Do Not Crawl in the DUST: Different URLs with Similar Text

ZIV BAR-YOSSEF and IDIT KEIDAR
Technion Israel Institute of Technology
and

URI SCHONFELD

University of California Los Angeles

We consider the problem of DUST: Different URLs with Similar Text. Such duplicate URLs are
prevalent in web sites, as web server software often uses aliases and redirections, and dynamically
generates the same page from various different URL requests. We present a novel algorithm,
DustBuster, for uncovering DUST; that is, for discovering rules that transform a given URL to
others that are likely to have similar content. DustBuster mines DUST effectively from previous
crawl logs or web server logs, without examining page contents. Verifying these rules via sampling
requires fetching few actual web pages. Search engines can benefit from information about DUST
to increase the effectiveness of crawling, reduce indexing overhead, and improve the quality of
popularity statistics such as PageRank.

Categories and Subject Descriptors: H.3r8drmation Search and Retrieval]: Clustering

General Terms: Algorithms
Additional Key Words and Phrases: search engines, crawling, URL normalization, duplicate de-
tection, anti-aliasing

1. INTRODUCTION

The DUST problem. The web is abundant witbusT: Different URLs with Similar TeXiKelly and Mogul 2002;
Douglis et al. 1997; McCown and Nelson 2006; Kim et al. 206} example, the URLttp://google.com/news
andhttp://news.google.com return similar content. Adding a trailing slash /oex.html to either returns the
same result. Many web sites define links, redirections,iasas, such as allowing the tilde symbol ~ to replace a string
like /people . A single web server often has multiple DNS names, and anybeayped in the URL. As the above
examples illustratepusT is typically not random, but rather stems from some genenais; which we calDUST
rules such as “"— “/people ”, or “/index.html " at the end of the URL can be omitted.

DusT rules are typically not universal. Many are artifacts of atigalar web server implementation. For example,
URLs of dynamically generated pages often include pararsietghich parameters impact the page’s content is up to
the software that generates the pages. Some sites useuregomventions; for example, a forum site we studied
allows accessing story number “num” both via the URtp://domain/story?id=num and viahttp://domain/
story _num. Our study of the CNN web site has discovered that URLs ofdia fittp://cnn.com/money/whatever
get redirected tdittp://money.cnn.com/whatever . In this paper, we focus on minirmUsT rules within a given
web site. We are not aware of any previous work tackling thidofem.

Standard techniques for avoidipg sTemploy universal rules, such as addinttg:/ orremoving a trailing slash,
in order to obtain some level of canonization. AdditionalsT is found by comparing document sketches. However,

Authors’ addresses:

Z. Bar-Yossef, Dept. of Electrical Engineering, Techniblajfa 32000, Israel

Google Haifa Engineering Center, Israel (zivby @ee.temhaic.il)

I. Keidar, Dept. of Electrical Engineering, Technion, Hߐ, Israel (idish@ee.technion.ac.il)

U. Schonfeld, Dept. of Computer Science, University of foafiia Los Angeles, CA 90095, USA (shuri@shuri.org)

Supported by the European Commission Marie Curie IntesnatiRe-integration Grant and by Bank Hapoalim.

A conference version of this paper appeared at the 16thnatienal World-Wide Web Conference, 2007.

Permission to make digital’hard copy of all or part of thistenal without fee for personal or classroom use provideat the copies are not made
or distributed for profit or commercial advantage, the ACMpyaght/server notice, the title of the publication, ansl date appear, and notice is
given that copying is by permission of the ACM, Inc. To cophetvise, to republish, to post on servers, or to redistelutlists requires prior
specific permission and/or a fee.

(© 2009 ACM 0000-0000/2009/0000-0111 $5.00

ACM Journal Name, Vol. 3, No. 1, 02 2009, Pages 111-131.

this is conducted on a page by page basis, and all the pagedetetched in order to employ this technique. By
knowing DUST rules, one can reduce the overhead of this process. In plartiénformation about many redundant
URLSs can be represented succinctly in the form of a shorofistiles. Once the rules are obtained, they can be used to
avoid fetching duplicate pages altogether, including gabat were never crawled before. The rules can be obtained
after crawling a small subset of a web site, or may be retafrmd a previous crawl of the same site. The latter is
particularly useful in dynamic web sites, like blogs and seites, where new pages are constantly added. Finally, the
use of rules is robust to web site structure changes, sirceitds can be validated anew before each crawl by fetching
a small number of pages. For example, in a crawl of a small reéi@sve examined, the number of URLs fetched
would have been reduced by 26%.

Knowledge aboubusT rules can be valuable for search engines for additionabreausT rules allow for a
canonicalURL representation, thereby reducing overhead in indexang caching [Kelly and Mogul 2002; Douglis
et al. 1997], and increasing the accuracy of page metriesHageRank.

We focus on URLs witlsimilar contents rather than identical ones, since different vessodf the same document are
not always identical; they tend to differ in insignificantygae.g., counters, dates, and advertisements. Likevdse s
URL parameters impact only the way pages are displayedqfantge sizes, etc.) without altering their contents.

Detecting DUST from a URL list. Contrary to initial intuition, we show that it is possible discover likelypusT
rules without fetching a single web page. We present an iltgoyDustBusterwhich discovers such likely rules from

a list of URLs. Such &JRL list can be obtained from many sources including a previous avawleb server log$.
The rules are then verified (or refuted) by sampling a smathiper of actual web pages. The fact DustBuster’s input
is a list of URLSs rather than a collection of web pages sigaifity reduces its running time and storage requirements.

At first glance, it is not clear that a URL list can provide adlie information regardingusT, as it does not include
actual page contents. We show, however, how to use a URb liBstover two types ausT rules: substring substitu-
tions, which are similar to the “replace” function in editors, goarameter substitution®\ substring substitution rule
o — B replaces an occurrence of the strimgn a URL by the strind3. A parameter substitution rule replaces the value
of a parameter in a URL by some default value. Thanks to thedsta syntax of parameter usage in URLS, detecting
parameter substitution rules is fairly straightforward o®fl of our work therefore focuses on substring substitution
rules.

DustBuster uses three heuristics, which together are \féxgtve at detecting likelypusT rules and distinguishing
them from invalid ones. The first heuristic leverages theeoletion that if a rulet — 3 is common in a web site, then
we can expect to find in the URL list multiple examples of pagesessed both ways. For example, in the site where
story?id= can be replaced kstory _, we are likely to see many different URL pairs that differyiml this substring;
we say that such a pair of URLs is arstanceof the rule ‘Story?id= " — “story _". The set of all instances of a rule
is called the rule’support Our first attempt to uncoverusT is therefore to seek rules that have large support.

Nevertheless, some rules that have large support argatiotDUST rules, meaning their support includes many
instances, URL pairs, whose associated documents aremibdrsi For example, in one site we found an invalid
DUST rule, “movie-forum " — “politics-forum ” whose instances included pairs of URLs of the forhitp:
/Imovie-forum.com/story _(num) and http://politics-forum.com/story _{num). In this case the URLs were
associated with two unrelated stories that happen to sharsame “story id” number. Another example is the rule
“1" — “2”, which emanates from instances like-1.jpg andpic-2jpg , story _1 andstory _2, andlectl and
lect2 , none of which ar@usT since the pairs of URLs are not associated with similar damisy Our second and
third heuristics address the challenge of eliminating soeéilid rules. The second heuristic is based on the observat
that invalid rules tend to flock together. For example in niostances of “1"— “2”, one could also replace the “1”
by other digits. We therefore ignore rules that come in laygrips.

Further eliminating invalid rules requires calculating tiiaction ofbusT in the support of each rule. How could
this be done without inspecting page content? Our thirdiegciuses cues from the URL list to guess which instances
are likely to bebusT and which are not. In case the URL list is produced from a jpevicrawl, we typically have
document sketches [Broder et al. 1997] available for each WRhe list. These sketches can be used to estimate
the similarity between documents and thus to eliminatesruleose support does not contain sufficiently maogT
pairs.

In case the URL list is produced from web server logs, documlketches are not available. The only cue about
the contents of URLs in these logs is the sizes of these ctmtéfle thus use the size field from the log to filter

Lincreasingly many web server logs are available nowadagsdach engines via protocols like Google Sitemaps [Goagle]l
112

out instances (URL pairs) that have “mismatching” sizese dilificulty with size-based filtering is that the size of a
dynamic page can vary dramatically, e.g., when many usersrent on an interesting story or when a web page is
personalized. To account for such variability, we compheeranges of sizes seen in all accesses to each page. When
the size ranges of two URLs do not overlap, they are unlikelyedDUST.

Having discovered likelypusT rules, another challenge that needs to be addressed isiating redundant ones.
For example, the ruletttp://site-name/story?id= 7 — “http://site-name/story _"will be discovered, along
with many consisting of substrings thereof, e.@id= " — “_". However, without considering the content itself, it is
not obvious which rule should be kept in such situations-dtter could be either valid in all cases, or invalid outside
the contextof the former. We are able to use support information fromulirt. list to remove many redundant likely
pusTrules. We remove additional redundancies after perforraorge validations, and thus compile a succinct list of
rules.

