Efficient Search Engine Measurements*

Ziv Bar-Yossef Maxim Gurevich ¥

July 18, 2010

Abstract

We address the problem of externally measuring aggregate functions over documents indexed
by search engines, like corpus size, index freshness, and density of duplicates in the corpus. State
of the art estimators for such quantities [5, 10] are biased due to inaccurate approximation of
the so called “document degrees”. In addition, the estimators in [5] are quite costly, due to their
reliance on rejection sampling.

We present new estimators that are able to overcome the bias introduced by approximate
degrees. Our estimators are based on a careful implementation of an approximate importance
sampling procedure. Comprehensive theoretical and empirical analysis of the estimators demon-
strates that they have essentially no bias even in situations where document degrees are poorly
approximated.

By avoiding the costly rejection sampling approach, our new importance sampling estima-
tors are significantly more efficient than the estimators proposed in [5]. Furthermore, building
on an idea from [10], we discuss Rao-Blackwellization as a generic method for reducing vari-
ance in search engine estimators. We show that Rao-Blackwellizing our estimators results in
performance improvements, without compromising accuracy.

1 Introduction

Background. In this paper we focus on external methods for measuring aggregate functions over
search engine corpora. These methods interact only with the public interfaces of search engines
and do not rely on privileged access to internal search engine data or on specific knowledge of how
the search engines work.

One application of our techniques is external evaluation of global quality metrics of search engines.
Such evaluation provides the means for objective benchmarking of search engines. Benchmarks

*A preliminary version of this paper appeared in the proceedings of the 16th International World-Wide Web
Conference (WWW2007) [3]. Supported by the Israel Science Foundation.

fGoogle Israel Engineering Center, and Dept. of Electrical Engineering, Technion, Haifa, Israel. Email:
zivbyQ@ee.technion.ac.il.

#Yahoo! Research, Santa Clara, CA. Email: maximg@yahoo-inc.com. Most of this work was done while the author
was at the Dept. of Electrical Engineering of the Technion, Haifa, Israel. Partially supported by the Eshkol Fellowship
of the Israeli Ministry of Science.

can be used by search engine users and clients to gauge the quality of the service they get and by
researchers to compare search engines.

Search engines themselves may benefit from external measurements and benchmarks, as they can
help them reveal their strengths and weaknesses relative to their competitors. Moreover, as our
algorithms rely on standard search interface, they may provide alternative to internal algorithms
that have to be tailored to internal architecture of each search engine.

Assuming that search engines index a large fraction of the useful web pages, one can use our
techniques to study properties of the web. Although we focus on web search engine corpora, we
believe our techniques may be applicable to measuring other corpora, like images, news, or videos.
Such techniques can provide valuable information for researchers on a scale that is hard to get
otherwise.

Our study concentrates on measurement of global metrics of search engines, like corpus size, index
freshness, and density of spam or duplicate pages in the corpus. Such metrics can be computed
automatically since they, unlike relevance dependent metrics, do not require human judgment.
Still, as external access to search engine data is highly restricted, designing automatic methods for
measuring these metrics is very challenging. Our objective is to design measurement algorithms that
are both accurate and efficient. Efficiency is particularly important for two reasons. First, efficient
algorithms can be executed even by parties whose resources are limited, like researchers. Second,
as search engines are highly dynamic, efficient algorithms are necessary for capturing instantaneous
snapshots of the search engines.

One might wonder why we study measurement of global index metrics, rather than focusing on
the “important” pages that are actually served to users as search results (see a relevant discussion
about this in [28]). The latter is indeed a worthy goal, but it requires access to the search engine’s
query log, which is not publicly available. In our subsequent work [4] we make a step in this direc-
tion by developing query log mining algorithms allowing measurement of index metrics relative to
ImpressionRank (measure of page visibility in a search engine). We argue that global index metrics
are useful too, because they provide insight into the search engine’s crawling and indexing architec-
ture, which is typically less sensitive to the constantly-changing user query stream. Furthermore,
while usage-based metrics are good for evaluating the quality of the search engine relative to the
more popular queries, global metrics are better at demonstrating how well the search engine copes
with long-tail queries that cannot be predicted a priori.

Problem statement. Let D denote the corpus of documents indexed by the search engine being
measured.! We focus on measurement of quantities that can be expressed as either sums or averages
over D. Given a target function f: D — R, the sum of f and the average of f are:

sum(f) = Zf(X), avg(f) =

xe€D

(In fact, we address sums and averages w.r.t. arbitrary measures, not just the uniform one. See
more details in Section 4. For simplicity of exposition, in the introduction we focus on the uniform
measure.) Almost all search engine metrics we are aware of can be expressed as sums or averages

While we focus on measurements of web corpora, our techniques may be applicable for measurements of other
corpora as well.

of some function. For example, the corpus size, |D|, is the sum of the constant 1 function (f(x) =1
for all x); the density of spam pages in the corpus is the average of the spam indicator function
(f(x) =1, if x is a spam page, and f(x) = 0, otherwise); the number of unique documents in the
corpus is the sum of the inverse duplicate-count function (f(x) = 1/dx, where dy is the number of
duplicates x has, including x itself). Many other metrics, like search engine overlap, sizes of subsets
of the corpus, or index freshness can be expressed as sums or averages as well. We allow also sums
and averages of vector-valued functions f : D — R™, which can be used to compute histograms of
the indexed pages (e.g., by language, country domain, or topic).

A search engine estimator for sum(f) (resp., avg(f)) is a probabilistic procedure, which submits
queries to the search engine, fetches pages from the web, computes the target function f on doc-
uments of its choice, and eventually outputs an estimate of sum(f) (resp., avg(f)). The quality
of an estimator is measured in terms of its bias and its variance. The efficiency of an estimator
is measured in terms of the number of queries it submits to the search engine, the number of web
pages it fetches, and the number of documents on which it computes the target function f.

State of the art. Brute-force computation of functions over a search engine corpus is infeasible,
due to the huge size of the corpus and the highly restricted access to it. Every user is limited to
a few thousand queries per day and only the top k results of a query are returned. k is typically
at most 1,000 and may vary from query to query depending on the search engine architecture, the
current load on it, etc. We are not aware of a technique for accessing all the results of a query.

An alternative to brute-force computation is sampling. One samples random uniform pages from
the corpus and uses them to estimate the desired quantity. If the samples are unbiased, then a
small number of them is sufficient to obtain accurate estimations. The main challenge is to design
algorithms that can efficiently generate uniform unbiased samples from the corpus using queries
to the public interface. Bharat and Broder [8] were the first to propose such an algorithm. The
samples produced by their algorithm, however, suffered from severe bias towards long, content-rich,
documents.

In our earlier work [5], we were able to correct this bias by proposing a technique for simulating
unbiased sampling by biased sampling. Rather than generating uniform unbiased samples directly,
we first generate biased samples from some easy-to-sample-from trial distribution by using, e.g., the
Bharat and Broder sampler. Employing the Monte Carlo framework, the biased samples together
with their importance weights (specifying for each sample the ratio between its probabilities under
the uniform and trial distributions) are used to simulate uniform samples. As long as the trial
distribution is sufficiently close to the uniform distribution, the Monte Carlo algorithms using the
samples from the trial distribution are efficient. In [5], we applied several stochastic simulation
methods, like rejection sampling [33] and the Metropolis-Hastings algorithm [29, 18]. Stochastic
simulation, however, incurs significant overhead: in order to generate each unbiased uniform sample,
numerous biased samples are used, and this translates into elevated query and fetch costs. For
instance, our most efficient sampler needed about 2,000 queries to generate each uniform sample.

In an attempt to address this lack of efficiency, we also experimented [5] with importance sampling
estimation. Importance sampling [27, 21] enables estimation of sums and averages directly from the
biased samples, without first generating unbiased samples. This technique can significantly reduce
the stochastic simulation overhead. Nevertheless, our estimators in [5] used stochastic simulation
twice (once to select random queries and once to select random documents), and we were able to

use importance sampling to eliminate only the latter of the two. Furthermore, our importance
sampling estimator was still wasteful, as it used only a single result of each submitted query and
discarded all the rest.

Broder et al. [10] have made remarkable progress by proposing a new estimator for search engine
corpus size. Their estimator (implicitly) employs importance sampling. Moreover, the estimator
somehow makes use of all query results in the estimation and is thus less wasteful than the estimators
in [5]. Broder et al. claimed their method can be generalized to estimate other metrics, but have
not provided any details.

