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Abstract—Random refraction occurs in turbulence and through a wavy water-air interface. It creates distortion that changes in space,

time and with viewpoint. Localizing objects in three dimensions (3D) despite this random distortion is important to some predators and

also to submariners avoiding the salient use of periscopes. We take a multiview approach to this task. Refracted distortion statistics

induce a probabilistic relation between any pixel location and a line of sight in space. Measurements of an object’s random projection

from multiple views and times lead to a likelihood function of the object’s 3D location. The likelihood leads to estimates of the 3D

location and its uncertainty. Furthermore, multiview images acquired simultaneously in a wide stereo baseline have uncorrelated

distortions. This helps reduce the acquisition time needed for localization. The method is demonstrated in stereoscopic video

sequences, both in a lab and a swimming pool.

Index Terms—Underwater, stereo, triangulation, probability, likelihood

Ç

1 INTRODUCTION

RANDOM refraction in visual sensing is caused by ther-
mal turbulence in the atmosphere and deep-water vol-

canic vents. This creates a distortion field that is random in
space and time. More strongly, this effect occurs when look-
ing through a wavy water-air interface (WAI), either into
water from airborne positions, or out to the air from sub-
merged viewpoints. The latter case is most severe, since
small changes in a WAI slope lead to large angular changes
of an airborne line of sight (LOS), due to Snell’s law. Exam-
ple images are shown in Fig. 1.

There are biological motivations and engineering appli-
cations to study vision in such scenarios, particularly in
multiview settings. The biological world does not necessar-
ily indicate solutions we need to take, but it motivates the
definition of the problem. As illustrated in Fig. 2a, birds [1]
fly in search of submerged fish to hunt. Some animals hunt
the other way. For example, the archer fish [2] launches
water jets in a parabolic ballistic trajectory to shoot down
flies (Fig. 2b) that sit on foliage. In all cases, predators need
to well assess the three dimensional (3D) location of the
prey prior to charging. This can be done by triangulation as
the predator changes its position during its path, thus
obtaining multiple views. Additional biological details and
motivations appear in [3]. Upward vision through a wavy
WAI can serve as a virtual periscope (Fig. 2c). This can help
submarines assess activities above water, without using
physical periscopes which flag their presence.

In the open air, triangulation leading to 3D scene recon-
struction is well studied [4], [5], [6], [7], [8], [9]. Distortions

through a flat WAI have also been thoroughly studied [10],
[11], [12], [13], [14], [15], [16], [17]. Measuring from air the
3D structure of submerged scenes has been proposed based
on stereo [12] or motion [10], [16]. Still, a triangulation chal-
lenge remains when a flat-WAI is perturbed by random
unknown WAI waves. This paper addresses this challenge.
Furthermore, this paper shows that multiplying the view-
points shortens the acquisition time required for high quality
object localization. The reason is that images taken in parallel
from distant locations have uncorrelated distortions. Thus,
instead of using more time to sequentially acquire new
uncorrelated frames, we use the spatial dimension of view-
point location to obtain the data.

We take a stochastic approach to triangulation under ran-
dom refractive distortions. We acquire a video sequence of
an airborne object, using an underwater camera stereo pair.
The statistics of WAI waves induce by refraction a probabi-
listic relation between any pixel location and an airborne
LOS. Inspired by [18], measurements of an object’s random
projection frommultiple views and times lead to a likelihood
function of the object’s 3D location. Maximum likelihood
(ML) estimates the 3D location, while the effective support of
the likelihood function informs of the location uncertainty.

In addition, we formulate the 3D ML problem as a mini-
mization based directly on image plane coordinates. This
simplifies the computations and reduces run time. We use
the method from [19] to obtain multiple point correspond-
ences between views. Preliminary results and theory
appeared in [20].

2 THEORETICAL BACKGROUND

Refraction has been used and analyzed in the context of
computational photography [21], [22], [23], [24], [25], [26],
[27]. Theory about visual refraction through a WAI is
described in Ref. [28]. This section briefly follows notations
and relevant derivations from Ref. [28].

2.1 Snell’s Law in Various Forms

Consider Fig. 3. Let us back-project a LOS from a sub-
merged camera towards an airborne object point. The LOS

� M. Alterman is with the Department of Electrical Engineering and
Computer Science, Northwestern University, Evanston, IL 60208.
E-mail: amarinago@gmail.com.

� Y.Y. Schechner and Y. Swirski are with the Viterbi Faculty of Electrical
Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel.
E-mail: syohays@gmail.com, yoav@ee.technion.ac.il.

Manuscript received 18 Feb. 2015; revised 14 Mar. 2016; accepted 17 Mar.
2016. Date of publication 6 Apr. 2016; date of current version 13 Feb. 2017.
Recommended for acceptance by P. Sturm.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2016.2551740

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 3, MARCH 2017 603

0162-8828� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



in water is directed along unit vector v̂w. This vector forms

an angle uw with the WAI normal N̂, as illustrated in Fig. 3.
At the WAI, the back-projected LOS refracts and proceeds
in air along unit vector v̂a. This vector forms an angle ua

with N̂. The scalar Snell’s law of refraction is

sin ua ¼ n sin uw ; (1)
i.e,

cos ua ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2 þ n2 cos2uw

p
; (2)

where n � 1:33 is the optical refractive index of water. Vec-
tor forms of Snell’s law [29] are

v̂a � N̂ ¼ nv̂w � N̂: (3)

v̂a ¼ nv̂w þ N̂ð cos ua � n cos uwÞ; (4)

where

cos uw ¼ v̂w � N̂: (5)

Here � is the cross product. From Eq. (3), v̂w, v̂a and N̂ are
co-planar (in the plane of incidence).

