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Abstract

To recover the three dimensional (3D) volumetric matter
distribution in an object, the object is imaged from multiple
directions and locations. Using these images, tomographic
computations seek the distribution. When scattering is
significant and under constrained irradiance, tomography
must explicitly account for off-axis scattering. Furthermore,
tomographic recovery must function when imaging is done
in-situ, as occurs in medical imaging and ground-based at-
mospheric sensing. We formulate tomography that handles
arbitrary orders of scattering, using a Monte-Carlo model.
The model is highly parallelizable in our formulation. This
can enable large scale rendering and recovery of volumet-
ric scenes having a large number of variables. We solve
stability and conditioning problems that stem from radia-
tive transfer modeling in-situ.

1. Introduction
Scene rendering and recovery involving participating

media [1–7] is gaining interest [8–10], while an effort
emerges to recover [11–17] three dimensional (3D) het-
erogeneous scattering media. 3D volumetric recovery is
sought in many domains [12,16,18–20], including biomed-
ical imaging, based on multi-view computational tomog-
raphy (CT). However, most CT models (e.g., X-ray) use
direct-transmission [21] as a signal, while scattering is often
considered to be a disturbance.

Scattering, including high orders,1 can be an impor-
tant signal source for tomography. This is especially rele-
vant in the atmosphere, where the uncontrolled source (sun)
and detector (wide angle camera) are generally not aligned.
Moreover, typical scenes may not comply with limit models
of single-scattering [22] or diffusion [23, 24]. General scat-
tering orders are suggested for tomography by [25]. How-

1In a single scattering regime, each light ray changes direction at most
once due to scattering. In a multiple scattering regime, light can change
direction by scattering in multiple events (orders).

ever, the medium in [25] is captured from afar: there are no
scattering events near the camera.

Sensors may be embedded in a medium. This is the case
in several in-vivo medical imaging modalities, as well as
ground-based atmospheric sensing [26]. Consequently, this
paper derives multi-scattering 3D tomography, where cam-
eras can be arbitrarily close to the medium, and in fact can
be in-situ [22]. Such a setup imposes instabilities [27–30]
on the image formation model, which strongly affects both
rendering and recovery. Moreover, a forward model in-
volving multiple scattering is computationally complex. At-
tempting an inverse-problem generally magnifies computa-
tional complexity, which inhibits its utility.

This work addresses these issues, generalizing [22] to
multiples scattering. First, we propose a way to stabilize the
forward model, including in-situ image rendering, while be-
ing computationally efficient. Efficiency is achieved using
a forward Monte Carlo (MC) principle, which parallelizes
rendering across multi-view cameras. This gain is in addi-
tion to the inherent parallelizable nature of MC, suitable for
GPU acceleration [31–34], where each photon packet tra-
verses the medium independent of other packets. Second,
in the inverse problem, optimization is made efficient using
surrogate functions [25], while overcoming ill-conditioning
arising from an in-situ setup.

2. Theoretical background
This section describes building blocks of non-emissive

radiative transfer. These blocks yield two common MC
methods, each having a specific and mutually complement-
ing advantage and disadvantage, in the context of multiview
in-situ imaging. Consequently, Sec. 3 derives stable and
efficient MC rendering which better addresses the setup.
As a case study, we refer to the atmosphere using some
expressions that appear in [22], though the formulations
apply to scattering media in general.

Extinction: Photons propagating through a scattering
medium interact with particles. The medium particles have
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an extinction cross section for interaction with each individ-
ual photon. In the atmosphere, per unit volume, the extinc-
tion coefficient due to aerosols is βaerosol = σaerosoln. Here
σaerosol is the aerosol extinction cross section and n denotes
particle density. The total atmospheric extinction sums the
aerosol and molecular contributions, β = βaerosol + βair,
where βair is modeled as a function of the altitude [22] and
wavelength λ. The optical distance along a photon path S
is

τ =

∫
S

dτ =

∫
S

βdl =

∫
S

τair +

∫
S

σaerosolndl , (1)

where τair =
∫
βairdl. The fraction of radiation power

that gets transmitted through the atmosphere is the trans-
mittance t, which exponentially decays with the optical dis-
tance (Beer-Lambert law):

t = exp(−τ) . (2)

Scattering: A photon interacts with a particle. The unit-
less single scattering albedo $ of the particle determines
a probability for scattering. The aerosol single scattering
albedo is $aerosol. In the visible spectrum, air single scat-
tering albedo is $air ' 1 and emission is negligible.

Let ω,ψ ∈ S2 (unit sphere) represent photon propaga-
tion direction vectors. The relative fraction of energy scat-
tered from ψ towards ω is set by a normalized phase func-
tion P (ω ·ψ). Air molecules yield Rayleigh scattering

PRay(ω ·ψ) =
3

16π

[
1 + (ω ·ψ)2

]
. (3)

For aerosols, P (ω ·ψ) is often parameterized. The Henyey-
Greenstein approximation [22] for aerosols

PHG(ω ·ψ) =
1

4π

1− g2[
1 + g2 − 2g(ω ·ψ)

] 3
2

(4)

is parameterized by an anisotropy parameter −1 ≥ g ≥ 1.

