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Abstract

We initiate the study of a new clustering framework,
called cluster ranking. Rather than simply partitioning a
network into clusters, a cluster ranking algorithm also or-
ders the clusters by theirstrength. To this end, we intro-
duce a novel strength measure for clusters—the integrated
cohesion—which is applicable to arbitrary weighted net-
works.

We then present C-Rank: a new cluster ranking algo-
rithm. Given a network with arbitrary pairwise similarity
weights, C-Rank creates a list of overlapping clusters and
ranks them by their integrated cohesion. We provide exten-
sive theoretical and empirical analysis of C-Rank and show
that it is likely to have high precision and recall.

Our experiments focus on miningmailbox networks. A
mailbox network is an egocentric social network, consist-
ing of contacts with whom an individual exchanges email.
Ties among contacts are represented by the frequency of
their co-occurrence on message headers. C-Rank is well
suited to mine such networks, since they are abundant with
overlapping communities of highly variable strengths. We
demonstrate the effectiveness of C-Rank on the Enron data
set, consisting of 130 mailbox networks.

1. Introduction

Cluster ranking. When clustering large networks, clus-
tering algorithms frequently produce masses of clusters.
This phenomenon is magnified when employing “fuzzy” or
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“soft” clustering methods, which partition the network into
overlapping clusters. These tend to generate numerous clus-
ters even on small networks. The abundance of clusters may
make the results hard to digest and interpret. Moreover, typ-
ically only a small portion of the clusters are interesting or
meaningful, giving rise to a “needle in a haystack” prob-
lem: how to select the important clusters from the masses
of results returned?

In order to address the above difficulties, we propose a
new clustering framework, calledcluster ranking. Given a
cluster strength measure, which assigns a “strength score”
to every subset of nodes, and given amaximality criterion,
which determines which sets of nodes are “self-contained”,
a cluster ranking algorithm outputs the maximal clusters in
the network, ordered by their strength. The ranking pro-
vides information that is usually not conveyed by traditional
clustering: which clusters are more important than others.
This information can be used, for instance, to quickly single
out the most significant clusters. Similarly to search algo-
rithms in information retrieval, cluster ranking algorithms
are measured byprecisionandrecall. Our new framework
is described in Section 3.

Cluster strength measure. A crucial ingredient in the new
framework is the choice of a suitable cluster strength mea-
sure. A proper definition of such a measure turns out to be
a major challenge. Even for unweighted networks, there is
no consensus on how to measure quality of a cluster or of a
clustering [8, 19].

We propose a novel cluster strength measure—theinte-
grated cohesion—which is applicable to arbitrary weighted
networks. To define this measure, we first define thecohe-
sion of unweighted clusters. Several notions of edge sep-
arators [31, 19, 15, 26, 12] have been used in the past to



capture how “cohesive” an unweighted cluster is. We ob-
serve that these notions are unsatisfactory, especially inthe
presence of overlapping clusters. We then show thatvertex
separators, rather than edge separators, are more effective
in measuring cohesion.

Extending cohesion to capture strength of weighted clus-
ters is tricky, since edge weights have to be taken into
account as well. A standard approach for handling edge
weights is “thresholding”: one determines a thresholdT ,
and transforms the weighted network into an unweighted
network, by keeping only the edges whose weight exceeds
the thresholdT . We show that standard thresholding is in-
sufficient for measuring strength of weighted clusters. We
then introduceintegrated cohesionas an effective measure
of strength for weighted clusters. The integrated cohesion
of a cluster is the sum of the cohesion scores of all the un-
weighted clusters obtained by applying all possible thresh-
olds to the given weighted cluster. Our new cluster strength
measures are discussed in Section 4.

Cluster ranking algorithm. Having set up the new frame-
work, we present C-Rank: a cluster ranking algorithm.
C-Rank is designed to work for networks with arbitrary
weights. The network’s nodes are assumed neither to be-
long to a metric space nor to conform to any statistical
model. C-Rank produces and ranks overlapping clusters
and is thus in particular an overlapping clustering algorithm.

C-Rank works in three phases. First, it identifies a list
of candidate clusters. Then, it ranks these candidates by
their integrated cohesion. Finally, it eliminates redundant
clusters—ones that are non-maximal.

At the core of C-Rank is a hierarchical overlapping clus-
tering procedure, which constructs a hierarchy of overlap-
ping clusters in unweighted networks. This procedure may
be of independent interest. Given a networkG, the pro-
cedure finds asparse vertex separatorin G, and uses the
separator to split the network into a collection of overlap-
ping clusters. The procedure then recurses on each of the
clusters, until reaching cliques or singletons. Interestingly,
the hierarchy produced by the procedure may be a DAG,
rather than a tree. We provide rigorous theoretical analysis
of this procedure and show that it is guaranteed to findall
maximal clusters inG (note that other soft clustering algo-
rithms may not have this guarantee and are thus less useful
in our framework). The procedure may run in exponential
time in the worst-case—an unavoidable artifact of the quest
for overlapping clusters. Yet, we show that its running time
is only polynomial in the output length. In practice, it took
C-Rank several minutes to cluster networks consisting of
thousands of nodes on a standard PC.

Given a weighted network, C-Rank produces candi-
date clusters by transforming the network into multiple un-
weighted networks using a gradually increasing threshold.
The hierarchical overlapping clustering procedure is used

to extract clusters from each of these unweighted networks.
Full details of the algorithm are given in Section 5.

Mailbox networks. We demonstrate the efficacy of the
novel framework and of the C-Rank algorithm in a new do-
main: clustering mailbox networks. Amailbox networkis
an “egocentric” social network [29, 35]—a network cen-
tered around a root individual. Unlike global “sociocentric”
networks [14], it provides the subjective viewpoint of an
individual on her social environment. A mailbox network
is generated by mining messages in an individual’s mail-
box. Actors in this network are the individual’s group of
contacts. The weight of an edge connecting two actors is
the number of messages on whose header both actors ap-
pear (either as co-recipients, or as a sender and a recipient).
This weight represents the strength of the ties between the
two actors from the individual’s perspective. Mailbox net-
works are abundant with overlapping communities of vari-
able strengths, and thus C-Rank is highly suitable for them.