Canonization. Once the correcbusT rules are discovered, we exploit them for URL canonizatidhe problem
of finding a canonical set of URLs for a given URL list is NP-thalue to reducibility to the minimum dominating
set problem. Despite this, we have devised an effi@anbnization algorithnthattypically succeeds in transforming
URLSs to a site-specific canonical form.

Experimental results. We experiment with DustBuster on four web sites with veryedént characteristics. Two
of our experiments use web server logs, and two use crawbitatpVe find that DustBuster can discover rules very
effectively from moderate sized URL lists, with as little 23000 entries. Limited sampling is then used in order to
validate or refute each rule.

Our experiments show that up to 90% of the top ten rules demal/by DustBusteprior to the validation phase
are found to be valid, and in most sites 70% of the top 100 ratessalid. FurthermorepusT rules discovered by
DustBuster may account for 47% of tib&/ST in a web site and that using DustBuster can reduce a crawl! kg up
26%.

Roadmap. The rest of this paper is organized as follows. Section 2exgsirelated work. We formally define the
DUST detection and canonization problems in Section 3. Sectipredents the basic heuristics our algorithm uses.
DustBuster and the canonization algorithm appear in SeéticGection 6 presents experimental results. We end with
some concluding remarks in Section 7.

2. RELATED WORK

2.1 Canonization rules

Global canonization rules. The most obvious and naive wayJsT is being dealt with today is through standard
canonization. URLs have a very standard structure [Berheeset al.]. The hostname may have many different
aliases. Different hostnames may return the exact same Bite example adding awiwi to the base hostname
often returns the same content. Choosing one hostnameritfideach site is a standard way to canonize a URL.
Other standard canonization techniques include replaciig” with a single ‘/ ” and removing the index.html suffix.
However, site specifiousT rules cannot be detected using these simple rules.

Site-specific canonization rules. Another method for discoveringusT rules is to examine the web server config-
uration file and file system. In the configuration, file aliakesuare defined. Each such rule allows a directory in the
web server to be accessed using a different name, an aliapaiBing the web server configuration file [AC2] one
could easily learn these rules. Further inspection of tlesfjistem may uncover symbolic links. These too have the
exact same effect.

There are three main problems with using this technique. i@ problem is that symbolic links and aliases are
by no means the sole sourcemfsT rules. Other sources include parameters that do not afieatantent, different
dynamic files that produce the same content and many othensteChnique, therefore, can discover a wider range
of busT rules, regardless of cause. The second problem is that esdiyeration file is different according to the
type and version of the web server. The third and final probkethat once the files are parsed and processed the
rules discovered would have to be transferred to the seargime. Transferring these rules from the web server
to the search engine may be possible in the future if new podécare defined and adopted. The Google Sitemaps
architecture [Google Inc.] defines a protocol for web sitenaggers to supply information about their sites to search
engines. This type of protocol can be extended to enable dieserver to send canonization rules to any party that
wants such information. However, such an extension hase®it hdopted yet.

113

2.2 Detecting similarity between documents

The standard way of dealing withusT is using document sketches [Brin et al. 1995; Garcia-Moéhal. 1996;
Broder et al. 1997; Shivakumar and Garcia-Molina 1998; Didet al. 2003; Jain et al. 2005; Hoad and Zobel
2003; Monostori et al. 2002; Finkel et al. 2002; Zobel and ot 998], which are short summaries used to determine
similarities among documents. To compute such a sketcheberone needs to fetch and inspect the whole document.
Our approach cannot replace document sketches, sincestrabadindDUST across sites opusT that does not stem
from rules. However, it is desirable to use our approach tmmlement document sketches in order to reduce the
overhead of collecting redundant data. Moreover, sincelch@nt sketches do not give rules, they cannot be used for
URL canonization, which is important, e.g., to improve tleewracy of page popularity metrics.

2.3 Detecting mirror sites

One common source of near-duplicate content is mirroringiufber of previous works have dealt with automatic
detection of mirror sites on the web. There are two basic@ggres to mirror detection. The first method is based on
the content itself [Cho et al. 2000; Kelly and Mogul 2002] eldocuments are downloaded and processed. Mirrors are
detected by processing the documents to detect the sityitstween hosts. We will call these techniqtiesttom-

up”.

The second method uses meta information that may alreadxallatsle such as a URL list, the IP number associated
with the host names and other techniques. We will call theslertiqueStop-down” [Bharat and Broder 1999; Liang
2001; Bharat et al. 2000]. These techniques are closer tbwaéare doing in this paper.

In contrast to mirror detection, we deal with the compleraenproblem of detectingusT within one site. Mirror
detection may exploit syntactic analysis of URLs and limismmpling as we do. However, a major challenge that
site-specificousT detection must address is efficientliscoveringprospective rules out of a daunting number of
possibilities (all possible substring substitutions).cmtrast, mirror detection focuses on comparing a givengfai
sites, and only needs to determinbetherthey are mirrors.

2.4 Analysis of web server logs

Various commercial tools as well as papers are availablenatyaing web server logs. We are not aware of any
previous algorithm for automatically detectipg ST rules nor of any algorithm for harvesting information foaseh
engines from web server logs. Some companies (e.g., [Welihaegrt ; StatCounter ; Analog]) have tools for
analyzing web server logs, but their goals are very diffefesm ours. This type of software usually provides such
statistics as: popular keyword terms, entry pages (firsepesgrs hit), exit pages (pages users use to move to another
site), information about visitor paths and many more.

2.5 Mining association rules

Our problem may seem similar to mining association rulesrégl and Srikant 1994], yet the two problems differ
substantially. Whereas the input of such mining algoritlomssists of complete lists of items that belong together,
our input includes individual items from different listsh& absence of complete lists renders techniques usedrtherei
inapplicable to our problem.

2.6 Abstract Rewrite System

One way to view our work is as producing an Abstract Rewritst&mn (ARS) [Bognar 1995] for URL canonization
via busT rules. For ease of readability, we have chosen not to adepARS terminology in this paper.

3. PROBLEM DEFINITION

URLs. We view URLs as strings over an alphalzebf tokens. Tokens are either alphanumeric strings or non-
alphanumeric characters. In addition, every URL is prependith the special tokeh and is appended with the
special toker$ (" and$ are notincluded irx).

A URL uis valid, if its domain name resolves to a valid IP address and itsecascan be fetched by accessing the
corresponding web server (the http return code is not in #xeof 5xx series). lfu is valid, we denote by dda) the
returned document.

DUST. Two valid URLsus, u; are callecbusT if their corresponding documents, dog) and do¢uy), are “similar”.
To this end, any method of measuring the similarity betw@endocuments can be used. For our implementation and

114

experiments, we use the popullaccard similarity coefficienneasure [Jaccard 1908], which can be estimated using
shingles, or document sketches due to Broder et al. [1997].

DUST rules. We seek generallesfor detecting when two URLs ameusT. A DUST rule @ is a relation over the
space of URLsgp may be many-to-many. Every pair of URLs belongingpts called aninstanceof ¢. Thesupport
of @, denoted suppdi), is the collection of all its instances.

We discuss two types afusT rules: substring substitutions and parameter substitati®arameter substitution
ruleseither replace the value of a certain parameter appearitigeidRL with a default value, or omit this parameter
from the URL altogether. Thanks to the standard syntax cdipater usage in URLS, detecting parameter substitution
rules is fairly straightforward. Most of our work therefdi@uses on substring substitution rules.

Our algorithm focuses primarily on detecting substringsitbtion rules. Asubstring substitution rulet — 3
is specified by an ordered pair of strings,3) over the token alphabé&t. (In addition, we allow these strings to
simultaneously start with the tokénand/or to simultaneously end with the tok&h In Section 5.4 we will see that
applyinga substring substitution rule is simply done by replacing first occurrence of the substring. However, at
this point, instances of substring substitution rules argly defined as follows:

DEFINITION 3.1 INSTANCE OF A RULE A pair ug, Uz of URLSs is arinstanceof a substring substitution rule —
B, if there exist strings 1 s.t. 4 = pas and ¥ = pPBs.

For example, the pair of URLgtp://www.site.com/index.html andhttp://www.site.com is an instance of
thepusTrule “lindex.html$ " — “$”. This rule demonstrates that substring substitutiongeken be used to remove
“irrelevant” segments of the URL, segments that if removedfa valid URL result in another valid URL with similar
associated content.

The two types of rules we discuss in this paper are in no waypbet®. Indeed, it is easy to think of additional types
of DUST rules that are not covered by the types of rules we presest lrémwever, our experiments over real-world
data show that the rules we explore are highly effective abueringbusT. It would be interesting to explore more
types ofbusT rules and compare their effectiveness in future work.

The DUST problem. Our goal is to deteabusT and eliminate redundancies in a collection of URLs beloggina
given web siteS. This is solved by a combination of two algorithms, one thHatdversbusT rules from a URL list,
and another that uses them in order to transform URLSs to dagionical form.

The input of the first algorithm is a list of URLSs, (typicallyoim the same web site), and its output is a list of dust
rules corresponding to these URLs. TURL listis a list of records consisting of: (1) a URL; (2) the http metaode;
(3) the size of the returned document; and (4) the documsketch. The last two fields are optional. This type of list
can be obtained from web server logs or from a previous cra@lURL list is a sample of the URLs that belong to
the web site but is not required to besamdomsample. For example, web server logs might be biased tovpaulsar
URLs.