Illustrative example. In order to illustrate how external corpus estimators work and the chal-
lenges they face, let us focus for a moment on the problem of corpus size estimation. That is,
estimating |D| — the number of documents in the corpus.

Most external corpus estimators [5, 10], rely on a query pool — a large collection of queries P (e.g.,
phrase queries of length 5, or 8-digit string queries) extracted from some representative document
collection like Wikipedia. P induces a bipartite queries-documents graph (P,D,E) on queries P
and documents D. Each query q € P is connected to the documents in D that the search engine
returns on this query.

Assuming each document is connected to at least one query in this graph, the corpus size can be
written as follows:
€] [P EI/IP] _ IP|- avgep deg(a)

D = = =
PV = Egml T ey Ve dog(x)

(1)

where deg(q) is the degree of the query ¢ in the queries-documents graph (i.e., the number of
documents returned by the search engine on q), and deg(x) is the degree of the document x in the
graph (i.e., the number of queries on which x is returned as one of the results).

The expression on the RHS of Equation 1 can be estimated as follows: |P| is known in advance.
The average query degree, avg,cp deg(q), can be estimated by uniformly sampling queries from P
and averaging the number of the results the search engine returns on them. The average document
degree, avg,p deg(x), can be estimated by sampling documents from query results and averaging
their degrees.

Since we cannot compute the average degrees of queries and documents but can only estimate
them, using the above algorithm results in a biased corpus size estimate (the expectation of a
ratio is not equal to the ratio of the expectations). To avoid this bias, we use (see Section 5)
an importance sampling estimator. The estimator samples a query Q and a document X from
a suitable distribution and outputs |P| - gigg% as the estimate. This estimator is shown to be
unbiased.

Computing this estimator requires computation of the degrees of Q and X. Computing query
degrees is easy, as we have shown above. Computing document degrees, however, turns out to be
tricky.

The document degree mismatch problem. As demonstrated by the above example, applying
Monte Carlo techniques, such as rejection or importance sampling, to corpus measurements requires
the ability to compute the degree of each sample document.

As document degrees are computed for every sample document, degree computation should be
extremely efficient. Ideally, it should be done based on the document content alone and without
submitting queries to the search engine. The estimators of [5, 10] do this by extracting all the
terms/phrases from the document content and counting how many of them belong to the pool.
The resulting number is the document’s predicted degree and is used as an approximation of the
real degree.

In practice, the predicted degree may be quite different from the actual degree, since we do not
exactly know how the search engine parses documents and extracts terms from them or how it
selects the terms by which to index the document. Moreover, the document may fail to belong to
the result sets of some queries it matches if it is ranked too low (beyond the top k results) or if
search engine did not return it because of high load. These factors give rise to a degree mismatch—a
gap between the predicted degree and the actual degree. The degree mismatch can significantly
affect the quality of the produced estimates.

In [5], we proved that if the density of overflowing (having more than k results) queries among all
the queries that a document matches has low variance, then the bias incurred by degree mismatch
is small. However, in that work we did not analyze additional factors causing degree mismatch.
Broder et al. [10] have not analyzed the effect of degree mismatch on the quality of their estimations
at all.

Several heuristic methods have been used by [5, 10] to overcome the degree mismatch problem.
In order to reduce the effect of overflowing queries, a pool of queries that are unlikely to overflow
was chosen ([5] used a pool of phrases of length 5, while [10] used a pool of 8-digit strings). [10]
remove potentially overflowing queries from the pool by eliminating terms that occur frequently in a
training corpus. However, this heuristic can have many false positives or false negatives, depending
on the choice of the frequency threshold.

Our contributions. In this paper we show how to overcome the degree mismatch problem. We
present four search engine estimators that remain nearly unbiased and efficient, even in the presence
of highly mismatching degrees.

Our starting point (Section 5) is a new importance sampling estimator for search engine metrics,
which generalizes the corpus size estimator of Broder et al. [10]. Our previous estimator [5] worked
in two steps: first it sampled queries from some query pool (using rejection sampling) and then it
sampled documents from the results of these queries (using either rejection sampling or importance
sampling). The new estimator, on the other hand, samples queries and documents together in a
single step, using importance sampling. Avoiding the costly rejection sampling step makes this
estimator significantly more efficient than the estimators in [5].

We analyze (Section 5.6) the effect of the degree mismatch problem on the accuracy of this impor-
tance sampling estimator (the analysis applies also to the previous estimators [5, 10]). We prove
that the estimator suffers from significant bias that depends on how far the approximate degrees
are from the real degrees. Since the dependence is multiplicative, even slightly skewed degrees may
result in significant estimation bias. Indeed, our empirical study (Section 11.2) reveals that the
Broder et al. corpus size estimator suffers from relative bias of about 70%, due to the effect of
degree mismatch.

The algorithms used in [5, 10] to compute document degrees are deterministic and base their
calculations only on the content of the document whose degree is being computed. These algorithms
are very efficient, yet, as we show in Section 6, are not accurate. We present a new algorithm for
estimating document degrees. The algorithm is probabilistic and needs to send the search engine
a small number of queries in order to produce an estimate. However, the output of this algorithm
is a provably unbiased estimate of the real document degree. By plugging in the estimated degrees
into the importance sampling estimator, we obtain SumEst, a provably unbiased estimator for sum
metrics (Section 7).

Average metrics are more tricky to handle, because for such metrics the target measure is known
only up to normalization. For example, when the target measure is the uniform distribution, the
normalization constant |D| is not known in advance. As a result, the bias of the importance sam-
pling estimator depends not only on how well degrees are approximated, but also on the unknown
normalization constant.

The standard approach for dealing with unknown normalization constants is to apply ratio im-
portance sampling (cf. [26]), which divides the standard importance sampling estimator by an
estimate of the normalization constant. We present a new variant of ratio importance sampling,
which we call approzimate ratio importance sampling (or, ARIS, for short), which neutralizes the
effect of both the unknown normalization constant and the approximate degrees. We use ARIS
and the probabilistic degree estimator to obtain AvgEst—a search engine estimator for average
metrics (Section 8). This estimator is nearly unbiased (the bias diminishes to 0 with the number
of samples).

SumEst and AvgEst resort to the probabilistic degree estimator, which is more accurate but also
more costly than the deterministic degree estimators used in previous works. In Section 9, we show
how to replace the probabilistic degree estimators in SumEst and AvgEst by the deterministic
degree estimator, while not compromising the estimation accuracy significantly. The resulting
estimators, which we call EffSumEst and Eff AvgEst, are considerably more efficient than SumEst
and AvgEst.

Our last contribution builds on the observation that the estimator of Broder et al. implicitly applies
Rao-Blackwellization [11], which is a well-known statistical tool for reducing estimation variance.
This technique is what makes their estimator so efficient. Since Rao-Blackwellization increases
the number of degree computations, it cannot be efficiently applied to SumEst and AvgEst, where
degree computations require submitting search engine queries. We thus apply Rao-Blackwellization
to the EffSumEst and EffAvgEst estimators only and prove that it is guaranteed to make them
more efficient as long as the results of queries are sufficiently variable.

We emphasize that our estimators are applicable to both sum and average metrics. This in contrast
to the estimators in [5], which are applicable only to average metrics, and the estimator in [10],
which is applicable only to sum metrics.

Experimental results. We evaluated the bias and the efficiency of our estimators as well as
the estimators from [5, 10] on a local search engine that we built over a representative corpus of
2.4 million documents crawled from the ODP directory [14]. To this end, we used the estimators

2The estimator is unbiased relative to the documents covered by the query pool used. Like all other estimators
that use query pools, the estimator may have bias due to uncovered documents. See more details in Section 4.5.

to estimate two different metrics: corpus size and density of sports pages. The empirical study
confirms our analytical findings: in the presence of significant degree mismatch, our estimators have
essentially no bias, while the estimator of Broder et al. suffers from significant bias. For example,
the relative bias of SumEst in the corpus size estimation was 0.01%, while the relative bias of the
estimator of Broder et al. was 60%. The study also showed that our new estimators are up to 1500
times more efficient than the rejection sampling estimator from [5]. Finally, the study demonstrated
the effectiveness of Rao-Blackwellization by reducing the query cost of estimators by up to 80%.

We used our estimators to measure the absolute sizes of two major search engines. The results
of this study may underestimate the true search engine sizes, largely due to the limited coverage
of search engine corpora by the pool of queries we used. Even so, we showed that our estimates
are up to 3.5 times higher than the estimates produced by (our implementation of) the Broder et
al. estimator.

