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Abstract-We consider the concert queueing game in the fluid 
framework, where the service facility opens at a specified time, 
the customers are particles in a fluid with homogeneous costs 
that are linear and additive in the waiting time and in the 
time to service completion, and wish to choose their own arrival 
times so as to minimize their cost. This problem has recently 
been analyzed under the assumption that the total volume of 
arriving customers is deterministic and known beforehand. We 
consider here the more plausible setting where this volume 
may be random, and only its probability distribution is known 
beforehand. In this setting, we identify the unique symmetric 
Nash equilibrium and show that under it the customer behavior 
significantly differs from the case where such uncertainties do 
not exist. While, in the latter case, the equilibrium profile is 
uniform, in the former case it is uniform up to a point and then 
it tapers off. We also solve the associated optimization problem to 
determine the socially optimal solution when the central planner 
is unaware of the actual amount of arrivals. Interestingly, the 
Price of Anarchy (ratio of the social cost of the equilibrium 
solution to that of the optimal one) for this model turns out to 
be two exactly, as in the deterministic case, despite the different 
form of the social and equilibrium arrival profiles. 

I. INTRODUCTION 

Customers going to a rock concert or a movie theater need to 
resolve the following dilemma: Going early involves encoun­
tering a rush to get the best seats, going late involves sacrifice 
in the viewing experience. Evening commuters often face the 
trade-off between reaching home late from work or getting 
caught in the evening rush hour. Similar trade-offs govern 
queueing behavior in a busy cafeteria: People may prefer to 
eat as soon as the cafeteria opens at lunch time or they may 
choose to stay hungry and eat later when the waiting is less 
but the food quality may deteriorate. We refer to this 'queue 
arrival timing problem' as the concert queueing problem (see 
[lO] and [9]). This problem is especially important when the 
number of potential customers involved is large. Typically, 
even when the size of population coming to a queue is large, 
it may still be substantially variable. 

In this paper we consider this concert queueing problem in 
the fluid framework. Here each customer is a particle or a point 
in a continuum that needs to decide when to arrive to a queue 
where the server opens service at a specified time. The arrivals 
are non-cooperative, their cost structure is homogeneous and 
is linear and additive in the waiting time and in the time to 
service. The customers can arrive before or after the server 

opens for service, and are served in a first come first serve 
manner. This problem was recently considered in [lO], where 
the total volume of customers is assumed to be fixed and 
known beforehand to arriving customers. This fluid model 
approximates the actual scenario where the total number of 
customers is finite but large and more or less constant (see 
[11] for a proof of convergence of the equilibrium profile in 
the discrete queueing model to that of the associated fluid 
model as the number of customers increases to infinity). This 
basic fluid model has been extended to multiple classes of 
customers [9], parallel and serial queues [8], and different 
opening and closing conditions [7]. In this paper, we analyze 
a more realistic scenario in the fluid setting, where the volume 
of arriving customers may be random, and only its probability 
distribution is known upfront. 

In [lO] and [9], the authors show that there exists a unique 
Nash equilibrium arrival profile that corresponds to customers 
arriving uniformly over a specified interval. They further show 
that the price of anarchy (the ratio of the social cost of the 
worst Nash equilibrium to the optimal one) in their framework 
equals 2. As mentioned above, we extend this framework to 
allow for random arrival volume. Under this extension, we 
derive the unique synunetric equilibrium profile for customer 
arrival instances. We note that this differs significantly from 
the arrival profile when volume of arrivals is fixed. Specifi­
cally, we show that in the random setting, the unique Nash 
equilibrium profile is uniform only up to a point and then 
it tapers off as a function of time. Thus, customers have a 
higher arrival density in the beginning of the arrival period 
than at its end. We also explicitly evaluate the cost incurred 
by each customer in equilibrium, and verify that uncertainly 
in the arrival volume tends to increase this cost. 

We also consider the problem of determining the socially 
optimal solution in this setting when the central planner is 
unaware of the volume of the arriving traffic, but can dictate 
the distribution of arrival times for those who do arrive. This 
problem may be of independent interest in various settings. For 
instance, when a central planner gives appointments to arriving 
customers and a random amount of customers show up. It 
is also useful in ascertaining the level of inefficiency of the 
equilibrium profile through the computation of PoA. We note 
that unlike in the case where the arrival volume is fixed, when 
it is allowed to be random, the social optimal solution may 
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involve queueing under certain scenarios. Interestingly, unlike 
in the equilibrium solution, under the social optimal solution 
the arrival profile of each customer is indeed uniform. Also, 
the PoA turns out to exactly equal two, as in the deterministic 
arrival volume case. 

