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The popularity of voice over Internet protocol (VoIP) systems is continuously growing.
Such systems depend on unreliable Internet communication, in which chunks of data
often get lost during transmission. Various solutions to this problem were proposed, most
of which are better suited to small rates of lost data. This work addresses this problem by
filling in missing data using examples taken from prior recorded audio of the same user.
Our approach also harnesses statistical priors and data inpainting smoothing techniques.
The effectiveness of the proposed solution is demonstrated experimentally, even in large
data-gaps, which cannot be handled by the standard packet loss concealment techniques.
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1. Introduction

Voice over Internet protocol (VoIP) systems have become
a basic tool with ever growing popularity. However, they
commonly rely on an unreliable communication channel,
such as the Internet, and are therefore subject to frequent
events of data loss. These events are usually realized as lost
data packets carrying audio information. This, in turn, leads to
temporal gaps in the received audio sequences, as illustrated
in Fig. 1. Left untreated, such gaps create breaks in the audio
(e.g. missing syllables in speech signals). High percentage of
packet loss (above 20%) can often render speech unintelligible
[1]. For this reason, VoIP applications regularly incorporate a
packet loss concealment (PLC) mechanism, to counter the
degradation in audio quality, by filling in for the missing
audio data, using various techniques.

A PLC mechanism should not impose high computational
loads or extensive memory usage. Specifically, PLC should
operate in real-time. Moreover, intense computations consume
more power, which is a limited resource in mobile devices.
at),
hnion.ac.il (M. Elad).
Most existing PLC techniques have difficulties handling
long audio gaps. This paper presents an approach for hand-
ling such gaps, corresponding to high packet loss rates. We
suggest using an example-based principle that exploits audio
examples collected from past audio signals. Once an audio
gap is encountered, our algorithm harnesses the audio data
surrounding this gap to look for the most suitable audio
example to fill this gap. A mixture of audio features and prior
knowledge on the statistical nature of the audio signal is used
for finding the most appropriate set of examples that could
be used for filling the gap. Once found, our solution presents
a series of steps for isolating the best fitted example to use
and pre-processing the exact portion of the audio to be
extracted from the chosen example. This portion is smoothly
inlaid to fill the audio gap.

Inpainting is a term commonly used in the context of
filling in missing pixels in images. It was borrowed by Adler
et al. [2] to describe filling short audio gaps in a signal, by
using the intact portions surrounding each gap. Our work
has a similar flavour, but it differs from [2] in several
important aspects. The novelty in our work lies in using a
self-content-based approach, while exploiting a higher level
model for the audio signal. These enable handling longer
temporal audio gaps which [2] cannot handle, as observed
when experimenting with such long gaps.
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Fig. 1. Packet drop scenario. Some packets are dropped during transmis-
sion, causing sr to have sequences of missing samples.
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The rest of this paper is structured as follows. Section 2
explains the problem of loosing network packets, and
surveys several existing methods to overcome this problem.
Section 3 comprises a general high level description of the
proposed method. We formulate the problem in Section 4.
Then, Section 5 discusses the use of a statistical prior in a
matching process, described thoroughly in Section 6. The
consecutive process of inlaying the chosen example into the
audio signal is described in Section 7. In Section 8 we
analyze the method's computational complexity. Experi-
mental results are described in Section 9 and discussed in
Section 10. We conclude this paper in Section 11. For
convenience, a table of notations is given at the end of the
paper (See Table 4 in Appendix section).

2. Loosing network packets

The building block of VoIP is an Internet packet which
encapsulates a segment of a digital audio signal. Let Lpacket

be the number of audio samples contained within each
packet. Packets may have various sizes, corresponding to
different values of Lpacket. Ref. [1] mentions packets corre-
sponding to 10, 20, 30 and 40 ms of audio. For a sampling
rate of 8 KHz, these packets have Lpacket ¼ 80;160;240 and
320 samples, respectively. Packets frequently get dropped,
often due to deliberate action in times of network conges-
tion. This results in loss of the encapsulated data they carry.

In [1], Ding and Goubran showed the dramatic influence
of lost packets (in various loss rates and packet sizes), and
examined different PLC techniques. Some techniques are
described in [3,4], and can be roughly divided into sender-
based and receiver-based methods. Sender based methods
(e.g. FEC) involve sending auxiliary information to allow
later reconstruction. The auxiliary information maximizes
redundancy while consuming minimal bandwidth. Such PLC
methods require modifications in both sender and receiver.

Our proposed method only involves the receiving side,
hence it is receiver-based. Receiver-based methods typically
require lower bandwidth, or allow higher quality for a given
bandwidth. There is a variety of receiver-based methods,
some substitute a missing packet, either by a repetition of
the adjacent preceding packet or by a predefined audio
(noise or silence segment [5]). Other methods include
waveform linear predictions [6,7] and codec-dependent
spectral interpolation [8–10]. All of these are reported to
perform adequately for short temporal losses (up to around
20 ms), but brake down for longer periods of time [1].

However, long gaps are common [11]. The Gilbert model
for Internet packet loss [12] implies that packet dropping
tends to occur in bursts, mainly when network congestion is
experienced. This model fits packet loss statistics rather
accurately. Using the model with standard parameters [11]
suggests two important characteristics, which are taken into
consideration in this work:
1.
 Dropping bursts of more than 5 consecutive packets are
highly improbable, even in a poor quality communica-
tion channel.
2.
 When dealing with larger packet sizes (corresponding
to longer encapsulated audio segments), gaps longer
than 40 ms are highly probable.