2 Related work

Apart from [8, 5, 10], several other studies estimated global metrics of search engine indices, like
relative corpus size. These studies are based on analyzing anecdotal queries [9], queries collected
from user query logs [22, 15], or queries selected randomly from a pool a la Bharat and Broder [17,
12]. Using capture-recapture techniques (cf. [24]) some of these studies infer measurements of the
whole web. Due to the bias in the samples, though, these estimates lack any statistical guarantees.

A different approach for evaluating search quality is by sampling pages from the whole web [23, 19,
20, 2, 30, 7]. Sampling from the whole web, however, is a more difficult problem, and therefore all
the known algorithms suffer from severe bias.

Anagnostopoulos, Broder, and Carmel [1] showed a technique for measuring parameters of the
results of a single search engine query, rather of the entire corpus. Their technique, however,
assumes privileged access to the internal data structures of the search engine.

Dasgupta, Das, and Mannila [13] presented a random walk algorithm for sampling records from
a database that is hidden behind a web form. A search engine is essentially an example of such
database. However, as this work is aimed at structured database setting, it is not directly applicable
to sampling from a free text search engine.

In our subsequent work [4] we proposed a technique for sampling real user queries via query sug-
gestion services of search engines. Such query samples can then be used to measure metrics as
observed by the users, e.g., the observed diversity of search results, amount of spam, etc. We also
showed that using these query samples, instead of a synthetic query pool, one can sample web pages
proportionally to their ImpressionRank, i.e., their actual visibility to the search engine users.

In order to avoid disturbing the flow of the paper, some proofs are postponed to the appendix.

3 Estimators overview

In this section we provide a high-level overview of the search engine corpus estimators described
in this paper. For simplicity of exposition, we assume here that metrics we need to estimate are
defined with respect to a uniform target measure.

All our estimators use the following model of a search engine index: A queries-documents graph is
a bipartite graph connecting queries from some predefined pool P with documents in the search
engine’s index. Roughly speaking, each query is connected to the documents that the search engine
returns for that query. The degree of the query is the number of documents returned. The degree
of a document is the number of queries on which the document is returned as a result. See Section
4 for the formal definitions.

Our first estimator (see Section 5) is an ideal importance sampling estimator, which assumes that
query and document degrees can be computed accurately and efficiently. For any given target
function f, it provides an unbiased estimate of sum(f). The estimator repeatedly samples edges
from the queries-documents graph according to the following trial distribution: a query Q is selected
uniformly at random from the pool P, it is sent to the search engine, and then one of its results
X is selected uniformly at random. (Q,X) is the sampled edge. The estimator computes for
each such sample edge the target function value f(X) and an importance weight w(Q,X) = |P] -
deg(Q)/ deg(X). The importance sampling estimator is a weighted average of the target function
values:

73 de

Computing document degrees is tricky, as given a document x we do not know on which queries
the search engine returns x as a result. An edge (q,x) is called valid, if q occurs in the content of
x. The wvalid queries-documents graph consists only of the valid edges. In Section 6, we show that
estimating the degree of a document x in this graph can be done efficiently and accurately: one
samples random queries from P that occur in the content of x and sends them to the search engine.
The fraction of queries that are found to return x as a result is used to estimate the degree of x.

Section 7 presents SumEst—a practical implementation of the importance sampling estimator that
works with the valid queries-documents graph rather than the original queries-documents graph.
It is shown that the estimator is still unbiased and its cost (expected number of queries submitted)
is analyzed.

Next, in Section 8 we develop AvgEst—an estimator for average metrics. To estimate average of

function f, the estimator essentially divides the estimate of sum(f) by an estimate of the sum of a

constant 1 function (g(x) = 1 for all x). Neglecting some technical details, AvgEst(f) = 23%383.

Since we divide an estimate by an estimate, and since the expectation of a ratio is not equal to the
ratio of expectations, AvgEst is biased. Fortunately, we show that its bias diminishes to 0 with the
number of samples.

In Section 9 we show two techniques for decreasing the number of search engine queries submitted
by the estimators. One of the sources of inefficiency of SumEst and AvgEst is the estimation of
valid document degrees, which requires sending queries to the search engine. The first technique we

employ in this section estimates document degrees based on the document content alone and thus
requires no search engine queries for the degree estimation. The resulting degree estimation is biased
and we show that this bias is proportional to the document’s validity density (defined in Section 6.5).
While the bias in the degree estimation leads to higher bias of the final search engine estimator, we
show that the final bias is low if the target function f is uncorrelated with validity density, i.e., when
the error in degree estimates “averages out” on sufficiently many samples. The second technique
builds on the observation that during the sampling of an edge from a queries-documents graph, we
get all the documents incident to the sampled query “for free”. Applying Rao-Blackwellization,
these documents are turned into additional free samples, which result in decreasing of the variance
of the estimator, and thus enabling selecting a smaller number of samples.

In Section 10 we summarize the bias and the cost guarantees of our estimators and compare them to
the state of the art. We then outline consideration in choosing the query pool in order to optimize
the bias and the costs of the estimators.

Finally, in Section 11 we experimentally evaluate our estimators on both simulated and real com-
mercial search engines.

4 Framework for search engine measurements

Notation Meaning
D Set of documents indexed by a search engine.
Q The query space of a search engine.
Q Generic finite space.
U Generic target measure on 2.
" The distribution induced by a measure p.
Z, The normalization constant of a measure p.
sumy (f) Sum of f relative to the target measure 7.
avg, (f) Average of f relative to the target measure 7.
™ Target measure on D.
G A generic queries-documents graph.
P Query pool.
documentsg(q) | The set of documents incident to a query q in G.
queries(x) The set of queries incident to a document x in G.
degg The vertex degree function in G.

Table 1: Notation used in Section 4.

In this section we introduce notations and definitions used to formally describe our search engine
estimators.

4.1 Search engines

Definition 4.1 (Search engine). A search engine is a 4-tuple (D, Q, results(-), k), where:

1. D is the document corpus indexed. Documents are assumed to have been pre-processed (e.g.,
they may be truncated to some maximum size limit).

2. Q is the query space supported by the search engine. A query is a sequence of one or more
terms.

3. results(-) is a mapping that maps every query q € Q to an ordered sequence of documents,
called results. Whenever a user sends a query q as a query to the search engine, the search
engine returns results(q) to the user.

4. k is the result set size limit (typically k = 1,000). The k most highly ranked query results
are returned, i.e., results(q) < k for each q. The actual number of results may be lower than
k and may vary from query to query depending on the search engine architecture, the current
load on it, etc.

We stress that results(q) are the actual results returned by the search engine on q. For many
queries there are more matches than the ones that are actually returned. Typical search engines
(e.g., Google, Bing, Yahoo!) return up to 1,000 most highly ranked results. For example, at the
time of our experiments, in Google, results(“britney spears”) consisted of only 747 results, while
the total number of matches reported by Google on this query is 77,000, 000. One reason for 747
and not 1,000 results being returned could be high load on Google at that time.

4.2 Search engine estimators

We are interested in measurement of quantities that can be written as sums of functions over a
finite space:

sumg(f) £) f(x)m(x).

x€eN

Here, Q is a finite space (in our case D), f : Q — R is a target function and © : Q — [0,00) is a
target measure (not necessarily a proper distribution).

The average of a function is essentially a sum where the target measure is a probability distribution.
We say that measure p induces a corresponding probability distribution on 2:

p(x)
p(x) ===,
Zp
where Z, = 3 p(x) is the normalization constant of p. We say that two different measures are

the same up to normalization, if they induce the same probability distribution, but have different
normalization constants.

The average of a function is then reduced to a sum as follows:

avg (f) & sumgn(f).
An estimator for sumg(f) (resp., avg,(f)) is a randomized procedure producing an estimate of

sumy(f) (resp., avg,(f)). Different invocations of the estimator produce identically distributed
and independent outputs.

10

To carry out the estimation, the estimator requires access to two “oracle procedures”. The first
procedure, computeTargetMeasure(x), returns the weight 7(x) of x relative to the target measure
7. The second procedure, computeTargetFunction(x), given x, returns f(x).

For example, suppose (2 is the set of all documents indexed by a search engine D. Then, the corpus
size of the search engine is a sum of the function f(x) = 1, Vx relative to the uniform target measure
(m(x) = 1 for all x € Q). The density of spam pages in the corpus is an average of the function
f(x) = 1iff x is a spam page relative to the same uniform target measure. Alternatively, to give
longer or more “important” pages higher weight, one can use non-uniform target measures such
as 7(x) = length(x), m(x) = PageRank(x), or m(x) = ImpressionRank(x) (ImpressionRank is a
measure of page visibility in a search engine, see [6]).