Regarding related literature, a comprehensive overview of 
game theoretic (or strategic) decision problems in queueing 
systems may be found in the monograph [5]. However, it 
does not address fluid models. Equilibrium flows in transporta­
tion and conununication networks (also known as the selfish 
routing problem) have been extensively studied following 
Wardrop's seminal 1952 paper [18]; see [16] for a survey of 
that literature. This model essentially considers a fluid flow 
problem which views users as infinitesimal and selfish, similar 
to our model, but does not address timing decisions which 
are the focus of this paper. Bottleneck fluid models similar to 
ours have been extensively studied the transportation setting, 
starting with a seminal paper by Vickrey [17]. In the basic 
model, also known as the morning commute problem, a known 
volume of infinitesimal users are served on a FCFS basis 
by a fixed-rate server, and need to choose their staring time 
so that their service ends as close as possible to a nominal 
arrival time. Here a cost is typically incurred both for late and 
for early arrival. For later developments on this model see, 
e.g., [12], [13] and their references. The specific effects of 
uncertainty in population size have been considered in [1], 
which is perhaps the closest work to ours. In their set-up 
penalties are imposed for early and late service completions 
(relative to a nominal target time, common to all), while 
we only penalize for lateness. They also explicitly model 
demand and supply to determine the distribution of volume 
of customers that show up. Our analysis on the other hand is 
substantially more detailed. We also determine explicitly the 
socially optimal solution not considered in those papers. In a 
non-fluid setting, we finally mention the work in [4], [6], [11] 
on similar strategic arrival timing problems in queues with 
a finite customer population and stochastic service times. As 
may be expected, the analysis there becomes more complicated 
and the results less explicit. 

The organization of this paper is as follows: In Section 
2, we develop the mathematical framework for the concert 
queuing game involving random volume of arrivals having 
homogeneous and linear costs. In Section 3, we identify a 
unique symmetric Nash Equilibrium in this framework. In 
Section 4 we identify the socially optimal profile and calculate 
the PoA. We explicitly solve for the equilibrium and social 
profiles for a few examples in Section 5. We end with brief 
conclusion in Section 6. 

II. MATHEMATICAL FRAMEW ORK 

Consider the following fluid model: The population of 
potential arrival is represented by the continuous interval 
[0, (0), with each customer considered a point in that interval. 
The volume of customers that actually arrive to the queue is 
a random variable A E [0, (0), with distribution function Go. 
We assume that A has a finite mean. All arriving customers 

are admitted to the queue, and are served in a first come first 
serve manner. 

Service starts at time zero, and commences thereafter as a 
constant rate* fL > O. The costs incurred by each customer 
are taken to be linear and additive in waiting time and time to 
service. For ease of analysis we restrict ourselves to customers 
behaving sYlmnetrically, in that they select their arrival times 
from the same distribution F (this in fact is not crucial here 
since in the fluid setting it is only the aggregate arrival profile 
that matters; for more on this see [9]). The aim then is to 
look for a common equilibrium distribution. Now, if random 
A amount of customers that arrive, we can map them into the 
interval [0, A]. If each of them samples its arrival time from 
F, then, AF(t) denotes the random amount of arrivals by time 
t. Let WA,F(t) be the waiting time of an arrival at time t in 
this scenario. Conditioned that the amount of arrivals equals 
A, the cost of an arrival at t to the serving facility is given by 

where t + WA,F(t) is the time to service of a customer who 
arrives at time t. a > 0 is the unit cost of waiting time in 
the system and (3 > 0 is the unit cost of time to service. It 
will be convenient to normalize the cost so that a + (3 = 1; 
in particular, 0 < a, (3 < 1. 

Let QA,F(t) denote the queue size at time t when A amount 
of customers arrive (recall that A is a random variable). To 
relate this to F, let 

denote the net input process to the system when A customers 
arrive. Then, it is well known that (see Chapter 6.2 in [2]): 

QA,F(t) = XA,F(t) - min{ O, ��� XA,F(S)}. (1) 

Note that QA,F(t) 2: 0, and that it can only have upward 
jumps, that match those of F. In particular, if F does not 
have a jump at time t, then 

WA,F(t) = QA,F(t)/fL + max{ O, -t}. 
If F has a jump at time t, then the position of an arriving cus­
tomer would be uniformly distributed in [QA,F(t-), QA,F(t)], 
and its expected waiting time conditional on amount of arrivals 
A, 

where - 1 QA,F(t) = 2(QA,F(t-) + QA,F(t)). 
Also note that the distribution of the volume of arrivals as seen 
by an arriving customer differs from Go, and is given by the 
tilted distribution G defined by 

dG(A) _ 
AdGo(A) 

- Jooo AdGo(A) 
* We consider here the service rate to be deterministic. However, most of 

the following results are applicable to the case of stochastic /-l, as the ratio 
A//-l is the main quantity that appear in the analysis. 
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(see [3] or [1], for example). This length biased distribution 
captures the fact that a particular arrival is more likely when 
the total number of arrivals is large. 