3. Algorithm sketch

The PLC process starts by continuously capturing a
streaming digital audio signal. This audio signal is divided
on the fly into overlapping segments of constant length. We
call these segments audio blocks (ABs). Audio blocks in our
system are substantially longer than a packet, for reasons
that will be clarified later on. Each AB undergoes a feature
extraction process, which yields a feature vector represen-
tative of this AB.

During time periods where packets are not dropped, our
system collects ABs and saves them as reference example ABs
to be used at a later stage. Once a packet is dropped, the
received audio has a missing sequence of samples. This
missing sequence is a hole in all partially overlapping ABs
that contain this sequence (qn and qnþ1 in Fig. 2).

ABs that contain the hole constitute a set of optional
query ABs, which share the same length as example ABs. In
queries only, the part of the query AB corresponding to the
hole is blank. The unharmed portions within these queries
undergo a feature extraction process, similar to the one
applied to example ABs. This process yields query feature
vectors, to be compared to example feature vectors.

The remainder of this section provides a cursory descrip-
tion of our algorithm (see Fig. 2). Readers seeking rigorous
formulation are encouraged to skip directly to Section 4. For
each query, we pick the most suitable example to fill the
hole. This selected example is the one best satisfying a
weighted combination of the following requirements:
1.
 Low feature space distance: This reflects the demand
that for each hole, the intact portions of the query AB
and its corresponding portions of the chosen example
AB are similar.
2.
 High prior probability for the resulting AB sequence: We
model the AB sequence as a hidden Markov chain.
Then, the prior is the probability of the chosen example
AB appearing between the ABs that proceed and
succeed the query AB.



Fig. 2. Algorithm's sketch (Described in Section 3).
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Finally, to reduce artifacts and increase intelligibility
while inlaying the selected example, we conduct the
following steps:
1.
 Pitch modification of the chosen example AB, when the
hole is located within a voiced syllable. This modifica-
tion is intended to prevent artifacts resulting from the
difference of pitch between the query and example ABs.
Such difference can occur when the same syllable is
uttered in different intonations.
2.
 Gain modification: This modification is intended to pre-
vent artifacts resulting from differences of mean signal
amplitude between query and example ABs. Such differ-
ences occur when the same syllable is uttered in different
intensities.
3.
 Query – example offset fine tuning: The query AB and
its best matching example AB are unlikely to be aligned
to one another. The correct alignment is found based on
maximizing waveform correlation between these two
matching ABs.
4.
 Cropping the desired part of the chosen example AB. As
the hole to be filled is typically shorter than the chosen
example, we do not necessarily need to inlay all of it.
We therefore crop some part of the example AB and use
it to fill the hole. The length of this part can be equal or
greater to the hole's length, and is determined so that it
minimizes artifacts.
1 Restricting Npackets to integer values means that a packet is the
smallest ‘building block’. A smaller block contains too little information
for signal analysis.
Sections 4–7 describe our algorithm in detail.
4. Problem formulation

The problem we deal with involves an audio signal
broadcast over an unreliable communication channel. Some
data is lost on the way (see Fig. 1). This results in a pierced
audio sequence, i.e. having temporal gaps. The original,
unharmed signal sorg is a digital audio signal sampled at
frequency f s from an acoustic waveform. The received digital
audio signal sr is corrupted by missing data segments, but it
also contains unpierced intact time spans.

As defined in Section 3, a temporal segment of samples
in sr is an AB. Each AB is LAB samples long, corresponding
to NpacketsAZþ consecutive packets.1 Then,

LAB ¼NpacketsLpacket: ð1Þ

The streaming signal sr is divided on the fly into partly
overlapping ABs, as depicted in Fig. 3. The overlap between
two consecutive ABs is an integer number of packets,

NoverlapA 0;…;Npackets�1
h i

: ð2Þ

We choose Noverlap ¼Npackets�1, to maximize the density
of ABs. The overlap is therefore Loverlap ¼NoverlapLpacket

samples long.



Fig. 3. Example AB extraction: examples ek and ek�1 are intact ABs
extracted from sr, while query ABs qn and qnþ1 have missing portions.

Fig. 4. Comparing a query AB to an example AB. The features corre-
sponding to the intact query portions are in ~q int

n . They are compared to
the corresponding features in ~ek .
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4.1. Example AB

An undamaged AB is an example AB. The kth example
AB is denoted by ek. Let ik index the first sample in ek. A
sample of sr that corresponds to ik is srðikÞ. Then,

ek ¼ srðikÞ; srðikþ1Þ;…; srðikþLAB�1Þ
h i

: ð3Þ

Here sr ¼ sorg, since this AB is unpierced. Let NEðτÞ be the
number of unpierced ABs, which have appeared in the
audio stream up to the current time τ. Then

Eτ ¼ fekgNEðτÞ
k ¼ 1 ð4Þ

is the set of unpierced example ABs, which have been
captured up to this time.

4.2. Query AB

A hole is caused by at least one missing packet. Holes
pierced in sr are indexed by m, in order of appearance.
There are usually less holes than missing packets, because
some holes are created by a sequence of consecutive lost
packets.

An AB that has some missing data is a query AB,
denoted as qn (see Fig. 3). Analogously to the definition
in Eq. (3), let in index the first sample in qn. Then,

qn ¼ srðinÞ; srðinþ1Þ;…; srðinþLAB�1Þ� �
: ð5Þ

In a query AB, some samples are missing through their
encapsulating packets. Let pm be the number of consecu-
tive missing packets that form the mth hole. The number of
consecutive missing samples, Nsamples

m , in the mth hole is
then

Nsamples
m ¼ pmL

packet: ð6Þ
These Nsamples

m missing samples are equivalent to a gap in
the audio signal, Nsamples

m =f s seconds long. For the purpose
of brevity, the term ‘packet’ will be used to refer also to the
segment of audio samples contained inside the packet.

