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Abstract

Spatio-temporal irradiance variations are created by
some structured light setups. They also occur naturally un-
derwater, where they are termed flicker. Underwater, visi-
bility is also affected by water scattering. Methods for over-
coming or exploiting flicker or scatter exist, when the imag-
ing geometry is static or quasi-static. This work removes
the need for quasi-static scene-object geometry under flick-
ering illumination. A scene is observed from a free moving
platform that carries standard frame-rate stereo cameras.
The 3D scene structure is illumination invariant. Thus, as
a reference for motion estimation, we use projections of
stereoscopic range maps, rather than object radiance. Con-
sequently, each object point can be tracked and then filtered
in time, yielding deflickered videos. Moreover, since objects
are viewed from different distances as the stereo rig moves,
scattering effects on the images are modulated. This mod-
ulation, the recovered camera poses, 3D structure and de-
flickered images yield inversion of scattering and recovery
of the water attenuation coefficient. Thus, coupled difficult
problems are solved in a single framework. This is demon-
strated in underwater field experiments and in a lab.

1. Introduction

Dynamic spatiotemporal scene irradiance is used in
structured-light setups [5, 12, 15, 31, 55]. It also exists nat-
urally underwater [17, 51], where the light pattern is un-
controlled and unknown. This pattern is often referred to
as sunlight flicker [11] or caustic networks [29]. An exam-
ple is shown in Fig. 1. The pattern is created by refrac-
tion of sunlight through the dynamic wavy air-water1 sur-
face [6, 8, 9, 48]. Of course, flicker strongly affects un-
derwater vision. This computer vision domain is essen-
tial for man-made systems handling oceanic engineering
tasks [22], archaeology [20] and mapping. This domain is

1Stereoscopic imaging [2] and motion analysis [1] through a wavy air-
water interface are studied as well.

Figure 1. An underwater scene has natural spatiotemporally vary-
ing unknown illumination (flicker). The scene is also affected by
scattering, which accumulates through the unknown object dis-
tance and attenuation parameters. The scene is captured by a
stereo rig that has unknown free motion. We seek to recover mo-
tion and scene structure, to deflicker and descatter the scene.

also important for understanding biological vision of ma-
rine animals [30].

Inconsistent spatiotemporal irradiance variations con-
fuse visual analysis and understanding based on object re-
flectance. However, these variations are very helpful for
three dimensional (3D) shape reconstruction, whether by
structured [31, 36, 39] or unstructured [5, 24] light setups.
Unstructured temporal flicker easily establishes correspon-
dence in stereoscopic videos [46, 47]. Moreover, as each
object point is measured multiple times in a sequence, flick-
ering per object point can be filtered-out over time, creating
de-flickered images [11, 40].

Nevertheless, such setups have so far assumed that dur-
ing image-sequence capture, the camera-object geometry
is static or quasi-static [55]. The motion has been small
enough to be tolerated in a very small number of frames.
These methods trade-off some spatial resolution, to enable
handling temporal geometry changes. Alternatively, fast
camera-projector setups were used for structured light [23].
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Figure 2. An underwater moving stereo rig. Images are affected
by scattering, signal attenuation, dynamic illumination, rig motion
and viewpoint parallax. The global 3D coordinates are aligned
with the left camera at v1.

This work removes the need for quasi-static scene-object
geometry under flickering illumination. The scene is ob-
served from a free moving platform, using standard frame-
rate cameras. The work enables structure from stereo and
motion [53, 54] in dynamic illumination. The method si-
multaneously yields camera pose estimation [16] and dense
3D scene structure. This generalizes structure from mo-
tion (SfM) [44] to handle the challenging illumination field.
Consequently, each object point can be tracked and geomet-
rically stabilized in time. As a result, the flickering radiance
readings of each point can be filtered temporally, yielding
deflickered videos.