Automatically discovering communities within mailbox
networks could be beneficial in various applications. In
email clients, the knowledge of one’s favorite communities
could support the automation of a variety of features such as
completion of groups when entering multiple recipients, de-
tection of missing or redundant recipients, etc. Email com-
munities might also help in spam filtering by identifying
“spam groups” [5]. In the intelligence domain, communi-
ties can evidence gangs or potential criminal groups around
known criminals.

Experimental results. We evaluated C-Rank on our own
mailboxes as well as on 130 mailboxes from the Enron data
set [21]. To evaluate the quality of C-Rank, we adapted
the popular edge betweenness clustering algorithm of Gir-
van and Newman [15] to the cluster ranking framework, and
compared the two algorithms. We found that C-Rank dom-
inates the edge betweenness algorithm under almost any
metric. We also evaluated the robustness of C-Rank under
random removal of data, and found it to be quite resilient.
These results are presented in Section 6.

2. Related work

The literature on clustering and community detection
consists of numerous measures of quality for communi-
ties and clustering. These vary from distance-based metrics
(such as minimum diameter, sum-of-squares,k-means, and
k-medians, cf. [18]), to graph-theoretic measures (such as
normalized cuts [31], conductance [19], degree-based meth-
ods [12, 13, 17], performance [34], edge betweenness [15],
modularity [26], bipartite cores [22], andk-cliques [27]),
to statistical methods (e.g., [3]). Unfortunately, there is
no single, widely acceptable, definition, and many of the
above notions are known to work badly in some situations
(cf. [8, 19, 20]). Furthermore, many of the above measures



are suited for restricted scenarios, such as hard partitional
clustering, model-based clustering, or clustering of metric
space data points.

Fuzzy cluster analysis (cf. [16]) is a branch of data clus-
tering, in which each data point can be associated with mul-
tiple clusters with different confidence probabilities. Fuzzy
clustering can be used in particular to generate overlapping
clusters. Nevertheless, most of the classical work in the area
(e.g., Fuzzy c-means) assumes the data points lie in a met-
ric space, which respects the triangle inequality. We con-
sider arbitrary weighted networks whose induced distance
measure does not necessarily satisfy the triangle inequality.
More recent studies (e.g., [32, 30, 2, 7, 27, 4]) address the
general scenario of networks with arbitrary pairwise simi-
larity weights. These algorithms substantially differ from
ours, because they do not rank clusters and are not guaran-
teed to output all maximal clusters.

Pereira, Tishby, and Lee [28] present a hierarchical soft
clustering algorithm for weighted networks that lie in a met-
ric space, using a technique calleddeterministic anneal-
ing. This technique bares some similarity to the increasing
threshold used by C-Rank to find candidate clusters.

Several works studied communities in email networks.
Tyler et al. [33] mined communities insociocentricemail
networks, i.e., ones extracted from the viewpoint of an or-
ganization’s mail server. Fisher and Dourish [11, 10] study
egocentric mailbox networks as we do, yet they detect com-
munities by manual inspection and not by an automatic al-
gorithm. Boykin and Roychowdhury [5] mined communi-
ties in mailbox networks in order to detect “spam commu-
nities”. Their clustering algorithm, however, is too coarse
to reveal the overall community structure of the network.
McCallumel al. [24] cluster email messages in an individ-
ual’s mailbox, based on their text content, rather than on the
message headers.

3. Cluster ranking framework

Throughout,G = (VG, EG) is an undirected network
andn = |VG| is the number of nodes inG. G has no parallel
edges, yet self loop edges are allowed. Every edgee ∈ EG

is associated with a non-negative weightW (e). The weight
represents the strength of the tie between the two connected
nodes. The self loop weight represents the intrinsic “im-
portance” of the corresponding node. Ifu and v are not
connected by an edge, we implicitly assumeW (u, v) = 0.
In the special case all edge weights are 1,G is called anun-
weightednetwork. Note that edge weights can be arbitrary,
and in particular need not correspond to a metric.

The first basic ingredient of the cluster ranking frame-
work is the following:

Definition 1 (Cluster strength measure). A cluster
strength measureis a functionµ, mapping networks to non-

negative real values.µ(C) is thecluster strengthof a net-
work C.

Intuitively, µ(C) represents how “strong”C is as a clus-
ter. There could be many possible realizations of this def-
inition, depending on the properties of a cluster viewed
as making it “strong”. One simple example is theclique
strength measurefor unweighted networks. This measure
takes on only Boolean values: a networkC is of strength 1
if it is a clique, and is of strength 0 otherwise.

Cluster strength is an intrinsic property of the network
C. Typically, C is a subset of a larger networkG and thus
cluster strength by itself is insufficient to represent the “de-
sired” clusters in a network. For example, a small cliqueA,
which is embedded in a larger cliqueB, is strong under the
clique strength measure, but is evidently not very interest-
ing, because it is simply an integral part of the larger clique.
In order to capture these redundant clusters, we introduce
the second basic ingredient of the framework:

Definition 2 (Maximality criterion). Let G = (VG, EG)
be a network. Amaximality criterionis a Boolean function,
mapping subsets ofVG to {0, 1}. All the subsets that are
mapped to1 are calledmaximaland all the subsets that are
mapped to0 are callednon-maximal.

A natural maximality criterion in the cliques example
maps a setC to 1 if and only if it is a clique and not con-
tained in any other clique. The maximal clusters in this case
are the maximal cliques inG.

