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Abstract
Underwater, natural illumination typically varies

strongly temporally and spatially. The reason is that
waves on the water surface refract light into the water in
a spatiotemporally varying manner. The resulting under-
water illumination field is known as underwater caustics or
flicker. In past studies, flicker has often been considered
to be an undesired effect, which degrades the quality of
images. In contrast, in this work, we show that flicker can
actually be useful for vision in the underwater domain.
Specifically, it solves very simply, accurately, and densely
the stereo correspondence problem, irrespective of the
object’s texture. The temporal radiance variations due to
flicker are unique to each object point, thus disambiguating
the correspondence, with very simple calculations. This
process is further enhanced by compounding the spatial
variability in the flicker field. The method is demonstrated
by underwater in-situ experiments.

1. Introduction
Interest in underwater computer vision is growing signif-

icantly [2, 14, 19, 21]. It includes research of new princi-
ples as well as applications. The latter include underwater
robotic vision [3], inspection of pipelines [9], communica-
tion cables, ports, ship hulls [24] and swimming pools [20].
Underwater imaging is also applied to archaeological docu-
mentation [18] and observation of wildlife [4, 5, 23]. Com-
puter vision methods that are sought for this environment
are sometimes versions of open-air methods, such as mo-
saicing and stereo. They are adapted to be more robust
to the environment. Other methods try to tackle poor vis-
ibility conditions [27, 28], which often exist [32] in such a
medium.

One effect which can be rather strong in this domain
is sunlight flicker. Here, submerged objects and the wa-
ter volume itself are illuminated by a natural random pat-
tern [17, 32] which is spatially and temporally varying. An
example is shown in Fig. 1. So far, this phenomenon has
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Figure 1. [a] Sunlight flicker irradiating a scene in a pool. [b] An
underwater stereoscopic video setup in the Mediterranean.

been considered mainly as a significant disturbance to vi-
sion.1 Thus, attempts were made to reduce this effect by
postprocessing [13, 26].

In this paper, we show that the spatiotemporal variations
of this flicker can actually be very beneficial to underwater
vision. Specifically, flicker disambiguates stereo correspon-
dence. This disambiguation is very simple, yet it yields very
accurate results. Beyond computer vision, the problem of
stereo under flicker may be relevant to biological vision, as
we discuss in Sec. 7.

We begin by modeling underwater image formation, in
the context of our recovery problem. Past studies focused
either on non-flickering models [27] in scattering media, or

1Studies in computer graphics synthesized this effect [11, 16, 17].



Figure 2. A wavy water surface refracts natural illumination in
a spatially varying way. Underwater, the refracted rays create a
spatial pattern of lighting. The pattern varies temporally, due to
the motion of the surface waves [26].

on computer vision with variable lighting without account-
ing for scattering effects that occur underwater. Our model
combines flicker, scattering effects along the line of sight
(LOS) and stereo formulation. The model is significantly
simplified using several approximations, which we detail.
These approximations are partly based on statistical prop-
erties of natural flicker patterns [11]. Based on this model,
it becomes clear that it is justified to use the temporal vari-
ations of flicker as a tool to establish unambiguous corre-
spondence by local (even pointwise) calculations. More-
over, the approach is capable of functioning under degraded
visibility effects encountered underwater. The approach is
sufficiently simple and robust to field conditions. It has the
ability to identify failure cases, i.e, pixels in which it cannot
reliably establish correspondence.

2. Theoretical Background
2.1. Shallow Water Sunlight Flicker

Consider a short period of time. In every single mo-
ment, the water surface is generally not flat but rather
wavy [10, 12]. Therefore, the refraction of sunlight through
this wavy surface creates inhomogeneous lighting as illus-
trated in Fig. 2. Concave regions on the surface diverge the
light rays refracting underwater, while convex regions con-
verge them. This results in uncontrolled patterns of variable
irradiance.2 When reaching the sea floor or other underwa-
ter objects, the light rays create bright regions termed caus-
tic networks [22]. Due to the natural motion and evolution
of the surface waves, this light pattern changes in time, and
is thus known as sunlight flicker [13]. Consequently, the
irradiance in the water changes as a function of space and
time. Thus, it is denoted by I lighting(x, z, t), where t is the
temporal frame index, x = (x, y) is an image coordinate,
which corresponds to a specific LOS in the scene, and z is
the distance between a point in space and the camera hous-
ing.

