values of K the specific implementation of the
MHT encounters difficulty in finding tracks, and the most of the returned ones are false. Thus, the total
number of tracks in Fig. 6 becomes low and plateau for high K, with the corresponding NCA being low

and ICAR being high.

F. Computation Times

All algorithms proposed in this paper were implemented in Matlab®) without any code optimizations
and ran on a PC with 2.8GHz Intel processor. Recall that the overall performance is determined by
the time required to obtain and evaluate a single sample in the CE/PME procedures in addition to the
initialization and updating procedures. For dense scenarios, however, the time to obtain a single sample,
which requires O(T'n?) calculations, dominates the overall computation time. We present in Fig. 9 this
empirically found time versus the clutter rate which is proportional to the average number of observations
in the problem at hand. It is readily seen that this empirical evidence strongly supports the calculated
complexity needed to obtain a single sample.

We note that, as reported in [10], the running times of MHT (implemented in C++) are comparable to the
running times of our algorithms (implemented in Matlab). The running times of the MCMCDA algorithm
as reported in [10] are much shorter than ours (although a fair comparison is hard since MCMCDA was

implemented in C++ as opposed to the Matlab implementation of our algorithms). However, the point in
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Figure 9. Time required to obtain a single sample.

our algorithms is that better performance is attained. Indeed, the performance curves of MCMCDA tend
to flatten after the initial improvement period, so that further improvement should be hard to attain (this

point is further discussed in Section VI-E).

VII. SEQUENTIAL MULTI-SCAN TRACKING

In typical (off-line or on-line) applications, the number of sequential measurements (or scans) is too
large to be handled simultaneously by existing multi-scan data association algorithms. In that case, the
overall scenario may be divided into shorter segments, of length suitable for the application of a multi-
scan association algorithm. Still, it is desirable to maintain continuity of paths between adjacent segments,
as well as some interchange of relevant data.

We extend our algorithm to handle long scenarios by dividing the whole surveillance duration into
overlapping segments of length 77 each. In each segment we execute the basic CEDA algorithm using
the observations which belong to that segment. The overlap region allows to correct associations obtained
at the final scans of the previous segment using measurements from the next segment, and vice versa, to
initialize the next segment with existing tracks. The idea is illustrated in Fig. 10.

In more detail, suppose the CEDA algorithm has been applied to segment k. Associations obtained in
the first part of that segment (before the overlap region) are fixed and cannot be changed. To initialize the
algorithm in segment k + 1, we assign probability 1 to the edges s; — y; for nodes y; that belong to the
first scan of segment k + 1 and were associated with tracks in segment k. Thus, these nodes are bound
to be starting nodes of paths in the new segment. All other probabilities in that segment are initialized

as in the single segment case according to the scheme described in subsection V-C.
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Figure 10. Sequential multi-scam data association. The algorithm is invoked on two overlapping windows. Measurements 7
and yg associated with 71 in window k1 are used to initialize the track in window k + 1. Measurements 12, Y14, and Y15
associated with 72 in window k + 1 improve the associations obtained in window k by classifying yi0 as a false alarm.

The extent of overlap between two adjacent segments is a design parameter which should be chosen
using the following considerations. On the one hand, the overlap should be large enough, so that
misassociations at the later scans of segment £ can be corrected while solving in segment k£ + 1. On the
other hand, large overlaps increase the number of segments and hence the computation time. However,
we have found, via simulation, that performance is not affected significantly when the overlapping length
is increased beyond a certain point, and satisfactory results are obtained for small overlaps. The results
supporting this statement are summarized in Table I for a small scenario with 20 targets, 45 scans

surveillance duration, and segment length of 15 scans. Whereas the worst performance is achieved for

Overlap size 0 3 6 9
NCA 0.89 094 093 095

Table I
THE OVERLAP INFLUENCE ON THE PERFORMANCE

non-overlapping windows, large overlaps do not introduce significant changes. Further testing of the
proposed sequential CEDA algorithm was done as follows. We have used the following parameters. The
surveillance region is increased to R = [0,10000] x [0,10000] C R?, and the surveillance duration is
increased to 1" = 90 scans. Segment size is Ty = 15, and the length of the overlap between adjacent
windows is 4 scans. Targets appear and disappear at random times and positions and clutter rate is
AV =10. Py = 0.9, dyax = 3 and maximum velocity is set t0 vymax = 230 m/s. All other parameters
remain unchanged. Three test cases are generated with total number of 50 tracks, 100 tracks and 150
tracks. Typical results for the overall NCA and ICAR for the above test cases are summarized in Table II.
These results indicate that the proposed algorithm is indeed capable of initiating, tracking and terminating

tracks for long scenarios.
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Number of targets NCA ICAR

50 0.95 0.04

100 0.94 0.04

150 0.92 0.06
Table 11

SEQUENTIAL TRACKER PERFORMANCE

VIII. CONCLUSION

We have proposed two related methods for the multi-scan multi-target data association problem based

on the CE and PME heuristics. These schemes have been tested in simulation and show improved

performance relative to the state-of-the-art algorithms. A major issue in the proposed algorithms is their

computation time. Although polynomial in the problem parameters, the computation time is still consid-

erable in challenging scenarios which involve a large number of measurements (ranging from minutes

to hours for the more complex scenarios using unoptimized Matlab code as described in section VI). In

these cases the proposed algorithms are more suitable for off-line data analysis. Future research directions

should address further reduction of the computation time while keeping the advantages of the proposed

approach. Furthermore, various extensions to the model should be of interest, including non-linear target

dynamics and multisensor measurements.
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