We can now state the cluster ranking problem:

The cluster ranking problem

Input: A networkG.
Output: The maximal clusters inG ordered by strength.

The cluster ranking problem, as stated, could be a hard op-
timization problem. One immediate difficulty is that the
number of maximal clusters may be very large, so just out-
putting them may take a long time. We thus measure the
performance of ranking algorithms not only relative to the
input length but also relative to the output length. A more
serious problem is that typically the computational problem
itself (even when the output is short) is hard. It follows that
in reality we cannot expect a ranking algorithm to provide
an exact solution to the ranking problem. A typical rank-
ing algorithm may include on its list non-maximal clusters
and/or may miss some maximal clusters. We thus adapt in-
formation retrieval metrics to evaluate the quality of cluster
ranking algorithms.

For a networkG and for a ranking algorithmA, letA(G)
be the list of clusters returned byA when givenG as input.



Let I(G) denote the list of all maximal clusters inG. The
recall of A is: recall(A, G) = |A(G)∩I(G)|

|I(G)| . Theprecision

of A is: precision(A, G) = |A(G)∩I(G)|
|A(G)| .

4. New cluster strength measure and maximal-
ity criterion

In this section we develop a new measure of cluster
strength and a corresponding maximality criterion. Our
measure is quite general, and in particular is suited for find-
ing overlapping clusters in networks with arbitrary weights.

4.1. Unweighted networks

In unweighted networks a strong cluster is one which is
“cohesive” in the sense that it does not “easily” break up
into smaller pieces. This intuition has been formalized via
various notions of graph partitioning, such as normalized
cuts [31], conductance [19], edge betweenness [15], modu-
larity [26], and relative neighborhoods [12]. The underlying
principle in all these approaches is the same: a network is
cohesive if and only if it does not have any “weak” edge sep-
arator (a.k.a. edge cut). Anedge separatoris a subset of the
network’s edges whose removal from the network makes
the network disconnected. The above approaches differ in
the way they measure the “weakness” of the edge separator.

We observe that regardless of the weakness measure
used, edge separators sometimes fail to capture the cohe-
sion of networks, especially in the presence of overlapping
clusters. While the existence of a weak edge separator in
a network is sufficient to make the network noncohesive,
it is not a necessary condition. A simple example for this
is illustrated in Figure 1(a). Here, we have two cliques of
sizen that overlap in a single node. It is easy to check that
any edge separator of this network hasΩ(n) edges and thus
will be considered relatively strong almost under any mea-
sure. However, this network is clearly noncohesive because
it naturally decomposes into the two overlapping cliques.

Clique of 
size n

Clique of 
size n

v

(a) Overlapping cliques

B
A

1

10

(b) Nested cliques

Figure 1. Clique examples

We propose usingvertex separators, rather than edge
separators, to measure the cohesion of a network. A vertex
separator is a subset of the network’s nodes whose removal
leaves the network disconnected. In the example network
above, the single node in which the two cliques overlap is
a vertex separator. Intuitively, a network is cohesive if and
only if it does not have a small vertex separator that sepa-
rates it into large pieces.

Formally, avertex separatorof an undirected and un-
weighted networkC = (VC , EC) is a subsetS of VC s.t.
the network induced onVC \ S (i.e., the network obtained
from C by removingS and all its incident edges) is dis-
connected. Apartition induced by a vertex separatorS is
a partition ofVC \ S into two disjoint setsA andB s.t. no
edge inEC connectsA andB. Note that the same separa-
tor may induce multiple different partitions. We define the
cohesion of a network via the notion of “vertex separator
sparsity” (cf. [1, 9]):

Definition 3 (Network cohesion). Let C = (VC , EC) be
an unweighted network. Thecohesionof C is:

cohesion(C) = min
(S,A,B)

|S|

min{|A|, |B|} + |S|
,

where the minimum is over all vertex separatorsS of C and
over all partitions ofC induced byS. The cohesion of a
singleton (a cluster of size 1) is 1, if it has a self loop, and 0
otherwise.

The ratio |S|
min{|A|,|B|}+|S| is called thesparsityof the

partition. It is minimized whenS is small andA andB
are both large. That is, under the above definition, a net-
work C is cohesive if and only if it cannot be broken into
large pieces by removing a small number of nodes from the
network. The fact that the two pieces are large is important,
because it may be easy to cut off a small part from a net-
work, even if the network is cohesive, e.g., by isolating a
single leaf node.

The cohesion of a network takes on values between 0
(for disconnected networks) and1 (for cliques). Note that
sparse vertex separators subsume weak edge separators: if
the network has a weak edge separator, then it must also
have a sparse vertex separator. However, as the example
network above demonstrates, the converse is not true.

Computing the cohesion of a network is an NP-hard op-
timization problem [6]. Yet, it can be approximated in poly-
nomial time [23, 9]. In this paper we use a faster flow-based
approximation of network cohesion, which is described in
the full version of this paper1.

4.2. Weighted networks

In weighted networks cohesion is no longer the sole fac-
tor determining cluster strength. Edge weights should be
taken into account as well. For example, a clique of sizen
all of whose edges are of weight 1 and a clique of sizen
all of whose edges are of weight100 are equally cohesive.
Yet, clearly the latter clique is “stronger” than the former.
How do we then combine cohesion and edge weights into a
single strength measure?

1Manuscript of full draft available at http://www.ee.
technion.ac.il/people/zivby.



One of the popular methods for dealing with weighted
networks is “thresholding” (see, e.g., [27]): given a
weighted networkC, one selects aweight thresholdT ≥
0, and transformsC into an unweighted networkCT by
changing all the weights that are greater thanT to 1 and all
the weights that are at mostT to 0. C is then clustered by
simply clusteringCT . This approach, though, is too coarse,
especially in the presence of overlapping clusters. To illus-
trate the problem, consider the example network depicted in
Figure 1(b). In this example, we have two nested cliques.
A smaller cliqueA all of whose edges are of weight 10 is
nested within a larger cliqueB, whose other edges are of
weight 1. Clearly, bothA andB are clusters of interest, yet
any choice of a single threshold results in the loss of at least
one of them. If the threshold is set to be less than 1, thenA
is lost, while if the threshold is set to be at least 1, thenB is
lost.

