
Buffering in Query Evaluation over XML Streams

Ziv Bar-Yossef
Dept. of Electrical Engineering

Technion
Haifa 32000, ISRAEL

zivby@ee.technion.ac.il

Marcus Fontoura
IBM Almaden

650 Harry Road
San Jose, CA 95120, USA.

fontoura@us.ibm.com

Vanja Josifovski
IBM Almaden

650 Harry Road
San Jose, CA 95120, USA.

vanja@us.ibm.com

ABSTRACT
All known algorithms for evaluating advanced XPath queries
(e.g., ones with predicates or with closure axes) on XML
streams employ buffers to temporarily store fragments of
the document stream. In many cases, these buffers grow
very large and constitute a major memory bottleneck. In
this paper, we identify two broad classes of evaluation prob-
lems that independently necessitate the use of large memory
buffers in evaluation of queries over XML streams: (1) full-
fledged evaluation (as opposed to just filtering) of queries
with predicates; (2) evaluation (whether full-fledged or fil-
tering) of queries with “multi-variate” predicates.

We prove quantitative lower bounds on the amount of
memory required in each of these scenarios. The bounds
are stated in terms of novel document properties that we
define. We show that these scenarios, in combination with
query evaluation over recursive documents, cover the cases
in which large buffers are required. Finally, we present algo-
rithms that match the lower bounds for an important frag-
ment of XPath.

1. INTRODUCTION
All known algorithms for evaluating XPath and XQuery

queries over XML streams [2, 4, 9, 10, 14, 15, 18, 19, 20,
23, 25, 26] suffer from excessive memory usage on certain
queries and documents. The bulk of memory used is ded-
icated to two tasks: (1) storage of large transition tables;
and (2) buffering of document fragments. The former em-
anates from the standard methodology of evaluating queries
by simulating finite-state automata. The latter is a result
of the limitations of the data stream model.

Finite-state automata or transducers are the most natural
mechanisms for evaluating XQuery/XPath queries. How-
ever, algorithms that explicitly compute the states of these
automata and the corresponding transition tables incur mem-
ory costs that are exponential in the size of the query in the
worst-case. The high costs are a result of the blowup in
the transformation of non-deterministic automata into de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005June 13-15, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1-59593-062-0/05/06 . . .$5.00.

terministic ones. In our previous paper [6] we investigated
the space complexity of XPath evaluation on streams as a
function of the query size, and showed that the exponential
dependence is avoidable. We exhibited an optimal algorithm
whose memory depends only linearly on the query size (for
some types of queries, the dependence is even logarithmic).

In this paper we study the other major source of memory
consumption: buffers of (representations of) document frag-
ments. Algorithms that support advanced features of the
XPath language, such as predicates, full-fledged evaluation
(as opposed to only filtering), or closure axes, face the need
to store fragments of the document stream during the evalu-
ation. The buffering seems necessary, because in many cases
at the time the algorithm encounters certain XML elements
in the stream, it does not have enough information to con-
clude whether these elements should be part of the output or
not (the decision depends on unresolved predicates, whose
final value is to be determined by subsequent elements in
the stream). Indeed, all the advanced evaluation algorithms
maintain some form of buffers (e.g., the stack of the XPush
Machine [15], the BPDT buffers of the XSQ system [26], the
predicate buffers of TurboXPath [19], and the buffer trees of
the FluX query engine [20]). It has been noted anecdotally
[19, 26] that for certain queries and documents, buffering
seems unavoidable. However, to date, there has not been
any formal and theoretical study that quantifies the amount
of buffering needed to support advanced features of XPath.
That is the main focus of this paper.

Our contributions We identify two major classes of
XPath evaluation problems that necessitate buffering. We
prove space lower bounds that quantify the amount of buffer-
ing required in terms of new document properties that we
introduce. Finally, we present an almost matching algo-
rithm.

The two classes of evaluation problems are the following:
1. Full-fledged evaluation of queries with predi-

cates: There are two typical modes of query evaluation:
full-fledged evaluation (i.e., outputting all the document el-
ements selected by the query) and filtering (i.e., outputting
a bit indicating whether the query selects any node from
the document or not). We prove that full-fledged evaluation
of queries with predicates requires substantially more space
than just filtering documents using such queries.

Our lower bound is stated in terms of a property of docu-
ments we call “concurrency”. A document node is said to be
“alive” after reading t events from the document stream, if
these t events do not convey sufficient information to decide
whether the node will be eventually selected by the query

or not. For example, if the query is /a[b]/c, the ’c’ chil-
dren of an ’a’ node in any document will be alive until a ’b’
child is encountered or until the ’a’ element is closed. The
maximum number of nodes that are alive simultaneously is
called the concurrency of the document w.r.t. the query. We
prove that document concurrency is a lower bound on the
space complexity of evaluating the query on XML streams.

We note that if a query has no predicates, the concur-
rency of any document w.r.t. that query is 1, while for a
large class of queries with even a single predicate, it is pos-
sible to construct documents of concurrency that is linear in
the document size. Therefore, our concurrency lower bound
implies full-fledged evaluation of queries with predicates re-
quires buffering, which could be up to linear in the document
size.

In [6] we presented a filtering algorithm that works even
for queries with (“univariate”) predicates and that uses space
that is only logarithmic in the document size. We thus con-
clude that the space required to fully evaluate a query could
be exponentially higher than the space required to just filter
documents using the same query.

2. Multi-variate comparison predicates: A predi-
cate that consists of a comparison of two nodes (e.g., a =

b or a > b) is said to be a multi-variate comparison predi-
cate. On the other hand, univariate comparison predicates
are ones that compare a node with a constant (e.g., a = 5

or b > 4). We prove that evaluation (whether full-fledged
or filtering) of queries that consist of multi-variate compar-
ison predicates may require substantially more space than
evaluation of queries that have only univariate comparison
predicates.

The existential semantics of XPath implies that a pred-
icate of the form /c[R(a,b)], where R is any comparison
operator (e.g., =,>), is satisfied if and only if the document
has a ’c’ node with at least one ’a’ child with a value x and
one ’b’ child with a value y, so that R(x, y) = true. Thus,
if all the ’a’ children of the ’c’ node precede its ’b’ children,
the evaluation algorithm may need to buffer the (distinct)
values of the ’a’ children, until reaching the first ’b’ child.
We prove that such a buffering is indeed necessary when
R is an equality operator (i.e., =,!=). It is not needed for
inequality operators (i.e., <,<=,>,>=), because for them it
suffices to buffer just the maximum or minimum value of the
’a’ children.

Our lower bound is in fact stated w.r.t. to any relational
operator R, not just comparisons. The bound is given in
terms of a graph-theoretic property of relations, which we
call the “dominance cardinality”.

The above lower bound implies that the space complex-
ity of filtering documents using queries with multi-variate
equality predicates can be up to linear in the document size.
Our algorithm from the previous paper [6] shows that filter-
ing documents using queries with only univariate predicates
can be done with logarithmic space. Thus, multi-variate
equality predicates may necessitate an exponential blowup
in the space consumption of the filtering algorithm.

The two above classes of problems, together with query
evaluation over recursive documents (as discussed in [6]),
exhaust the cases in which buffering is required for XPath
evaluation. The algorithm from the previous paper shows
that in all other cases (i.e., filtering non-recursive documents
using queries with only univariate predicates), no substan-
tial buffering is necessary.

The techniques used to prove the lower bounds are based
on reductions from the model of one-way communication
complexity. Our first lower bound requires a twist on the
model, in which the communicating parties output sets of
elements on a write-only output tape, rather than a single
element at the last message of the protocol.

Algorithm In order to demonstrate the tightness of our
lower bounds, we present an XPath evaluation algorithm,
which uses space close to the optimum for the classes of
problems discussed above. The core idea of this algorithm
is a sophisticated buffer management that allows eager eval-
uation of predicates. That is, the algorithm buffers docu-
ment elements only as long as either: (1) it is not yet clear
whether they will be selected by the query or not; or (2)
their value may be required to evaluate pending predicates.
The number of elements the algorithm thus buffers is pro-
portional to the concurrency of the document, matching our
lower bound.

