
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

8
Multidimensional fusion by

image mosaics

Yoav Y. Schechner a and Shree K. Nayar b

aDepartment of Electrical Engineering, Technion – Israel Institute of Technology, Haifa, Israel

bDepartment of Computer Science, Columbia University, New York, USA

Image mosaicing creates a wide field of view image of a scene by fusing data from narrow
field images. As a camera moves, each scene point is typically sensed multiple times
during frame acquisition. Here we describe generalised mosaicing, which is an approach
that enhances this process. An optical component with spatially varying properties is
rigidly attached to the camera. This way, the multiple measurements corresponding to
any scene point are made under different optical settings. Fusing the data captured by the
multiple frames yields an image mosaic that includes additional information about the
scene. This information can come in the form of extended dynamic range, high spectral
quality, polarisation sensitivity or extended depth of field (focus). For instance, suppose
the state of best focus in the camera is spatially varying. This can be achieved by placing
a transparent dielectric on the detector array. As the camera rigidly moves to enlarge the
field of view, it senses each scene point multiple times, each time in a different focus
setting. This yields a wide depth of field, wide field of view image, and a rough depth
map of the scene.

8.1 Introduction

Image mosaicing1 is a common method to obtain a wide field of view (FOV) image of
a scene [8–10]. The basic idea is to capture frames of different parts of a scene, and
then fuse the data from these frames, to obtain a larger image. The data is acquired by a
relative motion between the camera and the scene: this way, each frame captures different

1In different communities the terms mosaicing [1,2] and mosaicking [3–7] are used.
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scene parts. Image mosaicing has long been used in a variety of fields, such as optical
observational astronomy [11,12], radio astronomy [13], and remote sensing [3,7,14–18],
optically or by synthetic aperture radar (SAR). It is also used in underwater research [5,
6,19–21]. Moreover, image mosaicing has found applications in consumer photography
[1,4,9,22–29].

As depicted in Figure 8.1, image mosaicing mainly addressed the extension of the FOV.
However, there are other imaging dimensions that require enhanced information by fusing
multiple measurements. In the following, we show how this can be done, within a unified
framework that includes mosaicing. The framework is termed generalised mosaicing. It
extracts significantly more information about the scene, given an amount of acquired data
similar to that acquired in traditional mosaicing.

A typical video sequence acquired during mosaicing has great redundancy in terms of the
data it contains. The reason is that there is typically a significant overlap between frames
acquired for the mosaic, thus each point is observed multiple times. Now, let us rigidly
attach to the camera a fixed filter with spatially varying properties, as in the setup shown
in Figure 8.2. As the camera moves (or simply rotates), each scene point is measured
under different optical settings. This significantly reduces the redundancy in the captured
video stream. In return, the filtering embeds in the acquired data more information about
each point in the mosaic FOV. Except for mounting the fixed filter, the image acquisition
in generalised mosaicing is identical to traditional mosaicing.

In the following sections we describe several realisations of this principle. Specifically,
when a filter with spatially varying transmittance is attached to the camera, each scene
point is effectively measured with different exposures as the camera moves. These mea-
surements are then fused to a high dynamic range (HDR) mosaic. Similarly, if the filter
transmits a spatially varying spectral band, multispectral information is obtained for each
scene point. In another implementation, a spatially varying polarisation filter is used,
yielding wide FOV polarimetric imaging. Such systems were described in [30–34].

A particular realisation, which we describe in more detail is one having spatially varying
focus settings. Fusion of image data acquired by such a sensor can yield an all-focused
image in a wide FOV, as well as a rough depth map of the scene.

8.2 Panoramic focus

8.2.1 Background on focus

Focusing is required in most cameras. Let the camera view an object at a distance sobject
from the first (front) principal plane of the lens. A focused image of this object is formed
at a distance simage behind the second (back) principal plane of the lens, as illustrated in
Figure 8.3. For simplicity, consider first an aberration-free flat-field camera, having an
effective focal length f . Then,

1

simage
= 1

f
− 1

sobject
(8.1)
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Figure 8.1 An image frame has a limited FOV of the scene, i.e., it has a limited extent spatially (x̃ coordi-
nates). By fusing partly overlapping frames, an image mosaic extends the FOV of any camera. However, there
is a need to enhance additional imaging dimensions, such as the dynamic range [33] of intensity I , the hy-
per-spectral [32] quality (sensitivity to the wavelength λ), and depth of field. The latter refers to the need to
view objects in-focus at a distance extending from f (front focal plane) to infinity.

Hence, simage is equivalent to sobject. The image is sensed by a detector array (e.g.,
a CCD), situated at a distance sdetector from the back principal plane. If sdetector = simage,
then the detector array senses the focused image. Generally, however, sdetector �= simage. If
|simage − sdetector| is sufficiently large, then the detector senses an image which is defocus
blurred.

stathaki v.2007/12/14 Prn:29/01/2008; 10:54 F:stathakisc16.tex; VTEX/Jurgita p. 3
aid: SC16 pii: B978-0-12-372529-5.00016-0 docsubty: SCP



196 Image Fusion: Algorithms and Applications

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

Figure 8.2 Scene point A is imaged on the detector at A′ through a spatially varying filter attached to the
camera. As the imaging system moves [31], each scene point is sensed through different portions of the filter,
thus multiple measurements are obtained under different optical settings.