Our crucial observation is that in order to determine the
strength of a weighted network, we should not fix a sin-
gle weight threshold, but rather consider all possible weight
thresholdssimultaneously. A strong cluster is one that has
high cohesion under many different thresholds. Formally,
this is captured by the following measure:

Definition 4 (Integrated network cohesion). Let C be a
weighted network. Theintegrated cohesionof C is:

intcohesion(C) =

∫ ∞

0

cohesion(CT )dT.

For example, the integrated cohesion of a clique all of
whose edges are of weightk is k. Similarly, the integrated
cohesion of a singleton whose self loop weight isk is also
k. Although integrated cohesion is defined as a continu-
ous infinite sum, in practice: (1) It is always finite, as for
all thresholdsT that are greater than the maximum edge
weight,CT is an empty graph, and thuscohesion(CT ) = 0.
(2) It can be computed by summing up a finite number of
cohesion values. The only weight thresholds in which the
induced unweighted network can change are the distinct
edge weights ofC. Therefore, by summing up at most|EC |
cohesion scores, one can compute the integrated cohesion.

4.3. Maximality criteria

We now define maximality criteria for weighted and un-
weighted networks.

Unweighted networks. In order to define maximality in
unweighted networks, we first discuss the notion ofcluster
subsumption. Our maximal clusters will be the ones that are
not subsumed by any other cluster.

Let us begin with a motivating example. Consider the
two clusters depicted in Figure 2. The larger clusterD is
the union of two overlapping cliquesD1, D2 of sizen each,
whose overlap is of sizek. The smaller clusterC is a union

of two overlapping cliquesC1 ⊆ D1, C2 ⊆ D2 of size
n/2 each, whose overlap coincides withD1 ∩ D2. It can
be checked thatC is more cohesive thanD, yet clearlyC is
“uninteresting”, since it is an integral part ofD. We would
like then to say thatD subsumesC, and thusC cannot be
maximal. In fact, in this exampleC is not unique. Any
union of a subset ofD1 with a subset ofD2 whose overlap
coincides withD1 ∩ D2 will give a cluster, which is more
cohesive thanD, but is subsumed byD.

n/2 nk

D1
C1 D2C2

n/2n

D

C
Figure 2. Example of cluster subsumption.

What really makesD subsumeC in the above example?
If we break upD into its natural clustersD1 andD2, then
alsoC breaks up into different pieces (C1 andC2). That is,
the partition ofD inducesa partition ofC.

To formally define subsumption, we introduce some ter-
minology:

Definition 5 (Covers). Let V be a set. Acoverof V is a
collection of subsetsV1, . . . , Vk ⊆ V whose union isV :⋃k

i=1 Vi = V . Note that sets participating in a cover, unlike
a partition, can overlap. The cover is calledtrivial , if at
least one ofV1, . . . , Vk equalsV . Given a subsetV ′ ⊆
V , the cover ofV ′ inducedby V1, . . . , Vk is V ′

1 = V1 ∩
V ′, . . . , V ′

k = Vk ∩ V ′.

Vertex separators not only provide us with a robust no-
tion of network cohesion, but they also enable us to break
up networks into their “natural” top-level clusters:

Definition 6 (Vertex separator cover). Let G = (VG, EG)
be an unweighted network and letS be a vertex separator of
G. LetA1, . . . , Ak be thek connected components ofG\S.
TheS-coverof G is S ∪ A1, S ∪ A2, . . . , S ∪ Ak.

Note that the clusters participating in a vertex separator
cover overlap, because all of them contain the separator. In
the example depicted in Figure 2, the intersectionD1 ∩ D2

is a (sparsest) vertex separator of bothD andC. The cor-
responding covers ofD andC areD1, D2 andC1, C2, re-
spectively.

Definition 7 (Subsumption). Let C ( D be two clusters
in an unweighted networkG. D is said tosubsumeC, if



there exists a sparsest vertex separatorS of D, whose cor-
responding cover induces a non-trivial cover ofC.

In the example aboveD subsumesC, because the cover
corresponding to the sparsest vertex separator ofD is
D1, D2, and this cover induces the non-trivial coverC1, C2

of C.
The notion of subsumption does not properly handle

cliques, because the vertex separator of any clique is already
trivial, and thus the covers it induces on all its subsets are
trivial too. In particular, non-maximal cliques are not sub-
sumed by any of their supersets under this definition. To fix
this anomaly, we explicitly postulate that ifD is a clique,
then it subsumes all its proper subsets.

We can now define maximality in unweighted networks:

Definition 8 (Maximality in unweighted networks). Let
G = (VG, EG) be an unweighted network. A subsetC ⊆
VG is calledmaximal, if it is not subsumed by any other
subset ofVG.

In the example network depicted in Figure 2, the cluster
C is non-maximal, because it is subsumed by the clusterD.

The following lemma shows that the above maximality
criterion captures natural types of clusters:

Lemma 9. Let G be an unweighted network. Then, the
connected components ofG and the maximal cliques inG
are maximal.

For lack of space, the proof of this lemma, as all other
proofs in this paper, appears in the full version of the paper.

Weighted networks. Having defined maximality in un-
weighted networks, it is quite straightforward to extend the
definition to weighted networks:

Definition 10 (Maximality in weighted networks). Let
G = (VG, EG) be a weighted network. A subsetC ⊆ VG is
calledmaximal, if there exists at least one thresholdT ≥ 0,
for whichC is maximal in the unweighted networkGT .