Everything we do in this paper can be generalized to deal with vector-valued functions f : 2 — R™.
Yet, for simplicity of exposition, we focus on scalar functions.

Estimation quality. The quality of an estimator M for sumg(f) is measured in terms of its bias
(bias(M) = E(M) — sum,(f)) and variance (var(M) = E((M — E(M))?)). M is called unbiased, if
bias(M) = 0.

If the variance of an estimator is high, it may have high error, even if it has low bias. To circumvent
this problem, estimators are typically designed in two steps. First, we design a basic estimator that
has low bias and possibly high variance. Then, to reduce the variance, we create a final estimator
by aggregating multiple independent instances of the basic estimator. The simplest aggregation
method is averaging: T = %Z?Zl M;, where My, ..., M,, are n independent instances of the basic

estimator M. T has the same bias as the basic estimator, but its variance tends to 0 as n tends to
var(M)
€2.E2(M)
guarantee that the estimate produced by M falls within the confidence interval (1 £ ¢) - E(M) with

constant confidence (e.g., 2/3).3

infinity. By Chebyshev’s inequality, n = O () independent instances of M are sufficient to

Estimation costs. The three expensive resources used by search engine estimators are: (1) queries
submitted to the search engine; (2) web pages fetched; (3) calculations of the function f. Queries
and web page fetches may take substantial amount of time and require usage of network bandwidth.
Queries are costly also because search engines pose daily quotas on the number of queries they are
willing to accept from a single user.* Depending on the function f, each calculation of f may
require substantial processing time, fetching web pages, or submitting more queries to the search
engine. We therefore use three measures of efficiency for search engine estimators: query cost, fetch
cost, and function cost.

The ezpected query cost of an estimator M, denoted qcost(M), is the expected number of queries M
submits to the search engine. Note that in order to compare the efficiency of different estimators
by their expected query cost, the variance of both estimators should be the same. The amortized
query cost, defined as qcost(M) - V;;%) , is a more robust measure of efficiency. By Chebyshev’s
inequality, amortized query cost determines the number of queries required to obtain an estimate
within a given confidence interval.

3Somewhat more efficient aggregation techniques, like the median of averages (cf. [16]), exist. For simplicity of
exposition, we will focus mainly on averaging in this paper.

4The daily quotas apply to the developer APIs provided by search engines. Queries sent to the standard web
interfaces are also rate limited.

11

The expected fetch (fetchcost(M)) and function (funccost(M)) costs of M, and the amortized
fetch/function costs are defined similarly.

4.3 Queries-documents graph

We model a search engine index by a “queries-documents graph” G = (P, D, £)—a bipartite graph,
whose left side is a query pool P C Q and whose right side is the document corpus D. An edge
between a query and a document indicates “relevance” of the document to the query (e.g., the
document is returned by a search engine on the query, or the content of the document contains the
query). We later define several queries-documents graphs where edges are defined differently.

All the estimators we consider in this paper sample documents from D by working over a properly
defined queries-documents graph: they sample queries from the query pool P and then sample
document neighbors of these queries in the graph. An illustrative example of such a graph is
depicted in Figure 1.

D P

Www.cnn.com
www.foxnews.com “news”

news.bbc.co.uk

news.google.com
www.bbc.co.uk “bbc”
en.wikipedia.org/wiki/BBC
www.google.com “google”

maps.google.com
Figure 1: A queries-documents graph.

We denote by documents(q) all the documents in D incident to q in G (i.e., {x|(q,x) € £}). The
degree of a query q in G is then degy(q) = |documentsg(q)|.

Similarly, by queries;(x) we denote all the queries in P incident to x in G (i.e., {q|(q,x) € £}).
The degree of x in G is degg(x) = |queriesg(x)|.

4.4 Incidence computation

The estimators we use in this paper require “local accessibility” to the queries-documents graph
(. By that we mean that the estimator needs efficient implementations of the following procedures
that compute incidences in the graph:

1. getDocuments(q): Given a query q € P, returns all documents that are incident to q in G,
i.e., documentsg(q).

12

2. getDegree(x): Given a document x € D, returns the number of queries that are incident to
x in G, i.e., degq(x).

Note that our algorithms do not need to compute queries(x), but rather degq(x) only. As we show
later, this allows more efficient implementation, since we can estimate degq(x) at lower cost than
computing queries;(x). We describe the implementation of these procedures in Section 6.

4.5 Corpus coverage

Some documents in D may be “isolated”—they have no edges incident to them in the queries-
documents graph G. This means that the estimators that rely on G base their estimates only on
the non-isolated documents in D, i.e., Dg £ {x| deg(x) > 0}. Clearly, we would like D¢ to “cover”
as much of D as possible.

We denote the coverage of D by G relative to the target measure mp as 73 (Dg), where 77 is the
distribution induced by mp. For instance, when 77 is the uniform distribution, the coverage of D
by G is |D¢g|/|D|. For the above reasons, we would like the coverage to be as close to 1 as possible.
Note that even if the coverage is lower than 1, but Dg is sufficiently representative of D, then
estimators that use GG produce accurate estimates of parameters of the whole corpus D.

In Section 10.2 we identify properties of queries-documents graphs that have high corpus coverage,
and in our experiments we use such a graph. More rigorous analysis of corpus coverage is left for
future work.

To simplify the presentation, we assume from now on that Dg = D. The reader should keep in
mind that the estimators we present may incur additional bias, in case the coverage of D is low.

4.6 Assumptions

Like the pool-based estimators in [8, 5, 10], our estimator assumes knowledge of an explicit query
pool P. For example, in our experiments, we used a pool of 2.37 billion numeric and English
terms and two-term conjunctions. Such a pool can be constructed in a preprocessing step, by
crawling a representative corpus of web documents and extracting terms that occur therein (we
used Wikipedia and the ODP [14] directory for this purpose). We can run the estimator with any
such pool, yet the choice of the pool may affect the bias and the efficiency of the estimator. See
Section 10.2 for an explanation how the properties of the pool affect the quality of our estimators.

Our estimators have indirect and highly restricted access to search engines’ indices. To guarantee
the correctness of our algorithms in such settings, we need to make the following assumptions:

Static corpora. Our algorithms assume that search engine corpora do not change during the
estimation process. Obviously, this assumption does not hold in practice as search engine indices
are constantly being updated. In our experiments we noticed only slight differences in the results
returned for the same queries at different steps of the experiment. We note that the duration of
our experiments was determined by the limited resources we used. Having more resources could
have shortened this duration and drastically diminished the effect of corpus changes.

13

Versioned indices. Search engines may maintain multiple non-identical versions of the index
simultaneously and serve users from different versions of the index (based on the user’s profile
or based on load-balancing criteria). Our algorithms assume all queries are served from a single
coherent index. If all the queries are indeed served from the same version of the index, then the
results produced by our algorithms reflect properties of the specific index version used. Some
anomalies may occur, if the samplers work with multiple index versions simultaneously, assuming
the differences among the versions are significant (which we do not believe to be the case in most
search engines).

5 Search engine importance sampling estimation

Notation | Meaning
supp(p) | Support of a measure p.

1S The importance sampling estimator.

w The importance weight function.

s Extension of the target measure 7p to P x D.

Pc The queries in P that have at least one incident document in G.
P Trial distribution over P x D.

(Q,X) A random query-document pair distributed according to p.
PSE The pool size estimator.
AIS The approximate importance sampling estimator.

Table 2: Notation used in Section 5.

In this section we present a basic importance sampling search engine estimator. It will be used as
a basis for the more accurate and efficient estimators presented in subsequent sections.

5.1 The naive estimator

The naive Monte Carlo estimator (cf. [26]) for avg,(f) works as follows: (1) generate a random
sample X from the distribution 7" induced by ; (2) output f(X). It is easy to check that this
estimator is unbiased.

In our setting, however, this simple estimator is inefficient, for the following reasons: (1) sampling
from the distribution 7™ may be hard or costly; (e.g., when 7™ is a uniform distribution on Q); (2)
the random variable f(X) may have high variance.

Moreover, the naive estimator is not suitable for computing sums. Although a sum of f can be
computed as Z - avg, (f), Zr cannot be computed using the naive estimator, requiring computing
it by other means, which may be hard or costly (e.g., in corpus size estimation, Z, is the corpus
size, which is exactly the quantity we need to estimate).