Figure 8.3 Geometry of a simple camera system.

For a given sdetector, there is a small range of simage values for which the defocus blur
is insignificant. This range is the depth of focus. Due to the equivalence of simage to
sobject, this corresponds to a range of object distances which are imaged sharply on the
detector array. This range is the depth of field (DOF). Hence, a single frame can generally
capture in focus objects that are in this limited span. However, typically, different objects
or points in the FOV have different distances sobject, extending beyond the DOF. Hence,
while some objects in a frame are in focus, others are defocus blurred.

There is a common method to capture each object point in focus, using a stationary cam-
era. In this method, the FOV is fixed, while K frames of the scene are acquired. In each
frame, indexed k ∈ [1,K], the focus settings of the system change relative to the previ-
ous frame. Change of the settings can be achieved by varying sdetector, or f , or sobject, or
any combination of them. This way, for any specific object point (x, y), there is a frame
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Figure 8.4 An image frame has a limited FOV of the scene (marked by x̃) and a limited DOF. By fusing
differently focused images, the DOF can be extended by image post processing, but the FOV remains limited.

k(x, y) for which Equation (8.1) is approximated as

1

s
(k)
detector

≈ 1

f (k)
− 1

s
(k)
object(x, y)

(8.2)

i.e. s(k)
detector ≈ s

(k)
image, bringing the image of this object point into focus. This is the focusing

process. Since each point (x, y) is acquired in focus at some frame k, then fusing the
information from all K frames yields an image in which all points appear in focus. This
principle is sketched in Figure 8.4. The result of this image fusion is effectively a high
DOF image. However, the FOV remains limited, since the camera is static while the
frames are acquired. In the subsequent sections, we will show that focusing and extension
of the FOV can be obtained in a single, efficient scan.

The surface of least confusion
The object distance sobject(x, y) is a function of the transversal coordinates. Following
Equation (8.1), this function is equivalent to a surface simage(x, y) inside the camera
chamber.2 On this surface, the image is at best focus (least blur). This is the surface
of least confusion (SLC) [35]. Apparently, for a flat object having a spatially invariant
distance, the SLC is flat as well. In such a case, the entire object can be focused in a
single frame, since the detector array is flat.

However, the SLC is generally not flat, even if sobject is constant. Typically, it is
curved [35] radially from the centre of the camera FOV. Since it no longer obeys Equa-
tion (8.1), we denote the SLC as seffective

image . This effect is caused by lens aberrations, which
have been considered as a hindering effect. Thus, optical engineering makes an effort to

2The transversal coordinates of the image (x, y) are a scaled version of the object coordinates. The scale is the
magnification of the camera. Since the magnification is fixed for given camera settings, we do not make explicit
use of this magnification. Thus for simplicity, we do not scale the coordinates, and thus (x, y) are used for both
the image domain and the object.

stathaki v.2007/12/14 Prn:29/01/2008; 10:54 F:stathakisc16.tex; VTEX/Jurgita p. 5
aid: SC16 pii: B978-0-12-372529-5.00016-0 docsubty: SCP



198 Image Fusion: Algorithms and Applications

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

Figure 8.5 Each frame has a spatially varying focus. Generalised mosaicing of such frames extends both the
FOV and the DOF.

flat-field optical systems [35], i.e. to minimise the departure of the SLC from a flat surface
normal to the optical axis.

8.2.2 Intentional aberration

We now describe a unified way for expanding both the FOV and the DOF. The key is
an intentionally aberrated imaging system, in which the distance between the SLC and
the flat detector array spatially varies significantly. At a given frame, thus, different object
points on a flat frontal plane are focused or defocused differently. This concept is depicted
in Figure 8.5, by the support of the frame: across the FOV of a frame, the focus distance
changes.

Now, the camera scans the scene transversally, in order to increase the FOV using mo-
saicing, as in Figure 8.1. However, due to the spatially varying focus of this system,
during the transversal scan any object becomes focused at some frame k, as seen in Fig-
ure 8.5. By use of computational analysis of the acquired images, information about focus
is extracted for each object.

A focused state may be obtained for all the pixels in a wide FOV image mosaic. In addi-
tion, information becomes available about the periphery of the central region of interest.
The periphery has a gradually narrower DOF, but at least as wide as the inherent DOF of
the camera (Figure 8.6). Such a gradual variation is analogous to foveated imaging sys-
tems, in which the acquisition quality improves from the periphery towards the centre of
the FOV. The periphery is at most one frame wide, and is eliminated in 360◦ panoramic
mosaics.

Optical implementation
Panoramic focusing based on this principle had been obtained by a system in which the
CCD array was tilted relative to the optical axis [36]. We now describe an alternative
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Figure 8.6 Outside the main region of interest, the mosaic provides additional information about the scene
periphery, whose quality gradually coincides with that of a single frame.