For a query AB to be usable, some of its data needs to be
intact (see Section 3). Therefore, we set the query length to
be longer than the maximal probable hole length (see
Section 2):

Npackets4pm: ð7Þ
The intact portions of qn are denoted by qint

n (See Fig. 4).
Our algorithm uses only qint

n , since the data in other
portions of qn had been lost.
Each AB (either example or query) is pre-processed to
yield audio feature vector:

~ek ¼PðekÞ; ~qn ¼Pðqint
n Þ: ð8Þ

We used the Mel frequency cepstral coefficients (MFCCs) as
features, since MFCCs are known to well express human
perception of audio. The pre-process P that we use is
described in further detail in Appendix A. The resulting
example feature vectors comprise the set ~Eτ , correspond-
ing to the set defined in Eq. (4).

5. Feature statistics as a prior

Before filling audio holes, we estimate the statistics of the
unpierced signal, using training. The statistics then serves as
prior knowledge when processing a pierced audio segment.
A similar model was described earlier by Segev et al. in [13].
It is brought here with some necessary modifications.

When listening to a familiar language, a strong prior is that
some temporal sequences of consecutive syllables are highly
probable (frequently appearing in words), while others are
much less so. The probability of a syllables temporal sequence
is a prior knowledge, which can disambiguate speech under
noise. Adopting this idea and abstracting it to become relevant
to general audio streams, we propose to avoid high-level
division of audio sequences into syllables. Instead, we use the
low-level example ABs, and learn by training the transition
probability between ABs, as we now describe.

The set of feature vectors ~Eτ undergoes clustering into C
clusters (using K-means), as illustrated in Fig. 5a. The proper
number for C is debatable. For example, there are Oð104Þ
potential syllable types in speech, which roughly indicates C.
To reduce dimensionality in our experiments, we take as a
rule-of-thumb the number of vowel � consonant combina-
tions (in any order), which leads to C¼300. This way we
obtain clusters of ABs that sound rather similar. ABs across
clusters can efficiently be used in consecutive order to render
speech. Let ek belong to cluster ck ¼ cð ~ekÞ. We wish to learn
the probability of temporal transition between ABs that are



Fig. 5. Illustration of feature space, with two features. (a) Example of
feature vector ~ek is clustered, among other example feature vectors, into
cluster cr. (b) The subset Πn includes the Ncand example ABs closest to ~qn .
The distance to ~ekþ1 is too large to be in Πn .
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conterminous (share a temporal boundary, with no overlap).
The example AB that is conterminous to ek is ekþNstride , where
NstrideAZþ is the difference of indices between two con-
terminous ABs. Using Eq. (2) and Npackets (defined in
Section 4), we define2

Nstride � Npackets

Npackets�Noverlap
: ð9Þ

The set of all consecutive ABs corresponding to fixed
clusters q; rA ½1;…C� is

Φq;r ¼ kjck ¼ q and ckþNstride ¼ r
n o

: ð10Þ

The probability for a transition from cluster q to r is
estimated from the histogram of these sets,

Pðq; rÞ ¼ jΦq;rj=NEðτÞ: ð11Þ

In a C�C matrix P, the (q, r) element is Pðq; rÞ. This matrix is
a statistical prior that expresses the joint probability for
consecutive signal ABs. This prior models signals as derived
from a degenerated hidden Markov model (HMM). In a
general HMM, observations are emitted by hidden states.
In our case, observations are ABs, and the hidden states are
the clusters. However, each state (cluster) ck has an exclusive
subset of observations (ABs), assigned to it by the clustering
procedure. In HMM terms, this means that the probability of
ABs emitted by state ck to be emitted by state crak is zero.

HMMs were used earlier in a related context [14–17]. In
[14,15], HMM is used as the key component in a speech
recognition task. However, our aim is different than speech
recognition, as we aim at producing a plausible audio result.
Hersheynand and Casey [16] used a more sophisticated HMM,
incorporating some visual features, trying to enhance audio
source separation performance for the purpose of speech
recognition. Our problem is different than audio source
separation, as we deal with sequences of missing audio data.
2 We set the values of Npackets and Noverlap to satisfy NstrideAZþ .
Rodbro et al. [17] incorporated HMM for the purpose of PLC
as we do, but used it in a parametric approach as a generative
model. Contrary to that, HMM in our method is not incorpo-
rated in a generative model, but rather used as a regularization
mechanism. It supports an example-based approach, by reg-
ulating the choice of the best matching example-query pair, as
explained in Section 6.2.2. Moreover, our method is indifferent
to the phonetic and lingual semantics of audio signals, e.g.
vowels, consonants, verbs and nouns. Instead, it uses previous
self-content statistics as prior knowledge.

6. Example matching

We match each hole in sr with its most appropriate
example in Eτ , utilizing the unharmed data which sur-
rounds the hole. This section elaborates on this process,
which is done separately for each hole.

6.1. Query selection

Consider Fig. 6. The set of optional queries for the mth

hole is defined as

Qm ¼ fqnjmth hole� qng: ð12Þ
An AB query qn can include more than a single hole (Fig. 6). In
Qm, some queries contain more information than others, for
the purpose of example matching. Within Qm, we prefer to
use the more informative queries, which have a better chance
to match a suitable example. Therefore, we employ pruning,
yielding a subset of informative queries for the mth hole,
Q mDQm. The pruning process is described in Appendix B.