Complexity measures Our concurrency lower bound
is proved w.r.t. a particularly strong notion of complexity,
which is reminiscent of the instance optimality of Fagin,
Lotem, and Naor [11]. Ideally, we would like to show that for
every query-document pair (Q, D), any evaluation algorithm
would need to use concur(D, Q) bits of space, when receiv-
ing (Q, D) as input (here, concur(D, Q) is the concurrency
of D w.r.t. Q). Such a statement though is impossible to
prove. Consider the following algorithm A: A has the query
Q and the document D “hard-coded”. It compares its in-
put query to Q and its input stream to D, and as long as
they match, it just continues to read the stream. Only if a
mismatch is found, A starts to act like a normal evaluation
algorithm. If the input is indeed (Q, D), A can output the
elements Q selects from D, because it knows them a priori
(they are also hard-coded in the algorithm). The space A
uses on (Q, D) is constant, and in particular no buffers are
used.

In order to get around such tricks, we prove an almost as
powerful statement. We show that for every query Q and
every document D, any algorithm that evaluates Q on XML
streams uses concur(D, Q) bits of space, when running on
a document that is “almost-isomorphic” to D. D′ is almost-
isomorphic to D if it is the same as D, except for a few addi-
tional empty nodes, whose name does not appear as a node
test in Q. One can show that Q cannot distinguish between
almost-isomorphic documents. Furthermore, a document D
may have many almost-isomorphic documents, and thus the
“hard-coding” trick is not applicable any more.

Related work Two recent surveys [5, 24] provide ex-
tensive overview of the data stream model and its appli-
cations. Space lower bounds for this model are typically
proved through the model of communication complexity (see,
e.g., [1, 7, 16, 17, 27, 29]).

Several algorithms for evaluating XPath queries over doc-
ument streams have been proposed [2, 4, 9, 10, 14, 15, 18, 25,
26]. None of these algorithms supports queries with multi-
variate predicates, as our algorithm does. Recently, research
on processing XPath over streams has expanded to XQuery
[19, 20, 23]. Marian and Siméon [23] describe an XQuery
evaluation algorithm that produces a succinct representa-
tion of the XML document in a pre-processing step, and
then performs the evaluation on this representation. It is not
clear how far this succinct representation is from the space

lower bound. TurboXPath [19] evaluates XQuery queries
over streams, but does not apply eager evaluation of predi-
cates, and thus uses sub-optimal space in certain cases. The
FluX system [20] uses the DTD schema of the document
stream to reduce the size of buffers needed for the evalua-
tion of XQuery queries. In our work, we focus on evaluation
of queries on schema-less input documents.

The space complexity of XPath evaluation over ordinary
(i.e., non-streaming) XML documents has been studied by
Gottlob, Koch, and Pichler [13] and by Segoufin [28]. The
only previous work to provide space lower bounds for XPath
evaluation over streams is our own previous work [6], which
as explained above focused on the dependence of the mem-
ory usage on the query size. None of the approaches used in
these papers is applicable to buffering lower bounds.

Arasu et al. [3] studied memory lower bounds for eval-
uation of continuous queries over multiple data streams.
While the settings of the two projects are different, (select-
project-join vs. XPath queries) some of the challenges are
similar. In particular, also in their context multi-variate
predicates necessitate large buffers. We note, however, that
their goals were much more coarse-grained: distinguishing
between queries that require constant (“bounded”) space
versus ones that require linear space. We, on the other hand,
give exact quantifications of the memory required.

The rest of the paper is organized as follows. In Section 2
we review necessary preliminaries. In Section 3 we prove the
concurrency lower bound. In Section 4 we prove the “dom-
inance cardinality” lower bound. We present the algorithm
in Section 5, and end with concluding remarks in Section 6.
For lack of space, a few of the proofs are omitted and are to
appear in the full version of this paper.

2. PRELIMINARIES

Notation Queries and documents are modeled as rooted
trees. We will use the letters u, v, w to denote query nodes
and the letters x, y, z to denote document nodes. For a tree
T , root(T) is the root of T . For a node x ∈ T , path(x) is
the sequence of nodes on the path from the root to x.
N is the set of all legal XML node names, S is the set

of all finite-length strings of UCS characters, and V is the
set of atomic data values (numbers, strings, booleans, etc.)
that XML supports.

For integers i ≤ j, [i..j] denotes the set {i, . . . , j}. For a
function f : A → B, and for a subset S ⊆ A of the domain,

f(S)
def
= {f(a) | a ∈ S}.

XML We use the XPath 2.0 and XQuery 1.0 Data Model
[12]. An XML document is a rooted tree. Every node x
has the following properties: (1) kind(x), which in this pa-
per can be either root, element, attribute, or text. The
root and only the root is of kind root. text and attribute

nodes are always leaves and are associated with text con-
tents, which are strings from S. (2) name(x), which is a
value from N . root and text nodes are unnamed. (3)
strval(x), which is a string from S. strval(x) is the con-
catenation of the text contents of the text node descendants
of x in “document order” (i.e., pre-order traversal). (4)
dataval(x), which is a data value from V. dataval(x) is
derived from strval(x), using the document’s XML schema.

XPath Figure 1 describes Forward XPath—a fragment

of XPath 2.0 [8], which supports only the forward axes. All
the XPath fragments considered in this paper are subsets of
Forward XPath.

Path := Step | Path Step
RelPath := RelStep | RelPath Step
Step := Axis NodeTest (’[’ Predicate ’]’)?
RelStep := RelAxis NodeTest (’[’ Predicate ’]’)?
Axis := ’/’ | ’//’ | ’@’
RelAxis := ’.//’ | ’@’
NodeTest := name | ’*’
Predicate := Expression |

Expression compop Expression |
Predicate ’and’ Predicate |
Predicate ’or’ Predicate |
’not(’ Predicate ’)’

Expression := const | RelPath |
Expression arithop Expression |
’-’ Expression |
funcop ’(’ Expression?

(’,’ Expression)* ’)’

name is any string from N.
const is any string from S.
compop ∈ { =, !=, <, <=, >, >= }.
arithop ∈ { +, -, *, div, idiv, mod }.
funcop is any basic XPath function or operator on atomic
arguments as specified in [22], excluding the functions
position() and last().

Figure 1: Grammar of Forward XPath.

An XPath query is a rooted tree. Each node u has the
following properties: (1) axis(u), which in this paper can
be either child, attribute, or descendant.1 The root does
not have an axis. (For the remainder of the paper, we omit
explicit treatment of the attribute axis, because it can be
handled as a special case of the child axis.) (2) ntest(u),
which is either a name from N or the wildcard *. The root
does not have a node test. (3) successor(u), which is either
empty or one of the children of u. (4) predicate(u), which
is either empty or an expression tree, as described below.

predicate(u) is an expression tree whose internal nodes
are labeled by logical, comparison, arithmetic, or functional
operators, and whose leaves are labeled by constants from
V or by pointers to children of u. The XPath semantics
requires that all the children of u, except for the successor,
are pointed to by leaves of the predicate. They are called
the predicate children of u. No two leaves of the predicate
can point to the same child of u.

The arguments and the output of every operator are as-
sociated with types. These types can be either atomic (e.g.,
numbers, strings, booleans) or sequences (sequences of atomic
values).

The successor-less node reached by repeatedly following
successors from a given node u is called the succession leaf
of u, and is denoted by leaf(u). The succession leaf of
the root is called the query output node, and is denoted by
out(Q). Nodes that are not successors of their parents are
called succession roots. A node is a succession root, if it
is either the root of the query or a predicate child of its
parent. The sequence of nodes from a succession root u to

1Our results can be extended to also handle the self and
descendant-or-self axes. We chose not to do that, in order
to keep the presentation more clean and clear.

the succession leaf leaf(u) is called a succession path. For
example, in the query /a[b/c > 5 and d[e] > 7]/f there
are four succession paths: (1) a, f; (2) b, c; (3) d; and (4) e.

Query evaluation An evaluation of a query Q on a
document D is the sequence of nodes that Q “selects” from
D. In this paper we use the notion of “matchings” in order
to define this sequence.2

Definition 1. A matching of a document node x with a
query node u is a mapping φ from path(u) to path(x) (recall
our conventional notations) with the following properties:

1. Root match: φ(root(Q)) = root(D).

2. Node test passage: For all v ∈ path(u) (except
for the root), if ntest(v) 6= *, then name(φ(v)) =
ntest(v).

3. Axis match: For all v ∈ path(u) (except for the
root), φ(v) relates to φ(parent(v)) along axis(v). That
is, if axis(v) = child (resp., axis(v) = descendant),
then φ(v) is a child (resp., descendant) of φ(parent(v)).

4. Predicate satisfaction: For all v ∈ path(u),

EBV(peval(rv, φ(v))) = true,

where rv is the root of predicate(v). Here, EBV(·)
is the effective boolean value function, which converts
arbitrary values into boolean, and peval(·, ·) is the
predicate evaluation function, which evaluates predi-
cates over document nodes. For exact specification,
see the XPath reference [8] or the full version of our
previous paper [6].