For a given web sit&, we denote bys the set of URLSs that belong & A busT rule @is said to bevalid w.r.t. S,
if for eachu; € Us and for eachuy s.t. (ug,up) is an instance o, u; € Usand(ug,uy) is DUST.

A DUST rule detection algorithns given a listL of URLs from a web site&S and outputs an ordered list olusT
rules. The algorithm may also fetch pages (which may or mayappear in the URL list). The ordering of rules
represents the confidence of the algorithm in the validitthefrules.

Canonization. Let ® be an ordered list obusT rules that have been found to be valid w.r.t. some web Site
We would like to define what is aanonizationof the URLs inUs, using the rules irR. This definition is made
somewhat more difficult by the fact thatcausT rule may map a URL to multiple URLs. For example, the URL
http://a.b.a.com/ is mapped by the rule “a.— “” to both http://a.b.com/ andhttp://b.a.com/ . To this
end, we define a standard way of applying each rule. For exanmahe case of substring substations, we only replace
the first occurrence of the string.

The rules in®_ naturally induce a labeled graj@y onUs: there is an edge fromy to u labeled by if and only
if @(ur) = u2. Note that adjacent URLs i@ correspond to similar documents. Further note that due taule
validation process (see Section 5.4), R cannot containdatfe and its inverse. Nevertheless, the grégmay still
contain cycles.

For the purpose of canonization, we assume that documesitnilisrity empirically respects at least a weak form
of the triangle inequality, so that URLs that are connectgdlort paths inGg are similar too. Thus, iG4 has a
bounded diameter (as it does in the data sets we encountdrend)every two URLS connected by a path are similar.

115

A canonization that maps every URLto some URL that is reachable fromthus makes sense, because the original
URL and its canonical form are guaranteed tassT.

A set of canonical URLdSs a subse€CUs C Us that is reachable from every URL lds. Equivalently,CUs is a
dominating set in the transitive closure of tlewerse graptof G, the graph obtained by reversing the direction of
all edges. A canonization is any mappi@g Us — CUs that maps every URL € Us to some canonical URC(u),
which is reachable frorn by a directed path. Our goal is to find a small set of canoni¢l&Jand a corresponding
canonization, which is efficiently computable.

Finding the minimum size set of canonical URLSs is intractable to the NP-hardness of the minimum dominating
set problem (cf. [Garey and Johnson 1979]). Fortunately,emopirical study indicates that for typical collections
of busT rules found in web sites, efficient canonization is possifdleus, although we cannot design an algorithm
that always obtains an optimal canonization, we will seek it maps URLs to smallset of canonical URLS, and
alwaysterminates in polynomial time.

Metrics. We use three measures to evaluatesT detection and canonization. The first measurgrecision—the
fraction of valid rules among the rules reported by thesT detection algorithm. The second, and most important,
measure is thdiscovered redundaneythe amount of redundancy eliminated in a crawl. It is defiagthe difference
between the number of unique URLSs in the crawl before and afteonization, divided by the former.

The third measure isoverage given a large collection of URLSs that includes sT, what percentage of the dupli-
cate URLs is detected. The number of duplicate URLs in a giyh list is defined as the difference between the
number of unique URLs and the number of uniqgue documentiskstcSince we do not have access to the entire web
site, we measure the achieved coverage within the URL listc@¥int the number of duplicate URLSs in the list before
and after canonization, and the difference between theidativoy the former is the coverage.

One of the standard measures of information retrievegésill. In our case, recall would measure what percent of
all correctbusT rules is discovered. However, it is clearly impossible tastouct a complete list of all valid rules to
compare against. Therefore, recall is not directly medsaria our case, and is replaced by coverage.

The coverage measure is equivalent to recall over the setpmicdite URLS.

4. BASIC HEURISTICS

Our algorithm for extracting likely string substitutionles from the URL list uses three heuristics: thege support
heuristic the small buckets heuristiand thesimilarity likeliness heuristic Our empirical results provide evidence
that these heuristics are effective on web-sites of vargagpes and characteristics.

Large support heuristic.

Large Support Heuristic
The support of a valid DUST rule is large.

For example, if a ruleifhdex.html$ * — “$” is valid, we should expect many instances witnessing ts éfiiect,
e.g.,www.site.com/d1/index.html| andwww.site.com/dl/ , andwww.site.com/d3/index.html| andwww.site.
com/d3/ . We would thus like to discover rules of large support. Ndt&ttvalid rules of small support are not very
interesting anyway, because the savings gained by apptlyéerg are negligible.

Finding the support of a rule on the web site requires knowihthe URLs associated with the site. Since the only
data at our disposal is the URL list, which is unlikely to bermete, the best we can do is compute the support of
rulesin this URL list That is, for each rule, we can find the number of instances, uz) of @, for which bothu; and
uz appear in the URL list. We call these instancesshpport ofg in the URL listand denote them by suppg(tp). If
the URL list is long enough, we expect this support to be regméative of the overall support of the rule on the site.

Note that sincésuppor} (o —)| = |support (B — a)|, for everya andf3, our algorithm cannot know whether
both rules are valid or just one of them is. It therefore otdplne pai, 3 instead. Finding which of the two directions
is valid is left to the final phase of DustBuster.

Given a URL list£, how do we compute the size of the support of every possité2 rlio this end, we introduce
a new characterization of the support size. Consider a sngst of a URL u = pas. We call the pair(p,s) the
envelopeof a in u. For example, iu =http://www.site.com/index.html anda ="index ”, then the envelope of
o in uis the pair of strings "http://www.site.com/ " and “html$ ”. By Definition 3.1, a pair of URLSuy, up) is
an instance of a substitution rube— { if and only if there exists at least one shared envelgps) so thatu; = pas

116

andu, = pBs.

For a stringn, denote by (a) the set of envelopes ofin URLs, where the URLSs satisfy the following conditions:
(1) these URLs appear in the URL list and (2) the URLSs have as a substring. It occurs in a URLu several times,
thenu contributes as many envelopesHg(a) as the number of occurrencesmfn u. The following theorem shows
that under certain conditionf . (o) NE, (B)| equals|support (a — B)|. As we shall see later, this gives rise to an
efficient procedure for computing support size, since weamampute the envelope sets of each substiisgparately,
and then by join and sort operations find the pairs of sulinmhose envelope sets have large intersections.

THEOREM 4.1. Leta # 3 be two non-empty and non-semiperiodic strings. Then,

| support (a — B)| = [E.(a) NEL(B)].

A string o is semiperiodigif it can be written ast = <y for some stringy, where|a| > |y|, k > 1, ¥ is the string
obtained by concatenatiigcopies of the string, andy is a (possibly empty) prefix of [Gusfield 1997]. Ifa is
not semiperiodic, it ison-semiperiodicFor example, the stringg/lf/ ” and “a.a.a ” are semiperiodic, while the
strings ‘a.a.b " and “%//// " are not.

Unfortunately, the theorem does not hold for rules where aiitee strings is either semiperiodic or empty. Rules
where one of the strings is empty are actually very rare sarg®her rule with additional context would be detected
instead. For example, instead of detecting the rile- “” we would detect the rule/$ 7 — “$” that would only
remove the last slash. For the semiperiodic case, let ugdmrthe following example. Lett be the semiperiodic
string “a.a " and 3 = “a”. Let u; = http://a.a.a/ and letup = http://a.a/ . There arégwo ways in which we
can substituter with 3 in uy and obtainup. Similarly, lety be “a. ” and d be the empty string. There are two ways
in which we can substitute with & in u; to obtainuy. This means that the instan¢e, uz) will be associated with
two envelopes irfE, (a) NE,(B) and with two envelopes ik, (y) NE,(d) and not just one. Thus, whenor (3 are
semiperiodic or emptyE, (a) NE,(B)| can overestimate the support size. On the other hand, sachpes are quite
rare, and in practice we expect a minimal gap betwi&gria) NE,(p)| and the support size.

PROOF OFTHEOREM4.1. To prove the identity, we will show a 1-1 mapping fromgag, (o —) ontoE,(a)N
E,(B). Let(u1,u2) be any instance of the rute— 3 that occurs inz. By Definition 3.1, there exists an enveloges)
so thatu; = pasanduz = pBs. Note that(p,s) € E.(a) NE,(B), hence we define our mapping dg:g(u1, u2) = (p,s).
The main challenge is to prove thiyg is a well defined function; that iy g maps every instandgi;, uz) to a single
pair (p,s). This is captured by the following lemma whose proof is pded below:

LEMMA 4.2. Leta # B be two distinct, non-empty, and non-semiperiodic strinfeen, there cannot be two
distinct pairs(p1,s1) # (P2, S2) s.t. posy = pz0s; and piPsy = p2Ps;.

We are left to show thaf is 1-1 and onto. Take any two instances,uy),(v1,Vv2) of (a,B), and suppose that
fa (U1, Uz) = fo g(v1,v2) = (p,s). This means thal; = pas= vy andu; = pBs= v,. Hence, necessarily, uz) =
(v1,Vv2), implying f is 1-1. Take now any envelofe,s) € E. (o) NE, (). By definition, there exist URL8;,up € L,
so thatu; = pasandu, = pPs. By Definition 3.1,(uz, up) is an instance of the rute— B, and thusfy g(u, Uz) = (p,s).