Figure 8.7 A dielectric with refraction index n and thickness d . If it is placed before the detector, it shifts the
focused image point away from the imaging optics.

implementation, that can be more flexible. It can be based on mounting a transparent
dielectric object on the detector array. By letting this transparent object have spatially
varying characteristics, the SLC can be deformed to suit our needs.

First, we describe a simpler setup. Suppose a thin transparent slab is inserted between
the imaging optics and the plane of best image focus. Now, let a light beam be focused
through the slab. As seen in Figure 8.7, light refracts at the slab interfaces. Hence, the
plane of best focus is shifted. The shift effectively increases simage by approximately

�s ≈ d(n − 1)/n (8.3)

where d is the thickness of the slab and n is its refractive index relative to air.3 The SLC
is then

seffective
image = simage + �s (8.4)

3This is based on the paraxial approximation.
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Figure 8.8 The coordinates (x̃, ỹ) denote the position of a scene point in the global coordinate system of the
mosaic [32]. The mosaic is composed of raw frames indexed by k. The intensity in a raw frame is gk(x, y),
where (x, y) are the internal coordinates in the frame. The axial shift �s of the SLC is a function of (x, y).

Figure 8.9 The focus settings can change across the frame’s FOV by placing a transparent object with vari-
able thickness on the detector. Here, a wedge-prism is placed on the detector array, such that both objects A

and B are focused even-though they are at different distances from the camera.

where simage is given by Equation (8.1). The distance between the focused image and the
detector is thus |seffective

image − sdetector|. It can be affected by setting d or n.

To obtain a spatially varying SLC, we may vary n or d across the camera FOV. Let us
better define the spatial coordinates we use. The coordinates (x̃, ỹ) denote a scene point,
in the global coordinate system of the mosaic, as depicted in Figure 8.8. In each frame,
the internal coordinates of a pixel are (x, y), equivalent to a position on the detector array.
As an example for spatial variation of d , let the transparent object be a wedge prism, as
illustrated in Figure 8.9. In the paraxial approximation (small angles), d and �s change
linearly along the detector’s x-axis.

d = γ x (8.5)

where γ encapsulates the wedge-prism slope. Following Equations (8.3) and (8.5),

�s = γ x(n − 1)/n (8.6)

The defocus blur changes accordingly.
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Figure 8.10 The frame in which an object is focused depends on its position in the frame. The teddy bear is
focused only when it appears on the right-hand side of the frame’s FOV. The words ‘don’t panic’ are focused
only when they appear in the left-hand side of the frame’s FOV.

To demonstrate this, we placed a wedge-prism on the CCD array of a Sony monochrome
machine vision camera, and then mounted a C-mount lens over it. The system was then
positioned on a tripod, and panned to obtain video data for a wide FOV mosaic. Four
sample raw frames extracted from the video sequence are shown in Figure 8.10. Consider
two objects in the scene: a teddy bear and the words ‘don’t panic’ written on a newspaper.
The two objects have a significantly different distance from the camera. The teddy bear
is defocus blurred when it appears on the left-hand side of an image frame, while focused
on the right-hand side of another frame. In contrast, the words ‘don’t panic’ focus at the
opposite frame part.

A wedge-prism is a special case. More generally, the transparent object placed on the
detector array can have other shapes, leading to more general SLCs. Actually, even in
the absence of any transparent object attachment, the focal distance is somewhat spatially
varying (curved radially) by default, unless an effort is made to flat field the system [35].
Thus, one can use simpler lenses in which no effort is made to minimise the Petzval
curvature [35]. In any case, the raw images need to have spatially varying focusing char-
acteristics. While this makes the raw images look strange, the spatially varying focus is
compensated for and even exploited using fusion algorithms, as described in the next
sections.
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8.2.3 Data fusion

Thanks to algorithms, a wide FOV and a wide DOF can be obtained from the raw images.
The algorithms combine the principles of image mosaicing (registration; image fusion
that reduces artifacts) with the principles of wide DOF imaging (focus search and image
fusion). Therefore, mosaicing includes three consecutive stages: image registration, fo-
cus sensing for the registered images, and image fusion that reduces the appearance of
artifacts.

First of all, the frames should be registered, assuming the motion between frames is
unknown. A scene point has different coordinates in each frame. The measurements cor-
responding to this point should be identified before they can be fused. Registration algo-
rithms for image mosaicing are well developed, and we refer the readers to [1,4,9,27,29,
32,33] for details. We registered the images, samples of which are shown in Figure 8.10,
by minimising the mean squared difference between the frames.

Recall that (x̃, ỹ) are the coordinates of a scene point in the global coordinate system of
the mosaic (see Figure 8.8). Let k be the index of the individual frames that compose the
mosaic. Since the raw frames are registered, we have for each scene point in the mosaic
FOV a set of intensity measurements {gk(x̃, ỹ)}Kk=1. Now we may analyse the focus or
defocus blur.

