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Abstract. We merge by generalization two principles of passive optical
sensing of motion. One is common spatially resolved imaging, where mo-
tion induces temporal readout changes at high-contrast spatial features,
as used in traditional optical-flow. The other is the polarization compass,
where axial rotation induces temporal readout changes due to the change
of incoming polarization angle, relative to the camera frame. The latter
has traditionally been modeled for uniform objects. This merger gener-
alizes the brightness constancy assumption and optical-flow, to handle
polarization. It also generalizes the polarization compass concept to han-
dle arbitrarily textured objects. This way, scene regions having partial
polarization contribute to motion estimation, irrespective of their texture
and non-uniformity. As an application, we derive and demonstrate pas-
sive sensing of differential ego-rotation around the camera optical axis.
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1 Introduction

Spatio-temporal image intensity variations indicate motion by low-level vision.
This is the optical-flow principle. Image-based sensing makes several assump-
tions. First, the object must have significant spatial contrast of intensity (see
Fig. 1). If the scene is nearly uniform, motion estimation is ill-conditioned. Sec-
ond, spatial resolution should be high, for better conditioning of motion sensing.
Third, optical-flow is generally derived assuming brightness constancy, i.e, the
radiance of observed features is time invariant. Moreover, consider sensing ego-
rotation around the camera optical axis. The visual signal useful for this is at the
periphery of the field of view. The closer pixels are to the image center (Fig. 1),
the less they contribute to image-based sensing of ego-rotation. There, temporal
differential variations of intensity tend to null.

There is another principle of passive optical sensing, which can be used for
determining orientation and its change (rotation): polarimetry. Generally, light
coming from a scene towards a sensor has partial linear polarization. The scene
polarization is at some angle, set in the object coordinate system. This is the
angle of polarization (AOP). Assume a polarization filter is mounted on an op-
tical sensor. The filter has a lateral axis: light is maximally transmitted through
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Fig. 1. Types of image regions that are friendly to either optical-flow or polarization-
based estimation of rotation. A region of very weak spatial gradient is very suitable for
polarization-based estimation. An off-center region of strong gradient is very suitable
for optical flow estimation. In the central region of the image, intensity barely changes
temporally, despite rotation. Therefore it is not informative in image-based estimation.
It is, however, useful in a polarization compass.

the filter if the AOP is aligned with this filter. Multiple measurements by the
sensor, in each of which the filter axis is different, can determine the AOP and
thus the orientation of the sensing system relative to the object. This principle
is known as a polarization compass. It is used by many animals [27,82] which
exploit celestial or underwater polarization for navigation.

Note that models of the polarization compass do not use imaging, i.e, spatial
resolution is not required. Rather crude optical sensors having a broad field of
view are used. Polarimetry relies on very different - even contradictory - assump-
tions, relative to image-based methods as optical-flow. Traditional polarimetry
has thus far assumed point-wise analysis, oblivious to spatial gradients. Rotation
estimation using polarimetry thrives on spatially uniform objects, as the sky. On
the other hand, image-based methods thrive on high resolution sensing of scenes
having high contrast spatial features.

This paper combines the two principles of optical flow and polarization com-
pass. This enables estimation of motion, and particularly ego-rotation, using
both uniform and high-contrast scene regions. Note that in a scene, most image
regions have low contrast, and have thus far not been effective for motion esti-
mation by optical-flow. By combining the polarization compass principle with
optical flow, partially-polarized areas can help in motion assessments even if they
have low contrast, while high-contrast image regions can help as in optical-flow.

On one hand, we generalize brightness constancy and optical-flow to po-
larization signals. On the other hand, we generalize the concept of polariza-
tion compass to spatially-varying signals of arbitrary contrast. Consequently,
the paper formulates models and inverse problems that rely on these general-
izations. We demonstrate a solution both in simulations and real experiments.
We assume polarization-constancy. When does it hold? A major motivation is
polarization compass using atmosphere or underwater ambient scattered light
[17,18,19,21,67,79]. In both domains, polarization constancy holds and is in-
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variant to translation. However, when polarization is created by reflection and
refraction, it can strongly vary with the direction an object is observed from.
There, if translational motion changes the viewpoint significantly, our assump-
tion becomes invalid. The assumption would still hold when the reflective scene
is distant relative to lateral translation.