Underwater, this algorithm has an additional important
benefit: it enables countering and analyzing scattering ef-
fects. Underwater scattering and absorption degrade visibil-
ity and color. For reliable compensation (descattering [49]),
scattering effects should be modulated between frames. We
obtain this modulation naturally: objects are viewed from
different distances as the rig moves, and this varies the ef-
fect of scattering on the images. This modulation, the re-
covered camera poses, 3D structure and deflickered images
yield inversion of scattering.2 Thus, coupled difficult prob-
lems are solved in a single framework. This is demonstrated
in underwater field experiments and in a lab.

2. Theoretical Background
2.1. Underwater Scatter

Underwater images suffer from strong scattering and sig-
nal attenuation. The images comprise an attenuated signal
and light backscattered along the line of sight (LOS). This
is illustrated in Fig. 2. The signal S is the object radiance
that would have been measured if there was no water on the
LOS. The attenuation coefficient of the water is η, while r is
the distance of the object from a submerged camera. Under

2Descattering in open air (dehazing and defogging) is widely stud-
ied [7, 14, 19, 33].

still natural illumination, the measured radiance [41] is

i = Se−ηr +B∞[1− e−ηr] , (1)

where B∞ is the total backscatter radiance at r → ∞.
The global parameters η and B∞ depend on the light wave-
length, thus affecting color. Descattering recovers S. This
requires estimations of r for each pixel, and B∞ and η for
each color channel. Given these estimates, a descattered ra-
diance is calculated per visible object point x by

Ŝ(x) =
i(x)−B∞[1− e−ηr(x)]

e−ηr(x)
. (2)

Descattering can be assisted by stereo [32, 37] if range is
estimated by stereo triangulation.

2.2. Stereo Correspondence and Triangulation

Stereo vision can yield the 3D structure of the scene.
This task has two sub-problems: establishing correspon-
dence and triangulation [13]. Stereo correspondence is
well-studied in computer vision [38]. Once correspondence
between two viewpoints is achieved, triangulation between
every matching pair of pixels can be calculated in order to
estimate the corresponding 3D object point. Metric scene
reconstruction requires calibration of both intrinsic and ex-
trinsic parameters [13, 56] of the stereo rig.

2.3. Alignment of Point Clouds

The column vector x expresses the coordinates of a 3D
point in a global coordinate system. The 3 × N matrix X
expresses an N -point cloud in 3D. This cloud is obtained
by sensing a rigid object from pose v1. The same object
is measured from another viewpoint, v2, yielding another
point cloud, X′. To align the two clouds, there is a need
to estimate the rigid, 6-degrees of freedom (DOF) transfor-
mation (rotation and translation) between the point clouds.
This is equivalent to finding the 6-DOF transformation be-
tween v1 and v2. The DOFs can be expressed in a rotation
matrix R and a translation vector t, which represent the
transformation between the two point clouds. Estimation
can be done by minimizing a cost function:

[R̂, T̂] = argmin
R,t

{∥X−RX̃
′
− t∥2} . (3)

Here X̃′ is a re-ordered version of X′, such that correspond-
ing points (columns) of X̃′ and X are nearest neighbors.

Equation (3) can be solved using iterative closest point
(ICP) algorithms [35, 43]. They iteratively match points in
the two clouds, then re-assess the 6-DOF transformation to
minimize Eq. (3). Fig. 3 demonstrates alignment resulting
from an ICP process.3

3Registration of several point clouds can be done simultaneously. This
process is commonly referred to as global registration [34].



Figure 3. Alignment following 6-DOF rigid motion estimation us-
ing ICP. [a] Two point clouds (blue and green) of an object, each
generated by stereoscopic triangulation from a distinct rig pose.
[b] The same point clouds after rigid alignment.

Figure 4. Consecutive frames of a static scene in a swimming pool
affected by flicker. The blue asterisks are key points detected by
SIFT. Most key points are inconsistent between frames, due to the
strong illumination variations.