5. Target match: φ(u) = x.

A mapping φ that satisfies all the above conditions, except
for predicate satisfaction, is called a structural matching.

A query node may have multiple possible matchings with
document nodes. In Figure 2 the query node named b’ can
be matched with any of the two ’b’ nodes in the document
that satisfy the predicate.

Definition 2. The evaluation of a query Q on a document
D, denoted eval(Q, D), is the sequence of all document
nodes x, for which there exists a matching with out(Q).
The nodes are ordered in document order.

XML streams A streaming algorithm for evaluating
XPath on XML documents accepts its input document as a
stream of SAX events. The algorithm can read the events
only in the order they come, and cannot go backwards on
the stream. Thus, the only way to remember previously
seen events is to store them in memory. The algorithm
has random access to the query. There are five types of
SAX events: (1) startDocument(). (2) endDocument(). (3)
startElement(n), where n ∈ N (also denoted 〈n〉). (4)

2This view only slightly deviates from the standard XPath
specifications. Discussion of the relationship between the
two models is deferred to the full version of the paper. For a
similar discussion, see the full version of our previous paper
[6]. We use this view for its simplicity. We believe that
using the standard model would not have made a significant
difference w.r.t. the results of this paper.

$

/a

/b

>

5

>

5

$

b b

a

b

DocumentQuery

6 104

(a)

$

/a

/b

>

5

>

5

$

b b

a

b

DocumentQuery

6 104

(b)

Figure 2: Two matchings of a the ’b’ node in the
query /a[b > 5]

endElement(n) (also denoted 〈/n〉). (5) text(α), where
α ∈ S (also denoted α).

On query Q and document D, the evaluation algorithm is
supposed to output the following: {ref(x) | x ∈ eval(Q, D)}.
Three remarks are in order. (1) ref(x) should be, in prin-
ciple, a reference to the node x in a Query Data Model
(QDM) representation of D [12]. However, when evaluating
queries over streams it is typically impractical to store the
whole stream as a QDM instance. Thus, current streaming
implementations output, for each selected node x, either its
full content, its unique node identity (if available), or its
string value. In this paper, we will assume the streaming
algorithms output the contents of selected nodes. Every-
thing we do can be extended also to the other cases. (2) We
do not require the algorithm to output the selected nodes
in “document order”, but rather in arbitrary order. This
makes our lower bounds even stronger. (3) We require the
algorithm to eliminate duplicates: if a node x is selected via
several matchings, the algorithm has to output it only once.

Communication complexity In the communication
complexity model [21, 30] two players, Alice and Bob, jointly
compute a function f : A × B → Z ∪ {⊥}. Alice is given
α ∈ A and Bob is given β ∈ B, and they exchange messages
according to a protocol. If f(α, β) 6= ⊥, then (α, β) is called
a “well-formed” input, and then the last message sent in
the protocol should be the value f(α, β). Otherwise, the
last message can be arbitrary. The cost of the protocol is the
maximum number of bits (over all (α, β)) Alice and Bob send
to each other. The communication complexity of f , denoted
CC(f), is the minimum cost of a protocol that computes f .

A one-way communication protocol is one in which Alice
sends a single message to Bob, and then Bob sends a single
message to Alice consisting of the output f(α, β). The one-
way communication complexity of f is denoted by CC1(f).

In this paper we discuss set-computing communication
protocols. Such protocols fit problems, in which the out-
put f(α, β) is a set of elements from a universe U . In these
protocols, the output is not given in the last message, but
rather on a special write-only output tape. Throughout the
execution of the protocol, each of the two players writes
elements of U to the output tape, but cannot read the ele-
ments the other player has written. If the set Alice outputs
is SA and the set Bob outputs is SB , the requirement is that
SA∪SB = f(α, β). Alice and Bob are allowed to output the
same element several times.

3. CONCURRENCY LOWER BOUND
In this section, we quantify the amount of space needed

to perform full-fledged evaluation of XPath queries in terms
of the “document concurrency”. The lower bound applies
to evaluation of queries in Star-Free XPath, which is the
subset of Forward XPath consisting of queries that do not
have wildcard node tests. Throughout the section, we fix Q
to be an arbitrary query in this fragment of XPath.

For a given sequence of SAX events α = (α1, . . . , αm), we
denote by doc(α) the document (or document fragment)
represented by this sequence. Conversely, for a given docu-
ment (or document fragment) D, we denote by stream(D)
the sequence of SAX events representing D. For two event
sequences, α and β, we denote by α◦β the sequence obtained
by concatenating α and β.

Fix a document D, and let (α1, . . . , αm) = stream(D).
We view the m indices 1, . . . , m as “time steps”. For any
node x ∈ D of kind root or element, we denote by beg(x)
and end(x) the time steps of the events corresponding, re-
spectively, to its startElement and endElement events. The
document segment starting at step beg(x) and ending at
step end(x) is called the content of x, and is denoted by
cont(x). Two nodes x, x′ are said to be content-distinct, if
cont(x) 6= cont(x′).

Definition 3. Suppose x ∈ D structurally matches out(Q).
Let t ≥ end(x), and let α = (α1, . . . , αt) be the first t events
in stream(D). Note that x belongs to any document that
is represented by an event stream whose prefix is α.

We say that x is alive at step t, if: (1) there exists an event
sequence β, so that doc(α ◦ β) is a well-formed document
and x ∈ eval(Q,doc(α ◦ β)); and (2) there exists an event
sequence γ, so that doc(α ◦ γ) is a well-formed document
and x 6∈ eval(Q,doc(α ◦ γ)).

Definition 4. The concurrency of the document D w.r.t.
to Q at step t ∈ [1..m], is the number of content-distinct
nodes in D that are alive at step t. The concurrency of D
w.r.t. Q, denoted concur(D, Q), is the maximum concur-
rency, over all steps t ∈ [1..m].

To illustrate the above definitions, consider the following
example. Let Q = /a[b]/c[d]/e and let D be the docu-
ment depicted in Figure 3. At time step 14 (when the last
’e’ element ends), there are two live elements: the first ’e’
element (which starts on line 3) is alive, because whether it
will be selected depends on whether its ’a’ grandparent will
have a ’b’ child. The third ’e’ element (which starts on line
13) is alive, because whether it will be selected depends on
whether its ’c’ parent will have a ’d’ child and its ’a’ grand-
parent will have a ’b’ child. The second ’e’ element (which
starts on line 9) is not alive at step 14, because it is not
going to be selected by the query, irrespective of the rest of
the document (its ’c’ parent does not have a ’d’ child). The
concurrency of this document w.r.t. Q at step 14 is therefore
2, and this is also its maximum concurrency.

Remark 1. It is easy to verify that if Q has no predicates,
then the concurrency of any document w.r.t. Q is 1. On
the other hand, for many queries Q that have even a single
predicate (e.g., Q = /a[b]/c), it is possible to construct
documents that have arbitrarily large concurrency.

A document D is called recursive, if it has two nodes with
the same name that are nested one within the other.

Figure 3: Example Document

Our lower bound shows that for any query Q and any
non-recursive document D, any algorithm that evaluates Q
on XML streams will need to use Ω(concur(D, Q)) bits of
space when running on D or on a “closely related” docu-
ment. We next formally define this notion of “closeness”.

Definition 5. A document D′ is called almost-isomorphic
to D w.r.t. Q, if it is identical to D, except for extra “benign
nodes”. A node is called benign, if: (1) it is of kind element;
(2) it is empty; and (3) its name does not appear as a name
of any node in D or as a node test of any node in Q.

If D′ is almost-isomorphic to D, then there is a 1-1 em-
bedding π of D into D′. The following lemma, whose proof
will appear in the full version of this paper, shows that the
query Q cannot distinguish between almost-isomorphic doc-
uments:

Lemma 1. If a document D′ is almost-isomorphic to a
document D w.r.t. Q, then eval(Q, D′) = π(eval(Q, D)).

We are now ready to state our main theorem:

Theorem 1 (Main theorem).
For every Star Free XPath query Q, for every non-recursive
document D, and for any algorithm A that evaluates Q on
XML streams, there is a document D′, which is almost-
isomorphic to D w.r.t. Q, on which A uses Ω(concur(D, Q))
bits of space.