8.2.3.1 The best focus
Once the frames are registered, we may find which one of them is focused at each mosaic
coordinate (x̃, ỹ). The focused state of an object point is detected by maximising some
focus criterion [37–45]. Since focus is associated with high sharpness, we maximise a
sharpness criterion, say the image Laplacian

k̂(x̃, ỹ) = arg max
k

∣∣∇2
x̃,ỹ gk(x̃, ỹ)

∣∣ (8.7)

where ∇2
x̃,ỹ

is the Laplacian over the mosaic’s spatial domain.

Based on k̂, a depth map of the scene can be estimated, as in standard methods for depth
from focus [38–41,43,46–49]. As illustrated in Figure 8.8, once we know k̂ at (x̃, ỹ),
we can retrieve the corresponding (x, y) coordinates in the k̂th frame. Denote them as
(x

k̂
, y

k̂
). The SLC seffective

image (x, y) of the imaging system can be known, e.g., by pre-
calibration of the system. Hence the retrieved position (x

k̂
, y

k̂
) immediately indicates

simage(xk̂
, y

k̂
). As explained in Section 8.2.1, simage is equivalent to the object distance,

i.e., the depth map.

For example, consider again our experiment using the wedge-prism. At focus, seffective
image ≈

sdetector. Thus, following Equations (8.4) and (8.6),

simage = sdetector − γ x
k̂

n − 1

n
(8.8)
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Figure 8.11 A map equivalent to a rough object distance, estimated in an experiment. Brighter pixels corre-
spond to objects at larger object distances.

This was applied to our image data, samples of which were shown in Figure 8.10. The re-
sulting depth-equivalent map simage is shown in Figure 8.11, where brighter pixels corre-
spond to objects at larger object distances. This demonstrates the feasibility of obtaining
rough depth information. The depth map was smoothed by median filtering. As men-
tioned in Section 8.2.2, the peripheral scene parts are measured in fewer frames, thus
with less focus states. Therefore, the dynamic range of depths gradually decreases in the
mosaic periphery, leaving partial knowledge of depth from focus.4

8.2.3.2 Wide DOF mosaic by fusion
In Section 8.2.3.1, Equation (8.7) led to a rough estimate of the object depth. In this
section, Equation (8.7) is the basis for forming a sharp image of the objects in view (as
if they are all in focus), no matter their depth. The output image is Î . Let us assign an
output pixel (x̃, ỹ) the value

Î (x̃, ỹ) = g
k̂(x̃,ỹ)

(x̃, ỹ) (8.9)

Here, each object point is extracted at its sharpest state. This principle is common in
techniques that create high DOF images from a stack of differently focused frames, in a
stationary camera [37,44], as described in Section 8.2.1.

While Equations (8.7) and (8.9) are a simple recipe, the result may not be visually pleas-
ing. Two kinds of artifacts are created. One of them is a noisy appearance, stemming from
a noisy estimation of the state of best-focus. The other artifact is seam-lines in the mosaic,
corresponding to the boundaries of raw frames. It stems from the slight inconsistencies of
the exposure and illumination settings between frames. Both artifacts are inherent to im-
age fusion and image mosaicing, and have been observed consistently in past work about
either mosaicing or focusing. In the following, we detail the reasons for these two visual
artifacts, and describe a way to overcome both. This is not just a cosmetic technicality:
overcoming visual artifacts in elegant ways had been a topic for research in the mosaicing
and fusion communities.

4Even if no frame measures the focus state at an area, as occurs in the periphery, depth may still be estimated
there. A method that enables this is depth from defocus [50–53], which requires as few as two differently
defocused measurements in order to estimate depth.
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Focus artifacts Focus measurement as in Equation (8.7) is not an ideal process. Image
noise may cause a random shift in the maximum focus measure. In other words, there
is randomness in the value of k̂(x̃, ỹ) about the value that would have been obtained
in the absence of noise. This results in a noisy looking mosaic. This randomness can be
attenuated if the focus measure (e.g., Equation (8.7)) is calculated over a wide patch. This
would have been fine if the object was equidistant from the camera. However, sobject(x̃, ỹ)

may have significant spatial variations (depth edges). In this case, large patches blur the
estimated k̂ map, degrading the resulting fused image.

This artifact is bypassed by an elegant approach which yields fusion results that are more
perceptually pleasing, as has been shown in various fusion studies [54–57]. It is based
on calculations performed in multiple scales [54–57], as described next. For each frame
gk(x̃, ỹ), derive Laplacian and Gaussian pyramids [58] having M pyramid levels. Denote
the image at level m ∈ [0,M − 1] of the Laplacian pyramid as l(m)

k , with a corresponding

Gaussian pyramid image g(m)
k . As m increases, the image l(m)

k expresses lower spatial

frequencies. Moreover, a pixel of l(m)
k , denoted as l

(m)
k (x̃(m), ỹ(m)) represents an equiva-

lent image area in the full image domain (x̃, ỹ) that increases with m. The lowest spatial
frequencies are represented by another image in the Gaussian pyramid, denoted as g(M)

k .

Based on g(M)
k and {l(m)

k }M−1
m=0 , the raw image gk(x̃, ỹ) can be reconstructed [58].