2The wavy water surface also refracts lines of sight passing through the
water surface, as described in [7].

2.2. Effects Along a Line of Sight

Let the object radiance at a point be Iobj(x). Due to
attenuation in the water, the signal originating from this ob-
ject [27] is

S(x) = Iobj(x)e−ηz(x) , (1)

where η is the attenuation coefficient of the water. Here
z(x) is the distance to the object at x.

In addition, the water scatters the ambient illumination
into the LOS, creating veiling light, also termed backscat-
ter [14]. It is given [27] by an integral over the LOS,

B(x) =
∫ z(x)

0

I lighting(z̃)p(θ)e−ηz̃dz̃ . (2)

Here, p is the phase function and θ is the lighting angle rel-
ative the LOS, at that point. According to Ref. [27], Eq. (2)
can be approximated as

B(x) = B∞[1− e−ηz(x)] , (3)

where B∞ is the veiling light in a LOS reaching infinity.
Overall, the radiance measured by the camera is

I(x) = S(x) + B(x) . (4)

3. Image Formation Model
The image formation model is simple. It combines the

spatiotemporal irradiance field described in Sec. 2.1 with
the LOS effects described in Sec. 2.2. We adapt the for-
mulation to stereo. In addition, in this work we employ
approximations that simplify the model and the resulting
shape recovery.

3.1. Flicker Signal

We use stereoscopic vision. Denote the left camera by
L. We align the global coordinate system with this camera,
i.e, the position of a point in the water volume or an object
is uniquely defined by the left spatial coordinate vector xL

and the distance z from the housing of the left camera. The
signal corresponding to Eq. (1) is

SL(xL, t) = I lighting(xL, z, t)rL(xL)e−ηz(xL) , (5)

where rL denotes the reflectance coefficient of the object
towards the left camera.

The right camera is denoted by R. The object correspond-
ing to (xL, z) in the left camera is projected to pixel xR in
the right camera. The corresponding disparity vector is

d = xR − xL . (6)

The viewpoints of the two cameras are different, separated
by a baseline of length b. This leads to two consequences.
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First, the object distance z to the left camera is different
than the distance to the right one. This may affect the signal
attenuation. Second, the direction from an object point to
the left camera is different than the direction to the right
one. This may affect the reflectance coefficient r.

For reasons detailed in the following, we assume that
these differences do not have significant consequences to
the eventual shape recovery. Overall we use
Approximation 1: At both cameras, the signal is atten-
uated in the same manner, ≈ e−ηz(xL). Difference of
attenuation has no significance.
Approximation 2: The reflectance coefficients are the
same for both cameras: rL = rR. Differences in these
coefficients have no significance.

Suppose for the moment that the attenuation to the right
camera is significantly different than the left, by a fac-
tor f1(xR). Furthermore, suppose the corresponding re-
flectance coefficients are different by a factor f2(xR). Then,
the signal in the right-camera is

SR(xR, t) = I lighting(xL, z, t)rL(xL)e−ηz(xL)f1(xR)f2(xR)
= SL(xR, t)f1(xR)f2(xR) . (7)

The factors f1 and f2 are a function of space, but are tem-
porally invariant. Hence, they are canceled out if matching
between xL and xR is established by normalized temporal
correlation of the signals. Furthermore, these factors typi-
cally change very gradually. Hence, even matching by nor-
malized spatial (non-temporal) correlation is rather insensi-
tive to these factors.

These approximations are supported by other reasons.
The distance difference to the two cameras is typically
much lower than b, since the baseline is approximately
perpendicular to the optical axis, and b ¿ z. Anyway,
the distance difference is bounded by b. Thus, f1(xR) is
bounded by e−ηb. Typically, ηb ¿ 1. For example, in wa-
ter of visibility-distance (1/η) of 10m and baseline of 30cm,
e−ηb ≈ 0.97. Hence, f1(xR) ≈ 1. The assumption that
f2(xR) ≈ 1 is common in the stereo matching literature,
and is known as the brightness constraint. Nevertheless, as
explained above, temporal matching (by normalized tempo-
ral correlation) is less sensitive to brightness differences due
to reflectance and attenuation differences in the two view-
points. Recapping, based on the above approximations. the
signals in the two cameras are related by