Proof. The lower bound will be proved by a reduction
from the following set-computing communication complex-
ity problem. In the problem P, Alice and Bob compute a
two-argument function p(·, ·), defined as follows. Alice’s in-
put is a subset S ⊆ [1..C], Bob’s input is a bit b ∈ {0, 1},
and p(S, b) is defined to be S, if b = 1, and ∅ otherwise. We
first prove that the one-way communication complexity of
P is at least C:

Proposition 1. CC1(P) ≥ C.

Proof. Let Π be any protocol for P. Let mΠ(S) denote
the message Alice sends on input S in this protocol, let
AΠ(S) denote the output Alice generates on input S in this
protocol, and let BΠ(m, b) denote the output Bob generates
when receiving a message m from Alice and an input b in
this protocol. Since Π correctly computes P, then for any
pair of inputs (S, b), the output of the protocol, AΠ(S) ∪
BΠ(mΠ(S), b), should equal p(S, b). The cost of the protocol
is maxS |mΠ(S)|.

We would like to prove that there are no two inputs S, S′

of Alice, for which mΠ(S) = mΠ(S′). It would then im-
mediately follow that the communication complexity of P

is at least C. Suppose, to reach a contradiction, that there
are two inputs S 6= S′ for which mΠ(S) = mΠ(S′). Since
p(S, 0) = p(S′, 0) = ∅, then AΠ(S) = AΠ(S′) = ∅ as well.
Thus, Bob is the only one who can generate output in this
protocol. Now, since Bob sees the same message from Al-
ice on the inputs S, S′, he will generate the same output:
BΠ(mΠ(S), 1) = BΠ(mΠ(S′), 1). Hence, p(S, 1) = p(S′, 1).
However, p(S, 1) = S and p(S′, 1) = S′, and S 6= S′.

Next, we describe the reduction. Let C = concur(D, Q),
let t be the step at which D has the maximum concurrency
w.r.t. Q, let L be the set of nodes that are alive at step t,
and let R = {r1, . . . , rC} be the C distinct contents of these
nodes. For each i ∈ [1..C], let Li be the nodes in L whose
content is ri. For each subset S ⊆ [1..C], let LS = ∪i∈SLi.
We define a document DS to be the same as D, except for
the nodes in LS , to each of which we add an empty element

child whose name we denote by ’$’ (’$’ denotes a name in N
which will be determined later; this name does not appear
as a name of any node in D or as a node test of any node
in Q). We will show a reduction from the communication
problem P to the evaluation of Q on the documents {DS}S .
Note that these documents are all almost-isomorphic to D.

In order to carry out the reduction we need to show that
an algorithm that evaluates Q on DS can be used as a black
box to “reveal” the set S. This will immediately translate
into a communication protocol for P. Since only black box
use of the evaluation algorithm is allowed, we need to make
sure that the set S can be extracted from the output of
the algorithm. The output of the algorithm consists of the
contents of nodes that are selected by the query. Thus, if
all the nodes in L are selected by the query, then those of
the nodes that are “marked” by the additional benign child
will indicate the set S. The technical challenges we need to
address are: (1) how to make sure that all the nodes in L
are selected by Q? (2) prove that the addition of benign
children does not affect the identity of the nodes selected by
Q.

Let (α1, . . . , αm) = stream(D), and let α = (α1, . . . , αt)
be the first t events in stream(D). By definition, the en-
dElement events corresponding to the nodes that are alive
at step t belong to α. Thus, the set L is contained in any
document whose prefix is α. The following lemma, whose
proof appears below, addresses our first challenge:

Lemma 2. There exist event sequences δ0 and δ1, such
that:

1. ∀b, the document Eb
def
= doc(α ◦ δb) is a well-formed

document.

2. L ⊆ eval(Q, E1).

3. L ∩ eval(Q, E0) = ∅.
The name ’$’ will be chosen to be any name that does not

appear either as: (1) a name of a node in D, E0, or E1; (2)
a node test of a node in Q.

Recall that for each i ∈ [1..C], ri is the content of nodes
in Li. Let r̂i denote the content of these nodes after the
addition of the ’$’ child. Also, let R̂ = {r̂1, . . . , r̂C} and

let R̂S = {r̂i | i ∈ S}. The following lemma, whose proof
appears below, addresses our second challenge:

Lemma 3. There exist sequences γS, for S ⊆ [1..C], such
that:

1. ∀S, γS is a prefix of stream(DS).

2. ∀S, ∀b, the document ES,b
def
= doc(γS ◦ δb) is a well-

formed document and is almost-isomorphic to Eb.

3. ∀S, cont(eval(Q,doc(γS ◦ δ1))) ∩ R̂ = R̂S.

4. ∀S, cont(eval(Q,doc(γS ◦ δ0))) ∩ R̂ = ∅.
Let us show how to use Lemma 3 for the reduction. Sup-

pose the algorithm A uses at most k bits of space to evaluate
Q on each of the documents {DS}S . This means that k bits
are enough to represent the state of A at any point of its
execution on these documents. We next use A to construct
a communication protocol Π for P whose cost is at most k.
By Proposition 1 above, that would imply that k ≥ C.

In the protocol Π, given the set S, Alice generates the
sequence γS , and runs A on it. After all the events in γS

have been read by A, Alice sends the state of A to Bob.
Bob, upon receiving his input bit b, generates the sequence
δb. When he gets the state of A from Alice, he resumes the
execution of A and runs it on δb. During the execution of
A, if A outputs the content of a a node that has a benign
child, then this content must equal r̂i for some i ∈ [1..C].
Thus, whenever such a node is output by A, the executing
party (Alice or Bob) outputs i.

Note that the output of the protocol on (S, b) is

cont(eval(Q,doc(γS ◦ δb))) ∩ R̂.

By Conditions (3) and (4) of Lemma 3, this immediately
implies that Π correctly computes p. At most k bits are
needed to represent the state of A after processing γS , be-
cause γS is a prefix of stream(DS) (Condition (1)). Thus,
Π indeed uses at most k bits of communication. The reduc-
tion follows.

Proof of Lemma 2. Let xfirst and xlast be, respec-
tively, the first and the last nodes in L in “document order”.
Since xfirst and xlast are alive at step t, there exist event
sequences, β and γ, so that: xfirst 6∈ eval(Q,doc(α ◦ β))
and xlast ∈ eval(Q,doc(α ◦ γ)). We define: δ0 = β and
δ1 = γ.

By definition, the documents E0 = doc(α ◦ δ0) and E1 =
doc(α ◦ δ1) are well-formed. We are left to prove that L ⊆
eval(Q, E1) and L∩eval(Q, E0) = ∅. To this end, we prove
the following:

Claim 1. Let x and x′ be two nodes in L, and suppose
x precedes x′ in document order. Let β be any event se-
quence that complements α into a well formed document E =
doc(α ◦ β). If x′ ∈ eval(Q, E), then also x ∈ eval(Q, E).

Before we prove the claim, let us use it to complete the
proof of the lemma. Since xlast ∈ eval(Q, E1), and since
all the other nodes in L precede xlast in document or-
der, then by the above claim all of them must belong to
eval(Q, E1). On the other hand, since xfirst 6∈ eval(Q, E0),
and since xfirst precedes all other nodes in L, then by the
above claim none of them belongs to eval(Q, E0).

Proof of Claim 1. Let β be any event sequence that
complements α into a well-formed document, and let E =
doc(α ◦ β). Recall that the subtrees rooted at nodes in L
are fully contained in the document segment represented by
α, and therefore all of them are contained in E. Further-
more, the startElement events of all the ancestors of nodes

in L belong to α, and thus these ancestors also belong to
E (though, the subtrees rooted at these ancestors may be
different from the corresponding subtrees in D).

Recall also that all the nodes in L structurally match
out(Q) in the document D, and thus each node x ∈ L has
a structural matching φx with out(Q). Since x and all its
ancestors belong both to D and to E, φx is also a structural
matching of x and out(Q) in E. We start by proving that
φx is unique:

Claim 2. For all nodes x ∈ L, there is a unique struc-
tural matching φx of x and out(Q).

Proof. Suppose, to reach a contradiction, there exists
two structural matchings φx and φ′x. Let path(x) = x1, . . . , x`

be the path from root(E) to x. Let path(out(Q)) =
u1, . . . , uk be the path from root(Q) to out(Q) (i.e., u1 =
root(Q) and uk = out(Q)). Since φx 6= φ′x, there is an in-
dex j so that φx(uj) 6= φ′x(uj). Suppose, for example, that
φx(uj) = xr, φ′x(uj) = xr′ , and r < r′. xr must then be
an ancestor of xr′ . Furthermore, xr and xr′ must have the
same name, because they both pass the node test of uj , and
this node test is not the wildcard (recall that Q is star-free).
This means that the documents D and E are recursive, in
contradiction to our assumption that D is non-recursive.