In the example network depicted in Figure 2, if the edges
of the clusterC are all of weight 10 and the rest of the edges
in the clusterD are of weight 1, thenC is now maximal,
because it is maximal in the unweighted networkGT , for
all T ∈ [1, 10).

Remark.A common pattern in social networks is the “onion
pattern” [11]: a sequence of nested clusters, each of which
is only slightly stronger than the cluster it is contained in.
This pattern characterizes, for instance, the collaboration
within projects: most of the interaction occurs within a core
team of project members, while larger circles of consultants
are only peripherally involved. The different layers of an
“onion” give rise to clusters that are all maximal. Never-
theless, it is clear that not all of them are of interest. This

motivates us to search for clusters that are not just maximal
but are rather maximalby a margin.

We say that a clusterC is maximal by a marginǫ, if there
exists an interval[T1, T2], whereT2 ≥ (1 + ǫ)T1, s.t.C is
maximal inGT , for all T ∈ [T1, T2]. For instance, if in the
network depicted in Figure 2, the weight of edges inC is
1.1 rather than10, thenC is maximal by a margin of0.1.

5. The C-Rank algorithm

In this section we describe C-Rank: an algorithm for de-
tecting and ranking clusters in weighted networks. C-Rank
consists of three major phases: (1) identification of candi-
date clusters; (2) ranking the candidates by integrated cohe-
sion; and (3) elimination of non-maximal clusters.

5.1. Candidate identification in unweighted net-
works

Our candidate identification procedure (see Figure 3)
finds the sparsest vertex separator of the given network, uses
its induced cover to split the network into overlapping clus-
ters, and then recurses on the clusters. The recursion stops
when reaching cliques or singletons, since they cannot be
further partitioned. If more than one vertex separator exists,
one of them is chosen arbitrarily.

1:ProcedureunweightedCRank(G, L)
2: addG toL
3: if G is a clique or a singleton return
4: S := sparsest vertex separator ofG

5: A1, . . . , Ak := connected components ofG \ S

6: for i = 1 to k do
7: Gi := sub-network ofG induced onS ∪ Ai

8: if Gi not already inL then
9: unweightedCRank(Gi, L)

Figure 3. Identifying candidate clusters in un-
weighted networks.

As the procedure detects overlapping clusters, it may en-
counter the same cluster more than once. Thus, in order to
avoid duplications, the procedure checks that a cluster is not
already on the list, before recursively processing it.

The procedure not only produces a list of maximal clus-
ters from the given networkG, but also implicitly orga-
nizes them in ahierarchy, similarly to hierarchical clus-
tering. The difference is that here, due to the overlapping
clusters, the hierarchy is not necessarily a tree, but is rather
a DAG (Directed Acyclic Graph). The root of the hierarchy
is the whole networkG and its leaves are either singletons
or cliques. Each cluster in the hierarchy is covered by its
child clusters. We call such a hierarchy ahierarchical over-
lapping clustering.



Example run. Figure 4 shows an example run of the above
procedure on a simple 5-node network. The procedure first
detectsS = {c, d} as the sparsest vertex separator of the
network and removes it from the network. The resulting
connected components areA1 = {a, b} and A2 = {e}.
The procedure addsS to each of the connected compo-
nents, obtaining the two overlapping clusters{a, b, c, d} and
{c, d, e}. No recursive calls need to be made in this exam-
ple, because both of these clusters are cliques.

Analysis. We next analyze the quality and the performance
of the algorithm. We start by showing that the algorithm is
guaranteed to have an ultimate recall of 1:

Lemma 11. Given an unweighted networkG, C-Rank out-
puts all the maximal clusters inG.

The lemma establishes that C-Rank has ultimate recall.
But what about precision? How likely is C-Rank to out-
put clusters that are non-maximal? When C-Rank splits a
clusterC into sub-clustersC1, . . . , Ck using a vertex sepa-
rator,C1, . . . , Ck are not subsumed byC. If C is maximal,
thenC1, . . . , Ck are likely to be maximal too. However,
this intuition does not always work, asC1, . . . , Ck may be
subsumed by subsets ofC. This situation, though, rarely
happens. We do not have theoretical guarantees about the
precision of C-Rank, but we provide empirical evidence in
Section 6 that its precision is good.

The performance of C-Rank is directly related to the
number of clusters it produces. Clearly, since the number
of maximal clusters can be exponential in the size of the
input networkG, then C-Rank may run for an exponential
amount of time. However, when the list of maximal clusters
is short, then C-Rank will also run more quickly:

Lemma 12. Suppose that on a given networkG C-Rank
outputs a list ofm candidate clustersC1, . . . , Cm. Then,
the running time of C-Rank isO(

∑m

i=1 (f(|Ci|) + |Ci|
2)),

wheref(n) is the amount of time needed to compute the
sparsest vertex separator of a network of sizen.

Recall that finding the sparsest vertex separator of a net-
work is NP-hard. Hence, in a naive implementation of C-
Rank, f(n) will be exponential inn, which is of course
unacceptable. Therefore, C-Rank does not compute exact
sparsest separators, but rather approximate sparsest sepa-
rators. These separators are computable in quadratic time.
The approximation procedure is described in the full ver-
sion of the paper.

5.2. Candidate identification in weighted networks

The simplest way to extract all maximal clusters from
a weighted networkG = (VG, EG) is the following. We
enumerate all possible thresholdsT (there are at most|EG|
such thresholds), computeGT , and output all the maximal

clusters inGT using the procedure unweightedCRank. This
guarantees that we output all maximal clusters ofG, and
hence obtain ultimate recall.

The above brute force enumeration could be very time-
consuming, since we need to make up to|EG| calls to un-
weightedCRank, and each call is made over the entire net-
work G. Furthermore, this approach tends to be wasteful,
as we may identify the same clusters again and again un-
der different thresholds. For example, a maximal clique
all of whose edges are of weightT will be discovered at
all thresholdsT ′ < T . A natural question is then whether
we can trade the ultimate recall guarantee for better perfor-
mance?