SL(xL, t) ≈ SR(xR, t) ∀ t . (8)

3.2. Backscatter

Models such as Eqs. (2,3) have been used for recovery
in non-flickering environments [27]. Here we discuss our

model. Now, Eq. (2) depends both on time and the view-
point. Specifically, in the left camera,

BL(xL, t) =
∫ z(x)

0

I lighting(z̃, t)p(θL)e−ηz̃dz̃ . (9)

Is the spatiotemporal variation of the integral significant?
Note that flicker does not change the overall energy irradi-
ated into the water. At each frame, the caustic pattern only
changes the spatial distribution of this fixed energy. In this
random spatial pattern, some points on the LOS have higher
irradiance than others. However, different points have dif-
ferent weight in Eq. (9): a closer water voxel contributes
more to the overall backscatter than a distant voxel. If the
caustic distributes much of its energy at nearby voxels, the
backscatter can be significantly higher than if this energy is
focused only at very distant voxels. So, an important ques-
tion is, how wide are the features of the caustic pattern? In
other words, what is the correlation length of the random
pattern I lighting(z)?

In this work, we make the following assumption:
Approximation 3: The correlation length of I lighting(z) is
much smaller than the attenuation length 1/η.
This means, that the caustic pattern changes from bright to
dark features within short mutual distances along the LOS,
while the attenuation weight does not change much in such
mutual proximity. According to [11], a typical flicker cor-
relation distance may vary between a few centimeters to a
few tens of centimeters, depending on the underwater depth
and the water surface waves. On the other hand, the attenu-
ation distance typically varies [32] between a few meters to
a few tens of meters. Therefore, there is at least one order of
magnitude between the flicker correlation length and 1/η.

Under approximation 3, the spatial variations of the
caustic are filtered out by the integral in Eq. (9). Conse-
quently, Eq. (3) holds for the left-camera. For the same
reasons, Eq. (3) holds also for the right-camera. Hence,

BR(xR, t) ≈ BL(xL, t) = B∞(t)[1−e−ηz(xL)] ∀ t . (10)

The temporal variations in B∞(t) are small, for the reason
mentioned above: the flicker changes the distribution of en-
ergy, but not its spatial integral. Hence, in different frames,
the pattern changes, bright voxels dim and vice versa, but
the integral over the LOS is insensitive to these temporal
changes. Compounding Eqs. (4,8,10), the overall scene ra-
diance, as measured by the two stereo cameras can be for-
mulated as

IR(xR, t) ≈ IL(xL, t) ∀ t . (11)

4. Correspondence From Flicker
Equation (11) claims intensity similarity at points xR

and xL at time t. However, this similarity is generally not
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unique, at time t. A set of pixels ΩR(t) = {xincorrect
k } in

IR have intensities that are very close to, or equal to IL(xL).
One reason why this can happen is that objects at such non-
corresponding pixels may have the same reflectance, irra-
diance and backscatter. This situation leads to the classic
correspondence problem in non-flickering environments. A
more general reason is that the reflectance, irradiance and
backscatter in each xincorrect

k are all different than the ones
in xR, but their combination in Eq. (4) yields the same over-
all intensity, at time t.

Fortunately, in flicker, such ambiguities are completely
resolved with high probability, since the lighting is dy-
namic.3 Due to the lighting dynamics, non-corresponding
pixels in ΩR(t) are generally different than those at ΩR(t′),
at time t′ 6= t. A coincidence of matching intensities at t
has rare chances of re-occurring at t′. Considering a large
number of frames NF ,

NF⋂
t=1

ΩR(t) −→ ∅ , (12)

where in practice, even a small NF suffices to eliminate the
non-corresponding pixels.

4.1. Temporal Correlation

In practice, correspondence is solved in our work using
mainly simple temporal normalized correlation. Define the
vector

IL(xL) ≡




IL(xL, 1)
IL(xL, 2)

...
IL(xL, NF )


 . (13)

Now, in the right image, there is a set of pixels Ψ, each of
which is a candidate for correspondence with xL. Without
calibration of the stereo setup, Ψ is the whole field of view
(all the pixels in the image). If calibration of the system had
been done, then Ψ is the epipolar line [15, 31] correspond-
ing to xL. For a candidate pixel xcand

R ∈ Ψ, define

IR(xcand
R ) ≡




IR(xcand
R , 1)

IR(xcand
R , 2)
...