O

In order to prove Lemma 4.2, we show the following basic propef semiperiodic strings:

LEMMA 4.3. Leta # 3 be two distinct and non-empty strings.plfs both a suffix and a prefix of, thena must
be semiperiodic.

PrROOF Sincef is both a prefix and a suffix af and sincex # 3, there exist two non-empty strin@s andf3; s.t.

a = BoB = BP2
Letk= L%J. Note thatk > 1, as|a| > |Bo|. We will show by induction ork thata = BB}, where) is a possibly
empty prefix off3o.

The induction base ik= 1. In this case|o| > 19 and asx = BoB, IB| < |Bo|- SincePof = PPy, it follows that
is a prefix ofo. Thus, defingd, = B and we have:

a = BoB = BoBo-
117

Assume now that the statement holds E%J =k—1>1 and let us show correctness ﬂq%J =k. Asa = BoB,
then| Bl | =k—1>1. Hence|B| > |Bo| and thusfBpo must be a prefix op (recall thatBop = BB2). Let us writep as:

TBol
B = BoPa-
We thus have the following two representationsiof
o = BoP = BoPoP1 and o = P2 = BoP1Pe-
We conclude that:
B = PaPo.

We thus found a stringf3;), which is both a prefix and a suffix ¢gf. We therefore conclude from the induction
hypothesis that

B =B "Bo;
for some prefix@; of Bo. Hence,
a = BoB = BfBo-
O
We can now prove Lemma 4.2:

PROOF OFLEMMA 4.2. Suppose, by contradiction, that there exist two déffiepairs(p1,s1) and(pz,s) so that:
Up = p10S1 = P20, 1)

Up = p1Bs1 = P2fs. 2)
These equations together with the fact thpt,s1) # (p2,s2) imply that bothp; # py ands; # 5. Thus, by
Equations (1) and (2), one @f andpy is a proper prefix of the other. Suppose, for example, thas a proper prefix
of p2 (the other case is identical). It follows thstis a proper suffix of;.
Let us assume, without loss of generality, tfedt> |B|. There are two cases to consider:
Case (i):. Both pia andps3 are prefixes of,. This implies that alsos,, s, are suffixes o8;.
Case (ii):. At least one ofp1a andp1f3 is not a prefix ofpa.

Case (i): In this casep, can be expressed as:
P2 = p10p; = PaPpy,
for some stringg), andpj. Thus, sincea| > |B|, B is a prefix ofa. Similarly:
s1= 85,08 = {Bs.

Thus,3 is also a suffix ofx. According to Lemma 4.3y is therefore semiperiodic. A contradiction.

Case (ii): If prais not a prefix ofpz, a can be written as = ap01 = a102, for some non-empty strings, 1,02,
as shown in Figure 1. By Lemma 4.@8,is semiperiodic. A contradiction. The case tipaB is not a prefix ofpy is
handled in a similar mannen

p2

—

Fig. 1. Breakdown ofi in Lemma 4.2.
118

Small buckets heuristic. While most validbusT rules have large support, the converse is not necessardy tinere
can be rules with large support that are not valid. One clasaah rules is substitutions among numbered items, e.g.,
(lectl.ps lect2.ps), (lectl.ps ,lect3.ps), and so on.

We would like to somehow filter out the rules with “misleadirgupport. The support for a rule — 3 can
be thought of as a collection of recommendations, where eaehlope(p,s) € E.(a) NE.(B) represents a single
recommendation. Consider an enveldes) that is willing to give a recommendation to any rule, for exden
“http:/ " — 7", Naturally its recommendations lose their value. Thiseygf support only leads to many invalid
rules being considered. This is the intuitive motivation ttee following heuristic to separate the valasT rules
from invalid ones.

If an envelopd p,s) belongs to many envelope s&s(a1), E-(02),...,E,(ak), then it contributes to the intersec-
tionsE,(aj) NEL(aj), forall 1 <i# j <k The substringsi,az,...,0x constitute what we call Bucket That is,
for a given envelopép,s), bucketp,s) is the set of all substrings s.t. pas€ L. An envelope pertaining to a large
bucket supports many rules.

Small Buckets Heuristic
Much of the support of valid DUST substring substitutioresuls likely to belong to small buckets.

Similarity likeliness heuristic. The above two heuristics use the URL strings alone to detestr. In order to raise
the precision of the algorithm, we use a third heuristic thetter captures the “similarity dimension”, by providing
hints as to which instances are likely to be similar.

Similarity Likeliness Heuristic
The likely similar support of a valid DUST rule is large.

We show below that using cues from the URL list we can deteeminich URL pairs in the support of a rule are likely
to have similar content, i.e., aligkely similar, and which are not. The likely similar support, rather thla@ tomplete
support, is used to determine whether a rule is valid or notekample, in a forum web site we examined, the URL list
included two sets of URLASttp://politics.domain/story _num and http://movies.domain/story _num with
different numbers. The support of the invalid rultf://politics.domain " — “http://movies.domain " was
large, yet since the corresponding stories were very differthe likely similar support of the rule was found to be
small.

How do we use the URL list to estimate similarity between doents? The simplest case is that the URL list
includes a document sketch, such as the shingles of Broagr [@997], for each URL. Such sketches are typically
available when the URL list is the output of a previous crafithe web site. When available, documents sketches are
used to indicate which URL pairs are likely similar.

When the URL list is taken from web server logs, documentdchles are not available. In this case we use
document sizes (document sizes are usually given by webrsswftware). We determine two documents to be similar
if their sizes “match”. Size matching, however, turns oub&quite intricate, because the same document may have
very different sizes when inspected at different pointsroétor by different users. This is especially true when degli
with highly dynamic sites like forum or blogging web siteiéfefore, if two URLS have different “size” values in the
URL list, we cannot immediately infer that these URLs aremos$T. Instead, for each unique URL, we track all its
occurrences in the URL list, and keep the minimum and the mami size values encountered. We denote the interval
between these two numbers hy A pair of URLSs,u; anduy, in the support are considered likely to be similar if the
intervalsly, andly, overlap. Note however, that in the case of size matchingntose accurate to say that the URLs
are unlikely to be similar if their intervals do not overlapor this reason the size matching heuristic is effective in
filtering support but not as a measure of how similar two URLes aOur experiments show that this heuristic is very
effective in improving the precision of our algorithm, aftencreasing precision by a factor of two.

5. DUSTBUSTER

In this section we describe DustBuster—our algorithm facdvering site-specifiousT rules. DustBuster has four
phases. The first phase uses the URL list alone to generatetdishof likely busT rules. The second phase removes

119

redundancies from this list. The next phase generateylpa@lameter substitution rules. The last phase validates or
refutes each of the rules in the list, by fetching a small daroppages.

5.1 Detecting likely DUST rules

Our strategy for discovering likelpusT rules is the following: we compute the size of the supportafterule that
has at least one instance in the URL list, and output the miexse support exceeds some threshd® Based on
Theorem 4.1, we compute the size of the support of aaule B as the size of the s&, (a) NE,(B). That is roughly
what our algorithm does, but with three reservations:

(1) Based on the small buckets heuristic, we avoid consigerértain rules by ignoring large buckets in the com-
putation of envelope set intersections. Buckets bigger swene threshold are calledoverflowing and all envelopes
pertaining to them are denoted collectively®yand are not included in the envelope sets.

(2) Based on the similarity likeliness heuristic, we filteipport by estimating the likelihood of two documents
being similar. We eliminate rules by filtering out instane@sose associated documents are unlikely to be similar in
content. That is, for a given instanag= pasandu, = pfs, the envelopép,s) is disqualified ifu; anduy are found
unlikely to be similar using the tests introduced in SectlonThese techniques are provided as a boolean function
LikelySimilar which returns false only if the documents béttwo input URLs are unlikely to be similar. The set of
all disqualified envelopes is then denofgg.

(3) In practice, substitutions of long substrings are ratence, our algorithm considers substrings of length at most
Stokens, for some given parametr

To conclude, our algorithm computes for every two subssimg that appear in the URL list and whose length is
at mostS, the size of the sefE.(a) NE.L(B)) \ (OUDqpg).

1:Function DetectLikelyRules(URLLIst)
2: create table ST (substring, prefix, suffix, sizmge/docsketch)
3: create table IT (substringl, substring2)

4: create table RT (substringl, substring2, supsae)

5: for each record € £ do

6: for /=0to Sdo

7 for each substringt of r.url of length? do

8 p := prefix of r.url precedingt

9: s := suffix of r.url succeeding

10: add @, p, s, r.sizerange/r.docsketch) to ST

11: group tuples in ST intbucketdy (prefix,suffix)

12: for each buckeB do

13: if (|B|=10R|B| > T) continue

14: for each pair of distinct tupletg,t, € B do

15: if (LikelySimilar(ty, t2))

16: add {;.substringt,.substring) to IT

17: group tuples in IT intoule_supportsby (substringl,substring2)
18: for each rulesupport Rdo

19: t:=firsttuplein R

20: add tuple (t.substringl, t.substringR|) to RT

21: sort RT by supporsize

22: return all rules in RT whose support sizelisvS

Fig. 2. Discovering likely DUST rules.