6.2. Defining a cost function

Now we seek to associate each query feature vector
~qnjqnAQ m with an example feature vector ~ekA ~Eτ . This
association should satisfy two requirements:
1.
vec
por
The feature vectors ~ek and ~qn should be similar. This
requirement is expressed by a Data (fidelity) term D in a
cost function C, defined next.
2.
 Consistency with prior knowledge. Based on P, we
derive the probability that ek appears between the
two ABs which adjoin qn in sr. This becomes a Regular-
ization term R in C, defined in the following.

From these two requirements, the cost to be minimized is

Cð ~qn; ~ekÞ ¼Dð ~qn; ~ekÞþλRð ~qn; ~ekÞ: ð13Þ
Here λ weights the regularization (prior) relative to the
data term. We discuss λ towards the end of this section.

6.2.1. Data term D
Similar feature vectors ~ek and ~qn indicate similarity3

between ek and qn. Hence, for each query feature vector
~qnjqnAQ m, a distance grade Dð ~qn; ~ekÞ is calculated 8 ~ekA ~Eτ
(See Fig. 5b). We use the Mahalanobis distance, as it accounts
3 Recall from Section 4.2 that ~qn is calculated using only qint
n . Hence

tor similarity is measured using only qint
n and its corresponding

tions in ek .



Fig. 6. Optional queries for the mth hole, when Npackets ¼ 5 and pm¼2.
Note that queries q2 and q3 also contain the previous hole. Therefore, q2

and q3 appear in both sets Qm�1 and Qm . In the table, a bullet in a query-
hole intersection indicates the query contains the hole in full.

Fig. 7. Computing R. Computed for query AB qn , that is conterminous to
ABprec

n and ABcons
n .
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for correlation of features. The covariance matrix is estimated
using 8 ~ekAEτ .

6.2.2. Regularization term R
Query qn is conterminous to preceding and consecutive

ABs, denoted respectively by ABprec
n and ABcons

n (See Fig. 7).
Suppose qn is replaced by example ek. This yields a sequence
of ABs:

ABseq
n;k ¼ ABprec

n ; ek;AB
cons
n

� �
: ð14Þ

This corresponds to a sequence of the clusters

cseqn;k ¼ cprecn ; ck; c
cons
n

� �
; ð15Þ

where cprecn and cconsn are the clusters of ABprec
n and ABcons

n ,
respectively. This sequence has prior probability. A sequence
of clusters is assumed to be a Markov process, hence

Pðcseqn;k Þ ¼ Pðcprecn ; ckÞPðck; cconsn Þ: ð16Þ

We use the Markovian nature of sequence cseqn;k to induce a
cost:

RðABseq
n;k Þ ¼ � log Pðcseqn;k Þ: ð17Þ
From Eqs. (14), (16), (17), the regularization term is

Rð ~qn; ~ekÞ ¼ � log Pðcprecn ; ckÞ� log Pðck; cconsn Þ: ð18Þ
A low probability transition sequence between ABs induces a
high cost, while a highly likely transition induces little cost.

Once the cost function terms are defined, finding the
best match for the mth hole yields a pair ðebestm ;qbest

m Þ. This
pair comprises the example AB ekAEτ which best matches
query qnAQ m. The following list describes how this pair is
found for the mth hole:
1.
 CalculateDð ~qn; ~ekÞ 8 ~qnjqnAQ m and ~ekA ~Eτ , as in Table 1.

2.
 8 ~qnjqnAQ m keep the Ncand example feature vectors

~ekA ~Eτ with the smallest distance. This yields a subset
Πn of candidate pairs illustrated in Fig. 5b. It satisfies

Πn ¼ fð ~qn; ~ejÞjDð ~qn; ~ejÞoDð ~qn; ~ekÞ; 8k=2Πng: ð19Þ
The size of Πn is Ncand.
3.
 Recall from Eq. (12) that the mth hole has several
optional queries. Each query qnAQ m has a subset Πn

of candidate examples. Hence, we merge the subsets
Πn of 8qnAQ m to form a single complete subset of
examples for the mth hole:

Πm ¼ ⋃
njqn AQ m

Πn: ð20Þ
4.
 Calculate Rð ~qn; ~ekÞ for all pairs ð ~qn; ~ekÞAΠm, as illu-
strated in Fig. 7.
5.
 Using Eq. (13), obtain the best matching pair by

ð ~qbest
m ; ~ebest

m Þ ¼ arg min
ð ~qn ; ~ekÞAΠm

fCð ~qn; ~ekÞg: ð21Þ
6.
 The pair ðebestm ;qbest
m Þ corresponding to the feature vec-

tors pair ð ~qbest
m ; ~ebest

m Þ is the solution.

The minimization of Eqs. (13) and (21) relies on λ. We
used

λ¼ λð median
~qnjqn AQ m ; ~ek A ~Eτ

fDð ~qn; ~ekÞgÞ: ð22Þ

Setting λ determines the balance between D and R. We
tested with several values of λ and empirically set it
to 0.01.

7. Rendering an inpainted soundtrack

Following the minimization of C, the matching pair ebestm
and qbest

m is found for the mth hole. Consequently, we
synthesize a restored audio signal ŝ. The synthesis process is
divided into several stages, aimed at reducing artifacts.