2 Prior Work

Polarization is used by a wide range of animals [13,63, 64,65, 66, 67], particu-
larly for navigation [7,8,20,24,47,82]. Notable animals in this context are bees,
ants, squid, spiders, locust, migratory birds, butterflies, crab and octopus. Some
of these animals have very crude spatial resolution and most of them have very
small brains. In other words, their vision resources are limited. However, observ-
ing the sky polarization, even in poor resolution, yields a strong navigational
cue which requires minimal computational resources (low level).

Polarization compass is used in bio-inspired robot navigation [17,18,19,21,
69, 81], relying mainly on celestial or underwater polarization patterns. These
robotic systems therefore can use low resources, and reduce dependency on GPS
and inertial measurement units (IMUs). This is our inspiration as well. Low-
resource approaches in computer vision [9,12,26,32,53,72,73,75] are significant
facilitators of small, distributed agents, using low power, narrow communication
bandwidth, reduced computations and crude optical resolution.

Refs. [29,30] use the degree of polarization (DOP), instead of radiance, as
input to classic optical-flow. As in our work, [29,30] assume polarization con-
stancy. However, when only the DOP is the input to optical-flow, the formulation
is insensitive to the incoming light’s AOP, relative to the camera. Hence, the
formulation is oblivious to the polarization-compass principle, which provides
point-wise sensitivity to the camera orientation and its rotation rate. For exam-
ple, in a scene having near-uniform DOP as the sky, the DOP does not indicate
rotation. Our paper does not substitute radiance by DOP. Instead, we generalize
optical flow to be sensitive to all components of the polarization vector field, and
can estimate the rotation rate even from a single pixel.

We estimate the state of an imaging system by observing an unknown scene.
This is related to self-calibration. Self-calibration in the context of polarization
has been recently suggested [58,85]. In [58], there is no motion of the camera or
the object. Self calibration there applies to angles of a polarizer, using redundant
images (multi-pixel images in four or more polarizer angles).

More broadly, several scientific communities rely on imaging polarization of
light. Specifically, atmospheric sciences and astronomy rely on it [3, 16, 35, 40,
59,79], to remotely-sense micro-physical properties of particles or separate scene
components. In computational photography, polarization is used in a variety of
imaging systems [5,11, 14,28, 36,37, 48,54, 56,77, 83]. Polarization is helpful for
solving a variety of inverse problems [57] in imaging. These include separation of
reflection components and surface shape estimation [15,22, 31,34, 39,41,42,45,
49,51,51,80,86], descattering [33,43,44,74,78], and physics-based rendering [11].
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Polarization is also used in computational displays [4,46,52] and camera-based
communication [84].

Optical-flow is another low-level vision method. As such, it is suitable for low-
resource systems, e.g., when computing, power or lag-time constraints prohibit
using higher-level processing such as structure-from-motion. It is also indepen-
dent of external systems [62,70]. Therefore, animals having small brains [71]
seem to estimate ego-motion estimation using optical-flow. Similarly, optical-
flow is used in airborne and land robots [2,10,23,50,55,68,71,76].

3 Theoretical Background

3.1 Reference Frames and Polarization

An optical axis is perpendicular to a lateral plane. Three frames of reference
are in the plane: the object, camera and polarizer frames. Coordinates T¢am =
[Jscam,ycam]T in the camera frame express the pixel on the sensor array. Here
T denotes transposition. The object frame is xoh; = [asobj,yobj]T, where Zop;
and yop; are lateral coordinates of the object. They are respectively referred
to here as horizontal and vertical world coordinates. In the object coordinate
frame, radiance from an object location is characterized by intensity c(xob;),
DOP p(xob;), and AOP ().

A polarization filter (analyzer) is mounted in front of the camera. The polar-
izer axis is the chief lateral direction in the filter frame. When light is incident at
the filter, the polarization component parallel to the polarizer axis is transmit-
ted. The polarization component perpendicular to the polarizer axis is blocked.
The angle a;nol indicates azimuth of a vector, relative to the polarizer axis.