Our algorithm for discovering likelypusT rules is described in Figure 2. The algorithm gets as inpaitdRL list
L. We assume the URL list has been pre-processed so that: [{1linique URLSs have been kept; (2) all the URLs
have been tokenized and include the precedingd succeeding; (3) all records corresponding to errors (http return
codes in the 4xx and 5xx series) have been filtered out; (49doh URL, the corresponding document sketch or size
range has been recorded.

The algorithm uses three tables: a substring table ST, aanos table IT, and a rule table RT. Their attributes are
listed in Figure 2. In principle, the tables can be storediy database structure; our implementation uses text files.

120

In lines 5-10, the algorithm scans the URL list, and recotdsudnstrings of lengths 0 to S of the URLSs in the list.
For each such substring a tuple is added to the substring table ST. This tuple ctssfshe substring;, as well as its
envelope(p,s), and either the URL's document sketch or its size range. Thstsngs are then grouped into buckets
by their envelopes (line 11). Our implementation does tljisdrting the file holding the ST table by the second and
third attributes. Note that two substringsp appear in the bucket @p,s) if and only if (p,s) € E.(a) NE.(B).

In lines 12—16, the algorithm enumerates the envelopesfon envelopd p,s) contributes 1 to the intersection
of the envelope ses. (o) NE,(B), for everya, B that appear in its bucket. Thus, if the bucket has only a siegtry,
we know(p,s) does not contribute any instance to any rule, and thus caossed away. If the bucket is overflowing
(its size exceeds), then(p,s) is also ignored (line 13).

In lines 14-16, the algorithm enumerates all the péirg3) of substrings that belong to the bucket(@fs). If it
seems likely that the documents associated with the UiRlssand pBs are similar (through size or document sketch
matching) (line 15)(a,) is added to the instance table IT (line 16).

The number of times a paja, B) has been added to the instance table is exactly the size sétfte, (o) NE,(B))\
(OUDgq g), which is our estimated support for the rues— 3 andf3 — a. Hence, all that is left to do is compute
these counts and sort the pairs by their count (lines 17-P2¢. algorithm’s output is an ordered list of pairs. Each
pair representing two likelpusT rules (one in each direction). Only rules whose supportigd@&nough (bigger than
MS) are kept in the list.

Complexity analysis. Letn be the number of records in the URL list and hlebe the average length (in tokens) of
URLs in the URL list. We assume tokens are of constant lenbitie. size of the URL list is the®(mn) bits. We use
(3() to suppress factors that are logarithmiaim,S, andT, which are typically negligible.

The computation has two major bottlenecks. The first is {jliimthe instance table IT (lines 12-16). The elements
of the ST tableO(mn§ are split into buckets of siz&(T) which results inO(mT”S) buckets in ST. The algorithm
then enumerates all the buckets, and for each of them enteseyach pair of substrings in the bucket. This compu-
tation could possibly face a quadratic blowup. Yet, sincerfiowing buckets are ignored, then this step takes only
O(%STZ) = O(mnST) time. The second bottleneck is sorting the URL list and titermediate tables. Since all the
intermediate tables are of size at m@MnST), the sorting can be carried @(MnST) time andO(mnST) external
storage space. By using an efficient external storage shity,we can keep the main memory complex@y1) rather
than linear. The algorithm does not fetch any pages.

5.2 Eliminating redundant rules
By design, the output of the above algorithm includes margrlapping pairs. For example, when running on a forum

site, our algorithm finds the pair.€b.il/story?id= ", “.co.illstory _"), as well as numerous pairs of substrings
of these, such asgtory?id= ", “story _"). Note that every instance of the former pair is also andnse of the latter.
We thus say that the formeafinesthe latter. It is desirable to eliminate redundancies go@ttempting to validate the
rules, in order to reduce the cost of validation. Howeverewbne likelypusT rule refines another, it is not obvious
which should be kept. In some cases, the broader rule is altvag, and all the rules that refine it are redundant. In
other cases, the broader rule is only valid in specintextsdentified by the refining ones.

In some cases, we can use information from the URL list inioi@deduce that a pair is redundant. When two pairs
have exactly the same support in the URL list, this gives engtindication that the latter, seemingly more general
rule, is valid only in the context specified by the former rllée can thus eliminate the latter rule from the list.

We next discuss in more detail the notionrefinementind show how to use it to eliminate redundant rules.
DEFINITION 5.1 REFINEMENT. A rule @refinesa rule y, if supportg) C supporty).

That is, @ refinesy, if every instancdus,uy) of @is also an instance a. Testing refinement for substitution rules
turns out to be easy, as captured in the following lemma:

LEMMA 5.2. A substitution rulen’ — B’ refines a substitution rule — B if and only if there exists an envelope
(Y,0) s.t.a’ =yad andf’ = y3d.

PROOF We prove derivation in both directions. Assume, initiatlyat there exists an envelopgd) s.t.a’ = yod
andp’ = yBd. We need to show that in this case— B’ refinesa — B. Take, then, any instande;, u,) of a’ — B'.
By Definition 3.1, there exists an envelog,s) s.t.u; = p'a’s andu; = p'B's. Hence, if we defing = p'y and
s=0s, then we have thai; = pas andu, = pfs. Using again Definition 3.1, we conclude thatf,uy) is also an
instance ofx — B. This proves the first direction.

121

For the second direction, assume tbat— B’ refinesa — . Assume that none af,3,a’, ' starts with ~ or ends
with $. (The extension ta, 3,a’, B’ that can start with ~ or end with $ is easy, but requires soroertiealities, that
would harm the clarity of this proof.) Defing = "o’$ andup = "3'$. By Definition 3.1,(uz,up) is an instance of
o’ — B'. Due to refinement, it is also an instancenof- 3. Hence, there exigt, s s.t.u; = pasandu, = pfs. Hence,
pas="a’$ andpBs="B'$. Sincea, do not start with ~ and do not end with $, thermust start with ~ and must
end with $. Define thegto be the stringp excluding the leading ~, and defibdo be the string excluding the trailing
$. We thus havea’ = yad andf’ = yBd, as needed]

The characterization given by the above lemma immediatelgly an efficient algorithm for deciding whether a
substitution ruleax” — B’ refines a substitution rule — (: we simply check thatx is a substring oft’, replacea by
B, and check whether the outcome¥s If a has multiple occurrences ', we check all of them. Note that our
algorithm’s input is a list of pairs rather than rules, wheezh pair represents two rules. When considering two pairs
(a,B) and(a’, '), we check refinement in both directions.

Now, suppose a rule’ — B’ was found to refine a rula — 3. Then, suppoft’ — B’) C supporfa — B), im-
plying that also suppof{a’ — B’) C supporf (a — B). Hence, if|support (o’ — B')| = |supporf (a — B)], then
support (o’ — B') = support (a — B). If the URL list is sufficiently representative of the webesithis gives an
indication that every instance of the refined rale~ 3 that occurs on the web site is also an instance of the refinemen
o’ — pB’. We choose to keep only the refinemeanht— B/, because it gives the full context of the substitution.

One small obstacle to using the above approach is the failpwin the first phase of our algorithm, we do not
compute the exact size of the suppj@tippor (a — B)|, but rather calculate the quantitye, (o) "E.(B)) \ (OU
Dqgg)l. Itis possible that’ — B’ refinesa — and support(a’ — B') = suppor} (a — B), yet|(EL(a') NEL(B')) \

(OUDg)| < [(Ec(0) NEL(B))\ (OUDgy)|.

How could this happen? Consider some envelgpe) € E.(a) NE.(B), and let(ui,uz) = (pas, pps) be the
corresponding instance of — B. Since suppoyt(a’ — B’) = supporf (a — B), then(ug,up) is also an instance of
a’ — p'. Therefore, there exists some enveldpes) € E.(a') NE,(B') s.t.uy = p'a’s andu, = p'p’s.

o is a substring ofi” andp is a substring of’, thusp’ must be a prefix op ands' must be a suffix o§. This implies
that any URL that contributes a substringo the bucket of p,s) will also contribute a substring to the bucket of
(p',9), unlessy exceeds the maximum substring len&hin principle, then, we should expect the bucket pf ')
to be larger than the bucket ¢p,s). If the maximum bucket siz& happens to be exactly between the sizes of the
two buckets, therip’,s') overflows while(p,s) does not. In this case, the first phase of DustBuster will actor
(u1,uz) in the computation of the support af— B but not in the computation of the supportaf— f’, incurring a
difference between the two.

In practice, if the supports are identical, the differenemeen the calculated support sizes should be small. We thus
eliminate the refined rule, even if its calculated suppag $ slightly above the calculated support size of the negjini
rule. However, to increase the effectiveness of this phaseun the first phase of the algorithm twice, once with a
lower overflow thresholde and once with a higher overflow threshdigy. While the support calculated using the
lower threshold is more effective in filtering out invalides, the support calculated using the higher threshold iemo
effective in eliminating redundant rules.

The algorithm for eliminating refined rules from the list &aps in Figure 3. The algorithm gets as input a list
of pairs, representing likely rules, sorted by their caddet support size. It uses three tunable parameters: (1) the
maximum relative deficiency, MRIR2) themaximum absolute deficiency, MA&nd (3) themaximum window size,
MW. MRD and MAD determine the maximum difference allowed betwéhe calculated support sizes of the refining
rule and the refined rule, when we eliminate the refined ruld)V letermines how far down the list we look for
refinements.