2.2 Derivation of Back-Projection

A submerged camera has an internal 3D coordinate system
(not shown). Its origin is at the center of projection O. The
axes include the optical axis and the lateral pixel coordi-
nates of the image plane. A pixel length is hpixel. The optical

axis intersects the image plane at pixel c. In the camera coor-
dinate system, pixel x is at physical location

Xcam ¼ x � c
fc

� �
hpixel; (6)

where fc is the focal length of the camera. The values of x; c
and fc are given in units of pixels.

The origin of the global (lab) 3D coordinate system is set
to be also at the center of projection. The global coordinates
are composed of the zenith axis Ẑ and two horizontal axes,

X̂ and Ŷ. In the global coordinate system, the 3D location of
pixel x is

Xlab ¼ RTxcam; (7)

where R is the camera rotation matrix and T denotes trans-
position. Thus, in the lab coordinate system, the submerged
LOS is along unit vector

v̂w ¼ Xlab=kXlabk: (8)

Underwater cameras often have a flat-glass interface, due
to which the camera-in-housing system has no single center
of projection. Then, the relation between v̂w and pixel x is
not as simple as Eqs. (6 - 8). Nevertheless, if needed, a com-
prehensive calibration process [10] deterministically estab-
lishes the LOS and thus v̂w, per x. This paper deals with the
stochastic, unpredictable effects of waves. Thus, determin-
istic calibration matters are assumed done.

We substitute Eqs. (5) and (2) into Eq. (4), and set N̂ ¼ Ẑ
to express imaging through a flat WAI. This yields the air-
borne LOS direction

Fig. 1. Images of a sample stereo pair taken by looking upward through a
wavy water surface. By triangulation, using our method we obtain a likeli-
hood function in 3D. The estimated location is the position of the maxi-
mum likelihood (ML).

Fig. 2. Relevant scenarios. (a) Birds fly by to hunt for a submerged fish.
(b) The archer fish shoots water jets to shoot down airborne flies. (c) A
submarine avoiding use of a physical periscope by upward vision
through a wavy WAI.

Fig. 3. Viewing geometry through a flat water surface. [Inset] Definition of
additional length parameters (magenta).
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v̂a ¼ nv̂w þ Ẑ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2 þ n2ðv̂w � ẐÞ2

q
� nv̂w � Ẑ

� �
: (9)

The vertical components of v̂w and v̂a are respectively
denoted by vw;z and va;z.

An airborne object is at A ¼ ðAx; Ay; AzÞT in the global
coordinate system (Fig. 3[Inset]). Back-propagating from
the camera’s center of projection, a refracted LOS includes a
submerged LOS segment and an airborne one. Thus,

A ¼ v̂whw þ v̂aha ) Az ¼ hwvw;z þ hava;z; (10)

where hw and ha are line-length parameters. Suppose the
camera is at depth Zflat below a flat WAI. Then, substituting
hwvw;z ¼ Zflat into Eq. (10) yields.

hw ¼ Zflat=vw;z; ha ¼ ðAz � ZflatÞ=va;z: (11)

The parameters Zflat andR can be, in principle, measured
by the system. A depth gauge in the system can measure
Zflat. The orientation of the cameras can be obtained by an
integrated accelerometer as in a smartphone, which has been
used in computer vision to address refractive distortions
[10]. In nature, fish can control their balance using otoliths
[30] or a swim-bladder [31]. Even without an accelerometer,
the inclination angle can be computed by the location of
Snell’s window in the field of view [28].

2.3 Image Correspondence

Consider a submerged stereo system having a baseline b.
Variables associated with the left or right camera are
denoted by L or R, respectively. The projection of an object
point a through camera L is xL. The projection of a through
camera R is xR. The image pair, taken by the left and right
cameras, is given as input. Correspondence then needs to
be established between xL and xR for various object points.
Establishing correspondence is a fundamental problem in
computer vision. Finding corresponding points in our sce-
nario is difficult. The reason is that the shape of objects and
their appearance can change across images, particularly
due to the randomness of refractive distortions.

The SIFT algorithm [32], for example, alongside cor-
rect correspondences, typically produces a considerable
number of incorrectly matched outliers especially in
refractive distortions (see Fig. 4[Top]). To make these
correspondences useful, outliers must be removed. We
use the method in [19] to filter these outliers (see Fig. 4
[Bottom]). It uses geometric consistency to separate out-
liers from correct matches. This is done by modeling
bounded distortion between images. Bounded distortion
accounts for some deformation while preserving the
geometric information that enables correct correspond-
ences. The algorithm solves an optimization problem
which results in a maximal set of corresponding points

fðxL
m;x

R
mÞgNmatches

m¼1 . We then use Large Displacement Opti-
cal Flow (LDOF) [33], [34] for tracking the initially
matched point-set through temporal frames, to obtain
temporal correspondence.