To this end, we make the following observation. What
is the reason for a cluster to be maximal atGT , for some
thresholdT , while not being maximal atGT ′

, for all T ′ <
T? This can happen only if for everyT ′ < T , there ex-
ists a clusterD ) C that subsumesC at GT ′

, but does
not subsume it anymore atGT . If D itself was maximal
at GT ′

, then the algorithm should have identifiedD at that
time. This gives us an opportunity for large savings in run-
ning time. For every thresholdT ′, after having identified
the maximal clusters atGT ′

, we do not need to search the
entire network for new maximal clusters at the subsequent
threshold, but rather onlywithin the maximal clusters of
GT ′

. This limits our search space and also enables faster
advancement of thresholds.

In practice, our algorithm does not even search within all
the maximal clusters, but rather only within the most cohe-
sive ones. Note that the efficiency gains of this approach
may come at the price of compromising the ultimate recall
guarantee of the algorithm, because we may miss clusters
that are subsumed by non-maximal clusters or by noncohe-
sive clusters.

The procedure for identifying candidate clusters in
weighted networks is depicted in Figure 5. Given a net-
work G, the procedure sets a thresholdT to be the mini-
mum edge weight inG and computes the unweighted net-
workGT . Note thatGT has the same edges asG, except for
the minimum weight edges that are eliminated. The proce-
dure then finds the maximal clusters inGT and adds them
to the list of candidate clusters. Next, the procedure recur-
sively searches for more clusters within the clusters ofGT

whose cohesion exceeds thecohesion thresholdβ.
The first call to the procedure (i.e., with the original net-

workG) slightly differs from subsequent recursive calls: the
thresholdT is set to be 0 and not the minimum edge weight.
This guarantees that the first unweighted network processed
is G0, which has exactly the same edges asG.

The recursion stops when reaching a clusterC and a
thresholdT s.t.CT cannot be further partitioned into sub-
clusters by the procedure unweightedCRank. This means
thatCT must be either a clique or a singleton, and thusC
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Figure 4. Identifying unweighted clusters: Example run.

1:ProcedureweightedCRank(G, β, L)
2: T := minimum edge weight inG
3: GT := unweighted network obtained fromG using thresholdT
4: LT := an empty list of clusters
5: unweightedCRank(GT , LT )
6: appendLT toL
7: for all clustersC ∈ LT for whichcohesion(C) ≥ β do
8: weightedCRank(C, β, L)

Figure 5. Identifying candidate clusters in
weighted networks.

is either a homogeneous clique (i.e., a clique all of whose
edges are of the same weight) or a singleton.

Example run. Figure 6 shows an example run of the above
procedure on a 5-node networkG. The procedure applies
a threshold ofT = 0 and obtains the unweighted network
G0 depicted in Figure 6(b). The procedure then finds un-
weighted clusters inG0, resulting in the clusters{a, b, c, d}
and {c, d, e} depicted in Figure 6(c). A recursive call is
made on each of these two clusters. We focus, for example,
on the cluster{a, b, c, d} (Figure 6(d)). The minimum edge
weight in this cluster is2, and thus the procedure applies
a thresholdT = 2, resulting in the unweighted network
depicted in Figure 6(e). This network breaks into the two
clusters{a, b, c} and{d}. More recursive calls are made on
these clusters, and we focus on the one made on{a, b, c}
(Figure 6(f)). The minimum edge weight this time isT = 5
and thus the resulting unweighted network is the one de-
picted in Figure 6(g). Note that the network now consists
of singletons only, and therefore the recursion stops. The
final list of clusters that will be returned is:{a, b, c, d, e},
{a, b, c, d}, {c, d, e}, {a, b, c}, {a}, {b}, {c}, {d}, and{e}.
Some of these clusters (namely,{a},{b}, and{e}) will be
eliminated at the third phase of C-Rank, because they are
not maximal.

5.3. Candidate ranking

At its second phase, C-Rank computes the integrated co-
hesion of each one of the candidate clusters and ranks them

accordingly. The main thing to note is that calculating the
integrated cohesion of a clusterC requires computing the
cohesion ofCT for k values of the thresholdT , wherek is
the number of distinct edge weights inC. Thus, each such
calculation requires at most|EC | sparsest separator calcu-
lations, giving a total ofO(|EC | · f(|C|)) running time.

5.4. Candidate elimination

The third and last phase of C-Rank consists of eliminat-
ing non-maximal clusters from the ranked list of clusters.
Testing maximality directly is hard, since to check whether
a clusterC is maximal or not, we would need to compare
C against all its supersetsD ) C. Each comparison entails
testing whetherD subsumesC under each one of the pos-
sible thresholdsT . This process requires exponential enu-
meration, and moreover every single subsumption test may
be prohibitive, sinceD may have many different sparsest
vertex separators.

Our candidate elimination procedure, therefore, makes
two relaxations. First, each clusterC is compared not
against all its possible supersets, but rather only againstsu-
persets that also belong to the list of candidates. This signif-
icantly reduces the search space and makes the enumeration
only polynomial in the number of candidates.

Given a candidate clusterD that strictly contains a candi-
date clusterC, we do not test directly whetherD subsumes
C under at least one thresholdT . We rather declareD as
subsumingC if intcohesion(D)(1 + ǫ) ≥ intcohesion(C)
(whereǫ is the maximality margin). The idea is that ifD
subsumesC at GT , thenD is at least (and usually more)
cohesive thanC in GT . Since cohesion is monotone,D
is also expected to be more cohesive thanC at GT ′

for all
T ′ < T . This is likely to make the integrated cohesion of
D higher (or at least not much lower) than the integrated
cohesion ofC.