IR(xcand
R , NF )


 . (14)

Subtracting the mean of each vector, we obtain

ĨL(xL) = IL(xL)− 〈IL(xL)〉, (15)
3This is related to a method described in Ref. [6]. There, man-made

light patterns illuminate the scene using a projector in order to estab-
lish correspondence between stereo video cameras. In scattering media,
artificial illumination is problematic, since it cannot irradiate distant ob-
jects [27]. Artificial structured illumination is often designed to be narrow,
to reduce excessive backscatter [14]. In our case, lighting variations are
natural and are anywhere along the LOS.

ĨR(xcand
R ) = IR(xcand

R )− 〈IR(xcand
R )〉. (16)

The empirical normalized correlation [8] between xL and
xcand
R is

C(xcand
R ) =

ĨL(xL)T ĨR(xcand
R )

‖ĨL(xL)‖2‖ĨR(xcand
R )‖2

, (17)

where T denotes transposition. For pixel xL in the left im-
age, the corresponding pixel in the right image is then esti-
mated as

x̂R = arg max
xcand
R ∈Ψ

C(xcand
R ). (18)

As described in Sec. 3.1, the criterion of normalized tem-
poral correlation is rather insensitive to inter-camera dif-
ferences in signal attenuation and object reflectance. It is
also insensitive to differences in camera exposure parame-
ters (gain and shutter speed) [30].

Experimental Example

To see the effectiveness of the approach, consider our first
example, which is an experiment done in a swimming pool.
The scene includes several objects at z ∈ [1m, 2m], near the
corner of the pool. The depth at the bottom of the pool
was ∼ 1m. The stereo setup was a Videre Design head
shooting at 7fps, with b = 25cm. A sample frame-pair
appears in Fig. 3a,b. Temporal correlation was performed
using NF = 35. Here, as in all the following experiments,
the setup was not calibrated, hence the search domain Ψ
includes the entire field of view.4 As common in studies
dealing with stereo correspondence [25], the result is dis-
played as a disparity map, rather than a range map.5 The
disparity map is derived based on Eq. (6):

d̂(xL) = ‖x̂R − xL‖ . (19)

It is shown in Fig. 3d. One example of the temporal match
in corresponding points is shown in Fig. 3c.

There are a few small regions with clearly outlying re-
sults. These regions were in constant shadow, hence with-
out any flicker. This is discussed in Sec. 5.

4.2. Spatiotemporal Correlation

The method described in Sec. 4.1 is very simple and ac-
curate. It does not blur range edges, since it involves no
spatial operations. However, it requires that correlation be
established over a length of time. In static scenes, this is

4Since epipolar geometry was not exploited to limit the match search,
a few erroneous matches appeared, which would have been bypassed with
epipolar search constraints. These singular errors were effectively elimi-
nated from the disparity map using a 3× 3 median filter.

5A range map can be derived from the correspondences, once the setup
is calibrated. Underwater, such a calibration may not match the calibration
model in air, since the water interface introduces a non-single viewpoint
geometry [29] to each camera.
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Figure 3. Left [a] and right [b] frames at one instance in the sequence. [c] Temporal plots of ĨL(xL) and ĨR(x̂R) extracted from corresponding
pixels. These pixels are marked by cyan and red in the respective frames [a,b]. The estimated disparity map ‖d̂‖ is shown in [d]. Its
reciprocal, which is similar to the range map, is used for texture mapping a different viewpoint in [e].

not a problem. However, if speed is desired, it can be en-
hanced by using spatiotemporal, rather than just temporal
correlation, as explained in this section. Here, the compari-
son is not pixel-wise, but using spatial blocks. This enables
the use of smaller NF , at the price of loss of spatial resolu-
tion and consequent range errors, particulary in range edges.
Fig. 4 illustrates the possibilities of correlation support.