We will use importance sampling to obtain an efficient estimator that is also able to estimate sums.

14

5.2 The importance sampling estimator

The basic idea of importance sampling [27, 21, 26], which is the basis of the estimators we propose
in this paper, is the following. Instead of generating a sample Y from the target distribution 7", the
estimator generates a sample X from a different ¢rial distribution p on D. p can be any distribution,
as long as supp(p) 2 supp(nw) (here, supp(p) = {x € D | p(x) > 0} is the support of p; supp(mw) is
defined similarly). In particular, we can choose it to be a distribution that is easy to sample from.
The importance sampling estimator is then defined as follows:

2 px). T w
IS(X) = f(X) X J(X) - w(X)
The correction term x)
w(x) = mv

where x € D, is called the “importance weight”.

Theorem 5.1. IS(X) is an unbiased estimator for sumg(f).

Proof.

~—

E(IS(X) = Y »pEfE@uwx) = Y p(X)f(X)@ = Y. feIn(x) = sume(f).

x€supp(p) x€supp(p) p(x) x€supp(7)

O]

In fact, we do not have to compute importance weights exactly, it is enough to have an unbiased
estimator W (x), such that E(W (x)) = w(x):

Lemma 5.2. An unbiased estimator W (z) for w(x) can be used instead of w(z) in IS(X).

Proof.

E(IS(X)) = Y pEEEWE) = Y pEfEwk) = sun(f).

x€supp(p) x€supp(p)

O]

The variance of the importance sampling estimator depends on the variance of the product f(X) -
w(X):
var(IS(X)) = var(f(X) - w(X)).

Observe that the variance is minimized when f(X) and w(X) = n(X)/p(X) are anti-correlated.
Typically, the trial distribution p is selected to be correlated with f(X) - 7(X), leading to low esti-
mation variance. When the target function f is uncorrelated with the trial and target distributions
(e.g., as in the corpus size estimation), this variance depends primarily on the similarity between
p(X) and 7(X). The closer they are, the lower is the variance of the basic estimator, and thus the

15

lower is the number of samples (n) needed in order to guarantee the aggregate importance sampling
estimator (e.g., the estimator averaging the results of n instances of the basic estimator) has low
variance. Liu’s “rule of thumb” [25] quantifies this intuition: in order for the aggregate importance
sampling estimator to achieve the same estimation variance as if estimating sum,(f) by sampling
m independent samples directly from 7 (or the normalized version of 7, n”, if 7 is not a proper
distribution), n = m(1 + var(w(X))) samples from p are needed. We will therefore always strive to
find a trial distribution for which var(w(X)) is as small as possible.

In our case however, we have little freedom in choosing the trial distribution, as it depends on the
available data provided by the search engine through its public interface. Thus, we use the trial
distribution we are able to sample from and measure the resulting estimation variance empirically.

Implementation of an importance sampling estimator requires: (1) ability to sample efficiently from
the trial distribution p; and (2) ability to compute the importance weight w(x) (or its estimator
W(x)) and the function value f(x), for any given element x € D. There is no need to know
the normalization constant Z, or to be able to sample from 7™. This basic importance sampling
estimator is only suitable for estimating sums. We later (Section 8) extend it for estimating averages.

5.3 The sample space

The sample space of the importance sampling estimator proposed in our previous paper [5] was the
corpus of documents D. The trial distribution p was the “document degree distribution”, in which
documents are sampled proportionally to their degrees in the queries-documents graph induced by
P. In order to sample documents from this distribution, we had to sample queries from the pool
P proportionally to their degrees (referred to as “cardinalities” in our previous paper), and then
to sample random documents from the result sets of these queries. Since degrees of queries are not
known in advance, sampling queries from P required application of the rejection sampling. This
step incurred significant overhead.

In this paper we propose a different sample space. Rather than sampling queries and then docu-
ments in two separate steps, we sample them together. Let G = (P, D,) be a queries-documents
graph induced by a pool P (we define £ later in Section 6). The sample space we use is € C P x D,
and each sample is a query-document pair (q,x). We extend the target measure mp on D into a
target measure w on £, and function f on D into a function F' on £. The extension is done in such
a way that sum,(F') equals sumy, (f). We thus reduce the problem of estimating sumg, (f) to the
problem of estimating sum, (F'). For the latter, we can apply importance sampling directly on the
two-dimensional sample space £, without having to resort to rejection sampling as an intermediate
step.

We extend the function f on D into a function F on & as follows: F(q,x) £ f(x). Similarly, we

extend mp into a measure on £ as follows:

» I(x € documentsg(q)) - p(x)
rla) = deg () |

where I is an indicator function: I(condition) = 1 if the condition is true, and 0 otherwise. The
marginal weight of a document x relative to this measure equals its weight relative to the measure

16

mp; this weight splits evenly among edges incident to x. The connection between 7 and 7p is given
by the following proposition:

Proposition 5.3. 7p is the marginal measure of m on D (i.e., wp(2) = 3_ p 7(q: 2) for allz € D).

Furthermore, the normalization constants of mp and w are the same.

Proof. To prove that mp is the marginal measure of w, we must show that for every x € D,
T (X) = X qep T(d, X):

Z 7(q,x) = Z I(x € documentsg(q)) - mp(x)

qeP qeP degG (X)

p(x)
= 5 7 N 1
degG (X) nguge‘SG (%)
m(x)

= desg() deg(x)

= mp(x).

Now, the identity of the two normalization constants easily follows:

Zr = ZZW(q,x) = ZT{'D(X) = Znp-

x€D qeP x€D
O
It follows from the proposition that 7 is a distribution if and only if 7p is a distribution.
Proposition 5.4. sum,(F) = sumg, (f)
Proof.
Sumﬂ'(F) = Z ﬂ(q> X) F(q7 X) = Z f(X) Z ﬂ(qa X) = Z f(X)ﬂ-D(X) = SUulllgp, (f)
qeP,xeD x€D qeP x€D
O

5.4 The trial distribution

We next describe the trial distribution for sampling edges from £. Let Pg denote the collection of
queries in P that have at least one incident document in G:

Pec = {q€ P | documentsg(q) # 0}.

Our trial distribution selects an edge (q, x) as follows: (1) pick a query q € Pg uniformly at random;
(2) pick a document x € documentsg(q) uniformly at random:

» 1 I(x & documentsg(q))
Pal degg(q)

p(a,x)

17

Sampling from p can be done easily (see Algorithm 1): we repeatedly select queries from P uniformly
at random and call getDocuments, to get their incident documents (by submitting these queries
to the search engine; detailed implementation in Section 6). We stop when reaching a query that
has at least one incident document. We then select a document from the set of incident documents
of this query uniformly at random.

Algorithm 1 samplePair(G)
while true do
Q := uniformly chosen query from P

1:
2
3: documents;(Q) := getDocuments(Q)
4: if documentss(Q) # () then
)
6

X := uniformly chosen document from documentsg(Q)
return (Q,X)

5.5 The importance sampling search engine estimator

We now apply the generic importance sampling estimator to the sampling space and the trial
distribution developed above and obtain a search engine IS estimator.

The importance weights corresponding to the target measure 7w and the trial distribution p are the
following;:

m(q,x) _ mp(x)-[Pg| - degg(a)

p(a,x) degg(x) '

Thus, the importance sampling estimator for sumg, (f) is:

f(X) - mp(X) - [Pg| - deg(Q)
deg(X) ’

where (Q, X) is a sample from the trial distribution p.

w(q,x) =

IS(Q.X) =

The only terms in the IS(Q, X) we do not yet know how to compute are deg(X) and |Pg|. We

show how to compute the former in Section 6 and now consider the latter. As exactly computing

|P¢| is infeasible, due to a large size of P, we resort to probabilistic estimation of |Pg| by the “Pool

Size Estimator” PSE (see Algorithm 2). If we sample a query Q uniformly at random from P, it

has a probability of % to have at least one incident document. Therefore, we can estimate \ch;'I as

follows: repeatedly sample queries uniformly at random from P and compute %’S Tiegree; the fraction
G

of submitted queries that have non-zero degree is an unbiased estimator for P Estimation error

can be reduced by increasing the number of iterations performed (n).
Algorithm 3 is the implementation of the IS search engine estimator.
5.6 Importance sampling with approximate degrees

Unfortunately, due to the degree mismatch problem (see detailed description in Section 6), we are
unable to accurately compute document degrees, and consequently the importance weight function

18

Algorithm 2 estimatePoolSize(G)
1: 7:=0
2: for ¢ :=1ton do
Q := uniformly chosen query from P

3

4: degy(Q) := | getDocuments(Q)|
5. if degs(Q) > 0 then
6
T

: ji=7+1
return |P|-j/n

Algorithm 3 IS(G)

PSE := estimatePoolSize(G)

(Q,X) := samplePair(QG)

mp(X) := computeTargetMeasure(X)

deg(Q) := | getDocuments(Q)]

deg(X) := getDegree(X)

w(Q,X) = 7p(X) - PSE - deg(Q)/ dege(X)
return computeTargetFunction(X) - w(Q,X)

w. We now analyze the effect of the approximate importance weights on the importance sampling
estimator. The analysis in this section is not limited to the search engine estimation setting, thus
we state it in general terms.