The unconditional expected cost seen by a customer if she 
arrives at time t then equals (recalling that a + (3 = 1) 

ECF(t) = 100 W,\,F(t) dG(>") + (3 t, 

and the expected cost of a customer who selects her arrival 
time by sampling from probability distribution H is 

ECH,F = l: [100 WA,F(t) dG(>") + (3 t] dH(t). 

Note that the expectation here is taken with respect to the 
length-biased distribution G. 

Our arrival game therefore corresponds to a volume A of 
arrivals showing up at the server facility and each selecting her 
arrival time as an independent sample from F, a probability 
distribution over the reals. We refer to F as the arrival profile. 

The following definition of symmetric Nash equilibrium is 
standard: 

Definition 1: An arrival profile F is a Symmetric Nash 
Equilibrium (SNE) if, for every distribution H, 

ECF,F :s: ECH,F . 
Equivalently, there exists a set TF of F-measure 1 and a 

constant Ce such that 

(i) ECF(t)?: Ce for all t, 
(ii) ECF(t) = Ce for all t E TF. 

(2) 
(3) 

Here Ce denotes the expected cost incurred by a customer 
that arrives with probability 1 along the set TF. Customer, 
were it to arrive at any other time, will incur expected cost 
that is at least Ce. 

To see the equivalence, first suppose that for a given F 
and TF, (i) and (ii) above hold. Then, ECH,F ?: Ce for every 
distribution H, while ECF,F = Ceo On the other hand, if given 
a candidate F for SNE, violation of (i) clearly implies that F 
is not an SNE. Violation of (i i) again implies that there exists 
a set of positive F -measure where the cost is less than it is 
at another set of positive F-measure. Again, it is easy to that 
such an F is not an SNE. 

Recall that the support of a probability measure is the 
smallest closed set that has probability 1. Let TF denote the 
support of the probability measure associated with an arrival 
profile F. 

The following regularity assumption will be invoked in 
parts of our analysis. A similar assumption was used in 
[11]. While imposing reasonable restrictions on the arrival­
time distributions that may be employed by the customers, it 
makes our search for the equilibrium distribution substantially 
simpler. 

Assumption 1: The support TF of SNE profile F can lo­
cally (i.e., on any finite interval) be represented as a finite 
union of closed intervals and points. 

III. EQUILIBRIUM ANALYSIS 

In this section through a series of lemmas we develop 
necessary conditions that an SNE must satisfy. We then show 
the existence of a unique SNE. Let tb = {inf x : x E T F} and 
te = {sup x : x E TF} be the end points of the support of F, 
corresponding to the first and last arrival times. The following 
properties of an SNE are easily seen. 

Lemma 1: An SNE profile F is a continuous function of 
t (i.e., the corresponding probability measure has no point 
masses). In addition, the expected cost ECF(t) is constant 
over the support TF. Furthermore, -00 < tb < 0 and 0 < 
te < 00 (hence, 0 < F(O) < 1). 

Proof The first claim is easily seen as if the profile had 
a point mass at time t, then there must exist an E > 0 such 
that ECF(t - E) < ECF(t). 

To see the second claim note that since F is continuous, 
the waiting time WA,F(t) is continuous for each>.. so that the 
cost ECF(t) is a continuous function of t. Hence, (3) extends 
to the support TF. 

Next, tb > -00 follows as ECF(t) increases to 00 as t ..I­
-00. To see that tb < 0 note that if it were larger than or equal 
to zero, then a customer arriving at time zero would incur zero 
wait, hence would incur a cost that is strictly smaller than any 
customer arriving at a positive time, leading to a contradiction. 
The assertion that 0 < te < 00 can be verified similarly. • 

Let 

Til. = inf{ t ?: 0 : AF(t) < fL t} (4) 

denote the first time after zero when the server starts to serve 
at less than full rate fL, given that the arrival volume is A. Note 
that QII.,F(TA) = O. Since F(O) > 0, it follows that Til. > 0 
for A > O. Lemma 2 below is important for our analysis: It 
states that no queue will build up beyond Til.. 

Lemma 2: For an SNE profile F, QII.,F(T) = 0 for all T?: 
Til.. 