There are relations between the frames of reference. The polarizer axis is
oriented at an angle « relative to the horizon in the object frame. A projection
operator 7 relates the object and camera coordinates:

Lcam — T:BObj. (1)

Light from an object passes through the polarization filter, and then hits the
camera sensor array. The measured intensity at the sensor pixel is then
c(Tobj)

I(@cam) = 1(Taobs) = === {1+ p(@on;) cos 2 [a — O(aonj)]} - (2)

3.2 Traditional Optical-Flow

Traditional optical-flow assesses a velocity vector field v(cam) in the camera
plane. Traditionally, a polarization filter has not been part of the imaging optics
in optical-flow formulations. In unpolarized (radiometric) imagery, the measured
intensity at the detector is

I(@cam) = I(T xobj) = c(xobj) - (3)
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Let ¢t denote time. Optical-flow relies on brightness constancy: an object patch
inherently has static, time invariant radiance:

dc(wobj)
dt

Brightness constancy means that images vary in time only due to relative
motion between the object coordinates and the camera coordinates. The motion
affects the projection operator of Eq. (1). Locally, it is assumed that differential
motion is rigid: after differential time dt, a spatial patch which was projected to
Team 1S shifted according to

=0. (4)

Lcam — Lcam + v(mcam)dt- (5)

This shift induces a temporal differential change in the measured intensity at
Team, satisfying

OI(cam)

ot

Here V1 is the spatial gradient field of the measured intensity. Note that Eq. (5)
ignores local orientation changes, i.e. traditional methods assume that a local
translation-only model may suffice. This assumption cannot hold when polar-
ization is involved, because local orientation changes directly induce changes of
measured intensity at the camera, as we discuss.

+ VI(@cam) - v(Tcam) = 0. (6)

4 Polarized-Flow

We introduce polarized optical-flow. It generalizes several basic concepts.

e The optical-flow model (Eq. 6) is extended by generalizing brightness con-
stancy (Eq. 4). The essence is extension of Eq. (5) to account for local orientation
changes in the projected scene, relative to a camera-mounted polarization filter.
This enables quantification of orientation changes even where VI(Zcam) = 0.

e Polarization filtering can sense orientation, creating a polarization compass.
It has so far been formulated for objects having spatially uniform radiance, e.g.,
zenith view of a clear sky. In polarized-flow, this compass is generalized to arbi-
trarily nonuniform scenes, where VI (Zcam) 7# 0. This is done using a formulation
of differential spatio-temporal changes of measured intensities.

A camera might sense all components of the polarization vector field, by hav-
ing special pixel-based polarization filters [29,30]. We show that a much simpler
sensor can be used: a uniform filter over the whole field of a standard camera.
It suffices to obtain enhanced flow estimation and particularly the rotation rate,
despite uncertain information about the object’s Stokes vector. We use a camera
which rigidly rotates in front of a static scene, as illustrated in Fig. 2.

4.1 Polarized Optical-Flow Equation

The transfer of coordinate systems 7 (Eq. 1) during projection changes any ori-
entation associated with a local patch. Specifically, consider an object for which
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Fig. 2. The camera sensor and the polarizer reference frames are coupled. The coupled
camera+polarizer system rotates around the optical axis, which is common to all three
reference frames. Angular velocity is positive for counter-clockwise motion. Between
shots, the rotation angle is wAt. The AOP of the object, though static in the object
frame, tilts by wAt relative to the polarizer axis.

the AOP 60(xopj) is uniform. In the camera coordinate system, the projection
yields an AOP 8(xcam) = T8(xon;)-

Now, let T change in time. The change in T involves rotation at rate —w
around the optical axis. Then, during an infinitesimal time of dt

O(Tcam) —  O(Tcam) +wdt . (7)

This relation holds when 6(@cam) is spatially uniform, or when viewing a static
object on the optical axis. In the latter case, v(Zcam) = 0 in Eq. (5).

Generally, there is change of orientation, lateral motion, and spatial non-
uniformity. This compounds Egs. (5,7):

H(wcam) — e[wcam + ’U(dfcam)dt] + wdt . (8)

During differential time dt, assume that the inherent radiance of the object is
static, in the object’s own coordinate system. Then Eq. (4) generalizes to

de(xon;) dp(zobj) df(wopj) _
a a a0 ©)
In the camera coordinate system, Eq. (6) generalizes to
% + Vc(mcam) ’ v(mcam) =0
6 cam
% + Vp(wcam) : v(wcam) =0 (10)
%ﬁ;am) + VO(Zcam) - V(Team) = w.