Let β(xL) be a block of l × l pixels centered around xL.
The pixel values in this block change during the NF frames.
Thus, the video data cube corresponding to these pixels has
dimensions of l× l×NF . Concatenate this video data cube
into a vector

Icube
L (xL) ≡ [IL(x1)T , IL(x2)T , . . . IL(xl2)]T , (20)

where {xm}l2

m=1 ∈ β(xL). Analogously, an l × l block
β(xR) is centered around xcand

R . Use the same concatena-
tion as in Eq. (20) over the video in β(xcand

R ) of the right
camera. This yields

Icube
R (xcand

R ) ≡ [IR(y1)T , IR(y2)T , . . . IR(yl2)]T , (21)

where {ym}l2

m=1 ∈ β(xcand
R ).

Now, Eqs. (15,16) are redefined as

ĨL(xL) = Icube
L (xL)− 〈Icube

L (xL)〉, (22)

ĨR(xcand
R ) = Icube

R (xcand
R )− 〈Icube

R (xcand
R )〉. (23)

Eqs. (22,23) are then used in Eqs. (17,18).

t t
1,1 >= FNl 1,1 => FNl 1,1 >> FNl

Figure 4. Support used for [left] temporal, [middle] spatial and
[right] spatiotemporal correlation.

Spatial Correlation

A degenerate case is a solution based on a single stereo
frame-pair, i.e, NF = 1, while l > 1. Here, only spatial cor-
relation is performed. This is the common method [1, 31]
for establishing stereo correspondence. Even in this case,
the flicker usually helps [24]. Matching that is based solely
on spatial correlation requires significant spatial texture.
Thus, the spatial variations in the caustic lighting field pro-
vides some texture over areas having textureless albedo.
This had been used [24] in underwater experiments to en-
hance the correspondence, independently per each individ-
ual stereo frame-pair.

5. Knowing Where It Can’t Work
It is possible to assess in which image locations, corre-

spondence estimation using Eq. (17) is unreliable. As in any
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stereo setup, occluded regions cannot be directly matched.
More particular to this approach, however, is that some pix-
els simply correspond to object points that reside in the
shadow of downwelling lighting, due to objects above them.
Points in the shadow are unaffected by flicker. Similarly,
for objects which are very far away, the signal is attenuated
(Eq. 5), thus it is difficult to sense the temporal variations
due to flicker there in short periods.

The set of pixels in IL that are occluded in IR have a low
value of C even in the “optimal” match x̂R. Hence, if C(x̂R)
is below a threshold τC , it indicates an unreliable correspon-
dence. What about the set of pixels in which flicker is ab-
sent or too weak to detect (due to shadow or long distance)?
In each of these pixels, the standard deviation of the pixel
value ‖ĨL(xL)‖2 is very low. Hence, this set can be assessed
by thresholding the field ‖ĨL(xL)‖2 by a parameter τSTD.

Thus, we may define a set ρ of reliable pixels.

ρ = {xL : [CxL
> τC ] AND [‖ĨL(xL)‖2 > τSTD]} . (24)

Range information in pixels outside ρ should be filled-in us-
ing other mechanisms, such as regularization or inpainting.

6. Additional Experiments
We conducted a set of in-situ field experiments. Differ-

ent sceneries and cameras were used, in the ocean and in a
pool.

6.1. Swimming-Pool Experiment

A swimming pool experiment is described in Sec. 4.1,
where results of temporal correlation are shown in Fig. 3.
Here, water visibility was good. This allowed us to extract
quantitative performance measures based on manual match-
ing. In the field of view, 100 points were randomly selected
in IL. These points were manually matched in IR. This
match served as ground truth in the tests. First, Fig. 5 plots
the required NF as a function of the required reliability of
matching, where epipolar constraints were not put to use.

Then, using the same video data, we re-ran the recovery
using spatiotemporal correlation, as described in Sec. 4.2,
using various values of l. Qualitatively, the resulting dispar-
ity maps resemble those of Fig. 3. The quantitative plots in
Fig. 5 lead to interesting conclusions. Using spatial support
for the correlation, a moderate success rate of ≈ 80− 85%
can be achieved with much less frames than if using only
temporal correlation. However, widening the spatial sup-
port stagnates the success rate below ≈ 90% even when
the number of frames grows. Possibly, this is caused by
true violations of spatial smoothness in the range map. This
problem does not occur when only temporal correlation is
used pointwise. With pointwise analysis, the success rate
increases monotonically with time and eventually surpasses
the results achieved using spatial matching windows.
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Figure 5. The number of frames required to achieve a certain rate
of successful match in the experiment corresponding to Fig. 3.