Radiative Transfer: The volumetric extinction field at po-
sition X is β(X). The radiance field at X in direction ω
is I(X,ω). At the domain boundary ∂Ω, the incoming
radiance [25] is I∂Ω. A ray from X in direction −ω in-
tersects ∂Ω at point X∂Ω. The radiative transfer equation
(RTE) [25, 35] in integral form is

I(X,ω) = I∂Ωexp
[
−
∫ X∂Ω

X

β(r)dr
]
+∫ X∂Ω

X

J(X′,ω)β(X′)exp
[
−
∫ X′

X

β(r)dr
]
dX′. (5)

Here J(X,ω) is the in-scattering [25, 35] volumetric field

J(X,ω) = $

∫
4π

P (ω ·ψ)I(X,ψ)dψ. (6)

MC is a popular numerical approach to solve Eqs. (5,6).

2.1. Monte Carlo Photon Tracking
Given the source radiance and $,P (ω,ψ), β, MC

propagates photons thus realizing Eq. (5). The result is an
estimate of the radiance at (X,ω), across the domain. In
our case study, the light source (sun) is effectively located
at infinity. A modeled camera c has center of projection
at location Xc. Each pixel p collects radiation flowing
from a narrow cone around direction ωp, yielding a raw
image ic(ωp). Two existing MC approaches [27] render the
images ic(ωp):

1. Forward Monte Carlo (FMC): photons propagate from
the source (sun) to the detector.

2. Backward Monte Carlo (BMC): photons propagate from
the detector to the source.

2.1.1 Sampling by Inverse Transform

MC treats scattering and extinction as random phenomena
sampled from probability distributions. Random sampling
at the heart of MC is realized by an inverse transform [36]
of a specified probability density function. We quote [22]
to briefly describe this mathematical process. A random
number u is drawn from a uniform distribution in the unit
interval: u ∼ U [0, 1]. The number u is transformed to a
random variable χ, whose cumulative distribution function
(CDF) is F (χ). The transform is χ = F−1(u), where F−1

is the inverse of F . For example, Eq. (2) is interpreted as a
probability density function, whose CDF is

F (τ) =

∫ τ

0

exp(−τ ′) dτ ′ = 1− exp(−τ). (7)

There is high probability for a photon packet to keep propa-
gating in a medium, while t is high. The probability decays
as t → 0. Thus a photon packet propagates to a random
optical distance

τ random = F−1(u) = − ln(1− u). (8)

2.1.2 Forward Monte Carlo Photon Tracking

In FMC, photons are generated at the source, illuminat-
ing the top of the atmosphere (TOA) uniformly in direction
ωsun. Each photon is traced through the medium. Pho-
tons that happen to reach camera c about direction ωp are
counted as a contribution to ic(ωp). A photon’s life cycle is
then defined by the following steps (Fig. 1[left]):
(i) A photon-packet having initial intensity I0 is launched
from the TOA in direction ωsun. This is an initial ray R0.
Per iteration s:
(ii) On ray Rs, sample the place to which the photon-
packet propagates. Eq. (8) yields τ random. Hence, based
on Eq. (1), a value lrandom is numerically [22] sought to
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Figure 1. [Left] Multi-view FMC with local estimation. [Right] Multi-view BMC with local estimation.

satisfy ∫ lrandom

0

(σaerosoln+ βair)dl = τ random. (9)

Distance lrandom along Rs yields the 3D position Xs.
(iii) If Xs is outside the domain, the packet is terminated.
If Rs passes through Xc, or a small area around Xc, the
packet is counted as contributing to the image pixel.
(iv) If Xs is inside the medium, then the photon-packet in-
teracts there with a particle. The type of particle (molecule,
aerosol) is sampled randomly based on the ratio of extinc-
tion coefficients βair, βaerosol at the voxel containing Xs.
(v) If the particle is an aerosol, the photon-packet intensity
is attenuated to Is+1 = $aerosolIs. For a purely scattering
particle, e.g. an air molecule, the photon-packet maintains
its intensity. If Is+1 is lower than a threshold, the packet is
stochastically terminated, following [28].
(vi) The photon-packet is scattered to a new random di-
rection, determined by inverse transform sampling [37, 38],
according to the phase function of the particle (Eqs. 3,4).
Let Φscatter = arcos(ω ·ψ) be the off-axis scattering an-
gle, relative to ψ. Given a random sample u ∼ U [0, 1],

Φscatter = arcos

{
1

2g

[
1 + g2 −

( g2 − 1

1 + 2gu− g

)]}
(10)

for an aerosol. Defining γ ≡ 4u− 2 +
√

(4u− 2)2 + 1,

Φscatter =arcos(γ
1
3 − γ− 1

3 ) (11)

for a molecule. The scattering azimuth angle around ψ is
sampled from U [0, 2π]. This scattering event yields a new
ray, denoted Rs+1, thus a new iteration of propagation (ii).

2.1.3 Local Estimation In FMC
One way for photons to contribute to a pixel is step (iii)
above, which is a rare event. A second way is local es-
timation [27] during step (vi), in every scattering event

(Fig. 1[left]). The local estimation contribution Wle ex-
presses the probability that a photon scatters towards the
camera and reaches the camera without interacting again.
Let Vs→c be the vector from the scattering point Xs to Xc.
Let ts→c be the transmittance (2) along Vs→c. Let ΦRs,c

be the angle between Rs and Vs→c (Fig. 1[left]). Let $,
P be the respective albedo and phase function of the scat-
tering particle: for an aerosol $ = $aerosol, P = PHG. If
the scatterer is a molecule then $ = $air ≈ 1, P = PRay.
Local estimation contributes

Wle = $IsP (ΦRs,c)
ts→c

|Vs→c|2
(12)

to pixel p in camera c. The factor |Vs→c|−2 can be inter-
preted as if Xs is a point radiation source. Due to this factor,
FMC is unstable when the camera is in-situ i.e, inside the
scattering medium [27–30]. Local estimation from scatter-
ing points Xs close to Xc lead to a large increase of image
variance. Hence, when |Vs→c| → 0., convergence requires
the number of photons to tend to infinity [27].