7.1. Pitch modification

Spoken syllables can be roughly divided into unvoiced and
voiced [18]. Voiced syllables have a fundamental acoustic
frequency (pitch). The pitch can vary between different
occurrences of the syllable, due to intonation. Our example-
matching algorithm is insensitive to intonation changes due
to normalizations (described in Appendix A). Therefore, the



Table 1
Query-example distances. Values represent the distance between each ~ek

(rows) and each ~qn (columns). For each query column, distance ranks

appear in parenthesis. Per column, the Ncand elements having the
smallest distance appear in bold.

Distance (rank#) ~qnAQ m

q17 q19 q20

~ekAEτ ~e1 253 (#78) 152 (#35) 124 (#31)

~e2 486 (#320) 872 (#1053) 531 (#152)
⋮ ⋮ ⋮ ⋮

~e103 116 (#35) 515 (#334) 778 (#687)

~e104 576 (#325) 60 (#7) 306 (#39)
⋮ ⋮ ⋮ ⋮

Fig. 8. Pitch modification of syllable ‘re’.
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pitch of ebestm can be inconsistent with qbest
m . We assume that

unlike the pitch itself, pitch variation within a syllable is
similar across different utterances of the same syllable. Thus
the pitch of ebestm is modified by a pitch modification (PM)
operator. To this end, we densely estimate the pitch of both
ebestm and qbest

m using autocorrelation. Then we use a phase
vocoder implementation by [19], modifying pitch values
throughout ebestm to resemble the intact portions of qbest

m ,
denoted qbest� int

m . This yields a modified example emp
m , whose

pitch is more consistent with that of qbest
m (see Fig. 8):

emp
m ¼ PMðebestm jqbest

m Þ: ð23Þ
We classify signal parts into voiced and unvoiced by thresh-
olding the autocorrelation value, then modify only those
classified as voiced.

7.2. Gain modification

Different occurrences of the same syllable also vary in
their gain. As with intonation (Section 7.1), our example-
matching algorithm is gain-invariant. Therefore, emp

m can
have inconsistent gain with qbest

m . For consistent gain, we
amplify emp

m to match the energy of qbest� int
m , yielding empg

m .

7.3. Timing fine tuning

Our algorithm uses a ‘coarse to fine’ approach. Recall
from Section 6 that each hole is paired with a matching
example. This match is temporally coarse. Now, the match
is refined by temporally aligning empg

m to the hole. To this
end, we maximize a waveform correlation criterion by
translating empg

m relative to qbest� int
m .

We primarily fill in the missing portion of qbest
m . This

missing portion corresponds to a certain portion in empg
m ,

denoted eholem � empg
m .

7.4. Optimal coupling

Synthesizing ŝ can apparently be done by replacing the
pierced segments of sr with eholem . However, this generally
causes discontinuities in the waveform, resulting in annoying
audible artifacts. In order to avoid these discontinuities, the
transition between sr and eholem is done gradually, forming a
transient phase. We use a linear weighting function to fade-
out the signal sr, while fading-in eholem , and vice versa. In an
attempt to further minimize discontinuities in ŝ, we used
optimal coupling [20] to determine the best transition timing
(within a limited range) according to a spectral smoothness
criterion [20].
8. Complexity analysis

As mentioned in Section 1, important criteria of a PLC
method are its computational and memory costs, as they
usually need to perform in real-time for maintaining a good
VoIP quality. This paper aims at demonstrating an innovative
PLC approach, and generally refrains from discussing imple-
mentation efficiency aspects. However, for providing a gen-
eral idea of this method's computational costs, we bring here
the current implementation's complexity analysis. A run-
time comparison of this implementation with that of other
baseline PLC methods is brought in Section 9.3.

As described in Section 3, our method comprises two
mutual exclusive modes of operation, namely examples
collection and data gaps handling. Several algorithmic
stages are involved in each of the two. Their computational
and memory costs analysis, based on [21,22], is presented
in Table 2.

The current bottle necks of the proposed method's run-
time are the data term D calculation and examples cluster-
ing, when incorporating regularization term R. These bottle
necks can be avoided by substituting these stages with more
effective implementations, available today. The following is a
brief list of several steps that can significantly improve the
method's efficiency, thus rendering it capable of running in
real-time:
1.
 Using an alternative online clustering method such as
the ones in [23,24], that run in real-time, to substitute
for the current clustering stage.
2.
 Using efficient methods such as in [25] to substitute for
the nearest neighbors search (when calculating D).
3.
 Using the real-time implementation of [21] to substi-
tute for our feature extraction process.



Table 2
Computational steps and memory requirements (in words) of our different algorithm's steps. A bullet in columns EC and QH indicates the corresponding
stage takes place in the Example Collection or Query Handling modes, respectively.