Now, instead of Equation (8.7), the relation

k̂
(
x̃(m), ỹ(m)

) = arg max
k

∣∣l(m)
k

(
x̃(m), ỹ(m)

)∣∣ (8.10)

determines which is the sharpest frame k̂, in each level m of the pyramid, and in each
pixel (x̃(m), ỹ(m)). Define an image

l
(m)
best

(
x̃(m), ỹ(m)

) = l
(m)

k̂

(
x̃(m), ỹ(m)

)
(8.11)

where k̂ is given by Equation (8.10). The image l(m)
best defined in Equation (8.11) is anal-

ogous to Equation (8.9), but it fuses the images in each scale of the Laplacian pyramid,
as in [55,56]. Effectively, Equation (8.11) can be interpreted as using large areas of the
full image domain (x̃, ỹ) to fuse rough image components (low frequencies), while using
small effective areas to fuse small features (high frequencies).

The images {g(M)
k }Kk=1 represent the lowest spatial frequencies. These components are

least affected by defocus blur, as defocus is essentially a low-pass filter. Therefore, there
is not much use in trying to select the sharpest g(M)

k among all K frames. Hence, this

component is fused by a linear superposition of {g(M)
k }Kk=1, yielding a new image, which

we term g(M)
best . Finally, using all the frequency components (pyramid levels) g(M)

best and

{l(m)
best}M−1

m=0 , we reconstruct the full size, complete fused image, gbest(x̃, ỹ). This is in anal-
ogy to the operation mentioned above, of reconstructing gk(x̃, ỹ) from its pyramid com-
ponents.
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Figure 8.12 A wide DOF mosaic. It is composed of a sequence of frames, each having a narrow FOV and a
spatially varying focus. Samples of the sequence are shown in Figure 8.10.

Mosaicing artifacts Image mosaicing creates artifacts in the form of seams in lines
that correspond to the boundaries of the raw frames [4,9,16,17,25,28,54]. One reason for
seams is spatial variability of exposure, created when an object is seen through different
parts of the camera’s FOV. For example, it may be caused by vignetting. Other reasons
include slight temporal variations of illumination or camera gain between frames. This
problem has been easily solved in traditional image mosaicing using image feathering.
There, fusion of frames {gk}Kk=1 is obtained by a weighted linear superposition of the
raw pixels. The superposition weight of a pixel (x, y) in frame k decreases the closer the
pixel is to the boundary of this frame [28,54]. Seam removal by the feathering operation is
particularly effective if done in low-frequency components [17], since exposure variations
(which cause seams) change very smoothly across the camera FOV.

We easily adapted this principle to our problem. Recall that we create the low frequency
component g(M)

best of the fused image by a linear superposition of {g(M)
k }Kk=1. Hence, we

set the weights of the superposition of {g(M)
k }Kk=1 according to the described feathering

principle. To conclude, the multi-scale fusion approach handles both kinds of artifacts:
those associated with non-ideal focusing and those stemming from non-ideal mosaicing.

As an example, we analysed a sequence, samples of which are shown in Figure 8.10.
The resulting wide DOF mosaic appears in Figure 8.12. The leftmost part of the image
contains defocused objects: as explained in Figure 8.6, the peripheral parts are seen in
fewer frames, thus with less focus states. As said, the periphery is at most one frame
wide.

8.3 Panorama with intensity high dynamic range

8.3.1 Image acquisition

In many scenarios, object radiance changes by orders of magnitude across the FOV. For
this reason, there has recently been an upsurge of interest in obtaining HDR image data
and in their representation [59–63]. On the other hand, raw images have a limited optical
dynamic range [64], set by the limited dynamic range of the camera detector. Above a
certain detector irradiance, the images become saturated and their content at the saturated
region is lost. Attenuating the irradiance by a shorter exposure time, a smaller aperture, or
a neutral (space invariant) density filter can ensure that saturation is avoided. However, at
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Figure 8.13 Two generalised mosaicing systems [31–33]. (Left) A system composed of a Sony black/white
video camera and an extended arm which holds the filter. (Right) A system that includes a Canon Optura
digital video camera and a cylindrical attachment that holds the filter. In both cases, the camera moves with the
attached filter as a rigid system.

Figure 8.14 Image mosaicing coupled with vignetting effects yields HDR image mosaics [33]. Besides the
FOV, it also extends the intensity dynamic range of the system. Outside the main region of interest, the mosaic
provides additional information about the scene periphery, whose quality gradually coincides with that of a
single frame.

the same time other information is lost since light may be below the detection threshold
in regions of low image irradiance.

Using generalised mosaicing, extension of both the dynamic range and the FOV are done
in a unified framework [33]. We mount a fixed filter on the camera, as in Figures 8.2
and 8.13. The intensity transmittance varies across the filter’s extent. This causes an in-
tentional vignetting. Including vignetting effects originating from the lens, the overall
effect is equivalent to spatially attenuating the image by a mask A(x,y).

