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ABSTRACT

Random distortions naturally affect images taken through atmospheric turbulence or wavy water. They pose
new 3D recovery problems. Distortions are caused by the volumetric field of turbulent air or the 3D shape of
water waves. We show methods that recover these 3D distorting media. Moreover, it is possible to triangulate
objects beyond the refracting medium. Applications include sensing and study of random refractive media in
nature, and enhanced imaging including possibilities for a virtual periscope.

Keywords: Refraction, Triangulation, Turbulence, Stereo, Tomography, Computational Photography, Com-
puter Vision

1. INTRODUCTION

Consider a camera that is imaging an object. Changes of the refractive index of a medium along a line of sight
(LOS) cause distortion1–3 in acquired images (Fig. 1). Such changes are created by atmospheric turbulence
(See Fig. 2). Hence, images that are acquired in the presence of atmospheric turbulence suffer from geometric
distortions. The refractive index of a medium changes along a LOS also when looking through a water-air
interface (WAI). The distortions are particularly strong when a submerged viewer (e.g. a diver) looks obliquely
upwards from beneath a wavy water surface (see Fig. 3). We study various 3D vision challenges in random
refractive media.

First, we begin (Sec. 2) with a stochastic multiview approach in atmospheric turbulence. Random refractive
distortions due to turbulence offer information about the medium itself.4 We exploit random image distortions as
a means to estimate the 3D (volumetric) distribution of turbulence strength (TS). The strength of turbulence is a
statistical measure of local variations in the medium.5,6 Meteorologists rely on turbulence strength to understand
formation of clouds and efficiency of wind turbines.7 Moreover, determining which areas have stronger or weaker
turbulence can optimize free-space optical relay of communication and power.7

The variances in image projections of background features are computed by tracking those features over a few
hundred frames. The projection variance at each pixel at each camera viewpoint is simply a weighted integral
of the turbulence strength along the respective pixels’ LOS. The LOSs of all pixels from multiple viewpoints
crisscross the turbulence field. Estimating the TS’s volumetric distribution is then equivalent to solving a linear
tomography problem. While linear tomography is common in medical imaging, the specific structure here is
different. Thus, our domain and model form a new addition to the set of tomographic problems, which have
recently stimulated interest in computational photography and vision.8–17

Sec. 3 treats oblique views upwards through a wavy WAI. This is highly challenging, since the distortions
in this scenario are much stronger than in atmospheric turbulence. Moreover, this setup is related to biological
vision: it is experienced by submerged animals seeking to detect prey or avoid predators, which are airborne or
on land. Oblique upward vision through a WAI can function as a virtual periscope for submariners and divers,
who wish to avoid using attention-drawing physical periscopes. Sec. 3 takes a stochastic multiview approach
to this task. Multiview images acquired simultaneously in a wide stereo baseline have uncorrelated distortions.
Measurements of an object’s random projection from multiple views and times lead to a likelihood function of
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Figure 1. (a) A frame of an airborne scene, taken by a submerged camera. (b) A sample frame of an underwater scene,
taken by a downward looking camera through the water surface. (c) Sample image taken through a turbulent atmosphere.

Figure 2. The dashed line represents imaging through a non-turbulent medium while the solid line illustrates distortion
caused by a turbulence in 3D.

the object’s 3D location. Maximum likelihood (ML) estimates the 3D location, while the effective support of
the likelihood function informs of the location uncertainty. Sec. 4 presents a deterministic multiview approach
to water distorted image correction. By estimating the 3D WAI shape, distortions attributed to the waves can
be countered. We develop this idea, demonstrate it by performing lab and field experiments, and analyze its
limitations.