2.1.4 Backward Monte Carlo Photon Tracking
BMC is different from FMC in two major ways. First,
from each pixel p at camera c a photon packet is separately
launched in direction−ωp and then traced back through the
medium. If the packet back-traces to the light source (Sun),
then the packet counts as contribution to pixel p. The sec-
ond difference is how local estimation is done, as detailed
below. BMC has the following steps (Fig. 1[right]):
(i) From camera c, send a photon-packet in direction −ωp.
This is the initial ray [22], denoted R0. The packet has an
initial intensity I0.
Per iteration s:
(ii) On ray Rs, sample the location Xs to which the
photon-packet propagates, as described in step (ii) of
Sec. 2.1.2.



Figure 2. Comparing rendering. In BMC, 107 initial photons are
used, equally divided between all pixels that view the medium. In
FMC, 107 photons uniformly irradiate the domain TOA.

(iii) If Xs is outside the domain, the packet is terminated.
If Rs||ωsun, the packet counts as contributing to pixel p.
(iv,v,vi) Sample a photon scattering event: particle
type, photon-packet intensity, and scattered direction, as de-
scribed in steps (iv,v,vi) of Sec. 2.1.2.

Here too, local estimation is preformed in conjunction to
step (vi), deriving at each scattering event radiance back-
traced to the sun. Local estimation expresses the probabil-
ity that a back propagating photon scatters towards the Sun,
then reaches the Sun without interacting again. Let Vs→sun

be the vector from the scattering point Xs to the TOA, di-
rected to −ωsun (Fig. 1[right]). Here ts→sun is the trans-
mittance along Vs→sun, and ΦRs,sun is the angle between
Rs and Vs→sun. Local estimation then contributes

Wle = $IsP (ΦRs,sun)ts→sun. (13)

Since the Sun is out of the scattering medium and effec-
tively located at infinity, there is no |Vs→sun|−2 factor at
all. Hence sky-images simulated by BMC are stable even
in-situ. A comparison is displayed in Fig. 2: FMC render-
ing is very noisy compared to BMC.

3. A Stable and Efficient Forward Model
While having a major stability advantage over FMC,

BMC has drawbacks. BMC estimates radiance for one cam-
era and one pixel at a time. In contrast, each single FMC
sample trajectory can contribute to multiple viewpoints and
pixels simultaneously, using local-estimation (Fig. 1). This
is efficient for simulating multiple cameras, which observe
the medium from Nviews viewpoints.

We seek to use FMC for several reasons. First, FMC
is more efficient for multi-pixel multi-view simulations.
Moreover, a gradient-based recovery [25, 39], which we
need in Sec. 5 requires the volumetric fields I(X,ω),
J(X,ω), not only projected images. Volumetric fields are
obtained using FMC without local estimation, hence, are
not prone to instabilities. To enable FMC in-situ, how-
ever, we need to overcome the |Vs→c|−2 instability. In this
section, we describe a solution, disposing the problematic
|Vs→c|−2 factor using voxelization of the field J . Vox-
elization of J biases Eq. (5) to smooth (voxelized) in-scatter

Figure 3. A volumetric scattering medium can be imaged from
multiple view, e.g., ground-based cameras observing the atmo-
sphere.

radiance. This bias is generally consistent with smooth 3D
scenes, such as the atmosphere. We believe it is a reason-
able compromise in such a case, winning both stability and
efficiency over simple FMC and BMC, respectively.

As illustrated in Fig. 3, the volumetric domain is dis-
cretized into a grid of Nvoxels rectangular cuboid vox-
els, indexed by k or m. As a numerical approxima-
tion, assume that within any voxel, the parameters β(k)
,σaerosol, $aerosol, and g are constants, e.g., corresponding
to the values at each voxel center. Inspired by volumet-
ric photon mapping [40–42], the solution has three steps:
(i) Pre-calculating the geometry of the cameras-grid setup.
(ii) FMC calculation of the radiance scattered from voxel
k in the direction of camera c. (iii) Attenuating radiance
along the line of sight (LOS) from voxel k to camera c.

3.1. Geometry
At camera c, the column-stack vector ic represents an

image having Npix pixels. Each pixel collects light from a
narrow cone in the domain (Fig. 4). The cone contains or
intersects some voxels. The radiant power contributed by
voxel k to camera c is Rc(k), which we define in detail in
Section 3.3. Overall, radiance captured at the pixel from all
voxels is a weighted sum of Rc(k) over all voxels k. This
sum is expressed [22] by a sparse Npix × Nvoxels matrix
operation Πc, having reciprocal area units

ic = ΠcRc . (14)

Here Rc is a column-stacked representation of Rc(k). The
weights of Πc represent the relative portion of the radiant
power contributing to camera c, solely due to geometry.