An approzimate importance sampling estimator employs an “approximate importance weight func-
tion” wu(x) rather than the exact one w(x). We prove that the estimation generated by approximate
importance sampling is close to the true value as long as the importance weight function w(x)
and the approximate importance weight function u(x) are similar. Here we extend our result from
previous work [5] which considered the special case of “approximate trial weights”. To the best of
our knowledge, no previous study addressed this scenario before and it could be of independent
interest.

Let u(x) be an approximate weight function:

~ w(x) = T

Define the approzimate importance sampling estimator as:
ATS(X) = £(X) - u(X),

where X is distributed according to the trial distribution p. The approximate importance sampling
procedure works exactly like the standard procedure (Algorithm 3), except that instead of w(x) it
calculates and uses u(x).

Suppose supp(u) C supp(w). The following lemma analyzes the bias of the approximate importance
sampling estimator:

Theorem 5.5.

BATS(0) = sunc(7) & (23] + 20 cov (70, 20

where X x p, Yo ™, and Z; is the normalization constant of .

For the proof, see Appendix A.

It follows from the theorem that there are two sources of bias in this estimator: (1) multiplicative
bias, depending on the expectation of u/w relative to n™; and (2) additive bias, depending on the
correlation between f and u/w and on the normalization constant Z,. Note that the multiplicative
factor, even if small, may have a significant effect on the estimator’s bias, and thus must be
eliminated. The additive bias is typically less significant, as in many practical situations f and u/w
are uncorrelated (e.g., when f is a constant function as is the case with corpus size estimation).

The estimators we present in Sections 7 and 8 use two alternative strategies for eliminating the
multiplicative bias in the approximate importance sampling estimator. The former employs AIS
with probabilistic approximate importance weights that are unbiased estimates of the corresponding
real importance weights, and consequently the multiplicative bias is 1. The latter estimates the
multiplicative bias incurred by AIS and then divides AIS(X) by this estimate, effectively neutralizing
the multiplicative bias.

6 Incidence and degree computation

Notation | Meaning
S The search queries graph.
P The predicted queries graph.
%4 The valid queries graph.
vdensity(x) | Validity density on document x.
IDE The inverse degree estimator.

Table 3: Notation used in Section 6.

In this section we analyze the causes of the degree mismatch problem. We demonstrate that compu-
tation of incidences and degrees in the search queries graph is tricky, and simple workarounds, like
the ones used in previous works, give rise to degree mismatch. We then propose a new probabilistic
algorithm for estimating document degrees, which is provably unbiased. This algorithm is later
used as part of search engine estimators we develop.

6.1 The search queries graph

In the search queries graph, S = (P, D, Eg), a query q € P is connected to a document x € D if and
only if the search engine returns x as a result on query q (i.e., x € results(q)). Thus, the efficient
implementation of the procedure getDocumentsg(q), (see Algorithm 4), is trivial: just submit q to
the search engine and output all the results returned. The cost of this implementation is a single
search engine query.

An illustrative example of a search queries graph is depicted in Figure 2. Note that the graph is

20

Algorithm 4 getDocumentsg(q)

1: submit q to the search engine
2: results(q) := results returned by the search engine
3: return results(q)

undirected and arrows on the edges only indicate the “easy” direction of finding query neighbors
implemented by getDocumentsg(q).

D P

www.cnhn.com
LS

~

- — -~~ “ ”
www.foxnews.com @<= -=»® “news
news.bbc.co.uk @4

o

news.google.com .{ S
N, :” ubbcn
www.bbc.co.uk @e==g===5

en.wikipedia.org/wiki/BBC @4 ~
Www.google.com (@ = mm e ==, »@ “google”
maps.google.com @4

Figure 2: A search queries graph.

Remark. An “overflowing query” is a query that has more matching documents than what the search
engine actually returns on that query. Every query that has more than k (typically, £ = 1,000)
matches is overflowing, because search engines return up to k results for each query. Some queries
with fewer than & matches can be overflowing too (for technical reasons, such as high load, search
engines sometimes do not return all the matches they have for a query).

In our previous papers [5, 3], the estimators did not use overflowing queries from the query pool.
We found this restriction to be unnecessary. Therefore, the search queries graph consists of both
overflowing and non-overflowing queries. An overflowing query « is connected only to the documents
that the search engine actually returns on «, not to the other matching documents that it does not
return.

Unfortunately, we do not know how to efficiently implement the second procedure, getDegree g(x).
It can be implemented by submitting each query from P to the search engine and returning those
that have x as their result. This implementation is impractical, due to the large number of queries
in a typical query pool.

6.2 The predicted queries graph

We now describe a different queries-documents graph, admitting a more efficient method for degree
computation.
Let P = (P,D,Ep) be the predicted queries graph, where the neighbors of a particular document

x are defined based on x’s content alone. Let the predicted queries of x, queriesp(x), be the set

21

of queries that occur in the content of x. For example, if P is the pool of single term queries,
queriesp(x) is the set of all distinct terms that occur in the text of x and that also occur in P. If P
is the pool of two-term conjunctions, queriesp(x) is the set of all pairs of distinct terms that occur
in the text of x and that also occur in P. Algorithm 5 computes queriesp(x) using a single page
fetch and without submitting any queries to the search engine.’

Algorithm 5 getQueriesp(x)

1: download x
2: queriesp(x) := queries in P that the content of x matches
3: return queriesp(x)

An illustrative example of a predicted queries graph is depicted in Figure 3. Note that the graph is
undirected and arrows on the edges only indicate the “easy” direction of finding document neighbors
implemented by getQueriesp(x).

D

www.cnn.com @
www.foxnews.com .'""'"-------'.-p “news”
news.bbc.co.uk e ’

news.google.com @%%

www.bbc.co.uk .--h bbc

.
»* -t
.

en.wikipedia.orghwiki/BBC ~ @esnr.
WWW.google.com @ ssrsssssssanas y .b “google”

maps.google.com @

Figure 3: A predicted queries graph.

degp(x) is the degree of x in the predicted queries graph, i.e., |queriesp(x)|. It can be efficiently
computed using a single document fetch (see Algorithm 6).

Algorithm 6 getDegreep(x)

1. queriesp(x) := getQueriesp(x)
2: return |queriesp(x)|

Unfortunately, in the predicted queries graph the implementation of getDocumentsp(q) becomes
difficult. In order to find the documents that are incident to a query ¢, we need to go over all
documents in D and find the ones in which q occurs. This amounts to full-fledged indexing of the
whole corpus D, which is clearly infeasible for the setting we consider in this paper. Note that we
cannot use the search engine itself to implement getDocumentsp(q), at least directly, because it
returns documentsg(q), which may be different from documentsp(q) (see details below).

SWe assume an efficient data structure for checking membership in P.

22

6.3 Combining the search queries and the predicted queries graphs

We just saw how to efficiently compute query incidences in the search queries graph S (imple-
mented by querying a search engine) and document incidences in the predicted queries graph P
(implemented by parsing document content). Can we somehow combine the two to obtain efficient
implementations of both?

The straightforward solution, used in previous works [10, 5], is to simply call getDocumentsg(q)
whenever we need to compute query incidences and to call getDegreep(x) whenever we need
to compute document degrees. The assumption here is that degp(x) is a good approximation
of degg(x). We show below that this assumption is frequently false and may lead to what we
call the “degree mismatch problem”. This mismatch results in significant estimation error, as we
demonstrate in Section 11.

We distinguish between two types of error when approximating queriesg(x) by queriesp(x): (1)
false negatives: queriesp(x) may miss some queries that belong to queriesg(x); (2) false positives:
queriesp(x) may contain queries that do not belong to queriesg(x).