Recall that x and x′ are two nodes in L and x precedes
x′ in document order. Let y be the lowest common ancestor
of x and x′, and let y1, . . . , y` = path(y) be the path from
root(E) to y. Let u1, . . . , uk = path(out(Q)), and let jx

be the index of the last node among u1, . . . , uk to be mapped
by the structural matching φx to a node in path(y) (jx

is well-defined because φx(u1) = root(E) always belongs
to path(y)). We similarly define jx′ . The following claim
shows that the two structural matchings φx and φx′ must
agree on the nodes that map to path(y):

Claim 3. jx = jx′ and φx, φx′ agree on u1, . . . , uj (where
j = jx = jx′).

Proof. Suppose, to reach a contradiction, the statement
does not hold. Let r be an index so that φx(ur) 6= φx′(ur)
and at least one of the two belongs to path(y). Suppose, for
example, that φx(ur) ∈ path(y). This means that φx(ur)
equals to y or is an ancestor of y. φx′(ur) belongs to path(x′)—
the path from the root to x′. Since y is an ancestor of x′,
φx′(ur) must lie on the same root-to-leaf path as y. Since
φx(ur) is ancestor-or-self of y, φx′(ur) and φx(ur) lie on
the same root-to-leaf path. However, these two nodes are
distinct and share the same name (because both pass the
node test of ur, which is not a wildcard). Therefore, the
documents D and E are recursive, in contradiction to our
assumption that D is non-recursive.

Let j = jx = jx′ . We know by the above claim that both
φx and φx′ map u1, . . . , uj to path(y). We next prove that
the matching φx must satisfy all the predicates of uj+1, . . . , uk:

Claim 4. For every ` ∈ [j + 1..k], the node φx(u`) satis-
fies predicate(u`).

Proof. Fix any ` ∈ [j + 1..k]. Our XPath fragment al-
lows only forward axis, and thus whether φx(u`) satisfies
predicate(u`) depends only on nodes that are in the sub-
tree rooted at φx(u`). Since φx(u`) is an ancestor of x and

not an ancestor of x′, and since x precedes x′ in document
order, this subtree is fully contained in the prefix α. Thus,
whether φx(u`) satisfies predicate(u`) depends only on α
and is independent of the suffix β. Now, if φx(u`) does not
satisfy predicate(u`) in E, it means that also in any con-

tinuation β
′
of α into a well-formed document, φx(u`) does

not satisfy predicate(u`) in doc(α ◦ β
′
). By Claim 2, we

know that φx is the only matching x can have with out(Q)
in any document whose prefix is α. We conclude that if
φx(u`) does not satisfy predicate(u`) in E, then x cannot
be selected by Q on any document whose prefix is α. This
is a contradiction to the assumption that x is alive at step
t.

Recall that y is the lowest common ancestor of the nodes
x and x′. By Claim 3, there is a j ∈ [1..k], so that both
φx and φx′ map u1, . . . , uj to path(y). Since φx′ is the only
possible matching of x′ and out(Q) (Claim 2), and since x′

is selected by Q on E, then φx′ must satisfy the predicates of
all the nodes u1, . . . , uk. Since φx and φx′ agree on u1, . . . , uj

(Claim 3), then also φx satisfies the predicates of u1, . . . , uj .
By Claim 4, φx also satisfies the predicates of uj+1, . . . , uk.
We conclude that φx satisfies the predicates of all nodes
u1, . . . , uk, and thus x is selected by Q on E.

Proof of Lemma 3. We start by describing the construc-
tion of the sequences {γS}S , and then prove they satisfy the
four conditions.

Let mS = |stream(DS)|. Since DS is the same as D
plus some extra nodes, stream(D) is a sub-sequence of
stream(DS). Let πS be the 1-1 mapping from [1..m] to
[1..mS] which specifies this sub-sequence. γS is defined to
be the first πS(t) events in stream(DS).

We now prove that the four conditions are met.
(1) γS is a prefix of stream(DS) by definition.
(2) γS is identical to the event sequence α, except for the

addition of empty ’$’ children to nodes in L. These additions
are self-contained (i.e., there are no dangling startElement

events in α). Therefore, any continuation β of α into a well-
formed document also complements γS into a well-formed
document. In particular, the documents ES,0 and ES,1 are
well-formed.

The only difference between ES,b and Eb is the addition
of empty element nodes whose name is ’$’. Since this string
does not occur as a name of any node in Eb or as a node
test of any node in Q, ES,b is almost-isomorphic to Eb w.r.t.
Q.

(3) Let πS,1 be the embedding of E1 into ES,1. By Lemma
1, we know that eval(Q, ES,1) = πS,1(eval(Q, E1)). Hence,
from Lemma 2, we have that πS,1(L) ⊆ eval(Q, ES,1). Now,
πS,1(LS) is the set of nodes of ES,1 that have a ’$’ child.
Since all of them belong to eval(Q, ES,1), then the set of
content strings of nodes in eval(Q, ES,1), which have a
’$’ child, is exactly the set of content strings of nodes in
πS,1(LS). The latter is, by definition, R̂S .

(4) Let πS,0 be the embedding of E0 into ES,0. By Lemma
1, we know that eval(Q, ES,0) = πS,0(eval(Q, E0)). Hence,
from Lemma 2, we have that πS,0(L) ∩ eval(Q, ES,0) = ∅.
Now, πS,0(LS) is the set of nodes of ES,0 that have a ’$’
child. Since none of them belongs to eval(Q, ES,0), then
the set of content strings of nodes in eval(Q, ES,0), which
have a ’$’ child, has to be empty.

4. DOMINANCE LOWER BOUND
In this section we discuss the buffering requirements due

to evaluation or filtering of queries that have “multi-variate’
comparison predicates, i.e., predicates that compare two
variables (e.g., a = b and a > b). We essentially prove that
for the equality operators (i.e., =,!=), one needs to buffer all
the distinct instances of one of the variables, while for the
inequality operators (i.e., <, <=, >, >=) one needs to store
only the instance of maximum or minimum value. The lower
bound technique is applicable in a more general setting, to
any relational operator R, which has the same existential se-
mantics in XPath as the comparison operators (i.e., R(a,b)

= true if and only if there is an instance x of a and an in-
stance y of b, so that R(dataval(x),dataval(y)) = true).

The lower bound we present requires the query to “de-
pend” on the multi-variate predicate; that is, whether the
query will select any node from the document or not should
depend on the outcome of the predicate’s evaluation. This
requires us to focus on “redundancy-free” queries [6]. For
lack of space, we avoid the treatment of arbitrary redundancy-
free queries in this extended abstract, and demonstrate the
core ideas of the proof by a lower bound for the evaluation
of the specific query Q = /c[R(a,b)], where R is any rela-
tional operator.

Any binary relation R on a ground set U (i.e., R ⊆ U×U)
can be represented as a directed graph GR. The nodes of
GR are the elements of U ; two nodes u, v ∈ U are connected
by an edge (u, v) if and only if (u, v) ∈ R. For example, if R
is the “greater than” relation, then the corresponding graph
is over the set U of numbers supported by the system (e.g.,
64-bit integers), and the edges are as follows: an edge from
the maximum number in U to each of the other numbers,
an edge from the second largest number to each of the other
numbers, except the maximum one, and so forth. If R is the
equality relation, then the graph is over all strings/numbers
supported by the system, and the only edges are self loops.

For a subset S ⊆ GR of the graph, we denote by N(S)

the neighborhood or dominated set of S: N(S)
def
= {v ∈ GR |

∃u ∈ S s.t. (u, v) is an edge in GR}. Note that two differ-
ent sets S, S′ may have the same neighborhood. We define
the dominance cardinality of R, denoted dom(R), to be the
number of distinct neighborhoods, over all possible subsets
of GR. That is, dom(R) = |{N(S)|S ⊆ GR}|. For exam-
ple, if R is the “greater than” relation over the set of num-
bers U = [1..n], there are exactly n distinct neighborhoods
(namely, [1..(n − 1)], [1..(n − 2)], . . . , [1..1], ∅), because the
neighborhood of any set S ⊆ U equals to the set of numbers
that are less than the maximum number in S. If R is the
equality relation over a set U , then there are 2|U| distinct
neighborhoods, because for any set S ⊆ U , N(S) = S.