The elements of Πc are pre-calculated as follows. Divide
pixel p to Nrays points, from each of which back-project



Figure 4. (a) Ray Rρ
c,p intersects voxel k, creating a line-segment

lρc,p(k). Two isolated voxels (A) and (B) project to the im-
age plane [Insets]. Because of the difference of the voxels’ dis-
tance from camera c, their projected support is different. (b)
Line-segment lLOS

c (m|k) is the intersection of voxel m and line-
segment [LOSc, k].

a ray Rρ
c,p. The intersection length of Rρ

c,p (Fig. 4a) with
voxel k is lρc,p(k). Let Vvoxel be a voxel volume. The weight
is proportional to a normalized average intersection length,

Πc(p, k) =l̄c,p(k) =
1

NraysVvoxel

Nrays∑
ρ=1

lρc,p(k) . (15)

Eqs. (14,15) express rendering. There is no factor propor-
tional to |Vs→c|−2 in Eqs. (14,15). This factor is implicit
in the weighted sum matrix Πc: each voxel contributes to
several pixels, illuminating a spot in the image plane. More
rays pass through voxels closer to a camera. Thus, if a scat-
tering event occurs in a voxel for which |Vs→c| is small,
the contribution to the image affects more pixels than if the
voxel had a large |Vs→c|. This is expressed by a larger spot
in the image (Fig. 4a).

3.2. Scattered Radiance Calculation with FMC
Define L(X,ω) = J(X,ω)β(X) as scattered radiance.

Using FMC, L(X,ω) can be estimated by caching all the
scattering events that occurred at X in direction ω. Our sit-
uation is simpler for two reasons. First, we use a voxelized
radiance grid. Hence X is discretized to the voxel index k.
Second, as shown below, we only need to store the scattered
radiance that contributes to the discrete set of Nviews cam-
eras c = 1, ..., Nviews. We denote the power scattered from
voxel k in the direction of camera c by Lc(k). For each
scattering event [43] in voxel k, update Lc(k) by

Lc(k)← Lc(k) +$IsP (ΦRs,c). (16)

Hence Lc is discretized in space and the relevant directions.
Similarly, a discrete version of J(X,ω) is

jc(k) ≡ Lc(k)/β(k). (17)

3.3. Optical Transmittance
The transmittance between X and Xc is

t(X,Xc) = exp
[
−
∫ X

Xc

β(r)dr
]
. (18)

Eq. (5) can be re-written as image rendering:

I(Xc,ωp) = A+

∫ X∂Ω

Xc

L(X′,ωp)t(X
′,Xc)dX

′, (19)

where A represents direct solar rays entering the camera.
Using notations of [22], denote by [LOSc, k] a LOS be-
tween camera c and the center of voxel k (Fig. 4b). If this
LOS intersects voxel m, then this intersecting line segment
has length lLOS

c (m|k). From Eq. (1), the optical distance
between the center of voxel k and camera c is

τLOSc
(k) =

∑
m∈[LOSc,k]

lLOS
c (m|k)β(m). (20)

Let τLOSc
and β be column-stack vector representations

of τLOSc
(k) and β(k), respectively. Then, Eq. (20) is ex-

pressed using matrix notation [22]

τLOSc
= Wcβ, (21)

where Wc is a Nvoxels × Nvoxels sparse matrix whose ele-
ment (k,m) is

Wc(k,m) =

{
lLOS
c (m|k) if m ∈ [LOSc, k]

0 otherwise . (22)

In a voxelized representation, thus, the transmittance be-
tween the center of voxel k to camera c is

Tc(k) = exp[−τLOSc
(k)]. (23)

Based on Eqs. (14,16,23),

Rc(k) = Lc(k)Tc(k) . (24)

Let Tc, Lc be the column stack vector representations of
Tc(k) and Lc(k) respectively. A column-stack vector of all
voxel contributions to camera c is described by

Rc = Lc � Tc , (25)

where � denotes an element-wise (Hadamard) product.
Let jc be a column-stack vector representation of jc(k).

From (14,17,25), excluding direct sun light, the image is

ic(β) = Πc(jc � Yc) = Πc(jc � β � Tc) , (26)

where
Yc = β � Tc. (27)

Eqs. (14,26) are a discrete version of Eq. (19), excluding
direct solar irradiance of the camera.



Figure 5. The Haze blobs aerosol distribution taken from [22]. The
density unit is 106 particles/m3.
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Figure 6. Whole sky (dome) image rendering and a middle hori-
zontal cross-section profile (green channel). [Top] Atm1, [Mid-
dle] Atm2, [Bottom] Atm3.

4. Rendering Examples
We tested rendering on Haze blobs scenes2 (Fig. 5) and

setup parameters described in [22]. The aerosol sea-level
density is nsealevel. The scenes include an isotropic PHG

at low density nsealevel ≈ 106 (Atm1); anisotropic PHG at
low density nsealevel ≈ 106 (Atm2); and anisotropic PHG

at high density nsealevel ≈ 107 (Atm3).
Fig. 2 demonstrates the improvement achieved by

voxelized-J FMC, relative to simple FMC (Sec. 2.1.2) on
a red channel image of Atm1. Fig. 6 compares whole sky
(dome) images rendered using
• BMC, initial 104 photons per pixel, i.e, ≈ 1.5 · 109 pho-
tons in total.
• Voxelized-J FMC (Sec. 3), using initial 5 ·107 photons on
the TOA and Nrays = 10. Under these parameters, a pixel
readout based on voxelized-J FMC has similar variance to
rendering based on BMC.

2The fields βaerosol(X) and βair(X) from [22] are discretized to a
20 × 20 × 40 voxel grid. For rendering using a voxelized-J FMC, the
domain is more finely divided into a 80× 80× 120 voxel grid.

• Single scattering approximation [22].
Rendering using voxelized-J FMC (Sec. 3) is highly consis-
tent with BMC rendering (Sec. 2.1.4), and similar to single-
scattering results [22]. Deviations of MC from single-
scattering results are more pronounced where multi-scatter
is more significant: near the horizon and generally in Atm3.