Note specifically how the presence of w in Eq. (8) affects the orientation (last)
relation in Eq. (10). Recall that a camera only measures raw intensity I(®cam),
rather than ¢, p, 6. The polarimetric and intensity variables relate through Eq. (2).
Let us transfer Eq. (2) to explicit dependency on camera coordinates, in case
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the polarization filter is rigidly tied to the camera. The camera coordinate sys-
tem then dictates the polarizer coordinate system. If 7 involves rotation of the
camera at rate —w (in the object coordinate system), then the polarizer axis
changes at rate —w in the object coordinate system.

Prior to rotation, the angle between the object polarization and the polarizer
axis is [a—0(xobj)]- After time dt, this relative angle changes to [a+wdt—0(xob;)]-
Following Eq. (2), the change of the relative angle induces a temporal change in
I(xcam), even if ¢, p, 0 are spatially uniform.

We now include both polarization-induced differential changes to I(Zcam),
as well as changes to I(®cam) created by motion as in common optical-flow.
Without loss of generality, prior to rotation, let the polarizer axis be horizontal
in the object coordinate system, i.e., & = 0. Then,

O eam) |91 ) - () =
%% ;{p@a + Cgt} cos(20) — cp sin(20)%+
TR0 P— "
%% 1{]?2; + cgi } cos(26) — cpsin(20) gz
HP;OSQQ{?;JrV } 0002829{(89];+Vp v}cpsin?@{gf+v9 v}
Using Eq. (10) in Eq. (11) yields the polarized optical-flow equation
Nt |G 1 () - 0 ) + 00l S020(n)] = 0. (12)

For the special case p = 0, Eq. (12) degenerates to the traditional optical-flow
equation, as required. Moreover, because a change in 6 is solely due to rotation of
the camera-+filter relative to the object, the special case w = 0 also degenerates
Eq. (12) to the traditional optical-flow equation, irrespective of p. The model
may be applied to ego-rotation sensing.

5 Quantifying Sensitivities

We want to assess the significance of the polarization-compass relative to image-
based spatially resolving analysis of rotation. The image-based principle is an-
alyzed using pairs of distinct pixels, say edge-lets. The polarimetric principle is
analyzed using a broad uniform area in the field of view.

5.1 Image-Based Sensitivity

Let us start with the image-based principle. There are N¢n, pixels in the camera.
Between random pairs of edge-let pixels, a vector is typically of length R ~
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Fig. 3. [Left] The imager has Ncam pixels. A typical distance between edge-lets is
R ~ v/Ncam/2 pixels. Between frames, there is time step At and the image rotates.
If edge-lets move by a pixel, their relative rotation is sensed. Each pixel is of length
! microns. [Right] An object is divided to K segments (here K=3). Each segment has
approximately uniform polarization (marked by an arrow). Due to slight rotation of a
camera—+polarizer rig, the measured intensity per segment changes slightly.

V/Necam/2 pixels (Fig.3 [Left]). Rotation means that the inter-pixel vector tilts
slightly within a time step of At. A single pixel is the basic resolution of this
vector tilt. Hence the edge-let pair can resolve a rotation rate Awp,ir given by

AWpauir ~ [At\/ Ncam/2]_1 P (13)

irrespective of the pixel size. Let there be Negge—1ets independent edge-lets, thus
e2dge—lets pairs. Each of them contributes an independent random error of
standard deviation Awpair to the estimated rotation rate. Averaging the contri-
butions, overall, an image-based method can resolve

~
~

edge—lets

NZige—tets 2
< Aw ir —
AWimage = Z <]V2pa> ~ [Nedge—letsAt\/E/z} ! . (14)

pair=1

5.2 Polarimetric sensitivity

Now, let us deal with polarimetry in a spatially uniform region (segment) (Fig.3
[Right]). Consider two rotation rates, whose difference is Aw. From Eq. (12),
due to rotation during At, the intensity of a pixel changes temporally according
to

Al(Tcam) = AwAL c(Team)P(Tcam)[SIn[20(Lcam)]| - (15)