Proof Suppose that there exists T > Til., so that 

Q II.,F (T) > O. Without loss of generality we may assume that 
T E T F. Then due to continuity of F, (and hence through 
continuity of Q II.,F), there exists s ?: Til. denoting the last 
time before T that QA,F(t) equals zero. Clearly, if it were 
known that A is the arrival volume, then arriving at s would 
be preferable to arriving at T, contradicting T E TF. We need 
to show that this is the case also when the arrival volume is 
stochastic. 

From (1), it follows that 

and hence, 

A(F(T) - F(s)) > fL(T -s). (5) 

Now, the desired contradiction follows by comparing the costs 
at times T and s and showing that ECF(T) > ECF(s). To 
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see this, recall that, 

ECF(t) = 100 
WX,F(t) dG(A) + (3t. 

We claim that W.\,F(T) ?: W.\,F(S) for all A. Indeed, for any 
A such that W.\,F(S) = 0, this holds trivially. Otherwise, for 
A such that W.\,F(S) > 0 (that is, if A > A), we have by (5) 
that W.\,F(T) > W.\,F(S). Now, since T > s, we obtain that 
ECF(T) > ECF(s), providing the desired contradiction. • 

Corollary 1: For an SNE profile F, 

WA,F(t) = AF(t)j p, - t (6) 

for t ::; TA, and WA,F(t) = 0 otherwise. 

Proof Observe that for t < 0, QA,F(t) = AF(t) and 
hence (6) follows, as -t is the customer wait before the server 
becomes active, and AF(t)j p, is the remaining queueing delay. 
For t ?: 0 the required equality follows from Lemma 2, which 
implies that the server will be working at full rate on 0 ::; t ::; 
�. . 

Lemma 3: Fi�) strictly increases as a function of t for all 

t E TF. 

Proof From Corollary 1, it follows that for A < i(�), 
the associated waiting time W.\,F(t) = O. Hence, 

ECF(t) = r (A F(t) - t) dG(A) + (3t. 
J.\?*'r P, 

Through integration by parts, letting G(A) = 1 - G(A) for 
each A, this may be re-expressed as 

ECF(t) = t (F(t) J
OOh 

G(A)dA + (3) . 
p,t *'r 

Now, x fl/X G(A)dA is clearly a non-decreasing function of 

x. Since ECF(t) is constant for all t E TF, the result follows. 
• 

Lemma 4: An SNE profile F has a right continuous deriva-
tive in TF given by 

F' 
G

(Ifty)-
(3 

(t) = p, f� AdG(A) 

for each t E TF. 

Proof Recall that 

F(t) 

ECF(t) = 
F(t) /: G(A)dA + (3t. 

P, F(t) 

(7) 

Note that on TF, the derivative of ECF(t) in t equals zero. 
Hence, through simple manipulations it follows that for t E 
TF, wherever F is differentiable (that is, almost everywhere) 

F'( ) _ 
G

(�) -
(3 

_ 
G

(Ifty) -
(3 

t - p, f;;fu AdG(A) - p, f;;fu G(A)dA + Fi�) G( Fi;)) . 

Since, the RHS is right continuous, there exists a right 
continuous version of F' in TF. • 

Remark 1: Let 9 denote the set of points of discontinuity 
of the length-biased volume distribution G (which is countable 
at most). Then the points of discontinuity of F' correspond to 
times t at which i(�) E g. 

Lemma 5: Under Assumption 1, the support TF of an 
SN E profile F is an interval, denoted [ tb, te l . 

Proof Clearly, TF does not consist of isolated points as 
it cannot have point mass at any point. Suppose there exist 
h < t2 < t3 E TF such that 0 < F(h) = F(t2) < 1 and 
F'(t3) > O. We show that under Assumption 1, this leads to 
a contradiction. Specifically, we argue that for such a tl we 
must have 

and 

G (���)) ::; (3, (8) 

(9) 

Then, since i(�) is strictly increasing with t, and G is 

a non-increasing function, this implies that G (i(;�)) = 

G (i(��)) = (3. However, since F' (t3) > 0 implies from 

(7) that G (A��)) > (3, since Fi�) strictly increases with t, 
we have the desired contradiction. 

To see (8), note that since (iI, t2) is not in TF, it follows 
from its definition that EC F (t) is differentiable along this 
interval (with F(t) set as a constant independent of t) so that 

ECF'(ti) ?: o. It then follows that G (;ttt)) ::; (3, and 

therefore (8) follows since G is right continuous. 
To see (9), note that under Assumption 1, F' (tt) ?: 0, so 

that - ( p,tt ) G F(tt) ?: (3. 