Now, as in Section 8.2.2, the scene is scanned by the motion of the camera. The moving
system attenuates the light from any scene point differently in each frame. Effectively, the
camera captures each point with different exposures during the sequence. Therefore, the
system acquires both dark and bright areas with high quality while extending the FOV. It
may be viewed as introducing a new dimension to the mosaicing process (Figure 8.14).
This dimension leads to the introduction of the concept of the spatio-intensity space. In
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Figure 8.14, the spatio-intensity support of a single frame occupies a diagonal region in
the spatio-intensity space. This occurs if log[A(x,y)] varies linearly with x. The spatial
frame motion then covers the intensity dynamic range, as a by product. High definition
intensity may be obtained for all the pixels in a wide FOV image mosaic. In addition,
information becomes available about the periphery of the central region of interest: the
periphery has a smaller dynamic range, but at least the standard dynamic range of the
detector (Figure 8.14).

To demonstrate the appearance of frames taken this way, we used [33] a linear vari-
able density filter, 3 cm long, rigidly attached to an 8-bit CCD camera system, ≈ 30 cm
in front of its 25 mm lens. The filter has a maximum attenuation of 1:100. The cam-
era was rotated about its centre of projection so that each point was imaged 14 times
across the camera FOV. Some images of this sequence of 36 frames are presented in
Figure 8.15.

8.3.2 Data fusion

We now describe the method we used [33] to estimate the intensity at each mosaic point,
given its multiple corresponding measurements. As in Section 8.2.3, this is done after
the images have been registered. Let a measured intensity readout at a point be gk with
uncertainty �gk , and the estimated mask be Â with uncertainty �Â. Compensating the
readout for the mask, the scene point’s intensity is

Ik = gk

Â
(8.12)

and its uncertainty is

�Ik =
√(

∂Ik

∂gk

�gk

)2

+
(

∂Ik

∂Â
�Â

)2

(8.13)

For instance, we may set the readout uncertainty to be �gk = 0.5, since the intensity
readout values are integers. Any image pixel considered to be saturated (gk close to 255
for an 8-bit detector) is treated as having a high uncertainty. Thus, its corresponding �gk

is set to be a very large number.

Assuming the measurements Ik to be Gaussian and independent, the log-likelihood for a
value I behaves as −E2, where

E2 ≡
∑

k

(
I − Ik

�Ik

)2

(8.14)

The maximum likelihood (ML) solution for the intensity I in this scene point is the one
that minimises E2:
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Figure 8.15 Frames 4, 9, 11, 15, 17, 23, and 31 from a sequence taken with a linear variable density fil-
ter [33]. Scene features become brighter as they move leftwards in the frame. Bright scene points gradually
reach saturation. Dim scene points, which are not visible in the right-hand side of the frames, become visible
when they appear on the left.
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Î = �̂I
2 ∑

k

Ik

�I 2
k

(8.15)

where

�̂I =
(

0.5 · d2E2

dI 2

)−1/2

=
(√∑

k

1

�I 2
k

)−1

(8.16)

Although Equation (8.15) suffices to determine the value at each point, annoying seams
may appear at the boundaries of the frames that compose the mosaic. At these boundaries
there is a transition between points that have been estimated using somewhat different
sources of data. Seams appear also at the boundaries of saturated areas, where there is an
abrupt change in the uncertainty �g, while the change in g is usually small. These seams
are removed by feathering techniques: see [33].

Images from a sequence, of which samples are shown in Figure 8.15, were fused into
a mosaic using this method. The histogram equalised version of log Î is shown in Fig-
ure 8.16. Contrast stretching of Î in selected regions shows that the mosaic is not saturated
anywhere, and details are seen wherever I � 1. The HDR range of this mosaic is evident.
The periphery parts of the mosaic are left of the L mark and right of the R mark, having
a width of a single frame. These parts were not exposed at the full range of attenuation.
HDR is observed there as well, but the range gradually decreases to that of the native
detector.

8.4 Multispectral wide field of view imaging

Multispectral imaging is very useful in numerous imaging applications, including object
and material recognition [65], colour analysis and constancy [66–68], remote sensing
[65,69–71], and astronomy [72]. The applications for multispectral imaging are expand-
ing [73], and include for example, medical imaging, agriculture, archaeology and art.

In this section we describe the use of a spatially varying interference filter in the gener-
alised mosaicing framework [32]. In particular, a linear interference filter passes a narrow
wavelength band, and its central wavelength λ varies linearly with x. Such a filter can be
used in a system as depicted in Figures 8.2 and 8.13. In this case, the spectral informa-
tion in each raw frame is multiplexed with the spatial features which appear in ordinary
images. This is seen, for example, in frames shown in Figure 8.17, acquired using a mono-
chrome camera. This scene was acquired under incandescent lighting. The spatial details
of the scene are clearly recognisable (e.g., the computer monitor). The spatial features are
clear because, as depicted in Figure 8.2, the system is an imaging device, thus each of its
frames captures an area of the scene.