Rendering was preformed using MATLAB on a
2.50 GHz Intel Xeon CPU, parallelized on 40 cores. Theo-
retically, for a given pre-calculated geometry (Sec. 3.1), ren-
dering using voxelized-J FMC should be ≈ (1.5 · 109)/(5 ·
107) = 30 times faster than BMC. However, messaging be-
tween cores creates overhead, thus in practice we achieved
acceleration of ≈ 25, relative to BMC.

5. Inverse Problem
Previous sections rendered images, assuming the field

β(X) is known. Now we derive and solve an inverse-
problem: given acquired images, what is β(X) ? In
addition to air molecules, let there be a single type of
aerosol in the domain. Hence, the three-element vector
[σaerosol, $aerosol, g] is uniform across the scene and as-
sumed known [44]. The aerosol density is spatially vari-
able and unknown, and so is βaerosol(X) ∈ C . Here C
comprises all possible extinction fields that comply with
some constraints. Particularly, βaerosol is non-negative and
its spatial support is bounded between the ground and the
TOA. A constraint useful for reducing the dimensionality is
that βaerosol is piecewise-constant, following 3D blocks of
Nx×Ny ×Nz voxels. This constraint is consistent with an
assumption that β(X) is generally spatially smooth.

The data are images {imeasured
c }Nviews

c=1 . Recovery is for-
mulated as an optimization of a cost function, to fit the
image-formation model to the data [22].

β̂ = arg min
β∈C

E(β) (28)

5.1. Gradient-based Optimization
Using red-green-blue channels, the RGB extinctions are

[βR,βG,βB]. We solve Eq. (28) using a gradient-based
method. Let the variable extinction be βG. Let µ ∈
[R,G,B] be a channel color. Define σ̃µ = σaerosol

µ /σaerosol
G .

From the known σaerosol and βair, the overall extinction co-
efficient per channel is determined by βaerosol

G using

βµ = βair
µ + σ̃µβ

aerosol
G . (29)

Let ic,µ and imeasured
c,µ denote the modeled and measured

image in channel µ, respectively. Then, the cost function of
Eq. (28) is

E(β) = ηΨ(βaerosol
G )+∑

µ=R,G,B

Nviews∑
c=1

∥∥Mc[i
measured
c,µ − ic(βµ)]

∥∥2

2
. (30)



Here Ψ is a regularization term. It expresses the spatial
smoothness [22] of βaerosol

G , while η is a regularization
weight. In Eq. (30), Mc masks pixels around the Sun.
There are two reasons for this masking. Sky-images esti-
mated using MC have high variance in pixels surrounding
the Sun due to the stochastic nature of MC. The problem oc-
curs as the phase function is sampled at forward scattering
angles.3 A sun-mask avoids use of noisy modeled pixels.
Moreover, a sun occluder is typically applied to real-world
cameras, to block lens flare and saturation [26].

Denoting transposition by (·)ᵀ, the gradient of (28) is

∂E
∂β

= η
∂

∂βaerosol
G

Ψ(βaerosol
G ) + 2

∑
µ=R,G,B

σ̃µ

Nviews∑
c=1

Qc

{
McJc(βµ)

}ᵀ
Mc[ic(βµ)− imeasured

c,µ ].

(31)

Here the matrix Jc(βµ) is the Jacobian of the vector ic,µ
with respect to βµ, and Qc is a diagonal weighting matrix
which is detailed in Section 6. Element (p, k) of Jc(βµ)
differentiates the intensity of pixel p in viewpoint c with
respect to the extinction at voxel k, i.e., ∂ic,µ(p)/∂βµ(k).
Estimating Jc(βµ) using Eq. (26) is very complex. The
reason is that Eqs. (6,19) express a recursive interconnec-
tion of I and J , which are functions of β (see 5,19). It is
complex to perform recursion per each gradient component.

The Jacobian Jc(βµ) has a closed-form expression un-
der a single scattering approximation [22]. In MC multi-
scatter, there is no close-form expression for (31). In [39],
FMC fitting of spatially uniform {β,$,P (·)} is optimized
by a stochastic gradient descent. Gradient computation
in [39] is intensive, with a set of three cascade FMC sim-
ulations per optimization iteration. Trying a similar formu-
lation in a heterogenous medium would mean O(Nvoxels)
FMC renderings per iteration, since there are Nvoxels de-
grees of freedom.

5.2. An Efficient Approach
Instead of a direct estimation of the Jacobian Jc(βµ)

and Eq. (31), β can be optimized using a surrogate func-
tion [25]. Denote by jc,µ a field jc in channel µ. Let
jall = {{jc,µ}Nviews

c=1 }µ=R,G,B. For a fixed jall, Eq. (28) is
easily minimized as we explain. Gradient-based optimiza-
tion is iterative. Define β(q) as an estimation of β in the
q’th iteration. Based on β(q), the field j(q)

all is computed us-
ing FMC (Sec. 3.2). This step is not an inverse problem but
forward-model rendering. Consequently, the computational
complexity of this step does not increase with Nvoxels.

3To reduce noise in forward scattering, some works [28, 45] approxi-
mate the phase function or use importance sampling.

Section 3.2

Figure 7. Optimization using a surrogate function E(β|j(q)all ).