3. The Challenge of Refractive Flicker
Video stabilization algorithms usually rely on block-

based search [21] or key points match [3, 26]. To illustrate
the challenge in our scenarios, we analyzed an underwa-
ter video sequence in a swimming pool, where the video
camera was static. Sample frames are shown in Fig. 4.
SIFT [28] features were used to find corresponding key
points between frames. Although the camera and objects
were static, there are almost no static key points, due to the
strong spatiotemporal lighting variations. This can mislead
motion estimation. To show this, we rendered a vibrating
sequence of frames from this sequence. As shown in Fig. 5,
the estimated camera motion has significant errors, com-
pared to the simulated ground-truth.

4. Principle
To estimate camera motion, we need a static object of

reference. While the object radiance may strongly vary
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Figure 5. SIFT-based estimation (dotted line) of displacement in
a vibrating video sequence is erroneous. Proper estimation is
achieved if the vibrating rig has stereo cameras, and if the stereo-
scopic range map functions as the alignment target.

under dynamic illumination, the 3D scene structure is il-
lumination invariant. Therefore, as a static object of ref-
erence, we use projections of stereoscopic range maps,
rather than object radiance.4 We thus acquire two simul-
taneous video sequences by a moving stereo rig, rather than
a monocular video. Relying on range maps as the align-
ment target is robust to lighting variations, but a bit coarse.
The reason is that range maps are typically less textured
than the object radiance. Thus, refinement is achieved by
exploiting the spatio-temporal irradiance variations, as in
Refs. [45, 46, 47].

To demonstrate this principle, the setup that acquired the
video referred to in Figs. 4,5 included two video cameras on
a static rig. We used the videos to render two corresponding
vibrating sequences. For each simultaneous pair of frames,
a stereoscopic range map was calculated and used for video
stabilization. The rendered frames of the left viewpoint
are shown in Figs. 6a-c, the corresponding depth maps are
shown in Figs. 6d-f and the stabilized results are shown in
Figs. 6g-h. The estimated motion is consistent with the
ground truth, as plotted in Fig. 5. The stabilized video se-
quences can then be used to attenuate the flicker [11, 40]
(Fig. 6i).

5. Stereoscopic SfM in Dynamic Illumination
The method described in Sec. 4 is generalized to 6-DOF.

First, per time τ , the stereo rig yields a 3D point cloud Xτ .
ICP is applied on the point clouds {Xτ}τ , to estimate the
6-DOF motion of the stereo rig. Second, as in Ref. [46], the
temporal variations of illumination enhance the accuracy of
the estimation. We now detail the main elements we used.

4This principle is strongly related to Refs. [25, 27], where depth maps
are found useful for image stabilization and intrinsic images estimation.
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Figure 6. [a-c] Frames from the left viewpoint of a static stereo-
scopic video sequence in a swimming pool featuring rotational ar-
tificial movement. The blue asterisks mark the corner positions of
the chest in the first frame. [d-f] The corresponding disparity maps
of frames [a-c], respectively. [g-h] Frames corresponding to [a-b],
respectively, stabilized to align with frame [c]. The blue aster-
isks positions can be used to evaluate stabilization accuracy. [i] A
deflickered image rendered by temporal median on 15 stabilized
frames.

Stereo using a simultaneous pair of frames: A stereo
rig is calibrated [56]. Afterwards, during scene acquisition,
the rig is at an unknown viewpoint pose vτ , where τ is
the discrete temporal index. The image in the left camera
then is ILτ . Simultaneously, the image in the right camera is
IRτ . The illumination field is the same for both simultaneous
views. Hence, stereo correspondence can be established us-
ing any algorithm [38, 47] for calibrated stereo correspon-
dence. Given the calibration and correspondence field, tri-
angulation yields a 3D point-cloud Xτ . Each point in the
cloud is an estimated sample of the object’s 3D structure.