2. PASSIVE TOMOGRAPHY OF TURBULENCE STRENGTH

There is an LOS between a background object point and a camera at distance L away. Without turbulence,
the LOS has an angle of arrival (AOA) relative to the optical axis. Fluctuations of the atmospheric refractive
index lead to random refractions of propagating light (see Fig. 2). Hence turbulence perturbs the LOS. Due to
turbulence, random image distortions are observed over time. Each temporal frame is spatially distorted. We
give here the essence in brief, while the proofs and full details can be found in our article.18 For a wide-angle
radiating source (a point source), models established in the literature4,19 express the variance σ2

AOA of the AOA
by integration along the LOS. Let f be the focal length of the camera. Then, the image pixel displacement has



Figure 3. Imaging through a water-air-interface. The camera is submerged and stares obliquely upward at an object in the
air. The dashed line represents imaging though a flat water surface (blue pixel), while the solid line represents distortion
caused by wavy water (red pixel).
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Here X = (X,Y, Z) is the spatial location, D is the camera aperture diameter, s = 0 corresponds to the
background object location, while s = L corresponds to the lens pupil location. The parameter C2

n is the
refractive index structure constant4,19 which expresses TS. High values of C2

n imply strong turbulence, while
C2

n = 0 means that the air is not turbulent. The TS changes spatially, thus we denote it C2
n(X). High variance

in the map means that a LOS passes through more turbulence, than at pixels exhibiting low displacement
variance.

We discretize the volume domain into a 3D grid of voxels and approximate C2
n as constant in each voxel.

Define a Npixels ×Nvoxels matrix A, whose elements represent intersections of all LOSs and all voxels. Matrix
A is sparse. Column-stack the measured AOA variances σ2

x to vector m. Column-stack the unknown C2
n for all

voxels to vector c. Then, Eq. (1) can be posed in vector form as18 m = Ac. This linear system of equations
can be solved by any standard solver. For example, it may be possible to use constrained and/or regularized
least-squares:

ĉ = arg min
c

(
‖m−Ac‖2 + λ‖∇2c‖2

)
s.t. c ≥ 0, (2)

where λ weights a spatial smoothness regularizing term. When A is large, we use the Simultaneous Algebraic
Reconstruction Technique (SART)20 as the solver.

We made an outdoor experiment on a sunny day, from 11:00AM until 2:30PM. Around noon, atmospheric
turbulence should be the strongest and stationary over several hours.21 The scene is Haifa Bay area. It is a
valley with major industrial facilities interleaved by agricultural areas and some towns. We used a Nikon D7100
DSLR camera with a telephoto lens of f = 300mm, F# = 14 and exposure time of 1/600sec. To gain a wide
field of view (FOV), multiple narrow FOV videos were collected. We shot 30fps HD videos of ≈100 temporal
frames for each narrow FOV. The scene was imaged from six viewpoints on the surrounding hills. Sample images
of views and a stitched panorama are shown in Fig. 4. The data is available on-line.22

We used Google maps to locate the coordinates of multiple known landmarks in the valley landscape. We
located, overall, 360 landmarks across all views (Fig. 5[Left]). Then, pixel displacement statistics (mean and



Figure 4. Sample images from an outdoor experiment. Images of different views are shown. Places of interest are indicated
on the images and also on the panorama. [Middle] The panorama image of view-2 was created using Microsoft image
composite editor. This figure was published by the authors in Proc. ECCV 2014

Figure 5. [Left] Experimental setup of the outdoor experiment. Any blue line represents a ray between a viewpoint and
an object point. Figure axes are aligned to the compass cardinal directions in our region. [Right] The estimated TS
parameter C2

n shown in a 2D map. Bright areas represent high values while dark areas represent low values. Regional
places of interest are overlayed on the map. Notice the hottest spot is at the oil refineries. This figure was published by
the authors in Proc. ECCV 2014

variance) were computed for these landmarks in each temporal sequence of frames to construct the vector m.
The reconstruction area was divided into 20× 20× 1 voxels. We used the Laplacian regularization with λ = 0.4.
The estimated turbulence strength parameter (C2

n) is shown in Fig. 5[Right] as a 2D map. The positions of
the cameras are overlayed in green. A region with strong turbulence was estimated as the refineries plant
(C2

n = 1.7 · 10−14 m−2/3). The second-strongest hot-spot was near the power station (C2
n = 0.45 · 10−14 m−2/3).