Again, since F is continuous and G is right continuous, (9) 
follows. • 

Let Al ?: 0 denote the left limit of support of G, corre­
sponding to the minimal possible arrival volume. Recalling 
the definition of TA from (4), T.\t is then the first time beyond 
o that the server starts serving at less than full capacity, for 
some arrival volume. Also define 

A * = inf {A : G ( A) ?: a} (10) 
(recall that 0 < a < 1 is the normalized waltlng cost 
coefficient). Evidently G(A*) = a, unless A* is a discontinuity 
point of G. 

Theorem 1: Under Assumption 1, there exists a unique 
SN E profile F satisfying the following properties: . .\* (1) te = -;; . 
(ii) The equilibrium cost Ce is given by 

1 100 - A* Ce = - G(A)dA + (3-. 
p, .\. P, 
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(iii) tb = - � . 

(iv) For tb :s; t :s; T>\l' F' is constant and specified by 

F'(t) = :A a. 

- Itt 
F' t= 

G(
F(t5

)-(3 
( )  fL JO::, AdG(A)· 

F(') 

(vi) For T>\l < t :s; te, F'(t) is a non-increasing function. 
Hence F(t) is a concave function on the interval [tb, (0 ) . 

(vii) Finally, 

F(O) = :A Ce = ;A 
(1� G(A)dA + (3A*) , 

TAL = F�O) [;1 - :Ar1 , 

F(T ) = F(O) [�_�]-1 Al Al Al EA 

Proof First we argue that an SNE profile has to satisfy 
properties (i) - (vii). Then we show that a unique profile 
satisfying these conditions exists. 

To see (i), note that since F' (t;) 2: 0, we have 

(11) 

Furthermore, since te is the largest point in the support of F, 
we have ftECF(tt) 2: 0 (note that the cost for t > te has 
F(t) = 1 and is differentiable) so that 

G ( fLtt ) < (3 F(tt) - . (12) 

From (11) and ( 12), (i) follows when G( A) = (3 has at most 
one solution. When it has multiple solutions (which must lie 
on an interval), it follows that G( fLte) = (3. Then, fLte = A * 
because by definition of te, there exists a sequence tn t te 
with F'(tn) > 0 for all n sufficiently large. This implies that 

G (f(�:)) > (3 for all n sufficiently large, so that fLte = A *. 
(ii) follows by noting that 

Ce = ECF(t) = F�t) r: G(A)dA + (3t. (13) 

for all t E TF and evaluating this cost at teo 
(iii) is obvious. (iv) follows from (7), after noting that 

AI F(t) 2: fLt for t :s; TAL so that for such a t, G (A�)) = 1. 
(v) simply restates (7). 

(vi) can be seen by differentiating F'(t) in (iv) and (v). 
We get For tb :s; t :s; TAL clearly FI/(t) = O. For TAL :s; t :s; te, 
after simple manipulations, it follows that 

G'(...1!:!:..-)(1 tF'(t))2 
FI/(t) = _ 2 F(t) - F(t) fL F(t) J� AdG(A) :s; 0, 

F(l) 

at points where F' (t) is differentiable. It is not differentiable 
for t for which f(�) E Q. At these points F'(t) is non­
increasing. 

In (vii), to evaluate F(O), simply equate the equilibrium 
cost at time zero to Ceo TAL and F(TAI) are determined by 
noting that 

fL F(TAJ = F(O) + TAL EA a = fLTAIAI. 

The conditions (i) - (vii) specify the necessary conditions 
that must apply to any SNE. We now employ a monotonicity 
argument to show that there exists a unique arrival profile F( t) 
that satisfies these conditions, and is in fact the unique SNE. 

Consider the function 

h(x, t) = J; (A� - t) dG(A) + (3 t - Ceo (14) 

For 0 < t :s; te, the function h(x, t) increases from less 
than zero to infinity as x increases from zero to infinity. In 
particular, for any 0 < t :s; te, there exists a unique F(t) so 
that h(F(t), t) = O. It is easy to see that for 0 < t < te, 

8 1 ;.00 
-8 h(x, t) = - AdG(A). x fL !!f 

Since, for 0 < t < te, !1xh(F(t), t) > 0, by implicit function 
theorem (see, e.g., Luenberger 1984) this F(t) satisfies the 
ode (7) for 0 < t < teo The remaining conditions on F(t) for 
t 2: 0 follow from simple algebraic manipulations in (14). • 

Remark 2: We may now examine the effect of randomized 
arrival volume on the equilibrium cost. Consider the determin­
istic model with a deterministic arrival volume Ao that equals 
Eo(A) (note that in computing the last expectation, we use the 
true distribution Go rather than the biased distribution G). It 
is easily seen from (13) that the equilibrium cost equals fiAo 

M 
(see also [10]). On the other hand, in the stochastic model, 

1 100 - A* Ce =- G(A)dA + (3-
fL A* fL 

2:� (1� G(A)dA + lA* 
G(A)dA) 

=Ii.EA = Ii. EoA2 
> Ii.EoA 

fL fL EoA - fL ' 

(15) 

(note that E denotes the expectation with respect to the biased 
distribution G). Thus, the equilibrium cost with random A is 
larger that in the corresponding deterministic model. 