6. Experiments

Experimental setup. We tested C-Rank on our own mail-
boxes as well as on the Enron email data set2, which con-
sists of 150 mailboxes of Enron employees. The data set

2http://www.cs.cmu.edu/∼enron.
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Figure 6. Identifying weighted clusters: Example run.

contains more than 500,000 messages, mostly sent along
the years 2000-2002.

Given a mailbox, we constructed two corresponding
networks—aninbox networkand anoutbox network—as
follows. First, we cleaned the data, by removing dupli-
cate messages, merging alias addresses, and ignoring mes-
sages that did not include the mailbox’s owner as an explicit
sender or recipient. We then split the messages into “out-
going” and “incoming”. All the incoming messages were
used to construct the inbox network and all the outgoing
messages were used to construct the outbox network. The
inbox (resp., outbox) network consists of all contacts that
appear on headers of incoming (resp., outgoing) messages,
excluding the mailbox’s owner. Two contacts are connected
by an edge if and only if they appear on at least one mes-
sage header together. The weight of the edge is the number
of message headers on which they co-occur. The self loop
weight of a contact is the number of message headers on
which it appears.

We ran C-Rank with the following parameters: (1) max-
imality marginǫ = 0.75; (2) cohesion thresholdβ = 1. In
most of the experiments, we ignored the self loop weights
altogether, in order to focus on the non-singleton communi-
ties, which are less trivial to find and rank.

We enforced a hard time limit of 3,600 seconds on the
execution of C-Rank on each mailbox. C-Rank was unable
to finish its execution on 19 of the 150 mailboxes by this
time limit, and thus these mailboxes were excluded from
the data set. We ran the experiments on Intel Pentium 4
2.8GHz processor workstations with 2GB of RAM.

Evaluating clustering results automatically is a difficult
task. Our situation is even more complicated, because there
is no benchmark cluster ranking algorithm to which we
could compare C-Rank. We thus created such a benchmark
from the widely used edge betweenness hierarchical cluster-
ing algorithm of Girvan and Newman [15]. (In fact, we used

Newman’s variant of the algorithm [25], which is adapted to
weighted networks). The benchmark algorithm, which we
call EB-Rank, is identical to C-Rank, except that it gener-
ates its candidate clusters using the edge betweenness al-
gorithm. The ranking and candidate elimination phases of
EB-Rank are identical to those of C-Rank.

Anecdotal results. In order to give a feel of the communi-
ties produced by C-Rank, we start with some anecdotal re-
sults from two of our mailboxes. Figure 7 shows the top 10
non-singleton communities in the inbox of Ziv Bar-Yossef.
The example demonstrates that the strong communities out-
put by the algorithm are indeed meaningful, as the owner
could easily attach a title to each one of them. This list con-
sists of few overlapping communities, since Ziv’s research
projects tend to be separated and have very few common
participants.

Rank Weight Size  Member IDs Description
1 163 2 1,2 grad student + co-advisor
2 41 17 3-19 FOCS program committee 
3 39.2 5 20,21,22,23,24 old car pool
4 28.5 6 20,21,22,23,24,25 new car pool
5 28 2 26,27 colleagues
6 28 2 28,29 colleagues
7 25 3 26,30,31 colleagues
8 19 3 32,33,34 department committee
9 15.9 19 35-53 jokes forwarding group
10 15 14 54-67 reading group

Figure 7. Ziv Bar-Yossef’s top 10 communities.

Figure 8 shows the top 10 communities output for the in-
box of Ido Guy, including singleton communities. This ex-
ample demonstrates that singleton communities can blend
well with non-singleton communities and that they do not
necessarily dominate the list of strong communities. In fact,
Ido’s list is quite diverse in terms of community sizes, rang-
ing from singletons to groups of over 10 participants. The
workplace-related communities are highly overlapping, cor-



responding to different projects with overlapping teams or
to different sub-groups within the same project.

Rank Weight Size Member IDs Description
1 184 2 1,2 project1 core team
2 87 1 3 spouse
3 75 1 4 advisor
4 70.3 4 1,5,6,7 project2 core team
5 62 1 8 former advisor
6 48.2 6 1,2,9,10,11,12 project1 new team
7 46.9 13 13-25 academic course staff
8 46.7 9 1,5,6,7,26-30 project2 extended team (IBM)
9 42.3 5 1,2,9,10,31 project1 old team
10 41.3 13 1,5,6,7,26-30,32-35 project2 extended team (IBM+Lucent) 

Figure 8. Ido Guy’s top 10 communities (with sin-
gletons).

Enron data set statistics.Next, we present some statistical
data about the results of C-Rank on the 131 mailboxes of the
Enron data set. We first addressed the issue of the promi-
nence of “singletons” in the data set. A “singleton message”
is one that has only one sender or one recipient, apart from
the mailbox’s owner. Such a message contributes only to
the self loop weight of the corresponding sender/recipient.
In the examined Enron data set, about 80% of the outgo-
ing messages and 50% of the incoming messages, regard-
less of the mailbox size, were singletons. This huge density
of singleton messages necessarily affected also the results
of C-Rank. Indeed, when taking into account self loops,
70% to 90% of the outbox communities and 20% to 65% of
the inbox communities detected by C-Rank were singleton
communities. We conclude that the high density of single-
ton communities should be attributed to the nature of the
data set, rather than to biases of C-Rank. Since singletons
are easy to handle separately, in the rest of our experiments,
we eliminated the self loops from the network, and thus fo-
cused only on the analysis of non-singleton communities.

Figure 9 depicts the distribution of community sizes out-
put by C-Rank. For each mailbox, we ordered all the out-
put communities by their size, split them into 10 deciles,
and calculated the median community size in each decile.
We then plotted for each decile the median of these me-
dian values, over all mailboxes. The results demonstrate
that C-Rank is not biased towards small communities, as
one may suspect initially. The median community size at
the top decile, for example, was about 20 contacts!