Algorithm's stage Computational steps Memory cost (Bytes) EC QH

Features extraction (MFCC) OðNMFCCþLpacketÞ OðNMFCCþLpacketÞ � �

Data term calculation, OðNMFCCNpackets� OðNEðτÞÞ �
per hole NEðτÞÞ
Examples clustering OðlogNEðτÞ� OðNEðτÞþCÞ �
(K means) NEðτÞðN

MFCCNpacketsCþ1ÞÞ
Regularization term calculation, per hole OðNcandÞ OðNcandÞ �

Rendering audio, per hole OðNsamples
m Þ OðNsamples

m Þ �
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4.
imp
pac
Further saving computational load by relying on the net-
work's guaranteed quality of service (QoS) parameter,
reducing the density of extracted ABs or disabling our
PLC mechanism completely when QoS is high.
5.
 Taking advantage of multi-thread capabilities, existing
in many devices, to run computations on many exam-
ple and query ABs simultaneously.
9. Experimental results

9.1. Tested audio

We simulated two VoIP scenarios. The spoken content of
the first scenario is a text of a story [26] in English. We used
a simple camcoder to record audio at 8 KHz, 313 s long. The
recorded audio is sorg. Then, a part at the beginning of sorg,
30 s long, was pierced randomly according to the Gilbert
model [12] to create sr. This model defines a probability to
enter a packet dropping state and a probability to leave this
state and return to normal packets delivery. In our experi-
ment, we set the former to 0.06, and the latter to 0.11. The
overall probability4 of a packet to drop is 0.2. According to
Ding and Goubran in [1], this simulates a typical packet
dropping scenario. Parts of sorg that were not pierced at all
simulate time periods without any packets dropped.

The second scenario constitutes a simulated telephone
conversation between a salesman and a client, held using
VoIP. We used this experiment to test our method's
performance in such realistic scenario, that contains
shorter sentences, embedded with silent parts. Here,
example and query ABs were processed separately for
the two conversing sides. We used a simple cellular phone
to record audio at 8 KHz. We recorded 229 s, beginning
with 109 unpierced seconds (used for ABs collection),
followed by 2 min of audio sequence pierced according
to the Gilbert model. Here we set the overall probability of
a packet drop to 0.1.
4 Calculation of the overall probability is slightly different than
lied by [12] because we limit the number of consecutive dropped
kets according to Eq. (7).
9.2. Tested PLC techniques

In our experiments, we compared different configura-
tions of our proposed method with alternative PLC tech-
niques. Two of the most commonly used methods were
chosen for this comparison, namely ITU-G.711 and
ITU-G.723.1. Additionally, we applied the method by Adler
et al. [2]. The resulting audio sequences are available at
[27]. The following methods and configurations were
applied on the same pierced sr:
1.
 Silence: Trivially, audio gaps become periods of silence
[5].
2.
 ITU-G.711: Applying the PLC mechanism according to
this standard, using c language code supplied by the
International Telecommunication Union [28].
3.
 ITU-G.723.1: Applying this modern PLC mechanism
standard [29], designed specifically for VoIP applica-
tions. We used a Matlab implementation by Kabal [30].
We tested various configurations of our algorithm. They
differ in the following parameters:
1.
 Incorporation of R: Testing was performed with and
without incorporation of prior knowledge as a regular-
ization term in Eq. (13).
2.
 Pitch modification: In the story scenario, testing was
performed with and without modifying the pitch in
voiced cases, as discussed in Section 7.1.
In all configurations, Ncand ¼ 40 and Npackets ¼ 7. For the
configurations incorporating R, we used λ ¼ 0:01. Seven
(six) different audio sequences, each 30 (120) s long, were
tested in the story (conversation) scenario:
1.
 The original unpierced sorg, used as a reference.

2.
 The three baseline methods mentioned above [5,28,29].

3.
 Our method, in three (two, in the conversation sce-

nario) different configurations.

Overall, 13 different audio sequences were tested in both
scenarios.



Fig. 9. MOS for different configurations of our audio inpainting method,
compared with three common PLC methods, applied on the story
scenario sequence. Margins of error are displayed at 95% confidence.
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9.3. Run-time

We compared the run time of our method's Matlab
implementation with that of other baseline methods imple-
mented in Matlab, when applied to the story scenario. We
ran all methods on a computer equipped with an Intel Core
i5-2520 M processor, 8 GB of RAM and a 64 bit “Windows 7
Ultimate” operating system. The comparison was conducted
using the pierced part of the audio sequence described in
Section 9.1, which is 30 s long.

The results show that the current implementation's run-
time is roughly 10 times that of the ITU-G.723.1 method.
Incorporating regularization term R further increases run-
time by 40%. This run-time is too long for our method to be
used as a PLC mechanism. However, as discussed in Section 8,
several implementationmodifications can be made, rendering
our method capable of operating in real-time and reducing
power consumption.
9.4. Objective results and subjective survey

Recall that our method's goal is to produce a perceptually
plausible audio signal. Hence, its performance measure
should accommodate this goal, by rating perceived audio
quality. Degradation in perceived audio quality can be
measured by the mean opinion score (MOS), defined in the
ITU-T P.862 standard [31]. This score is widely accepted as a
measure of speech quality assessment. Participants assess
the quality of a given audio sequence by rating the level of its
audio impairment from ‘very annoying’ (bad quality, grade 1)
to ‘imperceptible’ (excellent quality, grade 5).

An objective estimation of the MOS was attempted with
several approaches [32–35]. However, the MOS prediction
capabilities in our tests were unsatisfying, as different PLC
configurations’ predicted scores did not differ significantly,
regardless of their perceived quality. One such MOS predic-
tion tool is the PESQ score, presented in Table 3 for both
tested scenarios. It was computed using the SPDemo tool
(available at [36]).

We therefore decided to conduct a subjective survey for
the story scenario experiment. We used a listening test for
assessing the performance of each of our method's config-
urations, compared to the baseline techniques. A set of 90
individual listeners from around the world listened and
Table 3
PESQ MOS predictions of the various tested PLC techniques and config-
urations, ordered by predicted MOS.