IV. S OCIAL OPTIMALITY 

The socially optimal solution to our problem may be con­
sidered under two scenarios: 1) The central planner knows the 
realized A and uses this information in selecting the arrival 
profile F for the arriving customers; 2) The central planner is 
only aware of the distribution Go of A, and plans the customer 
arrival profile F before observing A. In the first case, when 
there the arrival volume is A, the arrival profile corresponds 
to a uniform distribution along the interval [0, AI fLl and the 
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associated total cost equals f3AI fJ (see [9]). Its expected value 
equals 13 Eo AI fJ. The PoA in this case clearly exceeds 2 
(see Remark 2 above). The second case arguably provides a 
more fair comparison in terms of the information available 
to the respective decision makers. It is also analytically more 
interesting, and requires the solution of a non-trivial variational 
problem. Our key observations are that the arrival profile 
remains uniform in this case, and the PoA exactly equals 2. 

Consider then the second problem, where a central planner 
is given the distribution Go of the arrival volume, and wishes 
to specify the arrival profile F(t) so as to minimize the 
expected social cost. It is easy to see that an optimal arrival 
profile would put zero mass before the opening time. Thus, 
our objective is to minimize 

where 

and 

h = 1 dGo()") 100 
C)..,F(t).,dF(t) 

C)..,F(t) = aW)..,F(t) + f3(W)..,F(t) + t) 
= W)..,F(t) + f3t 

(16) 

(17) 

(18) 

(19) 
Theorem 2: The socially optimal arrival profile F that 

minimizes J F is given by the uniform distribution 

F'(t) = J!:... ).,*' 
where)" * is defined in (10). 

The proof is given below. We note that the socially optimal 
arrival profile shares the same endpoint te with the Nash 
equilibrium solution. However, the starting point and shape 
is different. 

Under the derived solution, the actual queue size is given 
by Q)..,F(t) = U. - l)+fJt for 0 � t � te = ).,* IfJ. At time 
te the queue length equals ()., -).,*)+ and thereafter for t 2: te 
it equals 

We illustrate this graphically in Figure IV. 
We also point out that the last theorem and its proof are 

somewhat deeper than what may first meet the eye. Using 
essentially the same proof, it may be shown that the optimal 
arrival density F' (t) is proportional to the instantaneous ser­
vice rate fJ( t) even if that rate is not constant in time. However, 
we will not deal here with this more general case. 

A. Price of Anarchy 

Substituting the expression for socially optimal F(t) in (16), 
the socially optimal cost J* can be seen to be 

J* = � roo G()")d)" + £).,*. 2fJ})..* 2fJ 
From Theorem l(ii), the Nash Equilibrium cost is given by 

1 100 - ).,* - G()")d)" + 13-. fJ )..* fJ 

.*. 

A*/� Time 

··· .. ···ql 

- . q2 

_q3 

Fig. 1. Queue length process under socially optimal profile. ql and q2 
correspond to scenarios where arriving).. > ).. *. q3 corresponds to ).. ::; ).. * . 

Therefore, PoA = cel Cs = 2 in this case. 

B. Proof of Theorem 2 

The proof proceeds through several steps. 
1. An alternative form for the cost function: The treatment 

of the optimization problem is greatly simplified by expressing 
the cost differently. Start from 

100 
C)..,F(t).,dF(t) = 100 

(W)..,F(t) + f3t)"dF(t). (20) 

For the integral over W)..,F we have: 

100 
W)..,F(t).,dF(t) = 100 

Q)..,F(t)dt. (21) 

This is just the well-known relation between (linear) waiting 
cost and holding cost. It follow from 

100 
W)..,F(t).,dF(t) 

= 1: l�o l{t::;s<t+WA,F(t)}ds )"dF(t), (22) 

= 1:(1: l{t::;s<t+W\,F(t)}).,dF(t))ds, (23) 

= 100 
Q)..,F(s)ds. (24) 

For the integral over t we have the standard formula for the 
expected value of a positive random variable: 

Therefore, 

100 
tdF(t) = 100

(1 -F(t))dt. (25) 