Once the raw frames are registered, we have for each scene point in the mosaic FOV a set
of wavelength samples {λk(x̃, ỹ)}, and corresponding intensity measurements {gk(x̃, ỹ)},
where k is the index of the individual frames that compose the mosaic. This raw data
structure is converted [32] to a multispectral image cube, denoted g(x̃, ỹ, λ). The mul-
tispectral data is now available at each scene point, and can be used in multispectral
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Figure 8.16 An image created using a generalised mosaicing system [33]. It is based on a single rotation about the centre of projection of an 8-bit video camera. Contrast
stretching in the selected squares reveals the details that reside within the computed mosaic. The numbers near the squares are the actual (unstretched) brightness ranges within
the squares. Note the shape of the filament of the lamp in its reflection from the computer monitor. The periphery regions are left of the L mark and right of the R mark.
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Figure 8.17 Frames 29, 32, 38, 40, 60, and 64 of a sequence [32] taken through the linear variable interfer-
ence filter. The left of the FOV senses the energy density at 700 nm, while the right senses it at 400 nm. The
spatial features of the scene are clearly seen.

imaging applications. For display, it is possible to convert the spectrum in each point to
Red–Green–Blue values, as described in [32].

In an experiment corresponding to the images in Figure 8.17, about 21 spectral samples
were acquired for each scene point. The grabbed images were compensated for cam-
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Figure 8.18 (Top) A colour image mosaic [32] rendered using the spectral data acquired at each point in its
FOV, based on a single pass (rotation about the centre of projection) of an ordinary black/white camera with a
single fixed filter. The scene was illuminated by incandescent lamps. In the mosaic periphery the spectral range
becomes narrower towards the outer boundaries, thus gradually deteriorating the colour rendering. (Middle)
The mosaic’s central region of interest contains the full spectral range the filter can scan. (Bottom) The spectrum
is plotted for selected points.

era vignetting effects that were calibrated beforehand. We registered the images using a
method discussed in [32]. The registration yielded a wide multispectral image mosaic,
where the spectrum can be computed for each point. The multispectral mosaic was then
converted to a colour mosaic, shown in Figure 8.18. Similarly to Sections 8.2 and 8.3,
a full range spectrum is obtained in the central region of interest. This region seems yel-
lowish in Figure 8.18 because the light coming from the incandescent lamps is rather
yellow.5 Other than that, the estimated colours were consistent with the appearance of the
objects.

Information is obtained also about the periphery, though with decreasing spectral range.
The top of Figure 8.18 indeed shows the periphery regions, one frame wide, on both sides
of the mosaic central part. Since the spectral range in these regions changes gradually
from the central part, there is no abrupt decrease of quality in the periphery. However,
towards the outer boundaries of the left and right periphery, the image becomes red and
blue respectively. This is due to the absence of data on the complimentary wavelengths in
these regions [32]. Even there, substantial information can still be available for algorithms
that make do with partial spectral data, or that do not rely on colour but on spatial features.
For example, the objects in the right periphery clearly appear in the raw frame shown at
the last photograph in Figure 8.17. It shows [32] loose dark cables hanging down through
the frame, and their shadows on the wall behind. This can indicate the number and spatial
distribution of the light sources in the scene, as in [74]. In addition, other objects (shaped
bricks) can be recognised in this region. Therefore, the peripheral regions are not wasted
data, but can be useful for computer vision.

8.5 Polarisation as well

Polarimetric imaging has been used in numerous imaging applications [75,76], including
object and material recognition [77,78], shape recovery [79–81], and removal and analy-
sis of specular reflection in photography and computer vision [82–85]. It has also been
used for removal of scattering effects [86,87], e.g. in haze [88–90], underwater [78,88,
91–94] and tissue [95].

The polarisation state has several parameters. In linear polarisation these parameters are
the intensity, the degree of polarisation, and the orientation of the plane of polarisation.
To recover the polarisation parameters corresponding to each scene point, it is usually
sufficient to measure the scene several times, each time with different polarisation set-
tings [34]. Typically, man-made systems achieve this by filtering the light through a linear

5The human visual system adapts when it is embedded in such a coloured illumination (colour constancy).
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Figure 8.19 A few frames from a sequence [34] taken through a mounted filter. The filter has spatially vary-
ing attenuation and polarisation characteristics. The effective filtering variations are gradual and not easily
visible, due to defocus blur of the filter. Nevertheless, the spatial variations make objects appear brighter on
the right-hand side. Thus saturated pixels on the right appear unsaturated in other frames, in corresponding
left-hand side pixels.

polariser, oriented differently in different images. Biological systems, however, use other
mechanisms to capture polarisation images. Specifically, the retina of the mantis shrimp
[96,97] has several distinct regions, each having different optical properties. In order to
capture all the information in high quality, the shrimp moves its eyes to scan the FOV,
thereby sequentially measuring each scene point using different optical settings [96]. This
gives the shrimp vision high quality colour, polarisation and spatial information in a wide
FOV. This biological evidence motivates the application of generalised mosaicing to po-
larisation sensing.