PLC method Incorporating Pitch PESQ MOS
R modification Story Conversation

Audio
inpainting

✓ � 3.39 3.79

Audio
inpainting

� � 3.33 3.75

Audio
inpainting

✓ ✓ 3.26 –

G.723.1 – – 2.84 3.52
G.711 – – 2.8 3.62
Silence – – 2.58 3.51
Inpainting with

[2]
– – 1.97 3.3
evaluated audio sequences according to the MOS scale.
Participants were employed using the Amazon Mechanical
Turk online service. Further details regarding the execution
of this survey can be found in Appendix C. The method by
Adler et al. [2] was excluded from our survey due to its
rasping result, but its result is available for listening at [27].

Each survey participant listened to six audio sequences,
randomly chosen from the overall seven. Sequences were
presented in random order, and each sequence was fol-
lowed by an evaluation question. The survey results are
presented in Fig. 9.

10. Discussion of results

In our story scenario test, the initial pierced audio had
mean quality score between “Annoying” and “Very annoying”.
Our method improved the mean audio impairment score to
between “Slightly annoying” and “Perceptible but not annoy-
ing”. While tested on relatively long audio gaps (see
Section 2), self-content-based inpainting by itself increased
the MOS by approximately 1, compared to the baseline
methods. Incorporating the regularizationR (an HMMmodel)
further increased the MOS to 3.5. In the conversation scenario
test, objective MOS estimation indicates significant improve-
ment compared to the baseline methods, when applying our
method after less than 2min of conversation.

The results in Fig. 9 and Table 3 give rise to seve-
ral insights. The standard commonly used methods
ITU-G.723.1 and ITU-G.711 demonstrated inferior perfor-
mance. A possible cause is their mechanism of gradually
muting their output after 20 ms of audio gap, producing
utter silence after 60 ms [28,29]. This period of time is short
relative to the 240 ms long gaps introduced in our test. A
third commonly used standard, the ITU-G.722, possesses
this same mechanism [37]. Due to this redundancy with
ITU-G.723.1 and ITU-G.711, it was not included in our test.

Our method is indifferent to phonetic classes, as men-
tioned in Section 5. The method harnesses examples to fill
gaps in a plausible manner, regardless of the phonetic and
lingual characteristics. For instance, when listening to seconds
8–12 in all story experiments sequences but the last, the gap
at the end of “green” occurs on a transition from a vowel to a
consonant and the gap at the beginning of “they” occurs in the
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beginning of a word. Both gaps are plausibly inpainted by our
method. Lastly, pitch modification (Section 7.1) had no sig-
nificant effect on the results, considering the margins of error.

11. Conclusions

The method presented here demonstrates potential of
self-content-based inpainting, in the context of packet loss
concealment. We fill-in data gaps using past recorded
audio segments of the same speaker, thus reducing arti-
facts stemming from artificial speech synthesis.

The current implementation has several shortcomings that
stimulate future improvements. One problem is reliance on
past examples collected up to a gap. Therefore, the method
lacks sufficient number of example ABs in early stages of a
conversation. For that period, examples collected during
previous conversations can be used. Another problem is
run-time. It can be substantially reduced from our current
implementation, as discussed in Section 8.

Due to the subjective nature of our method's objective,
we evaluated its performance using an online survey, which
requires a substantial number of participants for guarantee-
ing reliable evaluation. Since the number of survey partici-
pants increases in accordance to the number of different
audio sequences compared, we only picked some repre-
sentative subset of our method's configurations.

A future extensive subjective survey may examine
other interesting aspects. These include the influence of
different parameters (hole's length, size of Eτ , number of
clusters C, etc.) and scenarios (phone conversation, differ-
ent languages, environmental noise). Future research may
also attempt using alternative audio features (MFCC deri-
vatives, codec-dependent features), incorporating a higher
lingual level HMM or even dynamically controlling LAB,
using the pitch estimation described in Section 7.1.
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Appendix A. Audio features

MFCCs are commonly used as perceptual features of
audio. Thus our features are based on MFCC. The following
is a detailed description of the feature extraction process P
mentioned in Eq. (8).
Speech is generally not stationary throughout the tem-
poral extent of an AB. Therefore we calculate MFCCs for
each packet separately. This yields Npackets MFCC vector sets
fvtgN

packets

t ¼ 1 for each AB. Each row-vector vt comprises NMFCC

coefficients, corresponding to NMFCC frequency bands

vt ¼ fvt;bgN
MFCC

b ¼ 1 : ðA:1Þ
The calculated MFCCs undergo a normalization process.
This process is equivalent to performing cepstral mean
normalization (CMN, see [38]), followed by taking the delta
between each pair of consecutive MFCCs in the frequency
domain. This process, applied for the purpose of improving
the ability of a feature vector to represent ABs’ similarity,
consists of the following steps:
1.
 MFCCs are logarithmic values of the spectrogram.
Therefore, biasing of MFCC provides gain adjustment.
The mean value of each MFCC band, calculated over all
the full audio sequence, is thus subtracted from this
band's raw coefficients:

vINt;b ¼ vrawt;b �mean
vb A sr

fvbg: ðA:2Þ

This makes features gain insensitive.

2.
 For each frequency band coefficient, we subtract the

preceding band's coefficient, yielding the final normal-
ized version:

vNormt;b ¼
vINt;b if b¼ 1

vINt;b�vINt;b�1 if b¼ 2;…;NMFCC

8<
: ðA:3Þ

This makes features more sensitive to the packet's
spectral shape, rather than to its coefficients' values.