Figure 6. A rendered “flicker-free” image of the scene. Stereo cor-
respondence without caustics yields a few successful results (blue
squares) in textured regions, and many wrong results (yellow cir-
cles) in textureless regions.

As mentioned above, correspondence may also be sought
using only spatial correlation, in a single stereo pair
(NF = 1) of a flicker scene. As an example, we applied this
known method [24] using l = 7. Here, the success rate was
≈ 60%. It is much lower than using temporal or spatiotem-
poral matching. However, it is still valuable, compared to
matching without flicker. To see this, we first created an im-
age of the scene in which the flicker is reduced by temporal
median filtering [13]. The resulting images appear as if the
scene is illuminated nearly uniformly (Fig. 6). Now, large
smooth areas do not support well stereo matching. Hence,
spatial correlation matched only 17% of the points.

6.2. Oceanic Experiments

We conducted field experiments in the Mediterranean,
aided by scuba diving. The experiments were conducted
at depths of 3 − 5m. Photographs of the stereo setup are
shown in Figs. 1 and 7. Here, we used Canon HV-30
high-definition PAL video cameras within Ikelite underwa-
ter housings. To synchronize the video sequences, brief
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Figure 7. The oceanic experiment setup. Here, b ∈ [30, 70] cm.

a

Shadowed
areas

b

Figure 8. [a] A raw left frame from an experiment in a marine
archaeological site (Caesarea). [b] The estimated disparity map.
Blue areas represent low correspondence reliability.

light flashes were shined into the running cameras before
and after each experiment. These flashes were later detected
in postprocessing and used to temporally align the videos.

In the sea, the visibility was much poorer than in the
pool. Hence, the flicker pattern had lower contrast. This re-
quired somewhat longer sequences to reliably establish the
correlation, and thus correspondence. In any case, the se-
quences were just a few seconds long. In one experiment, a
natural scene in an underwater archeological site was cap-
tured using a b = 70cm baseline and NF = 66. The re-
sulting disparity map is presented in Fig. 8. The distance of
the large cube from the cameras was ∼ 5m. As explained
in Sec. 5, there is automatic determination of pixels having
low reliability of the match. Such pixels are marked in blue
in Fig. 8. They appear mainly in shadowed areas.

Another oceanic experiment done in a different day is
depicted in Fig. 9. Here visibility was poorer, leading to
shorter objects distances. The distance of the chair was

a

Occluded
In the right
viewpoint

b

Figure 9. [a] A raw left frame from a second oceanic experiment.
[b] The estimated disparity map. Blue areas represent low corre-
spondence reliability.

2m. Consequently the baseline was shorter (b = 30cm)
and NF = 75.

7. Biological Relevance?
The problem of stereo vision under flicker may be rel-

evant to biological vision. Consider marine animals that
share three properties: (1) They live in shallow water, where
there is abundance of natural light and thus flicker; (2) They
have binocular vision, which can potentially enable them to
assess distance by triangulating objects from different eye
elements; (3) Their brain is very small. Can such small
brains solve the complex problems associated with corre-
spondence? Specifically, such animals include stomatopods
and other crustaceans (e.g, lobsters) [4, 5, 23].

The mechanism proposed in this paper may potentially
be a key to stereo vision in such animals: it suits their habi-
tat, and requires very simple, pointwise calculations. Such
an hypothesis may be verified in biological studies. For in-
stance, the animals may undergo controlled tests in the lab,
where their ability to succeed in a task which requires dis-
tance assessment (prey, navigation) under flicker (wavy wa-
ter surface) is compared to the success in still water.

8. Conclusions
The method presented in this paper exploits the natural

phenomenon of underwater flicker to create a dense corre-
spondence map. The effectiveness of the method is demon-
strated by in-situ experiments in the field. As mentioned in
Sec. 4.2, there is a trade-off between the spatial and tem-
poral supports needed to obtain a certain success rate. This
trade-off may be optimized by an adaptive algorithm: it may
determine the support of the spatial and temporal windows
around each pixel, according to the spatiotemporal texture
in its neighborhood.
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The method establishes correspondence rather reliably
even without epipolar constraints. So, in turn, the results of
a sequence of such correspondence mappings can possibly
establish the epipolar geometry of the system. This would
be interesting to study.
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