After j(q)
all is derived, it is fixed for a while. Denote

E(β|j(q)
all ) as a surrogate function for a fixed j(q)

all . Keeping
j

(q)
all fixed, β is evolved. The following iterative optimiza-

tion process is defined [25]

β̂(q+1) = arg min
β∈C

E(β|j(q)
all ). (32)

Fig. 7 summarizes the iterative optimization process.
When j(q)

all is fixed, the Jacobian Jc(βµ) degenerates to
a simple calculation. We now derive Jc(β|j(q)

c,µ), the Jaco-
bian when j(q)

all is a fixed array, i.e, ∂j(q)
c,µ/∂βµ ≡ 0. Corre-

sponding to Eqs. (23,27), Tc,µ and Yc,µ are the fields Tc and
Yc in channel µ, respectively. Denote by D {v} a conver-
sion of vector v into a diagonal matrix whose main diagonal
elements correspond to the elements of v. Using (21,23,26)
and expressions from [22] for the gradient of element-wise
products, the Jacobian degenerates to

Jc(βµ|j(q)
c,µ) =

∂Πc(j
(q)
c,µ � Yc,µ)

∂βµ
= ΠcD

{
j(q)
c,µ

} ∂Yc,µ
∂βµ

,

(33)

∂Yc,µ
∂βµ

= D {βµ}
∂Tc,µ
∂βµ

+ D {Tc,µ} , (34)

and

∂Tc,µ
∂βµ

= −D {exp[−Wcβµ]}Wc. (35)

Given Jc(βµ|j(q)
c,µ), Eqs. (31,32) can be solved using

gradient descent as in [25]

β
(q)
d+1 = β

(q)
d −∆

∂

∂β
E(β|j(q)

all ). (36)



C
o
st

 iteration 

step

q

d

Total steps 

q GDN

q=1
q=2

q=0

q=4

Figure 8. Example of cost minimization using NGD = 5.

Here d indexes a gradient descent step and ∆ is the step
size. AfterNGD gradient descent steps of β, jall is updated.
Then, gradient-descent of β is resumed, using the updated
jall for another set of NGD gradient descents [25]. The pro-
cess reiterates until convergence. Fig. 8 plots an example
of cost minimization using NGD = 5. A major advantage
of the surrogate function is effective gradient calculation,
without Nvoxels rendering processes.

6. Conditioning the Optimization
Figure 9a illustrates a test atmosphere observed by 25

ground-based cameras. In Fig. 9b, maximum intensity pro-
jections (MIP) [46] visualizes β(0)

1 . This is the very first
step (d = 1) in the first iteration (q = 0). The field β(0)

1

in Fig. 9b stems from j
(0)
all , which was created by the ini-

tialization βaerosol = 0. The field contains artifacts. The
artifacts appear as high values of β(0)

1 at voxels near the in-
situ cameras. These voxels are unstable. This problem is
comparable to ill-conditioned linear optimization.

If all cameras are far from the scattering domain, all vox-
els are similary observed [25], and there is no conditioning
problem. In-situ, voxels affect unequally the data (Fig. 4a).
Due to geometry, if voxel k projects to more pixels than
voxel m then, ∂E/∂β(k) tends to be significantly higher
than ∂E/∂β(m). Depending on ∆, this imbalance leads to
instability in nearby voxels or slow convergence. In the lat-
ter, the artifact pattern tends to persist, as seen in Figure 9d.

The remedy is conditioning, achieved using a diagonal
weighting matrix Qc. Element (k, k) of Qc is the num-
ber of rays Rρ

c,p that pass trough voxel k. The field β
that evolves using this conditioning has weaker artifacts,
as visualized in Fig. 9c,e. In addition, Eq. (30) includes
a regularization term. Similarly to [22], this paper uses
Ψ(βaerosol

G ) = ‖WLβaerosol
G ‖22, where L is a matrix rep-

resentation of the 3D Laplacian operator. The matrix W is
diagonal: its elements are a function of the altitude of each
voxel [22]. The gradient of Ψ(βaerosol

G ), which is used in
Eq. (31), is 2LᵀWᵀWLβaerosol

G .

7. Recovery Simulations
The image formation model has significant nonlinear de-

pendency on the volumetric distribution which we seek to
recover. Consequently, analytic derivation of recovery lim-
its and tradeoffs is an open question. We obtain some pre-
liminary insight through numerical simulations.

7.1. Images and Noise
We tested recovery on the distributions of Sec. 4. In ad-

dition, we ran recovery on the Haze front scene of [22], il-
lustrated in Fig. 10. Here PHG is anisotropic and nsealevel ≈
106 (Atm4). In all these atmospheres, the aerosol is purely
scattering, i.e., $aerosol

µ ≡ 1 ∀µ. We further tested Atm5,
which has the same parameters as Atm2, except that its
aerosol is partly absorbing: [$aerosol

R , $aerosol
G , $aerosol

B ] =
[0.69, 0.74, 0.78].

In each scene, a set {imeasured
c }36

c=1 was rendered using
BMC (Sec. 2.1.4) and 104 photons per pixel. BMC is the
most accurate and precise method, despite its slow speed.
As in [22], the 36 cameras were placed on a 6 × 6 grid,
≈ 7km between nearest neighbors. The images are some-
what noisy because MC sampling implicitly induces Pois-
sonian noise. This naturally mimics photon noise in optical
imaging. To fully simulate a camera, we incorporate scal-
ing of optical energy to graylevels in a 10-bit camera, white
read noise onoise and quantization. These operations are ex-
pressed by

imeasured
c ← ic

(
210

max{{Mcic}Nviews
c=1 }

)
+onoise. (37)

The standard deviation of onoise is 0.4 graylevels. The val-
ues in Eq. (37) are clipped to the range [0 . . . 1024] and
rounded. The resulting images are the input for our recon-
struction method and the comparison to [22].