The algorithm scans the list from top to bottom. For each ®J]8, which has not been eliminated yet, the algorithm
scans a “window” of rules below [i]. Supposesis the calculated size of the support®{i]. The window size is
chosen so that (1) it never exceddsV (line 4); and (2) the difference betwesrmand the calculated support size of
the lowest rule in the window is at most the maximum betwgéD- sandMAD (line 5). Now, if R [i] refines a rule
R [j] in the window, the refined rulg [j] is eliminated (line 7), while if some rul& [j] in the window refinesg [i],

R [i] is eliminated (line 9).

It is easy to verify that the running time of the algorithm tsw@ost|® |- MW. In our experiments, this algorithm

reduces the set of rules by over 90%.

122

1:Function EliminateRedundancies(pailist R)

2: fori=1to|R|do

3: if (already eliminatecR [i]) continue

4: for j=1tomin(MW,|R|—i) do

5: if (R [i].size— R [i + j].size>
maxMRD - R [i].sizeMAD)) break

6: if (R[i] refinesR [i + j])

7: eliminateR [i + j]

8: else if ® [i + j] refinesR [i]) then
9: eliminateR |i]

10: break

14: return®.

Fig. 3. Eliminating redundant rules.

5.3 Parameter substitutions

Inline parameters in URLs typically comply with a standaodnfiat. In many sites, an inline parameter name is
preceded by the “?” or “&” characters and followed by the “Haracter and the parameter’s value, which is followed
by either the end of the URL or another “&” character. We caaréfiore employ a simple regular expression search on
URLs in the URL listin order to detect popular parametersnglwith multiple examples of values for each parameter.
Having detected the parameters, we check for each one whefblacing its value with an arbitrary one is a valid
pusT rule. To this end, we exploit the ST table computed by Dust®usee Figure 2), after it has been sorted and
divided into buckets. We seek buckets whose prefix attribotks with the desired parameter name, and then compare
the document sketches or size ranges of the relevant URLEaipieg to such buckets.

For each parametep, we choose some value of the parametes,,and add two rules to the list of likely rules:
the first, replaces the value of the paramegavith v, the second rule, omits the parameter altogether. Due to the
simplicity of this algorithm, its detailed presentatioroimitted. The next section describes the validation phasehwh
will drop thebusT rules which do not generate valid URLs or URLs with similantant.

5.4 Validating DUST rules

So far, the algorithm has generated likely rules from the UiRLalone, without fetching even a single page from the
web site. Fetching a small number of pages for validatingeuting these rules is necessary for two reasons. First,
it can significantly improve the final precision of the algbm. Second, the first two phases of DustBuster, which
discover likely substring substitution rules, cannotidgtiish between the two directions of a rule. The discovéry o
the pair(a, B) can represent both — 3 andf3 — a. This does not mean that in reality both rules are valid oaliV
simultaneously. It is often the case that only one of thedtives is valid; for example, in many sites removing the
substringindex.ntml is always valid, whereas adding one is not. Only by attenggtiinfetch actual page contents
we can tell which direction is valid, if any.

The validation phase of DustBuster therefore fetches alssaaiple of web pages from the web site in order to
check the validity of the rules generated in the previousphaThe validation of a single rule is presented in Figure
4. The algorithm is given as input a likely rule R and a list d&?lLs from the web site and decides whether the rule is
valid. It uses two parameters: thalidation count, N(how many samples to use in order to validate each rule), and
therefutation thresholdg (the minimum fraction of counterexamples to a rule requitedeclare the rule invalid).

REMARK. The application of R to u (line 6) may result in several diffiet URLs. For example, there are several
ways of replacing the string “people” with the string “usens the URL http:/people.domain.com/people ,
resulting in the URLshttp://users.domain.com/people , http://people.domain.com/users , and http://
users.domain.com/users . Our policy is to select one standard way of applying a rula. éxample, in the case of
substring substitutions, we simply replace the first oauce of the substring.

In order to determine whether a rule is valid, the algoritrepaatedly chooses random URLs from the given test
URL list until hitting a URL on which applying the rule ressiin a different URL (line 5). The algorithm then applies
the rule to the random URL, resulting in a new URLlv. The algorithm then fetchesandv. Using document sketches,
such as the shingling technique of Broder et al. [1997], igerahm tests whethem andv are similar. If they are,
the algorithm accounts faras a positive example attesting to the validity of the rufez éannot be fetched, or they

123

1:Function ValidateRule(R L)

2: positive :=0

3: negative :=0

4: while (positive< (1—€)N AND negative< eN) do

5: u:=arandom URL fronm on which applying R results
in a different URL

6: v :=outcome of application of R to u

7. fetchuandv

8: if (fetch u failed) continue

9: if (fetch v failedor DocSketch(u)}~ DocSketch(v))

10 negative := negative + 1

11: else

12: positive := positive + 1

13: if (negative> eN)

14: returnFALSE

15: returnTRUE

Fig. 4. Validating a single likely rule.

are not similar, then it is accounted as a negative examples(P—12). The testing is stopped when either the number
of negative examples surpasses the refutation threshaldhen the number of positive examples is large enough to
guarantee the number of negative examples will not surpasthteshold.

One could ask why we declare a rule valid even if we find (a smathber of) counterexamples to it. There are
several reasons: (1) the document sketch comparison testtisnes makes mistakes, since it has an inherent false
negative probability; (2) dynamic pages sometimes chaiggéfisantly between successive probes (even if the probes
are made at short intervals); and (3) the fetching of a URL swayetimes fail at some point in the middle, after part
of the page has been fetched. By choosing a refutation tbieecsmaller than one, we can account for such situations.

Each parameter substitution rule is validated using the @odrigure 4. The validation of substring substitutions is
more complex, as it needs to address directions and refintemen

Figure 5 shows the algorithm for validating a list of likelysTrules. Its input consists of a list of pairs representing
likely substring transformation$z [i].a, R [i].B), and a test URL list.

For a pair of substring&, 3), we use the notation > 3 to denote that eithen| > |B| or |o| = |B| anda succeeds
B in the lexicographical order. In this case, we say that the ou— 3 shrinksthe URL. We give precedence to
shrinking substitutions. Therefore, given a p@air), if a > (3, we first try to validate the rulet — (. If this rule
is valid, we ignore the rule in the other direction since,reifethis rule turns out to be valid as well, using this rule
during canonization is only likely to create cycles, i.eles that can be applied an infinite number of times because
they cancel out each others’ changes. If the shrinking mulavialid, though, we do attempt to validate the opposite
direction, so as not to lose a valid rule. Whenever one of treetions of(a, 3) is found to be valid, we remove from
the list all pairs refininda, B)— once a broader rule is deemed valid, there is no longer afoeeefinements thereof.

By eliminating these rules prior to validating them, we redihe number of pages we fetch. We assume that each
pair in R is ordered so thag [i].a > R [i].B.

The running time of the algorithm is at moS{(|® |+ N|®&). Since the list is assumed to be rather short, this
running time is manageable. The number of pages fetch®(Ns$R |) in the worst-case, but much smaller in practice,
since we eliminate many redundant rules after validatingsrthey refine.

Application for URL canonization. Finally, we explain how the discoverew sTrules may be used for canonization
of a URL list. Our canonization algorithm is described inUiig 6. The algorithm receives a URLand a list of valid
pusTrules,®R. The idea behind this algorithm is very simple: in each iierg each rule in®_ in turn is repeatedly
applied tou up to MA times, until the rule does not change the URL; this processpsated up tdMA times, until
there is an iteration in which is unchanged (lines 6-7).

If a rule can be applied more than once (e.g., because thes#msting appears multiple times in the URL), then
each iteration in lines 4-5 applies it in the first place in L where it is applicable. As long as the number of
occurrences of the replaced substring in the URL does na@ezkMA, the algorithm replaces all of them.

We limit the number of iterations of the algorithm and apations of a rule to the parametdi’A, because otherwise
the algorithm could have entered an infinite loop (if the gr&y, contains cycles). SincelA is a constant, chosen

124

1:Function Validate(ruleslist ® , testURLList £)
2 create an empty list of rules LR

3: fori=1to|R|do

4: forj=1toi-1do

5 if (R[j] was not eliminatedND R [i] refinesR [j])
6: eliminateR [i] from the list

7 break

8: if (R[i] was eliminated)

9: continue

10: if (ValidateRuleQ[i].o — R[i].B, £))

11: addR[i].a — R[i].Bto LR

12: elseif (ValidateRuleR [i].B — R [i].a, L))
13: addR]i].p— R]i].ato LR

14: else

15: eliminateR [i] from the list

16: return LR

Fig. 5. Validating likely rules.

1:Function Canonize(URLu, ruleslist R)
: for k=1toMAdo
prev:=u
fori=1to|R|do
for j=1toMAdo
u := A URL obtained by applyin® i] to u
if (prev =u)
break
output u

ONOTRWLODN

Fig. 6. Canonization algorithm.

independently of the number of rules, the algorithm’s rmgniime islinear in the number of rules. Recall that
the general canonization problem is hard, so we cannot &tpiscalgorithm to always produce a minimum size
canonization. Nevertheless, our empirical study showsttigasavings obtained using this algorithm are high.