A refinement of the dominance cardinality notion is the
following: Let R be a relation over U , and let k ∈ [1..|U |].
The dominance cardinality of R of order k is the number
of distinct neighborhoods of subsets of GR of size at most
k. That is, domk(R) = |{N(S)|S ⊆ GR, |S| ≤ k}|. For
example, if R is the “greater than” relation, then for any
k, domk(R) = |U |. On the other hand, if R is the equality

relation, then domk(R) =
(|U|

k

)
.

Given a query Q as above, let u ∈ Q be the node whose
predicate is R(a,b). Let ua, ub denote the two children of u
corresponding to the node tests a and b, respectively. For
any given document D, we define the candidate cardinality

of D w.r.t. u to be the maximum number of nodes in D
that: (1) are siblings; (2) match ua and precede any other
sibling that matches ub or vice versa.

Our lower bound is the following:

Theorem 2. For the query Q = /c[R(a,b)], for every
integer k, and for every filtering algorithm A for Q on XML
streams, there exists a document D of candidate cardinality
k w.r.t. u on which A uses Ω(log domk(R)) bits of space.

Note that for the equality operators (=,!=), the above lower

bound is Ω(log
(|U|

k

)
) = Ω(k log |U |) for sufficiently small k’s.

That means that if R is an equality operator, evaluation
of Q on documents that have a node with k children that
match ua (or ub) would require buffering the distinct data
values of these children. On the other hand, when R is an
inequality operator (<,<=,>,>=), evaluation of Q requires
only Ω(log |U |) bits of space, which is what is needed to
buffer the maximum or minimum data value of the k children
that match ua (or ub).

Proof. The proof works by a reduction from the follow-
ing communication complexity problem P: Alice is given a
set S of k elements a1, . . . , ak from U and Bob is given a
single element b from U . The goal is to determine whether
there is any i ∈ [1..k] so that (ai, b) ∈ R. We first prove a
lower bound on the one-way communication complexity of
this problem:

Proposition 2. CC1(P) = Ω(log domk(R)).

Proof. Let Π be any one-way protocol that computes
P. Let AΠ(S) denote the message Alice sends to Bob, when
receiving the input S. Let BΠ(m, b) denote the output Bob
sends to Alice when receiving a message m from her and an
input b.

Let GR be the graph induced by the relation R. We wish
to prove that if S, S′ ⊆ GR are two sets, for which the
neighborhoods N(S), N(S′) are different, then Alice has to
send different messages on S and S′. That would imply that
the number of distinct messages Alice can send is domk(R),
and therefore the length of the longest message should be
Ω(log domk(R)).

Suppose, to reach a contradiction, there exist two sets
S, S′ of size k, so that N(S) 6= N(S′), but AΠ(S) = AΠ(S′).
Since N(S) 6= N(S′), there exists an element b in N(S) \
N(S′) or in N(S′) \ N(S). Assume, for example, that the
former holds and that Bob receives b as an input. Since the
messages of Alice are the same on S, S′, then BΠ(AΠ(S), b) =
BΠ(AΠ(S′), b), implying that the output of the protocol is
the same on both input pairs (S, b) and (S′, b). However,
P(S, b) = true while P(S′, b) = false, implying that Π
makes a mistake.

The reduction works as follows. Alice, upon receiving the
set S = {a1, . . . , ak}, creates a prefix of a document stream
αS as follows: the document has one ’c’ element under the
root and k ’a’ elements under the ’c’ element. The data val-
ues of the ’a’ elements are a1, . . . , ak. The prefix stops after
the endElement event of the last ’a’ element. Bob, upon re-
ceiving his input b, creates a suffix of a document stream βb

as follows: the document has one ’c’ element under the root
and one ’b’ element under the ’c’ element. The ’b’ element
has the data value b. The suffix starts at the startElement

event of the ’b’ element.

It is easy to verify that for any S and b, αS ◦βb represents
a well-formed document. We denote this document by DS,b.
It is also immediate that the query will select the ’c’ element
from DS,b if and only if there exists an i ∈ [1..k], so that
(ai, b) ∈ R. The candidate cardinality of DS,b w.r.t. u is k,
because the k ’a’ elements match ua.

Now, given an algorithm A that determines whether an
XML stream matches Q or not, we can devise the following
protocol Π for P: Alice runs A on the prefix αS . When
A is done reading αS , Alice sends the state of A to Bob.
Bob resumes the execution of A on βb. When the execution
is over, he sends ’true’ to Alice if A decided that the doc-
ument matches the query, and he send ’false’ otherwise.
From our observation above, Π correctly computes P. The
communication cost of Π is the same as the number of bits
needed to represent the state of A, which equals to the space
of A.

We thus conclude from Proposition 2 that A has to use
Ω(log domk(R)) bits of space on at least one of the docu-
ments {DS,b}S,b.

5. THE ALGORITHM
In this section we describe an XPath streaming algorithm

that works for any Forward XPath query over any non-
recursive document and almost matches the concurrency
lower bound. We start with a general overview of the al-
gorithm and demonstrate the way it works through an ex-
ample run. We then present a more detailed description of
the algorithm, including pseudo-code fragments. We con-
clude with an overview of the complexity analysis. For lack
of space, a full description of the algorithm and its analysis
is postponed to the full version of the paper.

Overview and example run In order to demonstrate
the core ideas of the algorithm, we will consider the following
simple example. Suppose we want to evaluate the query Q
= /a[b > 5]/c over the following document D:

〈a〉 〈c〉c1〈/c〉 〈b〉4〈/b〉 〈c〉c2〈/c〉 〈b〉6〈/b〉 〈b〉3〈/b〉 〈c〉c3〈/c〉 〈/a〉.
The official XPath semantics assumes that in the evalu-

ation of a predicate predicate(u) (corresponding to some
query node u) over a document node x, every leaf in the ex-
pression tree of predicate(u) is evaluated into a sequence
of data values. Internal nodes are later evaluated over the
resulting sequences. In the above example, in the evaluation
of the predicate [b > 5], first the sequence (4, 6, 3), corre-
sponding to the data values of the matches to the b node,
is created. Only then the sequence is compared to the con-
stant 5, and evaluates to true, because at least one of its
entries is greater than 5.

Note that in the above example the fact that the predicate
is going to evaluate to true is known already when we en-
counter the second b node in the stream (whose data value is
6). Our algorithm exploits this knowledge and eagerly eval-
uates predicates. Eager evaluation of predicates can save a
lot of space. First, we can partially avoid buffering evalua-
tion sequences (in the above example our algorithm will not
buffer all the data values of the b nodes simultaneously).
Second, we can determine earlier which document nodes are
selected by the query and thus emit them to the output
without buffering them (in the above example we can emit
first two c nodes to the output as soon as we see the b node

whose data value is 6. The third c node is emitted immedi-
ately when encountered).

The principal data structures used by the algorithm are
the following: (1) validation array: a boolean array used for
checking if the predicate of a given query node has already
been satisfied. (2) result buffers: an array of buffers, in
which document nodes that may have to be output as part
of the result are stored; (3) predicate buffers: an array of
buffers, in which document nodes that participate in the
evaluation of pending predicates are stored.

The algorithm works by processing the stream of SAX
events, taking actions when it receives the startElement

and endElement events for each node.
Figure 4 describes the state of the data structures after

each event. At the beginning the validation array for each
node is false (0) and all buffers are empty. This indicates
that none of the predicates have been satisfied yet and that
no nodes are being considered as part of the results or for
predicate evaluation.