3 MODELING POSITION STATISTICS

3.1 Single View Random Projection Distribution

Consider Fig. 3. When the WAI is flat, a projects to pixel xflat.
When theWAI iswavy, a projects to pixel xðtÞ at time t, where

xðtÞ ¼ xflat þ dðxflat; tÞ: (12)

Here d is the displacement in the image of the object,
caused by the random WAI waves. In other words, the
spatiotemporal field dðxflat; tÞ is a random distortion cre-
ated by random refractive changes. Fig. 5[Left] illustrates
the distorted pixel positions x around xflat. Following Cox

and Munk [35], the WAI normal N̂ is random in space
and time and has a Gaussian distribution. The variance of

N̂ depends on meteorological parameters. For a given
xflat, the random vector d has approximately a normal [28]
distribution: d � Nð0;SxÞ. Thus, the probability density
function (PDF) of imaging a at x is approximated by

pðxjxflatÞ � G exp � 1

2
ðx� xflatÞTSx

�1ðx� xflatÞ
� �

; (13)

where G is a normalization factor.
The 2� 2 covariance matrix Sx depends on the WAI

roughness, the camera parameters (R; hpixel; fc) and some-
what on xflat. As described in [28], physics-based simula-
tions can derive an approximate yet useful Sx without
empirical image data. Empirically, prior to triangulation
attempts, the statistics of distortion can be learned [28].
Object points known to be static, can be observed for a short
while, e.g., a few seconds, providing samples of
x � Nðxflat;SxÞ. A Gaussian can be fitted to the tracked pro-
jections, over several frames, thus empirically estimating
Sx. This process is analogous to [36], where a laser beam is
reflected by a WAI onto a screen, demonstrating a point
spread function. Once Sx is set, it is used later to stochasti-
cally triangulate objects at an instant, without a necessity to
accumulate video data.

Fig. 5[Middle] shows the Gaussian fitted to the distri-
bution in Fig. 5[Left]. The mean of the points in Fig. 5
[Left] estimates xflat. Thus Fig. 5[Middle] approximately
illustrates the probability of x given xflat. In the task of

Fig. 4. Colors indicate matching. [Top] Correspondence produced by
SIFT [32]. [Bottom] Correspondence produced by [19].
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this work, xflat is not given, and there may only be a sin-
gle temporal instance in which x is measured. According
to Bayes’ rule, the probability of xflat given x is,

pðxflatjxÞ / pðxjxflatÞpðxflatÞ: (14)

The PDF pðxflatÞ is a prior on where the object might prefera-
bly be projected to, when theWAI is flat. If there is a prior on
the object’s projection, it can be incorporated. Often, there is
no preferred object location. Then, pðxflatÞ is a constant, and

pðxflatjxÞ � pðxjxflatÞ: (15)

Based on Eq. (15), the probability pðxjxflatÞ in Fig. 5[Middle]
is displaced to be centered at x. Thus, Fig. 5[Right] illus-
trates the probability pðxflatjxÞ.

3.2 Single View Airborne Position Likelihood

Under a flat WAI, the object in A projects to pixel xL
flat in

camera L. Through a flat WAI, there is one-to-one corre-

spondence between xL
flat and a specific LOS, denoted

LOSðxL
flatÞ, by back-projection. Hence, any probability den-

sity associated with xL
flat is also associated with LOSðxL

flatÞ.
Consider Fig. 6. Since theWAI is wavy,A projects to pixel

xLðtÞ, at time t, while xL
flat is unknown. Eq. (15) sets a

probability density p½xL
flatjxLðtÞ� to each pixel xL

flat in the L

image plane. Thus, Eqs. (13) and (15) set a probability density

p½LOSðxL
flatÞjxLðtÞ� � p½xLðtÞjxL

flat�: (16)

So 8xL
flat, Eq. (16) back-projects an image-domain PDF to a

PDF of all LOSs that can backproject from camera L through a
flatWAI.

An LOS is an infinite set of 3D pointsX that project to the
same image point. A priori, each of these 3D points is
equally likely to be the sought object a. Hence, with any

point X 2 LOSðxL
flatÞ, we associate a likelihood equivalent to

the probability density defined in Eq. (16):

lLt ðXÞ 	 p½LOSðxL
flatÞjxLðtÞ� j X 2 LOSðxL

flatÞ: (17)

Based on Eqs. (16) and (17)

lLt ðXÞ � p½xLðtÞjxL
flat� j X 2 LOSðxL

flatÞ: (18)

Note that all X that project to the same xL
flat have the same

likelihood,1 given a measured location xLðtÞ. Thus a proba-

bility in 2D induces a score lLt ðXÞ in 3D.
Suppose that distortions between frames are statistically

independent. Then, likelihoods stemming from different
temporal frames multiply each other. Overall, for Nframes

frames, the likelihood is

LðXÞ ¼
YNframes

t¼1
lLt ðXÞ: (19)

3.3 Uncorrelated Multi-Views

We now study random refraction in multiview geometry.
Each camera views the object through a different WAI por-
tion: one is around horizontal location SL ¼ ðSL

x; S
L
yÞ, while

the other is around SR ¼ ðSR
x; S

R
yÞ. The projected image point

on the left is distorted (displaced) by dL, while the corre-

sponding point on the right image is displaced by dR.

Fig. 5. [Left] All the pixels x corresponding to an object point over time. The mean location estimates xflat. [Middle] The distribution of x given xflat.
The distribution of possible pixel positions is approximately normal around xflat. Red expresses high probability and blue low probability. [Right] The
distribution of xflat given x.

Fig. 6. Position likelihood. Back-projecting all the pixels around x based
on pðxflatjxÞ through a flat surface yields a 3D cone. This cone repre-
sents the position likelihood of the object imaged at x.