Rig pose estimation using ICP: Let there be a prior point
cloud Xmodel, to which Xτ needs to be aligned. The prior
cloud Xmodel is first obtained by an initialization step, and
afterwards updated with incoming data, as we describe be-
low. ICP is applied on Xτ and Xmodel, to recover the pose
(translation and rotation) vτ ≡ {Rτ , tτ} in the global co-
ordinate system.5:

[R̂τ , t̂τ ] = argmin
R,t

{∥Xmodel −RX̃τ − t∥2} . (4)

Warping the video frames to pose vτ : This step seeks
to stabilize the left and right videos, as if they were ac-
quired by a static rig whose pose is vτ . Here is the process
we employed. The process assumes that Xmodel represents

5For efficient estimation of vτ , it is initialized by vτ−1, since view-
point change between consecutive frames is typically small.

the object structure more reliably than any particular cloud
Xτ ′ of any time τ ′. However, Xmodel lacks radiance tex-
ture. Thus, Xmodel is texture-mapped, by computationally
back-projecting the left image ILτ ′ onto Xmodel. This back-
projection is possible since vτ ′ has already been estimated.
The textured-map cloud can be represented as a matrix

CL
τ ′ ≡

[
X̃τ ′

ĨLτ ′

]
= BackProjectL(ILτ ′ ,Xmodel|vτ ′) .

(5)
Recall that X̃τ ′ is a re-ordered version of Xτ ′ , such that cor-
responding points of X̃τ ′ and Xmodel are nearest neighbors.
Here, ĨLτ ′ is a 1 ×M row-vector reordering of the pixels in
ILτ ′ where each pixel corresponds a column in X̃τ ′ .

Then, CL
τ ′ is computationally projected to the left cam-

era, as if the rig is at vτ . This yields the warped left image

IL,warpτ ′→τ = ProjectL(CL
τ ′ |vτ ) . (6)

Analogously, the right image IRτ ′ is back-projected to yield
a cloud CR

τ ′ , which is then projected to yield a warped right-
image, IR,warpτ ′→τ . This process is done ∀τ ′ ̸= τ . The output is
a geometrically stabilized left-cam video {IL,warpτ ′→τ }τ ′ and a
stabilized right-cam video {IR,warpτ ′→τ }τ ′ .

CauStereo: Refs. [46, 47] showed that in flickering illu-
mination created by caustic networks, spatio-temporal radi-
ance variations are very useful to obtain accurate correspon-
dence. Refs. [46, 47] used a static stereo rig, where the left
and right videos are geometrically stable. To exploit this
principle in our dynamic cases, we use the digitally stabi-
lized videos {IL,warpτ ′→τ }τ ′ and {IR,warpτ ′→τ }τ ′ , described above,
as data. On this warped data, we ran variational CauS-
tereo [47] (a form of space-time stereo). The result is a 3D
point cloud Xspacetime

τ . It has a finer quality than Xτ , since
Xspacetime

τ is triangulated based on several frame-pairs, in
each of which the irradiance texture is distinct, while Xτ

relies only on a single frame-pair.

Updating the model cloud: The fine 3D point-cloud
Xspacetime

τ can now update Xmodel. First, relying on Eq. (4),
Xspacetime

τ is aligned to Xmodel, by

Xspacetime
τ→model = R̂−1

τ (Xspacetime
τ − t̂τ ) . (7)

Next, Xspacetime
τ→model is merged with Xmodel into an updated

model. This is simply done by accumulating all points into
a single, large cloud.

Initializing the model cloud: As written above, Xmodel is
initialized somehow. We initialize it simply by using Xτ=1,
which corresponds to the first stereo frame-pair. With-
out loss of generality, we align the global 3D coordinates
x = [x, y, z]T with the left camera, when the rig is at vτ=1:
the x and y axes are parallel to the axes of ILτ=1, while the
z axis is the optical axis of this camera then.



Figure 7. Sample calibration frames of the lab [a] and the under-
water [b] stereo rigs.