8:b c1 c2

1:a 0 0 0

60 0 1

9:/b

c12:c 0 0 0

1 1 1

10:b

c13:/c 0 0 1

31 1 1

c312:c

c15:/b 0 0 1

1 1 1

13:/c

c16:c c20 0 1

1 1 1

14:/a

7:/c c1 c20 0 1

0 0 0

11:/b

c14:b 0 0 1 4

1 1 1

Validation array

a b c

Predicate

buffers

Result

buffers

8:b c1 c2

1:a 0 0 0

60 0 1

9:/b

c12:c 0 0 0

1 1 1

10:b

c13:/c 0 0 1

31 1 1

c312:c

c15:/b 0 0 1

1 1 1

13:/c

c16:c c20 0 1

1 1 1

14:/a

7:/c c1 c20 0 1

0 0 0

11:/b

c14:b 0 0 1 4

1 1 1

Validation array

a b c

Predicate

buffers

Result

buffers

Figure 4: Example run for query /a[b > 5]/c

When we see the first c (event 2) we have to add it to
the result buffers since at this point the predicate b > 5 is
still unverified and thus we do not know whether this c will
be selected by the query or not. When c is closed (event
3) the validation array entry for c can be set to true (1)
since c has no predicates to satisfy in the query. When
the first b arrives (event 4) we start buffering its content
in the predicate buffers in order to be able to evaluate the
predicate [b > 5]. When b closes (event 5) we are able to
fully evaluate the predicate, which is false and therefore the
validation array entry for b remains unchanged. After the
predicate is evaluated, the predicate buffers are discarded.
In events 6 and 7 the second c is added to the result buffers
since the predicate on b is still unverified. In event 8 the next
b occurrence is added to the predicate buffers and in event
9 the predicate on b is finally evaluated to true. At this
point, we turn the validation array entry for b to true. In
addition, since the validation entry for c is already true, all
the constraints on a are verified and the a’s validation array
entry is set to true as well. This also allows the c nodes
that are in the output buffers to be emitted, since we know
that they are for sure part of the result set. After they are
emitted all the result buffers are discarded. In events 10 and
11 a new b node that does not match the predicate is seen.
However, even though the predicate evaluation triggered in

event 11 returns false, we do not reset the validation array
entry for b. The reason for that is the existential semantics
of XPath, that requires the predicate to be valid for just
one of the b nodes under a. When the next c arrives in
event 12 it is buffered just until c closes (event 13). At that
point it is emitted as a result and the buffer is discarded.
Finally, when the a node closes (event 14) the validation
array bits are reset. Please note that if events 8 and 9 had
not happened, the predicate anchored at b would remain
false, and all the c nodes stored in the result buffers would
be discarded without being emitted when node a closes in
event 14.

Detailed description Suppose Q is the input query
and D is the input document, given as a stream of SAX
events. The algorithm tries to gradually construct match-
ings of document nodes with the query output node out(Q).
Each completed matching results in one document node be-
ing emitted to the output.

The algorithm is event-driven. As SAX events arrive, cor-
responding event handlers are called, updating the global
variables of the algorithm. For brevity, we describe below
only the handlers for startElement and endElement.

The algorithm gradually constructs the matchings on a
“frontier” of the query. Initially, the frontier consists of the
query root alone. When the algorithm receives a startElement

event of a document node x, it searches for all the nodes u
in the frontier, for which x is a “candidate match”. For each
such node u, the children of u are added to the frontier as
well. When the algorithm receives the endElement event of
x, it removes the children of u from the frontier, and uses
them to determine whether x is turned into a “real match”
for u or not. The algorithm outputs x if and only if x is
found to be a real match for out(Q).

A document node x is a “candidate match” for query node
u, if the name of x fits the node test of u and if x relates to
the candidate match of parent(u) according to the axis of
u (this definition holds for nodes u 6= root(Q)). x is also a
real match for u, if the predicate of u evaluates to true on
x.

How do we determine whether a document node x is a
candidate match for a query node u? In order to do that,
we only need to know the name of x and its “document
level” (i.e., document depth). By comparing this level to
the document level of the candidate match z for parent(u),
we know whether x relates to z according to axis(u). There-
fore, we can determine whether x is a candidate match for
u already at the startElement event of u.

On the other hand, determining whether x turns into a
real match for u or not requires knowing the string value
of x (if u is a leaf) or whether descendants of x are real
matches for the children of u. This can be inferred only at
the endElement event of x.

The algorithm maintains the following global variables.
The first five arrays are always of the same size. Each entry
in them corresponds to one query node in the frontier.

• pointerArray: Pointers to the query nodes in the fron-
tier.

• IDArray: Unique IDs of the current candidate matches
for the query nodes currently in the frontier.

• levelArray: Document levels at to expect candidate
matches for the query nodes currently in the frontier,
used for processing child axis.

• validationArray: Boolean flags indicating whether
real matches for the query nodes currently in the fron-
tier have already been found.

• parentArray: Indices in the above arrays correspond-
ing to the parent of each query node currently in the
frontier.

• predicateArray: Contents of document nodes that
are needed for evaluating predicates of query nodes
in the frontier.

• resultArray: Contents of document nodes that are
candidate matches for out(Q) and it is not yet clear
whether they will turn into real matches.

In addition, the variable nextIndex contains the size of the
first five arrays, nextPred contains the size of predicateArray
and nextResult contains the size of resultArray.

At initialization, the query root is inserted to pointerArray,
its levelArray entry is set to 0, its validationArray entry
is set to false, and its parentArray entry is set to NULL.
The variables nextIndex, nextPred, and nextResult are set
to 0 and the arrays predicateArray and resultArray are
left empty.

The startElement event handler is called every time a
new document node x starts. The function iterates over all
the query nodes u in the frontier, for which x is a candi-
date match (lines 4-7). In lines 8-9, we distinguish between
treatment of query nodes along the succession path of the
query root (the “main path”) and ones that are not. The
reason is the following. For nodes along the main path, we
wish to find all possible matches in the document, because
these may turn into distinct results in the output. On the
other hand, nodes that do not belong to the main path are
necessarily part of predicates. For predicate evaluation, we
do not really need to find all possible matches: it suffices
to find at least one good match (due to the existential se-
mantics of XPath). For example, if Q = /a[b > 5]/c, then
we will look for all the matches to the c node, but we will
stop looking for matches for the b node as soon as we find
a match whose data value is greater than 5.

If u is an internal node, checking whether x turns into a
real match or not will require finding real matches for the
children of u in the subtree rooted at x. We thus insert all
the children of u into the frontier (lines 11-19). Each match
is assigned a unique ID (lines 16-17). In lines 20-22 we dis-
tinguish between the setting of the validation array bits for
nodes that are part of predicate expressions and nodes that
are part of the main path, i.e. outside of predicate expres-
sions. The validation array entry for nodes used in predicate
evaluation is used for predicate evaluation and is therefore
existential. Contrary to this, the validation array bits of the
main path nodes are used to determine if the result buffer
can be emitted. For this purpose, we need to know if the
currently opened document nodes matching the nodes on
the main path have satisfied all conditions. Therefore the
validation of the nodes on the main path are reset each time
we open an element matching this node. Finally in lines
23-33 we add the current event to the predicate array if this
node is the last node in a path used in a predicate expres-
sion; similarly for nodes that match the last step of the main
path we add an entry to the result array.

Function endElement is called once for every close element
event in the document stream. It starts by decrementing the
current level (line 1). It then checks if there are nodes in the
global arrays that need to be removed since their parent is

1:Function startElement(x)
2: maxIndex := nextIndex - 1
3: for i := 0 to maxIndex do
4: u := pointerArray[i]
5: if ((ntest(u) = label(x)) or (ntest(u) = *)) then
6: if ((axis(u) = descendant) or
7: (levelArray[i] = currentLevel)) then
8: if (validationArray[i] = TRUE and !isMainPath(u))
9: continue

10: end if
11: for c in children(u) do
12: parentArray[nextIndex] := i
13: pointerArray[nextIndex] := c
14: levelArray[nextIndex] := currentLevel + 1
15: validationArray[nextIndex] = FALSE
16: IDArray[nextIndex] := nextID
17: nextID := nextID + 1
18: nextIndex := nextIndex + 1
19: end for
20: if (isMainPath(u))
21: validationArray[i] = FALSE
22: end if
23: if (isPredicateTerm(u) and validationArray of
24: the node that anchors u’s predicate is FALSE)
25: predicateArray[nextPred].value := x
26: predicateArray[nextPred].id := IDArray[i]
27: nextPred := nextPred + 1
28: end if
29: if (isResult(u))
30: resultArray[nextResult].value := x
31: resultArray[nextResult].id := IDArray[i]
32: nextResult := nextResult + 1
33: end if
34: end if
35: end if
36: end for
37: currentLevel := currentLevel + 1
38:end startElement

the node being closed (lines 2-7). endElement then updates
the validation array entries for the nodes being closed (lines
13-21). If the node being closed has a predicate (lines 13-15)
the predicate is evaluated by invoking evalPred. Function
evalPred simply evaluates the predicate tree anchored at
the matched query node and returns true if the predicate
is valid and false otherwise. In order to do the predi-
cate evaluation evalPred may need to access the predicate
buffers. After the predicate evaluation is done the predi-
cate buffers are discard (line 15). If the node being closed
is a leaf, the validation array is set to true since it does
not have any constraints that still need to be verified (lines
16-17). Finally, if the node being closed is an internal node
that has no predicate (lines 18-20), it must have only one
child node. Therefore its validation array entry is set to
true only if the all the constraints in the child node have
been satisfied, i.e., the validation array entry for the child
node is true. Please note that in order to enforce the ex-
istential semantics of XPath we just update the validation
array entry for the closing node if it is not already set to
true. If the node being closed is part of a predicate we try
to eagerly evaluate that predicate (lines 22-25). For exam-
ple, in query a[b > 5]/c, when we close b we try to eagerly
evaluate the predicate anchored at a. This eager evaluation
allows for verifying predicates as soon as possible, which in
turn allows us to emit results and discard buffers as soon
as possible. Just before the eager evaluation we purge the
buffer array from entries that are not needed, based on the
operator properties. For example, for non-equality compar-
ison we preserve only the maximum/minimum value. After
all the predicates have been evaluated and all validation ar-
ray entries have been set we check if we can emit results