Comparison with EB-Rank. We now describe a set of
experiments that compare the results of C-Rank with the re-
sults of EB-Rank (the edge betweenness based algorithm)
on the Enron data set. Figure 10 compares the relative re-
call of C-Rank and EB-Rank. For each mailbox, we cal-
culated the recall of algorithm A relative to algorithm B as
follows. We compared the two listsLA andLB of com-
munities output by A and by B, respectively, when running
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Figure 9. Distribution of community sizes.

on this mailbox. Intuitively, the recall of A relative to B
should be the fraction of the communities inLB that also
appear inLA. However, even when A and B detect the same
community, they may have slightly different “versions” of
that community, differing in a few nodes. Therefore, when
searching the listLA for a communityC that shows up on
the list LB , we did not look for an exact copy ofC, but
rather for a communityC′ that is “comparable” toC. For-
mally, we say thatC′ is comparableto C, if C′ ⊇ C and
intcohesion(C′)(1 + ǫ) ≥ intcohesion(C), whereǫ is the
maximality margin. The recall of A relative to B on the
specific mailbox was then calculated as the fraction of the
communities inLB, for which we found a comparable com-
munity inLA.

After calculating the recall for each mailbox, we ordered
the networks by their size, split into 10 deciles, and plotted
the median recall at each decile. The results prove that the
recall of C-Rank relative to EB-Rank is significantly higher
than the recall of EB-Rank relative to C-Rank. The differ-
ence even becomes higher for larger networks. This exper-
iment underscores the advantage of overlapping clustering
over partitional clustering, at least in this application do-
main.
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Figure 10. Relative recall of C-Rank and EB-Rank.

The previous experiment showed that C-Rank is much
more successful than EB-Rank in detecting many maximal
communities. However, is it possible that these extra com-
munities are all weak, and if we focus only on the strong
communities then the two algorithms are comparable? In



order to explore this possibility, we compared the strength
scores of the communities output by the two algorithms.
For each mailbox and for eachk = 5, 10, 15, . . . , m, where
m is the minimum number of communities output by the
two algorithms on this mailbox, we calculated the median
integrated cohesion of the topk communities on each of
the two output lists. For eachk and for each algorithm, we
then plotted the median score over all networks for which
m ≥ k. These results indicate that C-Rank not only finds
more maximal communities overall, but also findsbetter
communities. This phenomenon is consistent across inbox
and outbox and across different values ofk.
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Figure 11. Distribution of community scores.

In Figure 12 we compare the precisions of C-Rank and
EB-Rank. Precision was calculated as follows. For each
mailbox, we compared the number of communities even-
tually output by the algorithm (after elimination of non-
maximal communities) to the number of communities iden-
tified at the candidate identification phase. This ratio was
assumed to represent the precision of the algorithm on this
mailbox. We then ordered the networks by size, and split
them into 10 deciles. We plotted the median precision of
the algorithm in each decile. The results shown in the graph
demonstrate that precision goes down with network size.
The explanation is quite simple: large networks tend to be
richer in complex community patterns, and “onions” (see
Section 4.3) in particular. Such patterns give rise to a large
number of non-maximal communities, some of which are
selected in the first phase of the algorithm. Most of these
communities are filtered at the elimination phase of the al-
gorithm. Surprisingly, although C-Rank has higher recall
than EB-Rank, its precision is comparable and even better
than that of EB-Rank.

Robustness experiments.One indication of a good clus-
tering algorithm is that it is robust to small changes in the
data. In order to test the robustness of C-Rank, we com-
pared the communities it output when running over on the
entire Enron data set to the communities it output when
running over a sample of the data. For this experiment,
we focused only on sufficiently large mailboxes: ones in
which the number of messages was at least 500. Overall,
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Figure 12. Precision of C-Rank and EB-Rank.

we used 36 outboxes and 41 inboxes in this experiment.
For each such mailbox, we constructed 3 networks: one
that was constructed using all the messages in the mail-
box, one that was constructed using 80% randomly chosen
messages from the mailbox, and one that was constructed
using 20% randomly chosen messages from the mailbox.
(The latter two networks were constructed 5 times each,
and the results presented here are the medians over these
5 trials.) For each of the two latter networks, and for each
p = 10%, 20%, . . . , 100%, we calculated the recall of the
top k = p · m communities output by C-Rank on this net-
work (wherem is the total number of communities output
on this network) relative to the topk communities output by
C-Rank when running on the first, complete, network. For
eachp, we then calculated the median recall over all net-
works. This value, which we call “recall@p”, captures how
well C-Rank was able to detect the strong communities of
the mailbox, when running over only a portion of the data
in the mailbox.

The results indicate that C-Rank is rather resilient to ran-
dom removal of data. On the networks built over 80% of the
data, C-Rank was able to maintain a recall of about 90%
across all values ofp. When running on a mere 20% of the
data, C-Rank was still able to maintain reasonable recall of
45% at the top decile and 20% at the bottom decile.
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Figure 13. Recall of C-Rank on sampled data.

To sum up, we believe that the above experiments pro-
vide convincing evidence that C-Rank is able to achieve
high recall values (i.e., covering many of the maximal clus-



ters in the network), while maintaining a relatively high pre-
cision. C-Rank is completely superior to EB-Rank, which is
based on the very popular edge betweenness clustering al-
gorithm. C-Rank is also robust to random removal of data,
attesting to its quality.

7. Conclusions

We presented the cluster ranking problem as a novel
framework for clustering. We then proposed integrated co-
hesion as a new strength measure for clusters. We designed
C-Rank: a cluster ranking algorithm that detects and ranks
overlapping clusters in arbitrary weighted networks. We
demonstrated the effectiveness of C-Rank by ranking clus-
ters in egocentric mailbox networks. Future work will aim
at applying the new framework in other domains.
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