In the following we list several factors that cause false negatives:

1. Indexing depth. We assumed the first d (where d is some constant; d was set to 20, 000 in our
experiments) terms in each document are indexed. If the search engine’s indexing depth is
greater than d, terms/phrases that occur beyond the d-th position in x will not be included
in queriesp(x), although the search engine may return x as one of the results.

2. Parsing and tokenization. Different search engines may have slightly different algorithms
for parsing and tokenizing documents. For example, two words separated by a comma may
or may not be indexed as a phrase. If the search engine’s parser determines a sequence of
characters in x to be a term or a sequence of terms in x to be a phrase, while our parser does
not, the corresponding term/phrase will not be included in queriesp(x), although the search
engine may return x as one of the results.

3. Indexing by terms not appearing in document’s content. Search engines index documents
under terms that do not occur at their text at all (e.g., anchor text terms or synonyms).
Our procedure for computing queriesp(x), obviously, will not find a document to match such
terms (unless they appear in the document’s content too).

False positives are caused by the following factors:

1. Overflowing queries. As mentioned above, search engines do not always return all the matches
to queries they receive. If x has low rank, it may not be returned on overflowing queries that
it matches.

2. Duplicates and near-duplicates. If the search engine filters duplicate or near-duplicate docu-
ments, a query that x matches may not return x as a result, if one of the documents that are
similar to x is returned as a result.

23

3. Host collapsing. If the search engine collapses documents belonging to the same host, a query
that matches x may not return x as a result, if another document from the same host is
returned as a result.

4. Indexing depth. If the search engine’s indexing depth is smaller than d, the search engine
may not return x as a result on terms that occur beyond its indexing depth.

5. Parsing and tokenization. If our parser determines a sequence of characters in x to be a term
or a sequence of terms in x to be a phrase, while the search engine’s parser does not, the
search engine may not return x as a result on the corresponding term/phrase.

6.4 The valid queries graph

How can we bridge the gap between queriesg(x) and queriesp(x)? We define a walid queries-
documents graph V = (P,D,Ey), where & = Es(Ep. That is, an edge (q,x) exists in the
valid queries graph if and only if it exists in both the search queries and the predicted queries
graphs. That is, the set of queries incident to a document x is:

queriesy, (x) = queriesg(x) N queriesp(x),
and the set of documents incident to a query q is:
documentsy (q) £ documentsg(q) N documentsp(q).

Most of our algorithms use the valid queries graph, rather than the search queries or the predicted
queries graphs. An illustrative example of a valid queries graph is depicted in Figure 4.

D P

WwWw.chn.com
www.foxnews.com “news”
news.bbc.co.uk
news.google.com
“bbc”

www.bbc.co.uk

en.wikipedia.org/wiki/BBC
WWW.google.com :7. “google”
maps.google.com
Figure 4: A valid queries graph.
In order to work with the valid queries graph, we need to clarify three points: (1) can we efficiently

implement getDocumentsy, (q)? (2) can we efficiently implement getDegree, (x)? and (3) what is
the coverage of V7

We start with the first question. Note that documentsy (q) can be rewritten as follows:

documentsy (q) = {x € documentsg(q) | q € queriesp(x)}.

24

Implementing getDocumentsy,(q) is then straightforward (see Algorithm 7), since we know how to
efficiently compute documentsg(q) and queriesp(x). The procedure first gets q’s incident documents
in the search queries graph documentsg(q) (see Algorithm 4). Then, it fetches all these documents,
and checks, for each document x, whether q € getQueriesp(x). It then returns the set of documents
documentsy (q). The cost of this implementation is a single search engine query, and |documentsg(q)]
document fetches.

Algorithm 7 getDocumentsy (q)

1: documentsy (q) := 0

2: documentsg(q) := getDocumentsg(q)

3: for all x € documentss(q) do

4: download x

5. queriesp(x) := getQueriesp(x)

6: if q € queriesp(x) then

7 documentsy (q) := documentsy (q) J{x}
8: return documentsy (q)

We address the second question about degree calculation in the next subsection. As for the third
question, we note that V’s coverage may indeed decrease compared to the search queries graph. If
all the edges incident to a document x in S are not present in P, then this document will become
isolated in the valid queries graph. This could happen, for example, with documents that have
little or no text content and are indexed mainly by anchor text terms. It is left for future work to
study the reduction in the graph’s coverage due to a smaller number of edges in V' compared to S.

6.5 Computing document degrees in the valid queries graph

We are left to show how to compute document degrees in the valid queries graph. We next present
three alternative techniques.

Naive approximation. We can simply use degp(x) as an approximation of degy (x) (see Algo-
rithm 6). The advantage of this technique is its low cost: no queries to the search engine are submit-
ted. Its disadvantage, as shown in Section 6.3, is its imprecision. We know that degp(x) > degy (x),
so we always overestimate document degrees.

The quality of this approximation depends on the precision within which the predicted queries
graph approximates the search queries graph. Formally, the wvalidity density of a document x is
defined as the fraction of x’s predicted queries that are also search queries:

_ |queriesp(x) () queriesg(x)| degy (x)

B queriesp(x) ~ degp(x)’

From the above, vdensity(x) € [0, 1] for all x. The closer it is to 1, the better is the naive approxi-
mation of degy (x) by degp(x).

vdensity(x)

Brute force calculation. degy (x) can be calculated by submitting each query q from queriesp(x)
to the search engine and returning the number of queries for which x € documentsg(q) (see Algo-
rithm 8).

25

Algorithm 8 getDegreey (x)

1. queriesp(x) := getQueriesp(x)
2:1:=0

3: for all q € queriesp(x) do

4: documentsg(q) := getDocumentsg(q)
5. if x € documentsg(q) then

6 ti=1+1

7: return 1

The advantage of this technique is its accuracy: it returns the exact degree in V. Its disadvantage
is its cost: it requires submitting all the queries in queriesp(x) (up to thousands of queries per
document) to the search engine—a prohibitively expensive task.

Sampling-based approximation. Here we combine the above two techniques to create a reason-
ably accurate, yet practical method for computing degrees. We start by computing queriesp(x). We
then randomly select from queriesp(x) a small subset of r queries and submit each of the selected
queries to the search engine. Finally, we probabilistically estimate vdensity(x) by the fraction « of
queries (q) in the sample for which x € documentsg(q). An unbiased estimator for degy (x) is then
a - degp(x) (see Algorithm 9).

Algorithm 9 estimateDegreey (x)

1. queriesp(x) := getQueriesp(x)

2:1:=1

3: for j:=1tordo

4: Q := uniformly chosen query from queriesp(x)
5. documentsg(q) := getDocumentsg(Q)

6: if x € documentsg(Q) then

7 1:=1+1

8: return (i/r) - |queriesp(x)|

As we show later, we will need to calculate 1/degy (x) rather than degy (x). Unfortunately, the
inverse of the above estimator yields a biased estimator for 1/ degy, (x). We thus resort to directly
estimating 1/ degy, (x) by the “Inverse Degree Estimator” (IDE(x)) described below.

Algorithm 10 estimates 1/degy (x) for a given document x, using a limited number of queries.
The procedure repeatedly samples queries uniformly at random from the set of predicted queries
queriesp(x). It submits each query to the search engine and checks whether they are in documentsg(Q).
The procedure stops when reaching the first query that is in documentsg(Q). The number of queries
sampled so far is geometrically distributed with vdensity(x) as the success parameter. The expec-
tation of the estimator implemented by Algorithm 10 is exactly m /degp(x) = 1/ degy (x).

Note that the procedure is always guaranteed to terminate, because we apply it only on documents
x for which degy, (x) > 0.

26

Algorithm 10 estimateInverseDegreey (x)

1. queriesp(x) := getQueriesp(x)
2:0:=1
3: while true do
Q := uniformly chosen query from queriesp(x)
documentsg(q) := getDocumentsg(Q)
if x € documentsg(Q) then
return i/|queriesp(x)|
1i=1+1

7 Importance sampling estimator for sums

Notation | Meaning
Wsum The importance weight function of the estimator for sums.
U The approximate importance weight function of the estimators
for sums and averages.
SumEst | The estimator for sums.
PD The marginal distribution of p on D.

Table 4: Notation used in Section 7.

In this section we combine the tools developed in the previous sections to design an end-to-end
search engine estimator for sums. The estimator, SumEst, is a straightforward application of the
importance sampling estimator on the valid queries graph V.