SfM Example: Lab Experiment

Consider the first experiment conducted in the lab. Our
setup consists of two Canon HV-30 camcorders. To mutu-
ally synchronize the sequences, we shined brief light flashes
into the running camcorders before and after each experi-
ment. These flashes were later detected in postprocessing
and used to temporally align the videos. Camera calibration
was done using a checkerboard pattern, captured by both
cameras simultaneously in different poses. Details of the
calibration process using a flat checkerboard can be found
in Ref. [56]. An example of a calibration frame is shown in
Fig 7a. Moreover, radiometric calibration was conducted in
the lab, to enable oceanic descattering.

A spatiotemporal varying illumination pattern was pro-
jected on a scene, while a stereo rig moved rigidly around
the scene. Two frames acquired by the moving left cam-
era are shown in Figs. 8a,b. he entire stereoscopic sequence
was used to estimate the rig trajectory and a dense structure
of the scene, by the algorithm described in Sec. 5. The re-

sults are shown in Figs. 8c,d. The readers are referred to
the supplementary videos [42] for better impression of the
results.

6. Deflickered Images and Video
Section 5 describes how the videos can be geometri-

cally stabilized digitally. A geometrically stabilized video
{IL,warpτ ′→τ }τ ′ can then be used to attenuate the flicker in a ren-
dered image. For example, a deflickered image can be es-
timated simply by applying temporal median [11] on NF

stabilized frames,

OL
τ = Medianτ ′{IL,warpτ ′→τ } . (8)

Eq. (8) approximates the object appearance under still water
(constant lighting), viewed through the left camera when
the rig is at vτ . Repeating this process ∀τ yields a rendered
video sequence {OL

τ}τ , taken as if the camera moves along
its original trajectory, but the flicker pattern is eliminated.

SfM and Deflicker Example: Pool Experiment

We conducted an underwater experiment in a swimming
pool. To capture images underwater, each camera was
mounted inside an Ikelite waterproof housing. The under-
water experimental setup appears in Fig. 1.

Cameras calibration was done using a checkerboard un-
derwater (Fig. 7b). In a generalized case of underwa-
ter imaging through a refractive flat port, the assumption
of a single viewpoint (SVP) for each camera may be in-
valid [4, 18, 50]. Therefore, a more complex calibration

[mm]x

[mm]y

[mm]z

Pole

Corner

Blue 
box

white
binGreen

bin

Figure 8. An indoor experiment. [a-b] Two frames from a video sequence from the left viewpoint. [c] Triangulation is used to estimate the
stereo rig motion and a dense structure. [d] Texture mapping of the estimated structure using [a].
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Figure 9. An underwater experiment conducted in a swimming pool. Frames from the left [a] and right [b] viewpoints from the video
sequences. [c] Triangulation is used to estimate the stereo rig motion and a dense structure. [d] Temporal intensity changes of the same
object point captured in the two viewpoints. The corresponding object point is marked in circles in [a] and [b]. [e] A deflickered image
rendered using temporal median on a stabilized video sequence.

algorithm should be considered [10, 52]. Fortunately, in
our underwater system, we found that an SVP assumption
yields negligible errors and that the common model for SVP
camera calibration can be used. This may be because in this
system, the distance between the camera exit-pupil and the
port is very small, relative to the typical scene ranges.

In the pool, the cameras were rigidly connected by a
22.5cm baseline. The rig was hand-held, while undergo-
ing a free trajectory. Figs. 9a,b present two frames of the
video simultaneously taken by the left and right cameras,
respectively. As explained above, the method renders de-
flickered images. This is demonstrated in Fig. 9e. For a spe-
cific object point, temporal intensity plots measured by the
two camera are extracted from {IL,warpτ ′→τ }τ ′ and {IR,warpτ ′→τ }τ ′ .
Fig. 9d compares the plots.

7. Descattering
To descatter based on Eqs. (1,2), first there is a need to

assess several variables. For viewpoint vτ , per visible ob-
ject point x, we need the image radiance i(x) under flat-
water. We also need the range rτ (x). Moreover, estimates
are needed for the global parameters B∞ and η. The range
rτ (x) is easily derived ∀x ∈ Xmodel, following the process
described is Sec. 5. We use the deflickered value OL

τ (x) as
an estimate for flat-water radiance i(x), as seen from vτ .