This principle can be demonstrated by attaching a spatially varying polarisation filter in
front of the camera [34]. As the camera moves, a given scene point is measured multiple
times, each through a filter part with different polarisation characteristics and/or orien-
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tation. Computational algorithms tailored to this kind of a system extract the required
polarisation parameters, in a wide FOV. To demonstrate this, a camera was mounted, as
in Figure 8.13, with a filter that varies the polarisation filtering across it. Furthermore, the
system was built such that its transmittance varied across the camera FOV as well (see
details in Ref. [34]). This enhances the dynamic range of the mosaic, as in Section 8.3.
For instance, let scene points appear saturated in a frame, when viewed through a filter
part having high transmittance. These points may become unsaturated in other frames,
when the points are viewed through darker portions of the filter. Furthermore, the polari-
sation sensitivity of the mounted spatially varying filter can significantly reduce specular
highlights, thus aiding in the dynamic range extension. This is seen in sample frames
taken by the system [34], shown in Figure 8.19. Note that objects are brighter (and even
saturated) when they appear on the right-hand side of the frame.

Defocus blur affects the filtering properties of the mounted filter. Thus Ref. [34] describes
a single framework that handles analysis of data acquired by non-ideal polarisation fil-
ters (partial polarisers), variable exposures and saturation. As the images are automat-
ically registered, they can be analysed by algorithms described in Ref. [34], to yield a
panoramic, polarimetric seamless image mosaic [34].

8.6 Conclusions

Generalised mosaicing is a framework for capturing information in multiple imaging
dimensions. In Section 8.2 we described how the DOF can be extended while enlarging
the FOV. Contrary to common optical designs, an SLC that is not flat or not normal to
the optical axis can be beneficial, as it enables the extraction of depth information when
the scene is scanned. This has implications for several aspects of computer vision, such
as image-based rendering [98]. It may also be applied to machine vision systems (e.g.,
microscopic ones) used for industrialised inspection.

In addition to focus, we demonstrated this framework by deriving mosaics having HDR,
multispectral or polarimetric outputs. Nevertheless, generalised mosaicing permits simul-
taneous enhancement of multiple dimensions. One example for this was described in
Section 8.5, where both an extended intensity dynamic range and polarisation informa-
tion were extracted using a single spatially varying filter. Other possibilities may include
simultaneous extraction of polarisation and spectral information in a wide field, as the
mantis shrimp [96,97]; simultaneous expansion of focus and intensity range, or other
combinations. Furthermore, generalised mosaicing can be used for self-calibration of si-
multaneous radiometric effects that occur in the camera, including vignetting, automatic-
gain control (AGC) and radiometric nonlinearity [99,100]. This is achieved by exploiting
the redundancy encapsulated in multiple overlapping frames to retrieve these radiometric
parameters.

Acknowledgements

The studies described in this work were supported in parts by a National Science Founda-
tion ITR Award, IIS-00-85864, a David and Lucile Packard Fellowship, the Louis Morin

stathaki v.2007/12/14 Prn:29/01/2008; 10:54 F:stathakisc16.tex; VTEX/Jurgita p. 23
aid: SC16 pii: B978-0-12-372529-5.00016-0 docsubty: SCP



216 Image Fusion: Algorithms and Applications

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

Fellowship, the US–Israel Binational Science Foundation (BSF), and the Ollendorff Min-
erva Center in the Electrical Engineering Department at the Technion. Minerva is funded
through the BMBF. Yoav Schechner is a Landau Fellow – supported by the Taub Foun-
dation, and an Alon Fellow.

References

[1] D. Capel and A. Zisserman, ‘Automated mosaicing with super-resolution zoom’, in
Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, 1998, pp. 885–891.

[2] S. Peleg, M. Ben-Ezra and Y. Pritch, ‘Omnistereo: Panoramic stereo imaging’,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, 2001,
pp. 279–290.

[3] R.M. Batson, ‘Digital cartography of the planets: New methods, its status, and
its future’, Photogrammetric Engineering and Remote Sensing, Vol. 53, 1987,
pp. 1211–1218.

[4] M.L. Duplaquet, ‘Building large image mosaics with invisible seam lines’, in Vi-
sual Information Processing VII, in Proc. of the SPIE, Vol. 3387, 1998, pp. 369–
377.

[5] R. Eustice, O. Pizarro, H. Singh and J. Howland, ‘UWIT: Underwater Image Tool-
box for optical image processing and mosaicking in MATLAB’, in Proc. IEEE
International Symposium on Underwater Technology, 2002, pp. 141–145.

[6] R. Garcia, J. Batlle, X. Cufi and J. Amat, ‘Positioning an underwater vehicle
through image mosaicking’, in Proc. IEEE International Conference on Robotics
and Automation, Part 3, 2001, pp. 2779–2784.

[7] R. Kwok, J.C. Curlander and S. Pang, ‘An automated system for mosaicking space-
borne SAR imagery’, International Journal of Remote Sensing, Vol. 11, 1990,
pp. 209–223.

[8] S. Hsu, H.S. Sawhney and R. Kumar, ‘Automated mosaics via topology inference’,
IEEE Computer Graphics and Application, Vol. 22, No. 2, 2002, pp. 44–54.

[9] M. Irani, P. Anandan, J. Bergen, R. Kumar and S. Hsu, ‘Efficient representations of
video sequences and their application’, Signal Processing: Image Communication,
Vol. 8, 1996, pp. 327–351.
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