For a random orientation 0(@cam), let us set roughly [sin[20(xcam)]|~ 1/2. From
Eq. (2), I(cam) ~ ¢(Tcam)/2. Hence, due to the object segment, a resolvable
orientation rate is roughly
segmen -1
AwSER ~ AAT [IpAL] ™, (16)

where we drop the dependency on @, due to the uniformity of the segment.
Here AT is the resolvable intensity, which is determined by radiometric noise.
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When a camera is well exposed, noise is dominated by photon (Poisson)
statistics. Thus AI ~ /I, where I is in units of photo-electrons. The typical
full-well depth of a pixel is ~ 1000/2 photo-electrons, where [ is the pixel width in
microns (Fig.3 [left]). The object occupies Neam /K pixels, where K is the number
of image segments, each being uniform. The intensity over this area is aggregated
digitally. This aggregation is equivalent to a full well of ~ 1000 N¢am!?/K photo-
electrons per segment. Let the sensor be exposed at medium-level i.e., at half-
well. Summing photo-electrons from all pixels in a segment, the signal and its
uncertainty are, respectively,

I ~ 500Neaml?/K , Al ~ \/500Neaml?/K. (17)
Combining Egs. (16,17)

-1
Awpeine™ o VK [pAL/500Neam| (18)

Averaging information from all K segments in the image, polarimetry can resolve

K 2 1
Awpolar = > (;Aw;‘fl;’fﬂ ~4[plAt\/5OONcam} . (19)

segment=1

As expected, the uncertainty Awpolar becomes smaller, as p or [ increase. In
other words the higher the object polarization or the better light gathering by
the camera detector, the lower is the uncertainty. From Egs. (14,19),

Nedge—lets A

A("Jpolar ~ 11pl Wimage -

(20)
We examine this relation for a few case studies.
o If | = 10pm, p = 0.5, then the uncertainty ratio is /& Nedge-lets/56. Hence,
if there are about 50 reliable edge-lets in the image, polarization contributes
similarly to image-based flow.
o If [ = 3um, p = 0.05, then the uncertainty ratio is &= Neqge-lets/1.7. If as before
there are 50 reliable edge-lets in the image, polarization barely contributes infor-
mation, relative to image-based flow. Polarization contributes here significantly
only if the image is extremely smooth, or comprises of very few pixels.
e For a single pixel sensor (or pair of pixels) the uncertainty ratio is ~ (11pl)~1,
suggesting high potential to polarization contribution. In this case, spatial non-
uniformity would have no impact. The mean intensity of an image may be con-
sidered equivalent to a single pixel approximation. A constant rotation rate may
be estimated by fitting the change in the mean intensity of the image due to ro-
tation to Eq. (2). This would require a sequence of images from four time steps
(see examples in Supplementary Material).

The study cases above demonstrate polarization has the best added value
for scenes having high polarization, few spatial features, and cameras having
low-resolution, or large pixels and hence high SNR.
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6 Polarized-Flow Gyro Forward Model

Let us now analyze the case of pure rotational motion around the optical center
of the rig (camera + polarizing filter), as in Fig. 2. In the coupled frame, the
image rotates with angular velocity of w, around a center pixel Zcay,. Moreover,
let the object be static. Then, in the camera reference frame,

V= [_w(ycam - ycam)7 w(xcam - fcam)]~ (21)
Define T'(Zcam) = ¢(Team )P(Tcam) $in 20(Xcam) and b(Tcam) = %. From
Egs. (12,21),
I cam — I cam
w(ycam - ?Cam)% - w(zcam - Icam)aa(:;rcam) - wr(mcam) = b(mcam)-
(22)
Define
OI(Tcom _ OI(xcam _

Q(mcam) = %(ycam - ycam) - a(y(::il)(xcam - xcam) - 1j(“ﬂ:am)- (23)
Then, per pixel Tcam, Egs. (12,22) can be expressed as b(Zcam) — ¢(Tcam)w = 0.
For N pixels, define the vectors ¢ = [¢(Tcam,)s ¢(Tcamy)s - - - » A Teamy )] and
b = [b(Tcam, ) H(Teams )s - - - » (Tcamy )] T - Then,

qw =b. (24)

7 Solving a Polarized-Flow Gyro Inverse Problem

We now estimate the angular velocity w. Assume for the moment that vectors
g and b are known. Note that Eq. (24) is a set of linear equations with a single
unknown. A least-squares solution is given in closed-form:

@w=(q"'q)"'q"b. (25)
Let w be known, but ¢, p and 6 be unknown. Eq. (22) is sensitive only to the
vector T' = [I'(Team, )s T'(Teamy )s - - - » T (Teamy )] - Let us estimate it by
oo . _ 2 2 2
I'= arg min Z b(Zcam) — @(®cam)w|” + pl| VT3], (26)

Lcam

where p is a regularization weight. Eq. (26) is quadratic in T, and thus has a
closed-form solution. It can be applied when analyzing small images. For high-
resolution images, Eq. (26) is solved iteratively by gradient descent.