1. This likelihood score does not integrate to 1 over an unbounded
3D domain. It is possible to normalize this score in an artificially
bounded domain, but such normalization does not change the later
optimization and is hence skipped.
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Is the randomdynamic distortiondLðtÞ similar or very dif-

ferent than dRðtÞ, 8t? How mutually statistically dependent

are dL and dR? The distortion mainly depends on the WAI

slope [28], i.e., on N̂ðS; tÞ. Hence, statistical dependency

between dL and dR is dictated by the dependency between

N̂ðSLÞ and N̂ðSRÞ. According to Ref. [35], the WAI slope
statistics is approximately Gaussian. Hence, statistical
dependency of slopes is equivalent to correlation. The corre-

lation between slopes2 in SL and SR dictates the correlation

between dL and dR.
Correlation betweenWAI slopes at SL and SR depends on

the lateral distance bs � kSL � SRk. If the baseline bs is sig-
nificantly shorter than the typical WAI-slope correlation
length, then distortions in the two views are mutually highly
correlated, as illustrated in Fig. 7. We prefer to work in a
domain, where distortions in the multiple views are mutu-
ally uncorrelated, largely. Low statistical dependency (low
mutual information) between multiview measurements
means that any new view adds more information about the
object location. This is achieved if bs is significantly larger
than the typical WAI-slope correlation length (See Fig. 7).
We do not know the WAI-slope correlation length a-priori.
However, in our experiments, we verified empirically the

low correlation between dL and dR, due to commonly occur-
ring small WAI wiggles.

4 MULTI-VIEW STOCHASTIC ESTIMATION

Section 3.2 defined variables associated with the L camera.
Let us generalize the formulation to multiple views. Under
a flat WAI, the object in A projects to pixel xR

flat in camera R.

Since the WAI is wavy, A projects to pixel xRðtÞ, at time t,
while xR

flat is unknown. Similarly to the process involving

Eq. (18), we derive the likelihood lRt ðXÞ, 8X, based on

lRt ðXÞ � p
�
xRðtÞjxR

flat

� j X 2 LOS
�
xR
flat

�
: (20)

Following Section 2.3, suppose that between views, cor-
respondence of image points is established. In other words,
we know that the measurement pixel set fxLðtÞ;xRðtÞgt

corresponds to the same 3D object point, but we do not
know where the object is.

From Section 3.3, distortions between views are approxi-
mated as statistically independent. Therefore, likelihoods
stemming from different frames and viewpoints multiply
each other. Overall, for Nframes frames, the likelihood (19)
generalizes to

LðXÞ ¼
YNframes

t¼1
lLt ðXÞlRt ðXÞ; (21)

as illustrated in Fig. 8.
For Nviews views, Eq. (21) generalizes to

LðXÞ ¼
YNframes

t¼1

YNviews

i¼1
l
ðiÞ
t ðXÞ ; (22)

where ðiÞ is the view index. In a stereo camera pair
ðiÞ 2 fL; Rg. The effective 3D spatial support (orange region
in Fig. 8) of LðXÞ represents the 3D domain in which the air-
borne object point is likely to reside. The more viewpoints
and temporal frames, the narrower this domain becomes.
Temporal frames can be traded-off for more viewpoints, in
the quest to narrow the support of Eq. (22) using multiple
likelihood factors. Hence, increasing the number of view-
points can shorten the acquisition time needed for certain
localization accuracy of the object (see Fig. 9). ML yields an
estimate of an optimal airborne object location.

Â ¼ arg max
X

LðXÞ: (23)

We summarize the method in Algorithm 1.

Algorithm 1. Estimation Using a 3D Likelihood Function

Data:Nframes distorted stereo images of an object atA.
Result: Estimated position Â of an object atA.
L ¼ 1.
for t ¼ 1 toNframes do

if t ¼ 1 then
Select pixels xLð1Þ and xRð1Þwhich correspond toA.

else
Track the object from time t� 1 to time t to get xLðtÞ
and xRðtÞ.

end
Back-project p½xL

flatjxLðtÞ� and p½xR
flatjxRðtÞ� through a flat

WAI to get lLt ðXÞ and lRt ðXÞ.
LðXÞ  LðXÞlLt ðXÞlRt ðXÞ.

end
Â ¼ argmax

X
LðXÞ.

return Â.

We work with discrete, regular spatial grids: image loca-
tions xLðtÞ, xL

flat are integer pixel locations, and so are the 3D
candidate object locations (voxels). Thus in practice, we cal-
culate samples of the image-domain PDF, which correspond
to sample backprojected LOSs. Hence, Eq. (18) derives the
likelihood in samples (a point cloud) in 3D. Between these
cloud points, we interpolate lLt ðXÞ, 8X.

Estimation based on random noisy data has an experi-
mental uncertainty. There are various ways to state

Fig. 7. [Left] A baseline that is significantly shorter than the typical corre-
lation length of the WAI-slope, results in highly correlated distortions
across views. [Right] A wide baseline results in uncorrelated distortions
between the two views.

2. Ref. [37] proposes a model to characterize WAI slope and curva-
ture variances, as well as their spatial correlation.

ALTERMAN ET AL.: TRIANGULATION IN RANDOM REFRACTIVE DISTORTIONS 607



uncertainty, including confidence intervals or standard
deviation (STD). One simple way is to threshold the like-
lihood, to determine a set C of object locations

C ¼ fX : ½LðXÞ=LðÂÞ� > tg; (24)

whose likelihood is significant. Here t is a threshold. The
spatial bounds ofC set an uncertainty assessment. We select
the minimum and maximum coordinates of the elements of
C to determine an axis-aligned spatial bounding box.

The estimation described above uses a 3D likelihood
function. Next, we present another method, using probabili-
ties in 2D images.