Concatenating coefficients vNormt;b for all frequency bands b
yields the normalized coefficients vector for the packet in
time t, vNormt ¼ vNormt;1 ; vNormt;2 ;…; vNorm

t;NMFCC

h i
. Finally, concatenat-

ing these vectors for all packets of an AB yields the AB's
normalized feature vector, mentioned in Eq. (8):

~AB ¼PðABÞ ¼ vNorm1 ; vNorm2 ;…; vNorm
Npackets

h i
: ðA:4Þ

Appendix B. Query pruning

As mentioned in Section 6.1, the set Qm of optional
queries for the mth hole undergoes pruning. Within Qm,
some queries contain more information than others, for
the purpose of example matching. This heterogeneity
stems from two main reasons:
1.
 A query may have silence packets. In silence packets,
the source of interest does not generate an audio signal.
Therefore theses packets are dominated by noise.
Classification of a packet as silence/non-silence is done
by thresholding the signal's energy in the packet. This
assumes that packets with high signal energy corre-
spond to non-silence. We seek matches to the source of
interest, hence we prune out silence packets.
2.
 Each query in Qm has a certain number of missing
packets. If two holes are close to each other (as in
Fig. 6), some of the queries in Qm contain (even partially)



qn AQm

Table 4
Paper notations table. Typical values appear in parenthesis.

Notation Explanation

AB Audio block
ABprec

n AB that precedes qn

ABcons
n AB that follows qn

ABseq
n;k

ABs sequence induced by matching qn and ek
C Number of clusters (300)
C Cost function to minimize
cconsn Cluster of the AB that follows qn

cprecn Cluster of the AB that precedes qn

cseqn;k
Sequence of clusters induced by matching qn with ek

cr A cluster indexed r
D Distance term in the cost function
Eτ Set of example ABs collected up to time τ

ek Example AB, indexed k
~ek Feature vector of the kth example AB

ebestm
Example AB that best matches the mth hole

~ebest
m

Feature vector that best matches the mth hole

emp
m Pitch-modified version of ebestm

empg
m Pitch and gain-modified version of ebestm

eholem Portion of empg
m that is inlayed into the audio signal

f s Audio signal sampling frequency, in Hz (8000)

LAB Number of samples contained in an audio block (2240)

Loverlap Overlap between two consecutive ABs, in samples (1920)

Lpacket Number of audio samples contained in a single packet (320)

MOS Mean opinion score (1–5)

Ncand Num. of candidates kept per query (40)

NEðτÞ Num. of example ABs collected up to time τ

NMFCC Number of MFCCs used (13)

Nsamples
m

Number of missing samples forming the mth hole (320–1920)

Noverlap Overlap between consecutive audio blocks, in packets (6)

Npackets Number of packets in an AB (7)

Nstride Indices diff. between conterminous ABs (7)

P Probabilities matrix for transfer between HMM states
P Feature extraction process
pm Num. of packets causing the mth hole (1–6)
Qm Set of query ABs that contain the mth hole
Q m

Subset of valuable queries that contain the mth hole

qbest
m

Query AB around the mth hole optimally matching an example

qbest� int
m Portions of qbest

m that are not missing

~qbest
m

Feature vector of the query AB around the mth hole optimally matching an example

qn Query AB, indexed n
qint
n

Portions of qn that are not missing
~qn Feature vector of the nth query AB
R Regularization term in the cost function
ŝ Restored audio signal
sorg The original unpierced audio signal
sr The received pierced audio signal
vt MFCCs vector for packet at time t
vNormt;b

Normalized MFCC for freq. band b of packet at time t

λ Weight of R in C
λ Normalized weight of R in C (0.01)
Πm Subset of all candidate examples to fill the mth hole
Πn Subset of closest Ncand examples to query qn
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a neighboring hole (m71), while other queries are only
pierced by the mth hole itself. We generally prefer queries
that have less missing packets, besides the mth hole. For
example, in Fig. 6, for the mth hole, these are queries q4
and q5. They give more support for data comparison.
Hence we prune out queries q2 and q3, which are pierced
by a preceding hole.
Let Nsignificant
n be the number of packets in query qn which

are both classified as non-silent and correspond to non-
missing packets. We define

~N
significant
m ¼ max fNsignificant

n g: ðB:1Þ
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The pruned set of queries for the mth hole is

Q m ¼ fqnAQmjNsignificant
n ¼ ~N

significant
m g: ðB:2Þ

In other words, Qm is the subset of queries that share the
maximal amount of significant data.

Appendix C. Amazon mechanical turk survey

In Section 9.4 we explain that a subjective survey was
needed to evaluate our method's performance compared
to other methods. We used the Amazon Mechanical Turk
(AMT) service to refer participants to our online survey.
Participants were employed by AMT and referred to our
survey using a designated URL. Using AMT for this purpose
brought up some issues which required attention. Follow-
ing is a short review of some of them:
1.
 Single participation: In order to ensure survey credibil-
ity, each participant should only participate once. This
limitation was enforced using a disposable survey URL.
Each AMT worker received a different URL linking to
our survey. Once it was used, it could no longer be used
again for taking the survey.
2.
 Motivating participants: Possibly due to the single parti-
cipation limitation, Participation was priced relatively
high (around 80 cents, which induced an hourly wage
of around 12 USD).
3.
 Guaranteeing participants’ attention: In order to ensure the
survey's credibility, we needed to make sure that the
participant listened throughout the audio sequences.
We accomplished this by informing participants of a
content-related question to be presented at the end of
the survey. Participants who failed to answer this trivial
question correctly were excluded from the survey
analysis. Another measure taken to prevent loss of
participants’ attention was limiting the number of
sequences played to six, each 30 s long.
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