Eq. (26) assumes that w is known, while Eq. (25) assumes that T is known.
We alternate between these two processes, starting from an initial w. In our
implementation, we ran 50 iterations of Eq. (26) between each calculation of
Eq. (25), and repeated to convergence. Note that for the application of ego-
rotation estimation, our main interest is estimation of @. The estimation of Iis
a means to that end, hence we tolerate errors in I.
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Fig. 4. The coupled camera-polarizer system for simulation and experiments. The po-
larizer is harnessed to the camera on a rotating mount, allowing measurements of the
Stokes vector. The system is assembled on a tripod for stability.

90°

0°

Fig. 5. [Left] Scene used in the simulation, visualized in color using the HSV space.
Gamma correction of the intensity was performed for display purposes. [Right] The
HSV coordinates are 6 (Hue), p (Saturation), and ¢ (Value).

8 Simulation Based on Real Data

Before conducting real experiments, we performed simulations using images
I(@®cam,t) rendered from real polarimetry. To acquire data, we used a setup
shown in Fig. 4. An IDS 4.92 megapixel monochrome camera (UI-3480LE) was
fitted with a Fujinon 1/2” 6mm lens (DF6HA-1B). A high transmittance (ap-
proximately 98%) Tiffen 72mm linear polarization filter was placed in front of
the lens, using a mounted protractor having 2° increments. Both camera and fil-
ter were rigidly connected to a rotating stage, having its own protractor. In this
section, we held the stage static and rotated only the filter. This way, we per-
formed traditional polarimetric imaging, yielding ground truth c(@on;), p(Zob;),
and 6(xop;). Pixels having saturated intensity were noted, in order to be ignored
in the subsequent estimation of w. The scene’s polarization field is visualised in
Fig. 5. The visualization® is based on the hue-saturation-value (HSV) color space.

! The maps of each polarization variable are presented in the Supplementary Material.
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Fig. 6. Plots of error(w) for the simulated tests and real experiments.

The value channel represents the monochrome c¢(aop;). The hue and saturation
channels represent, respectively, the AOP 0(x,p;) and the DOP p(zxop;).

Using the scene polarization, ¢(@obj), p(obj) and 6(xob;), we simulated two
acquired frames I(@cam, 1), [(Zcam, 2), where a simulated polarization filter was
rigidly attached to the camera. Between these frames, the simulated camera-+filter
rig was rigidly rotated by wAt of our choosing. We define At = 1[frame]. Then,
we introduced Poisson (photon) noise to the images, using a scale of 50 photo-
electrons per 8-bit graylevel.

In analysis, images were slightly smoothed by a Gaussian filter (STD of 2
pixels). The weight in Eq. (26) was set p = 0.0001. Ten tests were carried out,
each with a different rotation w € [0.1°/frame, ... 50°/frame]. Each test yielded
an estimate of w. To assess uncertainty, this process was repeated 10 times, using
independent Poisson noise samples. Using these samples, per tested rotation
angle we obtained an average estimate & and standard deviation STD(&). We
found that typically STD(@) = 0.03°/frame. The resulting error(w) = & — w is
plotted in Fig. 6. The approach performed well across a wide range of angles.