1:Function endElement()
2: currentLevel := currentLevel - 1
3: i := nextIndex - 1
4: while (levelArray[i] > currentLevel) do
5: nextIndex := nextIndex - 1
6: i := i - 1
7: end while
8: for i := 0 to nextIndex do
9: u := pointerArray[i]

10: if ((ntest(u) = label(x)) or (ntest(u) = *)) then
11: if ((axis(u) = descendant) or
12: (levelArray[i] = currentLevel)) then
13: if (hasPredicate(u) and validationArray[i] = FALSE)
14: validationArray[i] := evalPred(u)
15: remove buffers from the predicateArray
16: else if (isLeaf(u)) then
17: validationArray[i] := TRUE
18: else if (validationArray[i] = FALSE) then
19: c := validationArray bits for children(u)
20: validationArray[i] := c[0]
21: end if
22: if (isPredicateTerm(u) and validationArray[i]) then
23: purge buffers based on operator properties and
24: try to eagerly evaluate the predicate
25: end if
26: if (validationArray[i] = FALSE) then
27: remove buffers from the resultArray
28: else if (all validationArray bits for the nodes in
29: in the main path are TRUE) then
30: output the results
31: remove buffers from the resultArray
32: end if
33: end if
34: end if
35: end for
36:end endElement

and discard the result buffers (lines 26-31). If the validation
array entry for the closing node is false we can discard all
the result buffers seen after the closing node (lines 26-27).
Otherwise we test if all the query constraints have been sat-
isfied, in which case we output all the results buffered so far
and discard their buffers (lines 28-31).

Analysis The correctness of the algorithm follows from
the fact it outputs all the matches for the query output node.
A rigorous analysis is postponed to the full version of the
paper. Since the document on which the algorithm runs
is non-recursive, we are guaranteed that at any given step
of the algorithm, the frontier consists of at most one copy
of each query node. Thus the size of the arrays that hold
the frontier cannot exceed |Q|. Each entry in these arrays
requires at most logarithmic space. Furthermore, document
nodes are kept in the result array only as long as we have
no information to decide whether they should belong to the
output or not. Therefore, the number of entries in the result
array is at most the concurrency concur(D, Q). The size of
each entry may be large though, because we need to record
the content of each candidate result. Various compression
techniques may be used to minimize the size of these entries.
We conclude that the space complexity of the algorithm is
as follows:

Theorem 3 (Space complexity). For every Forward
XPath query Q and for every non-recursive document D, the
algorithm, when running on Q and D:

1. Uses at most O(|Q|(log(|Q|)+log(|D|))) space for stor-
ing the frontier.

2. Uses at most O(concur(D, Q)) for the result array.

As for the running time, the handlers of the startElement
and endElement events iterate over all nodes in the frontier,
and spend a fixed amount of time in each. Therefore:

Theorem 4 (Time complexity). For every Forward
XPath query Q and for every non-recursive document D,
the algorithm, when running on Q and D, terminates in
Õ(|Q| · |D|) steps (where the Õ notation suppresses poly-
logarithmic factors).

6. CONCLUSIONS
Buffering may constitute a major memory bottleneck for

XPath processing over XML streams. In this paper we iden-
tified two sources of this high memory consumption: (1) full
fledged evaluation of queries with predicates and (2) evalua-
tion of multi-variate predicates. We presented lower bounds
for these two scenarios and described an algorithm that gets
close to these lower bounds for a class of XPath queries. A
future research direction is to extend our memory require-
ments study to evaluation of XQuery queries. XQuery has
additional features, such as multiple output nodes for a sin-
gle query, which possibly necessitate high memory usage.

7. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space

complexity of approximating the frequency moments.
Journal of Computer and System Sciences,
58(1):137–147, 1999.

[2] M. Altinel and M. J. Franklin. Efficient filtering of
XML documents for selective dissemination of
information. In Proc. 26th VLDB, pages 53–64, 2000.

[3] A. Arasu, B. Babcock, S. Babu, J. McAlister, and
J. Widom. Characterizing memory requirements for
queries over continuous data streams. In Proc. 21st
PODS, pages 221–232, 2002.

[4] I. Avila-Campillo, T. J. Green, A. Gupta, M. Onizuka,
D. Raven, and D. Suciu. XMLTK: An XML toolkit for
scalable XML stream processing. In Proc. 1st
Workshop on Programming Languages for XML
(PLAN-X), 2002.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proc. 21st PODS, pages 1–16, 2002.

[6] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On the
memory requirements of XPath evaluation over XML
streams. In Proc. 23rd PODS, pages 177–188, 2004.

[7] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and
D. Sivakumar. An information statistics approach to
data stream and communication complexity. In Proc.
43rd FOCS, pages 209–218, 2002.

[8] A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernández, M. Kay, J. Robie, and J. Siméon. XML
Path Language (XPath) 2.0. W3C,
http://www.w3.org/TR/xpath20, 2004.

[9] C. Y. Chan, P. Felber, M. N. Garofalakis, and
R. Rastogi. Efficient filtering of XML documents with
XPath expressions. In Proc. 18th ICDE, pages
235–244, 2002.

[10] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To.
YFilter: Efficient and scalable filtering of XML
documents. In Proc. 18th ICDE, pages 341–342, 2002.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. Journal of
Computer and System Sciences, 66(4):614–656, 2003.

[12] M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and
N. Walsh. XQuery 1.0 and XPath 2.0 Data Model.

W3C, http://www.w3.org/TR/xpath-datamodel,
2004.

[13] G. Gottlob, C. Koch, and R. Pichler. The complexity
of XPath query evaluation. In Proc. 22nd PODS,
pages 179–190, 2003.

[14] T. Green, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata.
In Proc. 9th ICDT, pages 173–189, 2003.

[15] A. K. Gupta and D. Suciu. Stream processing of
XPath queries with predicates. In Proc. 22nd
SIGMOD, pages 419–430, 2003.

[16] M. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. In DIMACS series in
Discrete Mathematics and Theoretical Computer
Science, volume 50, pages 107–118, 1999.

[17] P. Indyk and D. Woodruff. Tight lower bounds for the
distinct elements problem. In Proc. 44th FOCS, pages
283–289, 2003.

[18] Z. Ives, A. Levy, and D. Weld. Efficient evaluation of
regular path expressions on streaming XML data.
Technical report, University of Washington, 2000.

[19] V. Josifovski, M. Fontoura, and A. Barta. Querying
XML streams. The VLDB Journal, 2004. to appear.

[20] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. Schema-based scheduling of event
processors and buffer minimization for queries on
structured data streams. In Proc. 30th VLDB, pages
228–239, 2004.

[21] E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, 1997.

[22] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0
and XPath 2.0 Functions and Operators. W3C,
http://www.w3.org/TR/xquery-operators, 2004.

[23] A. Marian and J. Siméon. Projecting XML
documents. In Proc. 29th VLDB, pages 213–224, 2003.

[24] S. Muthukrishnan. Data streams: Algorithms and
applications. In Proc. 14th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), page
413, 2003.
http://www.cs.rutgers.edu/~muthu/stream-1-1.ps.

[25] D. Olteanu, T. Kiesling, and F. Bry. An evaluation of
regular path expressions with qualifiers against XML
streams. In Proc. 19th ICDE, pages 702–704, 2003.

[26] F. Peng and S. S. Chawathe. XPath queries on
streaming data. In Proc. 22nd SIGMOD, pages
431–442, 2003.

[27] M. Saks and X. Sun. Space lower bounds for distance
approximation in the data stream model. In Proc.
34th STOC, pages 360–369, 2002.

[28] L. Segoufin. Typing and querying XML documents:
Some complexity bounds. In Proc. 22nd PODS, pages
167–178, 2003.

[29] D. Woodruff. Optimal space lower bounds for all
frequency moments. In Proc. 15th SODA, pages
167–175, 2004.

[30] A. C.-C. Yao. Some complexity questions related to
distributive computing. In Proc. 11th STOC, pages
209–213, 1979.