3. TRIANGULATION IN RANDOM REFRACTIVE DISTORTIONS

We now focus on random refraction in multiview geometry.23 Consider a submerged stereo system having a
baseline b. Viewing an airborne scene from a submerged camera creates a virtual periscope. Variables associated
with the left or right camera are denoted with L or R, respectively. Each camera views the object through a dif-
ferent WAI portion. The projected image point on the left is distorted (displaced) by dL, while the corresponding
point on the right image is displaced by dR.

The full derivation and the experimental details can be found in our dedicated publication.24 Consider Fig. 3.
Under a flat WAI, the object in a projects to pixel xL

flat in camera L. Through a flat WAI, there is one-to-one
correspondence between xL

flat and a specific LOS, denoted LOS(xL
flat), by back-projection. Hence, any probability

density associated with xL
flat is also associated with LOS(xL

flat). Under a flat WAI, the object in a projects to
pixel xR

flat in camera R. Since the WAI is wavy, a projects to pixel xR(t), at time t, while xR
flat is unknown. In

this work we assume that between the views, correspondence of image points is established. In other words, we
know that the measurement pixel set {xL(t),xR(t)}t corresponds to the same 3D object point, but we do not
know where the object is.

The probability density function (PDF) of imaging a at xL is24

p(xL|xL
flat) ≈ G exp

[
−1

2
(xL − xL

flat)
TΣx

−1(xL − xL
flat)

]
∼ p(xL

flat|xL), (3)

where G is a normalization factor and Σx is the 2× 2 covariance matrix which depends on the WAI roughness,
the camera parameters24 and somewhat on xflat. Eq. (3) sets a probability density p[xL

flat|xL(t)] to each pixel
xL

flat in the L image plane. Thus, Eq. (3) sets a probability density

p[LOS(xL
flat)|xL(t)] ∼ p[xL(t)|xL

flat]. (4)

So ∀xL
flat, Eq. (4) back-projects an image-domain PDF to a PDF of all LOSs that can backproject from camera

L through a flat WAI.

An LOS is an infinite set of 3D points X that project to the same image point. A priori, each of these 3D
points is equally likely to be the sought object a. Hence, with any point X ∈ LOS(xL

flat), we associate a likelihood
equivalent to the probability density defined in Eq. (4):

lLt (X) ≡ p[LOS(xL
flat)|xL(t)] | X ∈ LOS(xL

flat) . (5)

Based on Eqs. (4,5)
lLt (X) ∼ p[xL(t)|xL

flat] | X ∈ LOS(xL
flat) . (6)

Similarly to the process involving Eq. (6), we derive an intepolated likelihood lRt (X), ∀X, based on

lRt (X) ∼ p[xR(t)|xR
flat] | X ∈ LOS(xR

flat) . (7)

We prefer distortions in the multiple views that are mutually uncorrelated. Low statistical dependency
between multiview measurements means that any new view adds more information about the object location.
This is achieved if b is significantly larger than the typical WAI-slope correlation length. Then, likelihoods
stemming from different frames and viewpoints multiply each other. Overall, for Nframes frames, the likelihood
is

L(X) =

Nframes∏
t=1

lLt (X)lRt (X), (8)

as illustrated in Fig. 6.

The effective 3D spatial support (orange region in Fig. 6) of L(X) represents the 3D domain in which the
airborne object point is likely to reside. The more viewpoints and temporal frames, the narrower this domain
becomes. ML yields an estimate of an optimal airborne 3D object location.

â = argmax
X

L(X). (9)



Figure 6. Airborne position likelihood. (a) By projecting the uncertainties around xL and xR, the effective 3D spatial
support (orange region) of the overlap represents the 3D domain in which the airborne object point is likely to reside.
(b) Additional temporal frames narrow this domain. c© 2013 IEEE. Reprinted, with permission, from Triangulation in
Random Refractive Distortions by Alterman et al, Proc. ICCP.