9 Experiments

The experiments use the system described in Sec. 8 and Fig. 4. Here, however,
the polarizer protractor was held fixed relative to the camera. The rotating stage
that held the camera+polarizer rig was rotated relative to the scene. Only two
frames are taken per experiment, each angle in the pair is fixed and known.
Rotation between angles is done manually, then a shot is taken. This is in lieu
of having two images sampled automatically in a motorized rig. We captured
four scenes: LCD, Kitchen, Sky, and FElevator. They are visualized in Fig. 7 and
described below. Each scene lead to 5-8 experiments, each at a distinct rotation
rate w € [4°/frame, ... 48°/frame]. This yielded a total of 27 experiments. The
resulting error(w) = & — w is plotted in Fig. 6. The approach performed well
across a wide range of angles.
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LCD scrgen Kitchen Sky Elevator

Fig. 7. LCD screen, Kitchen, Sky, and Elevator scenes. The polarization is represented
using the HSV color space, as in Fig. 5.

e LCD screen is simply a computer screen displaying a photo. Its spatial con-
trast in c is strong. Its DOP is nearly p = 1. Slight depolarization is caused by
unpolarized light in the lab reflecting off the screen.

e Kitchen possesses reflection-induced polarization at a variety of angles. Light
thus has a variety of polarization angles. The DOP is generally low. This scene
has a lot of intensity edges.

e FElevator presents a low light, high DOP scene, with a weak pattern of a rough
reflecting metallic surface.

e In Sky, the rig views the clear sky through the lab’s open window. The viewed
sky is highly polarized (p ~ 0.6), having nearly uniform radiance. Such a scene
can be challenging for traditional image-based ego-rotation estimation.

We imaged a sky-patch using w = 6°/frame. Our method erred by 5%. We
imaged this sky patch in the same rotation setting, without a polarizer. We
ran Horn-Schunck and Lucas-Kanade optical-flow algorithms on the radiance
measurements. The resulting flows were fit by least-squares to rotation, yielding
respectively, @ = 0.1° /frame and & = 0.03° /frame, i.e., far lower than w.

To compare with [29,30], we imaged Stokes vector per pixel of the sky patch,
by rotating the polarizer independently of the camera, and then rotating the
camera itself. We then ran the Horn-Schunck and Lucas-Kanade algorithms on
the DOP field p, as in [29,30]. Using the resulting flow fields for least-squares
fit to rotation yielded, respectively, @ = 107° °/frame and 2 - 107> °/frame.
These estimated values are far lower than the true w = 6°/frame. The spatial
uniformity of the radiance and DOP fields yield no reliable information about
rotation. The sky’s AOP enables proper estimation of rotation.

10 Conclusions

The polarized optical-flow equation (12) contains both traditional components
of optical-flow and a polarized component. In strong spatial gradients of ra-
diance, flow estimation is similar to optical-flow, while polarization is just an
enhancement. In weak spatial gradient, or when spatial resolution is low (low
resource sensors) the polarized component may have similar and even higher
significance than the optical-flow. The approach can be useful in low-resource
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outdoor navigation having the sky in view or underwater. Polarization-based
navigation aids [17,18,19,21,67,79] fit low resource systems, but they assume
models of the expected polarization pattern. This paper shows that the rotation
rate can be derived in unknown scenes. In addition, this rotation cue can assist
self-calibration of distant imagers, such as low-resource nano-satellites [61].

The optical-flow model assumes infinitesimal motion. Nevertheless, the esti-
mation results here were found to be reasonable even in rather large angles of
rotation. It is worth generalizing analysis for motion having arbitrarily large an-
gles and more complex parametric ego-motion, including translation and 3-axis
rotation. We believe that a 3-axis rotation sensor can be achieved by having a
rig containing three corresponding cameras, each having a mounted polarizer.
Alternatively, this may be achieved using an omnicam mounted with a polarizer
having a spatially varying polarization axis [6, 60].

There are sensors in which micro-polarizers are attached to individual pixels
[1,25]. Adjacent pixels use filters that are 45° or 90° to each other, in analogy to
RGB Beyer patterns. It is worth extending the analysis to such cameras. There,
a single image yields f‘, thus significantly simplifying the analysis of Sec. 7.

The work here may shed light on biology. As described in Sec. 2, many
animals use a polarization compass. However, many animals have eyes that are
both spatially resolving and polarization sensitive. It is common for their eyes to
have two interleaved populations of receptor cells, having mutually orthogonal
orientations [38]. It is possible to study whether these animals combine these
principles, in analogy to our analysis.

We use a particular algorithm for recovery, and as most algorithms, it has
pros, cons and parameters. For example, in our implementation, we use an ini-
tial optimization step-size which decreases when w increases. We believe that
algorithms that are designed to be efficient and robust in low resource systems
would suit the sensing idea of this paper.
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