We believe that the algorithm’s common case success stems¥vo features. First, our policy of choosing shrink-
ing rules whenever possible typically eliminates cyclescéhd, our elimination of refinements of valid rules leaves a
small set of rules, most of which do not affect each other.

6. EXPERIMENTAL RESULTS

Experiment setup. We experiment with DustBuster on four web sites: a dynamiarfosite?, an academic site
(www.ee.technion.ac.il), a large news site (cnn.com) aschaller news site (nydailynews.com). In the forum site,
page contents are highly dynamic, as users continuouslg@tidhents. The site supports multiple domain names and
most of the site’s pages are generated by the same softwlaeeelvs sites are similar in their structure to many other
news sites on the web. The large news site has a more completuse, and it makes use of several sub-domains
as well as URL redirections. Finally, the academic site ésriost diverse: It includes both static pages and dynamic
software-generated content. Moreover, individual pageisdirectories on the site are constructed and maintained by
a large number of users (faculty members, lab manager}, etc.

In the academic and forum sites, we detect likelysT rules from web server logs, whereas in the news sites, we
detect likelybusT rules from a crawl log. Table | depicts the sizes of the logasdusin the crawl logs each URL
appears once, while in the web server logs the same URL mageappultiple times. In the validation phase, we use
random entries from additional logs, different from thosedito detect the rules. The canonization algorithm isdeste
on yet another set of logs, different from the ones used teaf@ind validate the rules.

2The webmaster who gave us access to the logs asked us notify spe name of the site.
125

Web Site Log Size | Unigue URLs
Forum Site 38,816 15,608
Academic Site 344,266 | 17,742

Large News Site| 11,883 11,883

Small News Site| 9,456 9,456

Table I. Log sizes.

Parameter settings. The following DustBuster parameters were carefully chdseall our experiments. Our empiri-
cal results suggest that these settings are robust acrassals, as they work in the 4 very different representaiies s
we experimented with. The maximum substring len@hyas set to 35 tokens. The maximum bucket size used for
detectingousTrules, Tiow, Was set to 6, and the maximum bucket size used for elimigaéidundant ruleslhign, was

set to 11. In the elimination of redundant rules, we allowedlative deficiency, MRD, of up to 5%, and an absolute
deficiency, MAD, of 1. The maximum window size, MW, was set t®Q rules. The value of MS, the minimum
support size, was set to 3. The algorithm uses a validatiantc®, of 100 and a refutation thresho#gl of 5%-10%.
Finally, the canonization uses a maximum of 10 iterationsin@ing [Broder et al. 1997] is used in the validation
phase to determine similarity between documents.

Detecting likely DUST rules and eliminating redundant ones DustBuster’s first phase scans the log and detects
a very long list of likelybusT rules. Subsequently, the redundancy elimination phaseatieally shortens this
list. Table Il shows the sizes of the lists before and aftdureglancy elimination. It can be seen that in all of our
experiments, over 90% of the rules in the original list hagerbeliminated.

For example, in the largest log in the academic site328 likely rules were detected in the first phase, and only
2041 (8%) remained after the second; in a smaller lo@4® rules were detected, of which only 354 (3%) were not
eliminated. In the large news site 1214 were detected, 1243 remained after the second phaske forum site,
much fewer likely rules were detected, e.g., in one log 40@srwere found, of which 37 (9%) remained. We believe
that the smaller number of rules is a result of the forum sé@im@p more uniformly structured than the academic one,
as most of its pages are generated by the same web serveasaftw

Web Site Rules Rules Remaining
Detected | after 2nd Phase
Forum Site 402 37 (9.2%)

Academic Site | 26,899 2,041 (7.6%)
Large News Site| 12,144 1,243 (9.76%)
Small News Site| 4,220 96 (2.3%)

Table Il. Rule elimination in second phase.

In Figure 7, we examine the precision level in the short Ifdikely rules produced at the end of these two phases
in three of the sites. Recall that no page contents are fétththese phases. As this list is ordered by likeliness,
we examine th@recision@Xk that is, for each tojx rules in this list, the curves show which percentage of theen a
later deemed valid (by DustBuster’s validation phase) least one direction. We observe that when similarity-based
filtering is used, DustBuster’s detection phase achievemrahigh precision rate even though it does not fetch even
a single page. Figure 8 shows the results for four web seoger df the forum site. Out of the 40-50 detected rules,
over 80% are indeed valid. In the academic site, over 60%e880-350 detected rules are valid, and of the top 100
detected rules, over 80% are valid. In the large news si#%, Gf the top 200 rules are valid.

This high precision is achieved, to a large extent, thankbkécsimilarity-based filtering (size matching or shingle
matching), as shown in Figures 7(a) and 7(b). The log indudealid rules. For example, the forum site includes
multiple domains, and the stories in each domain are difterd hus, although we find many pairs of the form
http://domainl/story _num andhttp://domain2/story _num with the same story number, these URLSs represent
different stories. Similarly, the academic site has URLrpaf the formhttp://site/coursel/lect-num.ppt and
http://site/course2/lect-num.ppt , although the lectures are different. These URL pairs astairces of invalid
rules, rules that are are not detected thanks to size magcliiigure 7(a) illustrates the impact of size matching in
the academic site. We see that when size matching is not gethlthe precision drops by around 50%. Thus, size
matching reduces the number of accesses needed for vatiddievertheless, size matching has its limitations— valid

126

1
I I I With Slize Matchir;g—»—
No Size Matching---*---
0.8 - B
c 0.6 _
o
0
(]
o
o
0.4 |- 3x B
AV
RV
X XX&XX
‘1‘ &Xxx%XWXXxXx%MXXWXWXX><><9<—>€><>@<><9<%XX><><
0.2 | _
0 I“/ 1 1 1 1 1
0 50 100 150 200 250 300
top k rules
(a) Academic site, impact of size matching.
1 T _ L T T
Without shingles-filtered support——
With shingles-filtered support--x---
- _
i)
2
(8]
g
D- -
1 1 1

0 1 1
0 200 400 600 800 1000 1200

top k rules
(b) Large news site, impact of shingle matching, 4 shingiesiu

Fig. 7. Precision@k of likelypusT rules detected in DustBuster’s first two phaséthoutfetching actual content.

rules (such asps” — “pdf ") are missed at the price of increasing precision. Figul® gtows similar results for the
large news site. When we do not use shingles-filtered supinerprecision at the top 200 drops to 40%. Shingles-
based filtering reduces the list of likely rules by roughly?@0 Most of the filtered rules turned out to be indeed

invalid.
Validation. We now study how many validations are needed in order to ceethat a rule is valid; that is, we study
what the parameter N in Figure 5 should be set to. To this eeduw DustBuster with values of N ranging from 0 to
100, and check which percentage of the rules found to be watlideach value of N are also found valid when N=100.
The results from conducting this experiment on the likelysT rules found in 4 logs from the forum site and 4 from
the academic site are shown in Figure 9 (similar results wétained for the other sites). In all these experiments,
100% precision is reached after 40 validations. Moreow=uits obtained in different logs are consistent with each
other.
In these graphs, we only consider rules that DustBustematigto validate. Since many valid rules are removed
(in line 6 of Figure 5) after rules that they refine are deemalitly the percentage of valid rules among those that
DustBuster attempts to validate is much smaller than thegmage of valid rules in the original list.

127

08
c 06 i
i)
@
(8]
Q
o
0.4} .
0.2 loghs ——
log#3 ---x---
log#2 ---%---
log#l &
0 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

top k rules

Fig. 8. Forum site showing 4 different logs, precision@kikdly DusT rules detected in DustBuster's first two phases
withoutfetching actual content.

Our aggressive elimination of redundant rules reduces timeber of rules we need to validate. For example, on
one of the logs in the forum site, the validation phase wagabed with 28 pairs representing 56 likely rules (in both
directions). Of these, only 19 were checked, and the rese wamoved because they or their counterparts in the
opposite direction were deemed valid either directly ocsithey refined valid rules. We conclude that the number of
actual pages that need to be fetched in order to validateutbe is very small.

At the end of the validation phase, DustBuster outputs aofistalid substring substitution rules without redun-
dancies. Table Ill shows the number of valid rules detectedach of the sites. The list of 7 rules found using one
of the logs in the forum site is depicted in Figure 10 belowe3é 7 rules or refinements thereof appear in the out-
puts produced using each of the studied logs. Some studjsdriclude 1-3 additional rules, which are insignificant
(have very small support). Similar consistency is obseiuetie academic site outputs. We conclude that the most
significantbusT rules can be adequately detected using a fairly small loly reiighly 15000 unique URLSs.

Web Site Valid Rules Detected
Forum Site 7

Academic Site 52

Large News Site| 62

Small News Site| 5

Table Ill. The number of rules found to be valid.