We performed an experiment at an indoor swimming pool. We used a pair of Canon HV-30 camcorders,
each in an underwater housing. Their baseline was b = 27.5 cm. Refer to24 for more experiments and further
technical details. The upward camera stereo pair was mounted on a tripod and submerged. An object (potato
head doll) was placed 1.6m above the rig. The 3D position estimated by our method evolved over time t, as
Nframes in Eq. (8) increased from 1 to 19. Also the uncertainty of the estimation evolved (gradually reducing).
This is illustrated in Fig. 7: the color coding of the ellipsoids indicate temporal evolution of the estimation: blue
to red. The estimated height is Ẑ = 1.6 ± 0.2m, consistent with the ground truth. Each new frame introduces
additional information. Thus, the support of the 3D likelihood function shrinks with time.

4. STELLA MARIS: STELLAR MARINE REFRACTIVE IMAGING SENSOR

Telescopes view celestial scenes through a random refracting medium: the turbulent atmosphere (Fig. 8a). As-
tronomical image degradation can be largely countered by adaptive optics and computational steps, based on an
estimate of the refractive disturbance. This estimate is obtained by measuring a known guide star using, typically,
a Shack-Hartmann wavefront sensor. In analogy, images taken by a submerged virtual periscope are degraded by
the random refractive WAI, and estimation of this refractive disturbance would facilitate compensation (Fig. 8b).
The analogy of the problem points to our solution: the WAI can be estimated by measuring a known guide star
through the WAI, simultaneously with viewing the scene of interest. Our stellar guide is obvious: the Sun. It is
observed over an array of submerged locations, in analogy to a Shack-Hartmann astronomical sensor.25

Consider Fig. 9. Component V of the imaging sensor is the viewing camera. It views the airborne scene
through the wavy WAI. Component S is the stellar-guided wave slope-sensor, which we now briefly describe.
Full details of this method are given in our full-length paper.26

The WAI-slope sensor includes a horizontal array of pinholes. A sunray refracts by the WAI, then passes
through a pinhole at 3D location h, and irradiates a spot on the diffuser (Fig 9), at 3D location p. The unit
vector ŝw is the direction of a back-projected sunray in the water, from p via h,

sw = h− p ; ŝw = sw/‖sw‖2. (10)

In air, the unit vector pointing to the Sun is ŝa. Using a different vector form of Snell’s law27 at the water
interface,

ŝa × N̂ = nŝw × N̂. (11)



Figure 7. Results of a pool experiment, triangulating a potato head. The illustration shows the estimation evolving as
t and Nframes increase. Ellipsoids represent the uncertainty of the result, equivalent to the location STD. Time is color
coded: blue to red. A zoom-in shows the final result and the ground truth. c© 2013 IEEE. Reprinted, with permission,
from Triangulation in Random Refractive Distortions by Alterman et al, Proc. ICCP.

Here × is the cross product. In the global coordinate system, the horizontal (x, y) coordinates correspond to the
pinhole array axes, and z denotes height above the diffuser plane. The pinhole array is at distance zh above the
diffuser. Using the axial components of the vectors ŝa ,̂sw and N̂, Eq. (11) can be phrased in matrix form,

BN̂ = 0, (12)

where

B =

(
0 −saz + nswz say − nswy

saz − nswz 0 −sax + nswx
−say + nswy sax − nswx 0

)
. (13)

The vector pointing to the Sun in air, ŝa, is always known, given the time of image acquisition, geographic
location, and compass azimuth of the global coordinate system. Moreover, the vector ŝw is extracted from the
image data (10). Hence, the matrix B is known. The WAI normal N̂ is estimated by solving Eq. (12): it is the
null subspace of B. This process is repeated for each pinhole, indexed k, and located at hk. It yields a set of
sampled vectors {N̂k}.