7.2. Recovery Results

The analysis used ∆ = 10−3, NGD = 5, 107 photons on
the TOA, and Nrays = 10. Optimization was initialized by
βaerosol = 0, or by a result of a single scattering approxima-
tion [22]. The intermediate recovery, which relied on single
scattering, was itself initialized by βaerosol = 0. Conver-
gence was satisfactory after several hundred iterations. The
single scattering approximation offers much faster estima-
tion than our stochastic algorithm. The reason is that for
single scattering the gradient is expressed in closed form,
and the forward model does not require repeated MC sam-
pling. In our implementations, this approximation ran two
orders of magnitude faster than MC.

As written in Sec. 2, the aerosol extinction has equiv-
alence to the aerosol density. The density is ntrue =
βaerosol

G,true /σ
aerosol
G , where βaerosol

G,true is the true aerosol extinc-
tion in the green channel. Similarly, the estimated corre-
sponding fields satisfy n̂ = β̂aerosol

G /σaerosol
G . Recovery
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1 , using a fixed color map scale. (d,e) Top and side view MIP visualizations of β(3)
5 ,

Scene Single scatter; Our method; Our method;
null null initialized

initialization initialization by single scatter

δmass ε δmass ε δmass ε

Atm1 1.7% 50% 3.4% 26% 3% 23%
Atm2 -6.3% 61% 10% 38% 11% 37%
Atm3 23% 76% 2.4% 71% 5.7% 43%
Atm4 14% 63% 4.1% 27% 7% 28%
Atm5 -5.7% 80% 27% 57% 28% 56%

Table 1. The relative errors resulting from our recovery method,
compared to recovery based on a single scattering approxima-
tion [22].

quality is quantified as in [22]. Using the `1 norm, the total
aerosol relative mass bias is equivalent to

δmass =
‖n̂‖1 − ‖ntrue‖1
‖ntrue‖1

(38)

Local errors are quantified by

ε =
‖n̂− ntrue‖1
‖ntrue‖1

. (39)

These quantities are summarised in Table 1. Some recon-
structions and their errors are illustrated in Figs. 10,11. In
our tests, if the standard deviation of onoise grows from 0.4
to 5 graylevels, the results are hardly affected. For exam-
ple, in Atm1, ε slightly grew from 26% to 28%. We believe
the reason is that in daylight, read noise is a minor com-
ponent relative to fundamental photon noise. Reducing the
read noise by using more expensive cameras may thus have
only marginal effect on daytime recovery.
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Figure 10. [Top] Ground-truth aerosol distributions: Atm1
[left], and Atm4 [right]. Color encodes aerosol density
[106 particles/m3]. [Middle] Our reconstruction. [Bottom] Re-
construction relying on a single scattering approximation [22], ig-
noring multiple scattering.

Our cameras are spread horizontally, viewing the 3D
medium in a range of angles. As the angular range de-
creases, the recovery suffers from larger vertical smear, par-
ticularly away from the cameras. This is analogous to stereo
of opaque objects, where a limited baseline increases the ax-
ial uncertainty. Fig. 12 shows simulated recoveries of Atm1
when the same 36 cameras are spread over different spans.

Recovery can tolerate use of a smallerNviews. We recov-
ered Atm1 using different random subsets of the 36 simu-
lated cameras. For each value of Nviews < 36, random
photography and recovery was repeated 5 times. Fig. 13
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Figure 12. A diagonal slice of the reconstructed domain. In each
case, the 36 cameras are spread over a wider or narrower horizontal
span, affecting the angular observation range.

plots the errors as a function of Nviews, relying here only
the green channel during the optimization.

8. Discussion
Our tomographic results have lower error than [22]. This

is achieved thanks to explicit use of multiple scattering in
the inverse problem. Thus, accounting for multiple scatter-
ing is important and significant for recovery, while being
computationally feasible. MC can be highly parallelized.
Therefore, it will be beneficial to implement the algorithms
described here on GPU. MC offers an additional advantage:
it can realize scattering events in any location and direction,
while discrete ordinate methods [25] are by definition con-
strained to discretized or band-limited propagation.

What is the recoverable resolution? In estimation prob-
lems, avoidance of overfitting of more unknowns requires
more data or stronger priors. Our problem is not differ-
ent. Nevertheless, it may be very difficult to resolve voxels
whose length is negligible relative to the mean-free-path,
since radiance is hardly affected in such short distances. For
example, there may be no benefit using 10cm long voxels in
which the mean free path (1/β) is 10km.

We found that recovery faces difficulties when the opti-

Nviews

Nviews

Figure 13. The relative error measures decrease with the number
of cameras. Bars represent the standard deviation of errors, based
on 5 repeated random tests.

cal distance is very large: then, the signal from deep within
the scattering object is low. We also made initial study
of other anisotropy values. In addition to the anisotropic
aerosol of Atm2 [22], we tested particle-type 1 from the
aerosol list in [44] (milder anisotropy) and cloud droplets
for which g ≈ 0.85 (harsher anisotropy). We observed that
in these cases, our recovery became worse as anisotropy
increases, and this trend appears to exacerbate when β in-
creases. However, the range of parameter variations is too
broad to draw definite conclusions from initial tests.