100 
C)..,F(t)"dF(t) = 100 

(Q)..,F(t)+f3)"(l-F(t))dt, (26) 

and 

JF = 1 dGo()") 100 
(Q)..,F(t) + 13),,(1 -F(t))dt. (27) 

2. A relaxed variational problem: In order to minimize the 
cost (27), we first formulate and solve a relaxed optimization 
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problem, and show that the solution to that problem also solves where in (39) we used the relation dG(A) = 
.\difo

oy), and 
the original one. Observe that 

(28) 

where 
(29) 

We note that Q can be considered as a (possibly negative) 
queue size in a system that continues service at full rate J.L 
even when the queue is negative. 

or 

Consider then the modified cost function J F :s: J F : 

JF = 1 dGO(A) 100 (Q.\,F(t)+ + ;3A(1 - F(t))d t (30) 

JF = 1 dGO(A) 100 k.\(F(t), t)d t, (31) 

where 
k.\(x, t) = (A x -J.L t)+ + ;3A(1 - x). (32) 

This can be written as 

where 

JF = 100 K(F(t), t)d t, (33) 

K(F(t), t) = 1 k.\(F(t), t) dGO(A). (34) 

This can be seen to be in the standard form of a variational 
problem, with cost function K, optimizing over the (convex) 
set of probability distribution functions F (i.e, subject to d F ?: 
0, F(O) = 0, F(oo) = 1). 

It is further easily seen that k.\(x, t) is a convex function in 
x (for any fixed t). It follows then that J F is a convex function 
of F. This implies that any solution that satisfies the first-order 
necessary conditions is a global optimum (e.g., see [15]). It is 
therefore sufficient to show that the proposed solution satisfies 
the first-order conditions, as we do below. 

3. The first variation: Let EH(t) be a continuous variation 
around F(t), with H(O) = H(oo) = O. We will also require 
that F'(t) + EH'(t) ?: 0 for E > 0 small enough. From (31), 

JF+EH = 1 dGO(A) 100 k.\(F(t) + EH(t), t)d t (35) 

Now, 
dk.\ (x, t) 

d x = A(I{.\x-J.'t20} -;3) (36) 

almost everywhere, hence 

DF � dh+EH(t) I dE dO 
(37) 

= 1 dGO(A) 100 A(I{.\F(t)-J.'t20} -;3)H(t)d t (38) 

= EoA 1 dG(A) 100 (I{Qv(t)20} -;3)H(t)d t (39) 

= EoA 100 (q+(t) -;3) H(t)d t, (40) 

(41) 

4. First-order conditions: Consider the proposed solution, 
namely F(t) = J.L tjA* on [O, te], so that q+(t) = ;3 on that 
interval. Since q+ (t) cannot increase in absence of arrivals, 
we can infer that q+(t) :s: ;3 for t > teo 

Since H(t) :s: 0 when F(t) = 1, i.e., for t ?: te, it 
follows from (40) that DF ?: O. Thus F satisfies the first­
order conditions, and by the stated convexity F is a global 
solution of the relaxed problem. 

5. Back to the original problem: We finally observe the 
solution F* (t) = J.L t  j A *, 0 :s: t :s: t* of the relaxed problem 
is also an optimal solution to the original problem. Indeed, 
under this arrival profile the original queue size Q .\,F* (t) has 
at most one busy period that starts at t = 0 (the busy period 
exists if A > A *, �nd otherwise Q .\,F* (t) == 0), which implies 
that Q.\f*(t) = Q.\,F*(t)+, and JF* = JF*. However, since 
J F ?: J F holds in general, it follows that F* minimizes J F 
as well. D 

V. EXAMPLES 

In this section we illustrate the derived equilibrium and 
socially optimal profiles on two examples: when G is a two 
point distribution as well as when G is uniformly distributed. 
Note that the latter corresponds to GO(A) proportional to A-I 
over an interval. 

A. Distribution G is Supported on Two Points 

Consider the setting where the number of arrivals can take 
two possible values under the length biased distribution G: Al 
with probability P.\l or Ah > Al with probability P.\h = I-p.\l· 
The profiles depend on whether P.\h cx > p.\l;3 or not. 

Case 1: P.\hCX > p.\l;3 (equivalently, P.\h > ;3). Here, 
the equilibrium profile is no longer uniform but is piecewise 
uniform with the density of the arrival profile taking two 
possible positive values, higher one first and then lower one 
in a contiguous interval. 

Specifically, from Theorem 1, A* = Ah, so te = 
.\h. The 

equilibrium cost Ce equals 
J.' 