Estimation of B∞ is based on sampling pixels [41] for
which rτ (x) → ∞. However, in contrast to Ref. [41], here

these pixels are perturbed by flicker. Thus, also B∞ has to
be deflickered. This is done by the same method described
in Sec. 6. Specifically, if temporal median (Eq. 8) is used to
deflicker, then B∞ as seen from vτ is estimated by

B̂∞,τ = Medianτ ′{IL,warpτ ′→τ (x)} | rτ (x) → ∞ . (9)

Recall that η needs to be estimated. Let us use a set X̃
of 3D points. The unknown signals corresponding to these
points form an array S̃. Define a cost function

Eη(S̃) =
∑

τ,x∈X̃

| OL
τ (x)+[B̂∞,τ−S(x)]e−ηrτ (x)−B̂∞,τ |2

(10)
Suppose for the moment that η is known. Then, Eq. (10) is
minimized by nulling the gradient of Eq. (10) with respect
to S̃. This occurs at

Ŝη(x) =

∑
τ{OL

τ (x) + B̂∞,τ [e
−ηrτ (x) − 1]}e−ηrτ (x)∑

τ e
−2ηrτ (x)

.

(11)
Substituting Eq. (11) in Eq. (10) results in a cost
Eη ≡ E(Ŝη). Now, let η be variable. Then, we are left
with a one-dimensional minimization problem:

η̂ = argmin
η

Eη . (12)

The optimal result is easily searched. Using the parameters
η̂ and B̂∞,τ in Eq. (11) yields descattered images ∀x, τ .
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Figure 10. Two left viewpoint frames captured near [a] and far [b]
from a submerged rock. The different distances from the objects
modulate scattering, leading to estimation of η. A gain-calibration
target was mounted on the rig. Its shadowed part was used to mon-
itor the cameras gain changes over time. [c] Estimation of the at-
tenuation coefficient (per color). Optimal η values are the minima
in the plots.

Oceanic Experiment

We conducted an experiment in the sea, in Dor beach,
Israel. The oceanic experimental setup appears in Fig. 1.
Figs. 10a,b present two frames of the same object, from dif-
ferent ranges. As mentioned in Sec. 5, the cameras had been
radiometrically calibrated. However, our camcorders have
auto-gain, which affects radiometric reconstruction. There-
fore, we mounted a gain-calibration target on the rig. The
target is seen in the corner of the frames (Figs. 10a,b). Its
shadowed part indicates the gain changes over time. Corre-
sponding object points in different frames yield the required
data for η estimation. Estimation results for the red, green
and blue color channels appear in Fig. 10c. Minimization
results are consistent with the average of statistical values
for coastal waters [51]. The estimated parameters were then
used for descattering in the same environment.

Results from the main oceanic experiment are presented
in Fig. 11. The conditions in the ocean are more challenging
than in a pool, as poor visibility due to scatter compounds
flicker. Nevertheless, structure and motion are estimated,
as shown in Fig. 11d. A deflickered image OL

τ which cor-
responds to Fig. 11a appears in Fig. 11b. The descattered
result is shown in Fig. 11c.

8. Discussion

This work presents an approach to estimate structure
and motion in stereo under dynamic spatiotemporal illu-

a

c

b

d

Figure 11. An underwater experiment conducted in Dor beach, Is-
rael. [a] A frame from the left viewpoint. [b] A deflickered image
rendered using temporal median on a stabilized video sequence.
[c] A descattered image of [b]. [d] Using [c] for texture mapping
of the estimated structure.

mination. A major principle is to use a stereoscopic range
map rather than the original frames for motion estimation.
Deflickered and descattered images can then be rendered.



Hence, underwater vision challenges such as low visibility
and inhomogeneous lighting are partly overcome.

An assumption of rigid motion between frames is used.
This assumption is invalid when capturing generally mov-
ing non-rigid objects. Therefore, it would be interesting
to expand the method to detect and handle such objects as
well.
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