Coverage. We now turn our attention to coverage, or the percentage pliichie URLs discovered by DustBuster, in
the academic site. When multiple URLs have the same docwsketuah, all but one of them are considedegblicates

In order to study the coverage achieved by DustBuster, wewselifferent logs from the same site:taining log

and atest log We run DustBuster on the training log in order to leawsT rules and we then apply these rules on
the test log. We count what fraction of the duplicates in #st kog are covered by the detectedsT rules. We detect
duplicates in the test log by fetching the contents of alt®fIRLs and computing their document sketches. Figure 11
classifies these duplicates. As the figure shows, 47.1% afupbcates in the test log are eliminated by DustBuster’s
canonization algorithm using rules discovered on anothgr [The rest of th@usT can be divided among several
categories: (1) duplicate images and icons; (2) replicamtlments (e.g., papers co-authored by multiple faculty
members and whose copies appear on each of their web pag@gs¥oft errors”, i.e., pages with no meaningful
content, such as error message pages, empty search regéts ptc.

128

c _
k=]
@
(8]
o
o 3
0.40+ —
0.2 log#td —+——
log#3 ---x---
log#2 ---*---
Iog#l =]
0 1 1 1
0 20 40 60 80 100
number of validations
(a) Forum site, 4 different logs.
777_777%”,_ =2 E = x = % =
c _
K=l
@
(8]
o
o

0.2% log#td —+——
log#3 ---*---
log#2 ---*---
Iog#l =)

0 1 1 1
0 20 40 60 80 100

number of validations

(b) Academic site, 4 different logs.

Fig. 9. Precision among rules that DustBuster attemptedlidate vs. number of validations used (N).

1 “.co.il/story " — “.co.illstory?id= "

2 “\&LastView= \&Close=" — *”

3 “php3? 7 —“?”

4 “llistory " — “.illstory.php3?id= "

5 “\&NewOnly=1\&tvqz=2 " — “\&NewOnly=1"

6 “.co.illthread " — “.co.illthread?rep= "

7 “http:/lwww.../story _" — “http:/www.../story?id= "

Fig. 10. The valid rules detected in the forum site.

Savings in crawl size. The next measure we use to evaluate the effectiveness of éff@othis the discovered
redundancy, i.e., the percent of the URLs we can avoid fetchi a crawl by using theusT rules to canonize the
URLs. To this end, we performed a full crawl of the academiie,sand recorded in a list all the URLs fetched. We
performed canonization on this list usipgsT rules learned from the crawl, and counted the number of nidgfaLs

129

DUST Distribution
47.1% Discovered DUST

1.8% Misc

25.7% Images 17.9% Copy

7.5% Soft Errors
Fig. 11. pusrTclassification, academic site.

before Up) and afterU;) canonization. The discovered redundancy is then giv . We found this redundancy
to be 18% (see Table 1V), meaning that the crawl could have beduced by that amount. In the two news sites, the
DUST rules were learned from the crawl logs and we measured thectied that can be achieved in the next crawl.
By setting a slightly more relaxed refutation threshad{10%), we obtained a reduction of 26% in the small news
site and 6% in the large one. In the case of the forum site, we fir logs to dete@usT rules, and used these rules

to reduce a fifth log. The reduction achieved in this case wa%4In all these experiments, the training and testing
was done on logs of similar size.

Web Site Reduction Achieved
Academic Site 18%

Small News Site 26%

Large News Site 6%

Forum Site(using logs) 4.7%

Table IV. Reductions in crawl size.

7. CONCLUSIONS

We have introduced the problem of mining site-speaficsT rules. Knowing about such rules can be very useful for
search engines: It can reduce crawling overhead by up to 2&Pthas increase crawl efficiency. It can also reduce
indexing overhead. Moreover, knowledgemfsT rules is essential for canonizing URL names, and canonaalas

are very important for statistical analysis of URL populabased on PageRank or traffic. We presented DustBuster,

an algorithm for miningousT very effectively from a URL list. The URL list can either betamed from a web server
log or a crawl of the site.

Acknowledgments. We thank Tal Cohen and the forum site team, and Greg Pendlahenttp://ee.technion.
ac.il admins for providing us with access to web server logs andefcinnical assistance. We thank Israel Cidon,

Yoram Moses, and Avigdor Gal for their insightful input. Weank all our reviewers, both from the WWW 2007
conference and the TWEB journal, for their detailed and trocive suggestions.

REFERENCES

Apache http server version 2.2 configuration filetp:/httpd.apache.org/docs/2.2/configuring.html

AGRAWAL, R.AND SRIKANT, R. 1994. Fast algorithms for mining association rulesthenProceedings of the 20th International Conference on
Very Large Data Bases (VLDB387-499.

ANALOG. http://www.analog.cx/

BERNERSLEE, T., FIELDING, R., AND MASINTER, L. Uniform resource identifiers (URI): Generic syntakttp://www.ietf.org/rfc/
rfc2396.txt

BHARAT, K. AND BRODER, A. Z. 1999. Mirror, Mirror on the Web: A Study of Host PairstiReplicated ContentComputer Networks 31,1—
16, 1579-1590.

BHARAT, K., BRODER, A. Z., DEAN, J.,AND HENZINGER, M. R. 2000. A comparison of techniques to find mirrored hastshe WWW.
Journal of the American Society for Information Sciencel®],1114-1122.

BOGNAR, M. 1995. A survey on abstract rewriting. Available onlirtevaww.di.ubi.pt/ ~desousa/1998-1999/logica/mb.ps
130

BRIN, S., Davis, J.,AND GARCIA-MOLINA, H. 1995. Copy Detection Mechanisms for Digital Documerits.the Proceedings of the 14th
Special Interest Group on Management of Data (SIGMCI9B-409.

BRODER, A. Z., GLASSMAN, S. C.,AND MANASSE, M. S. 1997. Syntactic clustering of the web. the Proceedings of the 6th International
World Wide Web Conference (WWW}57-1166.

CHO, J., HIVAKUMAR , N., AND GARCIA-MOLINA, H. 2000. Finding replicated web collections.the Proceedings of the 19th Special Interest
Group on Management of Data (SIGMQ3p5-366.

Di IoRIO, E., DILIGENTI, M., GORI, M., MAGGINI, M., AND Puccl, A. 2003. Detecting Near-replicas on the Web by Content ayoeidink
Analysis. Inthe Proceedings of the 11th International World Wide Webf&ence (WWW)

Doualls, F., FELDMAN, A., KRISHNAMURTHY, B., AND MOGUL, J. 1997. Rate of change and other metrics: a live study ofvtréd wide
web. Inthe Proceedings of the 1st USENIX Symposium on Internehdkfies and Systems (USITS)

FINKEL, R. A., ZASLAVSKY, A. B., MONOSTOR|, K., AND SCHMIDT, H. W. 2002. Signature extraction for overlap detectiondcuments. In
the Proceedings of the 25th Australasian Computer Sciecde@ence (ACSCH9—64.

GARCIA-MOLINA, H., GRAVANO, L., AND SHIVAKUMAR , N. 1996. dscam: Finding document copies across multigibdaes. Ithe Proceed-
ings of the 4th International Conference on Parallel andtBimited Information Systems (PDI$8—79.

GAREY, M. R.AND JOHNSON, D. S. 1979.Computers and Intractability: A Guide to the Theory of NPa@ptetenessW. H. Freeman.

GOOGLEINC. Google sitemapshttp://sitemaps.google.com

GUSFIELD, D. 1997. Algorithms on Strings, Trees and Sequences: Computercgcard Computational BiologyCambridge University Press.

HoaD, T. C.AND ZOBEL, J. 2003. Methods for identifying versioned and plagiatidecumentsJournal of the American Society for Information
Science and Technology 53,203-215.

JACCARD, P. 1908. Jaccard, P. 1908. Nouvelles recherches sur tddigin florale. 44, 223-270.

JaiN, N., DAHLIN, M., AND TEWARI, R. 2005. Using bloom filters to refine web search resultsthénProceedings of the 7th International
Workshop on the Web and Databases (Web2B}-30.

KELLY, T. AND MoOGuUL, J. C. 2002. Aliasing on the world wide web: prevalence anfbpmance implications. Ithe Proceedings of the 11th
International World Wide Web Conference (WW281-292.

Kim, S. J., EONG, H. S.,AND LEE, S. H. 2006. Reliable evaluations of URL normalization. tte Proceedings of the 4th International
Conference on Computational Science and Its Applicatit@€$A) 609-617.

LIANG, H. 2001. A URL-String-Based Algorithm for Finding WWW Mar Host. M.S. thesis, Auburn University.

McCownN, F. AND NELSON, M. L. 2006. Evaluation of crawling policies for a web-refiosy crawler. Inthe Proceedings of the 17th ACM
Conference on Hypertext and Hypermedia (HYPERTEX37-168.

MONOSTORL K., FINKEL, R. A., ZASLAVSKY, A. B., HODASZ, G.,AND PATAKI, M. 2002. Comparison of overlap detection techniqueghén
Proceedings of the 10th International Conference on Complestems (ICCSp1-60.

SHIVAKUMAR , N. AND GARCIA-MOLINA, H. 1998. Finding Near-Replicas of Documents and Serveth®#flVeb. Inthe Proceedings of the 1st
International Workshop on the Web and Databases (Web2®})-212.

STATCOUNTER. http://www.statcounter.com/

WEBL 0G EXPERT. http://www.weblogexpert.com/

ZOBEL, J.AND MOFFAT, A. 1998. Exploring the similarity spac&IGIR Forum 321, 18-34.

Received July 2007; revised June 2008; accepted Octob& 200

131