- G(A)dA +;3-.!::. = ;3-.!::.. 1 1.\h A A 
J.L .\h J.L J.L 

Then, tb = -j3o:.\�,. Furthermore, for tb :s: t :s: Tt, F' (t) 
.\ p +.\ p cx, and for Tt :s: t :s: te, h All, I At 

F'(t) = J.L (P'\h -;3) 
= J.L (P'\hCX -p.\I;3) . AhP.\h AhP.\h 

This may be re-expressed as 
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Note that F' is piecewise constant and concave on [tb, (0 ) . 

Also, 

Under the socially optimal profile in this parametric setting 
we have A * = Ah, so te = 

Ah. The social cost Cs equals /3 �h . 
'( ) ..1!:....

P, P, 
For 0 :s; t :s; te, F t = Ah. 

Case 2: PAha :s; PAI/3 (equivalently, PAh :s; /3). Here 
the equilibrium profile turns out to be uniform. Again, from 
Theorem 1, A* = Al, so te = �. The equilibrium cost Ce 

P, 
equals 

tb = 
PAhAh + Al(/3PAI -apAh)

. afJ 
For tb :s; t :s; te, F'(t) 
constant on [tb, te), 

P, I h· F' . A +A a. n tIs case, IS hPAh lPAI 

Under the socially optimal profile in this parametric setting 
we have A* = Al, so te = �. The social cost Cs equals 

PA"Ah + Al (/3PAI -apA, J 
2fJ 

For 0 :s; t :s; te, F'(t) = t. 

B. Distribution C is Uniform 

Suppose that C corresponds to the uniform distribution 
between [Al, Ah]. Under the equilibrium profile, from The­
orem 1: A * = C-1 (a ) = Aha + Al /3, which implies that 
te = t (Aha + AI/3). The equilibrium cost Ce equals 

1 i·Ah 
- A* - C(A)dA + /3-, fJ A* fJ 

which in turn equals 

Then t = 
2Aha,6+(Ah +Atl,62 

, b 2p,a 
For tb:S; t:s; TAl' F'(t) = ��. 
F T F'( ) 2 2 te-� 

or AI:S; t :s; te, t = fJ 2....I!J.... 2 . Ah - Pet) 
For TAl < t :s; te, F' is a strictly decreasing function. Hence 

F(t) is a strictly concave function on that interval, and concave 
on the larger interval [tb, (0 ) . Furthermore, 

F(O) = /3
2 Ah + Al 

/3� 2EA +a EA' 

T = 
F(O) [� _ � ] -1 

A
/ fJ Al EA ' 

F(T ) = 
F(O) [� _ � ] -1 

Al Al Al EA 
Figures 2, 3 and 4 illustrate the density of the equilibrium 

profiles graphically. Note that for mean (Ah + At)/2 fixed, 
equilibrium cost increases with Ah and hence with variance. 
This also leads to increase in deviation from uniform distribu­
tion in the arrival profile. These are depicted in Figure 2. In 
Figure 3, we keep the variance of the uniform distribution the 
same but change the mean. Thus, (Ah -AI) is kept fixed while 
(Ah + AI) is increased. As the mean increases, the curves can 
be seen to become closer to the uniform distribution, since 
the randomness becomes relatively less significant. In Figure 
4, Al and Ah are fixed but we change the cost of time to service 
parameter /3 (in all these figures a + /3 = 1). As /3 increases, 
the customers arrive earlier and have to wait more. 

Under the socially optimal profile A* = C-1(a ) = Aha + 
Al/3 which again implies that te = t(Aha + Al/3 ) . The social 
cost Cs equals 

/32 Ah + Al a/3 Ah 
4fJ + 2fJ' 

and for 0 :s; t :s; te, F'(t) = 
(Aha

;
AI,6). 

VI. CONCLUSION 

In this article we considered the concert queueing problem 
in the fluid framework where the arriving volumes were 
random. We derived the unique equilibrium arrival profile 
in this setting and noted that while this profile is uniformly 
distributed when the arrival volume is fixed, when it is random, 
the arrival profile is constant up to a point and thereafter tapers 
down. We also derived the arrival profile that minimizes the 
overall social welfare cost. Interestingly, this turned out to 
be uniformly distributed. Somewhat surprisingly, the price of 
anarchy remained equal to 2 even in the scenario where the 
arrival volumes were random. 

There are many directions related to presence of uncertainty 
in the fluid system that require further research. For instance, 
how does the system behavior change when the service rates 
are variable, both deterministically and randomly? It would 
be interesting to see how random server start times impact the 
system behavior. One generalization that is of obvious interest 
is to consider heterogeneous arrivals with non-linear costs. 
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