Figure 8. (a) Astronomy suffers from random refractive disturbances caused by atmospheric turbulence. The disturbance
is estimated based on a wavefront-sensor that measures a projection of a guide star. (b) A submerged virtual periscope
suffers from random refractive disturbances caused by a wavy water-air interface. The disturbance is estimated based on
a surface-slope-sensor (wave sensor). Here the guide star is the Sun. In both cases, the disturbance estimate enables its
partial compensation. c© 2014 IEEE. Reprinted, with permission, from Stella Maris: Stellar MArine Refractive Imaging
Sensor by Alterman et al, Proc. ICCP.

Figure 9. Geometry of a stellar marine refractive imaging sensor (STELLA MARIS), comprising a slope-sensor S, a
viewing camera V, and the Sun pointed by airborne vector ŝa.

The sample normal N̂ corresponds to 3D point qk. However, qk is unknown, since the WAI is unknown.



Figure 10. Oceanic experiment. [Top] Experimental setup. [Bottom] Analysis of two frames: flat-water assumption
compared to our recovery. c© 2014 IEEE. Reprinted, with permission, from Stella Maris: Stellar MArine Refractive
Imaging Sensor by Alterman et al, Proc. ICCP.

Thus, we artificially set the WAI to be flat, at altitude zflat above the diffuser plane. Then,

qk ≈ (qx, qy, z
flat) = pk + v̂wz

flat/sw
z . (14)

Surface estimation from its sampled normals {N̂k} is closely related to shape from shading.28,29 The WAI
is typically smooth and integrable. Thus, we perform numerical integration of the WAI gradient field (slopes
field), which is derived from {N̂k}. We use the integration method of Ref.30 to estimate the 3D WAI shape.

In our implementation, the pinhole array was a thin metal sheet manufactured using precise laser cutting.
It was laid on a glass plate. The diffuser was made of opal glass. The camera was a Nikon D7100. System
calibration is described in.31 System leveling was verified by a leveler. We had D = 1.8cm, zh = 6.18cm and
zflat = 25.7cm. Exposure time was 4ms. System azimuth was measured by a compass.

We made a sea test session, near Dado Beach (Haifa), illustrated in Fig. 10. Compensation assuming solely
flat-water distortion is compared to recovery based on the wave sensor. Compensation relied on knowledge that
a person was standing at horizontal distance of 75cm from the system. Additional experiments are detailed
in our full length paper.26 We experienced failure cases when the WAI experienced small scale wave ripples.
Our existing implementation does not sample the WAI densely enough to measure such high frequency waves,
yielding WAI aliasing.

5. DISCUSSION

This paper presented several approaches for imaging through natural random refractive media. We describe
passive estimation of a volumetric spatially varying distribution of turbulence-strength. As the approach does



not require synchronization between cameras, it can be used with simple hardware deployed in a wide range of
scales. More broadly, webcams observe cities worldwide, some over long ranges.32 Their locations and viewing
directions33 can be used with our framework for potentially large-scale turbulence measurements.

For triangulation through water, we used a stereo camera pair that acquired several temporal frames. The
formulation is stochastic, and optimal estimation is obtained in the sense of maximum likelihood. Furthermore,
the approach yields the location uncertainty, by the effective support of the 3D likelihood function. This ap-
proach may be generalized to detection and analysis of moving objects, through dynamic random refraction by
acquiring many images simultaneously. The method could be used to image through atmospheric turbulence
where distortions are typically less severe. However, the operating ranges are much longer.

Finally, we proposed deterministic correction for water distortion. The correction is assisted by light-field
imaging of the Sun. This imaging passively measures the water waves. Then, the recovered water surface is
used to compensate for distortions in a scene of interest, captured simultaneously. Distortions can be reduced
but some distortions remain. Nevertheless, images corrected by the process can later be handled by statistical
un-distortion post-processes,34–38 such as lucky imaging,39–41 stochastic triangulation,24 and motion detection.42

There are many ways to advance this concept. Using a lenslet array in the sensor instead of pinholes would
increase efficiency. To break the correspondence constraint, it is possible to color-encode pinholes/lenslets.16,43

The sensor can be tilted towards the obliquely-illuminating Sun with the help of orientation sensors, instead of
a leveler.
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