Position Estimation from Probabilities in Images

The method presented in Section 4 involves a 3D likeli-
hood function. In some cases, it is possible to simplify the
estimation, using probabilities in the 2D images. The likeli-
hood of X is

LðXÞ ¼
YNframes

t¼1
p½xL

flatðXÞjxLðtÞ�p½xR
flatðXÞjxRðtÞ�: (25)

For simplicity of computations, instead of computing the
maximum of LðXÞ in Eq. (23), we compute

Â ¼ argmin
X
½�logLðXÞ�: (26)

Then,

â ¼ argmin
X

�
XNframes

t¼1
log lLt ðXÞ þ log lRt ðXÞ

" #
: (27)

The probabilities in Eq. (25) are approximated by Eq. (13).
Here xL

flatðXÞ;xR
flatðXÞ are flat pixel projections of a 3D point

X in the right and left views, respectively. These flat pro-
jections are pre-computed once as look-up-tables for all 3D posi-
tions in a grid. For each tracked location xLðtÞ and xRðtÞ,
we can compute the probabilities p½xL

flatðXÞjxLðtÞ� and

p½xR
flatðXÞjxRðtÞ� of the corresponding flat pixel xL

flat and xR
flat

for all pixels in the image based on Eqs. (13) and (15). To
pass from 3D likelihoods to probabilities in 2D images,
Eqs. (15) and (20) yield

Â ¼ argmin
X

(
�

XNframes

t¼1
log p½xL

flatðXÞjxLðtÞ�

þ log p½xR
flatðXÞjxRðtÞ�

)
:

(28)

From Eqs. (13) and (15),

log p½xL
flatðXÞjxLðtÞ� ¼ logG� 1

2
½xL

flatðXÞ

� xLðtÞ�T SL
x

� ��1½xL
flatðXÞ � xLðtÞ�:

(29)

A similar expression is derived for the right view. Substitut-
ing Eq. (29) in Eq. (28),

Â ¼ argmin
X

XNframes

t¼1

½xL
flatðXÞ � xLðtÞ�T S

L
x

� ��1½xL
flatðXÞ � xLðtÞ�

þ ½xR
flatðXÞ � xRðtÞ�T S

R
x

� ��1½xR
flatðXÞ � xRðtÞ�:

(30)

ForNviews views, Eq. (30) generalizes to

Â ¼ argmin
X

SðXÞ; (31)

where

SðXÞ ¼
XNframes

t¼1

XNviews

i¼1

½xðiÞflatðXÞ � xðiÞðtÞ�T SðiÞx
	 
�1

½xðiÞflatðXÞ � xðiÞðtÞ�:
(32)Fig. 9. Airborne position estimation using multiple views. Red pixels are

distorted projections of an object point. Green pixels are close to the dis-
torted pixels, while their flat back-projections intersect in 3D at Â.

Fig. 8. (a) By projecting the uncertainties around xL and xR, the effective 3D spatial support (orange region) of the overlap represents the 3D domain
in which the airborne object point is likely to reside. (b) Additional temporal frames narrow this domain.
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We summarize the estimator based on Eq. (30) in
Algorithm 2.

Algorithm 2. Estimation from Probabilities in Images

System Specification: Pre-compute flat pixel projections
xL
flatðXÞ;xR

flatðXÞ for all 3D positions

X in a grid.
Data:Nframes distorted stereo images of a scene.
Result: Estimated position Â of an object atA.
S ¼ 0.
for t ¼ 1 toNframes do

if t ¼ 1 then
Match xLð1Þ and xRð1Þ between views.

else
Track the object from time t� 1 to time t to get xLðtÞ
and xRðtÞ.

end
SðXÞ  SðXÞ þ
½xL

flatðXÞ � xLðtÞ�T SL
x

� ��1½xL
flatðXÞ � xLðtÞ� þ

½xR
flatðXÞ � xRðtÞ�T SR

x

� ��1½xR
flatðXÞ � xRðtÞ�.

end
Â ¼ argmin

X
SðXÞ.

return Â.

As the location, the experimental uncertainty can also be
assessed using probabilities in the 2D images. Using Eqs. (13)
and (32), the setC defined in Eqs. (24) is equivalent to

C ¼ fX : ½SðXÞ � SðÂÞ� < log t�2g; (33)

from which the effective spatial support can be computed.
The expressions derived so far are both general and not

difficult to implement. Nevertheless, to gain intuition, we
now describe a restrictive situation. Suppose the x̂ axis of
all cameras is horizontal [28] in the lab coordinates. The
cameras’ ŷ axis can have an arbitrary elevation angle.

Then, x̂ � Ẑ ¼ 0. If the waves have no dominant direction

in the scale of the system, the matrices SðiÞx are approxi-
mately diagonal [28]. The STDs of the projection in the
respective image axes are sx and sy. For identical camcor-
ders with a horizontal baseline looking straight up (not
tilted), sx ¼ sy ¼ s for all views. Then,

S
ðiÞ
x ¼ s2I; 8i: (34)

Substituting Eq. (34) into Eq. (31) leads to

Â ¼ argmin
X

XNframes

t¼1

XNviews

i¼1
jjxðiÞflatðXÞ � xðiÞðtÞjj2: (35)

In Eq. (35) the optimal 3D position X minimizes the dis-
tance between all the measured (tracked) distorted image

projections xðiÞðtÞ over all frames. The flat projection associ-

ated with X is x
ðiÞ
flatðXÞ. In a single viewpoint, Eq. (35) yields

the 3D location which projects through a flat water to the
center of mass of all distorted projections.

5 SCALING OF UNCERTAINTIES

In a monocular view, a camera pixel corresponds to an infi-
nite 3D cone which is a region of potential 3D positions.

This occurs even in open air without random refractive dis-
tortions. The lateral uncertainty~X is

~X / r~x ; (36)

where ~x is the pixel size and r is the distance. Viewing
monocularly through random refraction distortions, effec-
tively increases the lateral pixel uncertainty ~x, as
expressed in Eq. (13). This increase in ~x leads to increase
of~X by Eq. (36).