Better priors are a key for advancing multi-scattering
tomography. The set of unknowns can be generalized, to
include parameters of the phase function and the extinction
cross-section. The model itself can be further expanded
to include polarized radiative transfer. The model may be
adapted to medical imaging. There, the cameras as well as
the light sources may be embedded in the scattering domain.
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In-Situ Multi-View Multi-Scattering Stochastic Tomography
[Supplementary: Notation Table]
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Acronyms Description

CDF Cumulative distribution function
LOS Line of sight
TOA Top of the atmosphere

Symbol Description

β Total extinction coefficient
βaerosol Aerosol extinction coefficient
βair Extinction coefficient due to air molecules
β Column-stack vector representation of β
βµ β in color channel µ
β̂ Estimated β (reconstruction)
βB Extinction at the blue channel
βaerosol

G Aerosol extinction at the green channel
βaerosol

G,true Ground truth aerosol extinction at the green channel
βG Extinction at the green channel
βR Extinction at the red channel
γ A function of u, used in the Rayleigh inverse transform
∆ Step size of gradient descent
δmass Aerosol relative mass bias
ε Local aerosol error
η Regularization weight
λ Wavelength
µ Color channel index
Πc Matrix of the portion of the radiant power per voxel, contributing to each pixel in camera c
ρ Sub pixel sample
σaerosol Aerosol extinction cross section
σaerosol
µ Aerosol extinction cross section in color channel µ
σaerosol

B Aerosol extinction cross section in the blue color channel
σaerosol

G Aerosol extinction cross section in the green color channel
σaerosol

R Aerosol extinction cross section in the red color channel
σ̃µ Aerosol extinction cross section in color channel µ, normalized by σaerosol

G

τ Optical distance
τair Optical distance due to air
τ random Sampled optical distance
τLOSc

Optical distance between the center of a voxel and camera c
τLOSc

Column-stack vector representation of τLOSc

ΦRs,c Angle between Rs and Vs→c



ΦRs,sun Angle between Rs and Vs→sun

Φscatter Scattering angle
χ Random variable
Ψ Regularization function (i.g., Laplacian)
ψ Direction vector before scattering
ω Direction vector after scattering
ωp Direction vector of pixel p
ωsun Sun ray direction vector
∂Ω Domain boundary
$ Single scattering albedo
$aerosol Aerosol single scattering albedo
$air Single scattering albedo of air molecules
A Direct solar radiance entering the camera
B Blue
C Comprises all possible extinction fields that comply with some constraints
c Camera index
D {v} Conversion of vector v into a diagonal matrix
d Gradient descent iteration
E(β) Fitting function
E(β|j(q)

all ) Surrogate function, for a fixed j(q)
all

F (χ) Cumulative distribution function (CDF) of random variable χ
G Green
g Anisotropy parameter
I(X,ω) Radiance field
I0 Initial photon-packet intensity
Is Photon-packet intensity at Monte Carlo step s
I∂Ω Incoming radiance (Sun radiation at the TOA)
ic Modeled image at camera c
ic Column-stack vector representation of ic
imeasured
c Measured image (data) at camera c
ic,µ ic at color channel µ
imeasured
c,µ imeasured

c at color channel µ
J(X,ω) In-scattering field
Jc(βµ) Jacobian of the vector ic,µ with respect to βµ
jc Discretized J(X,ω) sampled to the direction of camera c
jall List of jc,µ for all c and all µ
jc Column-stack representation of jc
jc,µ jc at color channel µ
k Voxel index
L(X,ω) Scattered radiance field
Lc Radiant power scattered by a voxel to camera c
[LOSc, k] A LOS between camera c and the center of voxel k
Lc Column-stack representation of Lc
L Laplacian operator
`1 L1 norm
lρc,p(k) Length of the intersection between Ray Rρ

c,p and voxel k
l̄c,p(k) Weight of voxel k to pixel p in camera c
lLOS
c (m|k) Length of the intersection between line [LOSc, k] and voxel m
lrandom Sampled photon distance
Mc Sun masking operator
m Voxel index
NGD Number of gradient descent iterations per constant j(q)

all

Npix Number of pixels in the camera



Nrays Number of ray samples per pixel
Nviews Number of viewpoints
Nvoxels Number of grid voxels
Nx, Ny, Nz Number of grid voxels per constant β block, in the x, y and z axes
n Aerosol particle density
n Column stack vector representation of n
ntrue Column stack vector representation of the ground truth density n
n̂ Estimation of n
nsealevel Aerosol sea-level density
onoise White read noise
P General phase function
PHG Henyey-Greenstein phase function
PRay Rayleigh phase function
p Pixel index
Qc Diagonal weighting matrix
q Optimization iteration index
R Red
Rc Radiant power contributed by a voxel to camera c
Rc Column-stack representation of Rc
R0 Initial ray representation
Rs Ray representation at Monte Carlo step s
Rρ
c,p Back-projected ray from sub-pixel index ρ in pixel p of camera c,

S Photon path
S2 Unit sphere
s Monte Carlo step index
Tc Transmittance between the center of a voxel to camera c
Tc Column-stack representation of Tc
Tc,µ Tc in color channel µ
t Transmittance between two points
ts→c Transmittance along Vs→c

ts→sun Transmittance along Vs→sun

U Unit interval
u Random number drawn from a uniform distribution in the unit interval
Vs→c Vector from Xs to Xc

Vs→sun Vector from Xs to the TOA, directed to −ωsun

Vvoxel Voxel volume
W Diagonal weighting matrix of L
Wc Sparse matrix representing the lengths lLOS

c (m|k)
Wle Local estimation contribution
X Position vector
X∂Ω Ray boundary intersection
Xc Position vector of camera c
Xs Position vector at Monte Carlo step s
Yc Column-stack representation of the Hadamard product between β and Tc
Yc,µ Yc in color channel µ
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