In stereo, there is uncertainty in range estimation due to
the uncertain disparity. This too, exists without random
refractive distortions, as in clear open air. The uncertainty
in disparity is proportional to ~x. The range uncer-
tainty [38] is

~r / r2

b
~x : (37)

Here b is the effective baseline projected perpendicularly to
the optical axis. Again, a wavy WAI, effectively increases
~x, and accordingly Eq. (37) increases.

The ratio between lateral and depth uncertainties
(Eqs. 36 and 37) is ~X

~r
¼ b

r
: (38)

Since usually b
 r, it follows that typically ~X 
~r.
Thus, the uncertainty domain is elongated in the direction
away from the camera rig. Relation (38) does not depend on
refraction, water waves or our algorithm. It is a general rela-
tion that holds for any typical stereo setting, regardless of
our environment and method.

Uncertainty, Number of Views, Number of Time Frames
As explained in Section 3, multiple uncorrelated

measurements reduce the uncertainty of the estimated
position. Equations (22) and (31) show that additional
views and temporal frames improve the estimation and
can be traded-off. Theoretically [39], regardless of refrac-
tive distortions, triangulation estimation uncertainty

decreases as 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nviews

p
, compared to results obtained

using a stereo pair. In general, ML estimation uncer-
tainty decreases as � ½NviewsNframes��1=2, if the measure-
ments are indeed uncorrelated. As discussed in Section
3.3 and observed in preliminary experiments, views are
effectively uncorrelated for a baseline of � 30 cm, due to
short ripples in the WAI. Using the setup described in
Section 7, we tracked 40 points in a stereoscopic video.
Then, we calculated the correlation coefficients between
corresponding pixel locations. Distortion correlation was
calculated in the components along the baseline (x axis)
and perpendicular to the baseline. The respective aver-
age correlation coefficients are 0:12 and 0:16. This result
points to low correlation between views. The numbers
here are extracted from a specific experiment, and the
ratios may vary as a function of setup scale, wave speed
and scale. However, ripples caused by short capillary
waves move fast and thus decorrelate faster than large
waves.

We examined the temporal autocorrelation of each trajec-
tory. Autocorrelation decays in time. The effective correla-
tion time in our experiments was � 9 frames, equivalent
to � 9=30 ¼ 0:3 seconds. Between consecutive frames, the
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correlation coefficient is � 0:6. Hence, solely using time to
decorrelate measurements, video rate is inefficiently too
fast for wave motion. This supports the use of multiview
imaging, irrespective of triangulation, even if we only
want to rectify distant object locations. Multiple views offer
less correlated data (as described), faster than sequential
monocular imaging.

6 SIMULATIONS

We performed simulations based on our experimental sys-
tem parameters. Similarly to [26], the water surface was
simulated using a sea surface model from [40] for each
time instance. We set the wind to be 2.5 m/s and a peak-
to-peak amplitude of 2 cm. A synthetic stereo camera rig
of a 27.5 cm baseline was set to be at a depth of 15 cm. A
planar object was placed 165 cm above the water surface
(Az ¼ 180 cm). By ray tracing, we synthesize water dis-
torted image pairs, changing the water surface in each tem-
poral frame. These frame pairs are the input to our
algorithm. Simulations were repeated for Ntrials distinct
random wave conditions.

Denote the average relative estimation error by

�"A ¼ 1

NtrialskAk2
XNtrials

m¼1
kA� ÂðmÞk2 : (39)

Specifically, for Ntrials ¼ 30 and Nframes ¼ 1, �"A ¼ 0:34 m.
This is far larger than the 2 cm length of the cubic voxels we
used. Hence, in the most basic estimation, this voxelization
is not the dominant source of uncertainty. Next, we plot
simulations quantified by �"A.

Correspondence error yields erroneous disparity. The
consequence of horizontal pixel disparity error ~x between
L and R views is plotted in Fig. 10. As expected, a high dis-
parity error increases the triangulation estimation error.

Imperfect tracking is a source of error, in case video is
used. Fig. 11 shows the effect of major tracking failure
on position estimation. We tested situations where track-
ing is lost, and the tracker is unaware of the loss. Then,
location estimation proceeds using wrongly tracked
points. If the tracking is lost at the beginning, �"A is large.

If tracking is lost after a larger number of frames, the rel-
ative error is much smaller. Now, suppose the tracker
detects loss and thus aborts. In such a system, the esti-
mation uses only Nframes frames where tracking was fine,
per object point. Fig. 12 plots �"A as a function of Nframes,

for Ntrials ¼ 11 simulations. A 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nframes

p
falloff curve is

included. The simulations generally follow this trend,
particularly when Nframes is small. However, the simu-
lated falloff starts to flatten at large Nframes. The reason is
that the fixed cubic voxel size of 2 cm length has increas-
ing significance. As expected, we found in simulations that
there is no benefit in using very small voxels, when the likeli-
hood spread caused by WAI waves is very large. Voxels can
be large, as long as they are smaller than the effective spread
of L. As Nframes increases, fixed voxelization eventually
becomes a resolution bottleneck. This may be improved by
more enhanced algorithms in which the voxel size adapts as
Nframes increases.

Calibration error is simulated by gradually changing
the position of the right camera from its correct position.

Fig. 10. Error of disparity and its effect on position estimation. The hori-
zontal axis represents disparity error, in pixels. The vertical axis is �"a,
relying onNframes ¼ 16, Ntrials ¼ 11 and 11 different points.

Fig. 11. Undetected tracking failure and its effect on localization error.
The horizontal axis represents the frame at which tracking loss occurred
in one of the views. The vertical axis is �"a, usingNframes ¼ 16.

Fig. 12. Tacking is lost and aborted. The plot shows the effect on location
estimation. The horizontal axis represents the number of frames until
tracking is lost, used for estimation. The vertical axis is �"a based on
Ntrials ¼ 11 and 11 different points.
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Fig. 13 plots the increase of the estimation error with the
calibration error.

7 EXPERIMENTS

We conducted experiments in a water tank and in a swim-
ming pool. We used a pair of Canon HV-30 camcorders,
each in an underwater housing. Their baseline was b ¼ 27:5
cm. Fig. 14 shows the lab setup. The video sequences of the
two cameras were synchronized in post processing, by
detecting light strobes that we had recorded [41], [25]. The
rig was calibrated underwater in a swimming pool using a
checkerboard target. Each of our camera housings has flat
windows, which generally might invalidate the common
single viewpoint model [11], [17], [42]. The Matlab calibra-
tion toolbox [43] both calibrated this system and verified
measurements at other underwater distances, in [25]. The
results had negligible errors. Possibly this is due to the small
angles we work in. To compute the effective range to

objects, we use the pixel length hpixel supplied by the camera
manufacturer.

We used Large Displacement Optical Flow [33], [34] for
tracking interest points.3 We found this tracker to be rather
robust to the harsh and fast distortions exhibited. Outliers in
x may cause numerical problems in 3D likelihood estima-
tion. To make Algorithm 1 robust to outliers, we incorpo-
rated a long tail into the modeled Gaussian, as illustrated in
Fig. 15. This was achieved by setting the distortion PDF to be

pðdÞ ¼ aNð0;SxÞ þ ð1� aÞN ð0;PÞ; (40)

where P is a diagonal matrix, expressing a Gaussian whose
axial STDs are respectively 7sx and 7sy. We used a ¼ 0:98.
In all experiments, we used fixed, uniform cubic voxels,
2 cm long. A Gaussian was fitted to the tracked projections,
over several frames, to empirically estimate Sx. In Eqs. (24)
and (33), the value t ¼ 0:01was used.

7.1 Triangulation in a Laboratory Experiment

In the lab, the camera pair was placed in a water tank at a
depth of Zflat ¼ 10 cm, looking upwards through the WAI
(Fig. 14). Water waves were created by hand, producing ran-
dom uncontrolled waves. The scene includes two objects.
The potato head doll is � 82 cm from the cameras and the
swan photo is � 133 cm from the cameras. First, we deal
with the potato head. Sample pair frames are shown in
Figs. 16a, 16b. The 3D domain was first set to a volume of

0:8� 0:8� 4m3, which projects to an image area correspond-
ing to� 260� 200 pixels. UsingNframes ¼ 3 and Algorithm 1,
the 3D object position was estimated, as shown in Fig. 16c.
Algorithm 2 proved to be significantly faster, allowing us to

use a larger volume of 3� 3� 9m3, which projects to the full

Fig. 13. Error in calibration of the stereo baseline (horizontal plot axis),
and its effect on estimation. The vertical axis is �"a, based onNframes ¼ 16.

Fig. 14. Lab experiment setup. Camcorders in a stereo rig are sub-
merged in a water tank. Objects of interest are hanged in the air above,
at known locations that serve as ground truth.

Fig. 15. Pixel position statistical model. [a] Normal distribution of the dis-
torted pixel location, around its undistorted location. [b] A long tail distri-
bution, created by a Gaussian having a very wide support. [c] Weighted
average of the distributions in [a] and [b].

3. Recently, also a Locally Orderless Tracking (LOT) [44] demon-
strated successful tracking under refractive distortions.
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frame of 540� 720 pixels. As shown in Table 1, the results are
consistent with the ground-truth, up to the experimental
uncertainty.

To triangulate multiple points, matches were automati-
cally found between the left and the right views using [19],
as described in Section 2.3. The obtained matching (disre-
garding the black ceiling) is shown in Figs. 17a and 17b. The
triangulation results are shown in Fig. 17c. The points on
the potato head doll are below the points on the swan. This

is expected since the swan is attached to the ceiling. The
STD of Z across all points on the swan is 3:9 cm. Refer to
Table 1 for all results.

7.2 Pool Experiment

We performed a similar experiment at an indoor swimming
pool. The stereoscopic camera rig was mounted on a tripod
and submerged. Several objects resided above the cameras

Fig. 16. Results of a lab experiment. [a] Sample frame from the left
viewpoint. [b] Sample frame from the right viewpoint. [c] The triangula-
tion results in lab coordinates. The ellipsoid represents the uncertainty
of the result.

TABLE 1
Summary of Experimental Results [cm]

Lab Potato Lab Swan Pool Potato Pool Red Broom Pool Blue Broom

Ground Truth
Ax

Ay

Az

0@ 1A 14
8
82

0@ 1A� 1 Az ¼ 133� 1 Az ¼ 166� 1 Az ¼ 133� 1 Az ¼ 174� 1

Algorithm1

Amin
x ; Âx; Amax

x

Amin
y ; Ây; Amax

y

Amin
z ; Âz; Amax

z

0B@
1CA 13; 14; 15

7; 8; 9
80; 82; 84

0@ 1A 13; 14; 15
�9; �8; �7
122; 128; 138

0@ 1A 17; 18; 20
8; 10; 14
144; 160; 190

0@ 1A 39; 40; 41
�7; �6; �4
120; 128; 130

0@ 1A 5; 6; 7
3; 4; 5
168; 178; 186

0@ 1A

Algorithm2

Amin
x ; Âx; Amax

x

Amin
y ; Ây; Amax

y

Amin
z ; Âz; Amax

z

0B@
1CA 13; 14; 15

7; 8; 9
76; 78; 82;

0@ 1A 13; 14; 15
�10; �8; �6
118; 128; 140

0@ 1A 17; 18; 20
8; 10; 12
140; 154; 174

0@ 1A 42; 44; 46
�7; �6; �4
116; 134; 144

0@ 1A 4; 6; 7
2; 4; 6
154; 172; 204

0@ 1A
The table presents the results including ground truth and uncertainty. Boldface numbers represent the estimated location bAA while the uncertainty bounds are
shown on both sides

Fig. 17. Results of a lab experiment. [a] Sample frame from the left view-
point with automatically computed matches overlayed. [b] Sample frame
from the right viewpoint with automatically computed matches overlaid.
[c] The triangulation results in lab coordinates for multiple points. The
colors match the points in [a] and [b].
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at Az 2 ½1; 2�m. One object (potato head doll) was placed
1:6m above the rig. Algorithm 1 yielded results evolving
over time t, as Nframes in Eq. (21) increased from 1 to 15.

The uncertainty of the estimation gradually decreased.
This is illustrated in Fig. 18: the color coding of the ellipsoids
indicates temporal evolution of the estimation: blue to red.
We applied Algorithm 2. The results are shown in Fig. 19.
The estimated location of the eye of the potato head doll is
marked at the bottom.

In another scenario, two brooms were placed above
the cameras at two different positions. Sample frames
and the estimated positions are shown in Fig. 20 and in
Table 1. The result was obtained after 16 frames. Each
new frame introduces additional information. Thus, the
support of the 3D likelihood function shrinks over time.
The estimated results (see Table 1) are consistent with
the ground truth.

8 DISCUSSION

This work deals with triangulation through highly random
refractive distortions. The formulation is stochastic. After
the definition of the problem, we present two algorithmic
solutions. In addition, automatic image matching obtains
multiple correspondences across views. The automated

Fig. 18. Results of a pool experiment, triangulating a potato head. [Top]
Sample frames from the left and the right viewpoints. [Middle] The illus-
tration shows the estimation evolving as t andNframes increase. Ellipsoids
represent the uncertainty of the result. Time is color coded: blue to red. A
zoom-in shows the final result and the ground truth. [Bottom] The uncer-
tainty volume plotted as a function of time.

Fig. 19. Results of a pool experiment, triangulating a potato head for sev-
eral points on the doll and on the ceiling. [Top] Left and right views with
corresponding, automatically computed, points overlaid. [Bottom] Trian-
gulation result for the corresponding points. The estimated location of
the eye of the doll (green point) is shown.

Fig. 20. A pool experiment, triangulating brooms. The result is given in
lab coordinates. Ellipsoids represent the uncertainty of the result. Time
is represented by color coding of the ellipsoids: blue to red.
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correspondence provides initialization for efficient triangu-
lation. Although the 3D ML algorithm is intuitive, the 2D
algorithm which is based directly on image plane coordi-
nates, simplifies the computations and reduces run time.
Thus, it allows triangulation for multiple points. We use the
method from [19] to obtain multiple point correspondences
between views. The problem and principles presented here
are not limited to the specific algorithms we used to demon-
strate triangulation. Improvements may stem from adaptive
voxelization, other parametric windowing, better trackers,
advanced and future matching algorithms designed for
severe distortions.

The approach may generalize to detection and analysis of
moving objects, through dynamic random refraction. This
task was treated in a monocular view [28], but has yet to
exploit multiview data. It may be possible to generalize the
system to light-field or integral imaging [45], [46], [47], and
thus acquire many images simultaneously.

There are monocular methods to “flatten” images taken
through a wavy WAI, which do not triangulate objects and
measure their range. Lucky imaging [48], [49], [50], [51]
requires a large number of frames, out of which a best repre-
sentative frame is selected per patch. Less temporal frames
are needed if a spatiotemporal distortion model [52], [53],
[54] is fitted to the image data, or given an undistorted tem-
plate image [55]. A virtual periscope is theoretically pro-
posed [56] based on a wave model constrained by self
occlusions. Possibly, rectification can be based on WAI esti-
mates derived from dedicated optical measurements [57],
[58], [59], [60], [61], including the STELLA MARIS virtual
periscope approach [62].

Such methods can be useful: they can estimate rectified
images in a first step. The rectified images can be triangu-
lated in a second step. On the other hand, our stochastic tri-
angulation, which directly handles raw multiview data has
advantages. First, random errors in this difficult rectification
task generally challenge deterministic triangulation, since
erroneous LOSs may not intersect in 3D. Second, a flattened
monocular image may harbor a global bias: a very smooth
but slanted WAI yields correct monocular content having a
spatial offset that biases triangulation.

We demonstrated our triangulation approach using a
submerged system. However, the approach can also be
applied in the opposite case, of an airborne camera looking
into water. There are multi-camera methods dedicated to
recovering a wavy WAI [23], [63], [64], [65], [66]. These
methods, however, often rely on a known calibration target
being the observed object. They were thus not intended to
triangulate objects behind a WAI.

The method can possibly be used through atmospheric
turbulence [67], [68], [69]. It is worth noting that parallel
image acquisition was suggested by [70] for deconvolution-
favorable imaging while [71], [72] used multi view imaging
to recover the 3D structure of atmospheric turbulence.
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