Recall that in order to employ the importance sampling estimator (see Section 5.5), we need to
compute the importance weight function

mp(x) - [Py | - degy (q)
degy (%)

wsum(% X) =)

for each sample (q,x) from the trial distribution p.

We use the estimation procedures described in Section 6 (Algorithm 2 for estimating |Py |, Algo-
rithm 7 for computing degy (q), and Algorithm 10 for estimating 1/ degy (x)), applied to the valid
queries graph, to compute the following estimate of the importance weight function:

u(q,x) = mp(x)-PSE-degy (q) - IDE(x).

(Recall that PSE is the estimator for |Py| and IDE(x) is the estimator for 1/degy (x).) The
following proposition is based on the fact that PSE and IDE(x) are independent estimators, so that
E(PSE-IDE(x)) = E(PSE) - E(IDE(x)).

Proposition 7.1. u(q, z) is an unbiased estimator for wgym(q, x).

27

Proof.
E(u(q,x)) = 7p(x)-degy(q)-E(PSE-IDE(x))
= mp(x) - degy(q) - [Pv|- deg‘l/@()
Wsum (4, X).

O]

Therefore, by Lemma 5.2, we can use u(q,x) in place of wsym(q,x). The basic estimator for sums
is then defined as follows:

where (Q, X) is distributed according to p. Algorithm 11 is the implementation of the full estimator
for sums SumEst, defined as follows:

SumEst = i;ﬂxl) ~u(Qy, X4).

Algorithm 11 estimateSum(n)

1: PSE := estimatePoolSize(V)

2: sumy, := 0

3: for i :=1ton do

4: (Q,X) := samplePair(V)
mp(X) := computeTargetMeasure(X)
degy (Q) := | getDocuments; (Q)|
IDE(X) := estimateInverseDegree (X)
u(Q,X) := mp(X) - PSE - degy (Q) - IDE(X)
9: sumg, = sulll;, + computeTargetFunction(X) - u(Q, X)
10: return sumg, /n

Caching. Naively implementing the above estimator would result in a waste of search engine
queries and document fetches, as queries and documents would be submitted and fetched multiple
times. For example, the last query submitted by samplePair(V) (line 4) is then submitted by
getDocumentsy (Q) (line 6). To avoid resource waste, we employ query and document caching.
That is, before we submit a query to the search engine, we first check whether we already have the
query’s results in the cache. If we do, we avoid submitting a query again. Documents are handled
similarly.

Estimating pool size. We estimate |Py | using the PSE estimator described in Section 5.5. PSE
requires as little as O(|P|/|Py|) queries to produce an accurate estimate. Typically, |P|/|Py| is a
small constant (in our experiments it was about 2), so a few hundreds of queries are sufficient to
obtain an accurate estimate of |Py|. Since this estimate has to be computed only once for a given
pool and a search engine, and since it requires a negligibly low number of queries, we assume | Py |
is accurately estimated in a preprocessing step and do not account for the estimation error and for
the query cost of PSE in our subsequent analysis.

28

7.1 Analysis

Since we use unbiased estimator for importance weights, the below proposition follows directly from
Theorem 5.1 and Lemma 5.2:

Proposition 7.2. SumFEst is an unbiased estimator for sumgy, (f).

We now analyze the query cost, the fetch cost, and the function cost of estimateSum. The following
proposition is used to state the query cost.

Proposition 7.3. The marginal distribution of p on D 1is:

1 1
=m0 2 G

g€ queriesy, ()

Proof. To prove that pp(x) is the marginal distribution of the trial distribution p, we must show
that for every x € D, pp(x) = >_cp p(d,%):

Zp(q x) = Z 1 I(x € documentsy(q)) _ 1 Z 1

or = IPvl ' degy (q) Py degy ()

gEqueriesy, (x)

Theorem 7.4.

| (Pl
E(qcost(estimateSum)) = n <\77V| +E vdensity(X)))

where X is distributed according to pp.

E(fetchcost(estimateSum)) = n - "PVH - avgep degg(q).

The function cost of estimateSum is n.

Recall that P is the query pool (see Section 4.3), P is the predicted queries graph (see Section 6.2),
V' is the valid queries graph (see Section 6.4), and S is the search queries graph (see Section 6.1).

Proof. Search engine queries are submitted in the following functions of the estimator:

e estimatePoolSize(V)
e samplePair(V)
e getDocuments (Q)

e estimateInverseDegree; (X)

29

We now analyze the query cost of each of these procedures.

We assume estimatePoolSize(V) is called only once in a preprocessing step and its estimate is
used for all subsequent estimator invocations. Therefore we do not include its cost in the cost of
estimateSum and of the following estimators.

samplePair (V') submits queries, selected uniformly at random from P, until it encounters a query
q such that documentsy (q) # 0. The query cost of this procedure is then a geometric random

. . P . .
variable with success parameter %, whose expectation is

E(qcost(samplePair(V))) = ||7f|’
\%

getDocumentsy, (Q) submits exactly one search engine query. However, since this query was neces-
sarily already submitted by samplePair(V'), and since query results are cached, the query cost of
getDocumentsy, (Q) is 0.

degp(x) _ 1
degy (x) ~ vdensity(x)
expectation. Then, since the random choices of estimateInverseDegree (X) are independent of
X,

As shown in Section 6.5, estimateInverseDegreey (x) submits queries in

1
E(qcost(estimateInverseDegree (X))) = E <vdens:1ty(X)> ’

We now analyze the fetch cost. Documents are fetched in the following functions of the estimator:

e samplePair(V)
e getDocumentsy (Q)

e estimateInverseDegreey (X)

samplePair (V') submits queries, selected uniformly at random from P, until it encounters a query
q such that documentsy (q) # 0. As we saw earlier, the expected number of queries it probes
before returning a query from Py is % For each of these queries, getDocuments;, (Q) is called.

getDocumentsy (Q) fetches exactly degg(Q) documents. As Q is chosen from P uniformly at
random, the expected fetch cost of getDocumentsy (Q) is

1
E(fetchcost(getDocumentsy (Q))) = P Z degg(q) = avg,ep degg(q)-
qeP

By Wald’s identity (see, e.g., [31], Section 2.2), the expected fetch cost of samplePair(V) is

E(fetchcost(samplePair(V))) = ’|7fv|\ - avg ep degg(q).

When getDocumentsy, (Q) is called from estimateSum, getDocuments (Q) was already called in

the same iteration by samplePair (V). Thus, since documents are cached, the fetch cost of calling
getDocumentsy (Q) from estimateSum is 0.

30

estimateInverseDegree (X) fetches a single document (X). However, since this document was
necessarily already fetched by getDocumentsy (Q), and since documents are cached, the fetch cost
of estimateInverseDegreey (X) is 0.

Obviously computeTargetFunction(X) performs a single function calculation. Thus the function
cost of the estimator is n. O

8 Importance sampling estimator for averages

Notation | Meaning
AvgEst | The estimator for averages.
Wavg The importance weight function of the estimator for averages.
WSE The weight skew estimator.
ARIS The approximate ratio importance sampling estimator.
(R,Y) A random query-document pair distributed according to 7.

Table 5: Notation used in Section 8.

In this section we show that the estimator for sums cannot be used as is for estimating averages, and
apply approximate importance sampling to design AvgEst — a search engine estimator for averages.

Recall that the estimator for averages estimates avg, (f) = sumzn (f). If we knew how to compute
mh(x) for each x € D, we could have used the estimator for sums with target measure 7} for
estimating avg, (f). However, in many cases we cannot compute 7}, e.g., for a uniform target
distribution, 7% (x) = 1/|D|, where |D| is the corpus size we may not know.

More formally, in order to employ the importance sampling estimator (see Section 5.5) for estimating
averages, we would like to compute the importance weight function

mp(x) - [Py| - degy (q)
degy (x)

wavg(Q> X) =

where (q,x) is a sample from the trial distribution p. However, since computeTargetMeasure(x)
computes mp(x) (which equals 7} (x) up to normalization) we cannot calculate wayvg(q, x) exactly.

We overcome this difficulty using a new variant of ratio importance sampling which we call approz-
imate ratio importance sampling. In short, we first estimate sumy, (f) and consider the estimate
to be a biased estimate of avg, (f), where the multiplicative bias is Zr,. Then, we estimate Z,,
and divide the estimate of sumy, (f) by the estimate of Z.,. Our analysis of approximate ratio
importance sampling shows that this procedure results in a nearly unbiased estimator for avg, (f).

We next develop the above intuition in more details.

Similarly to SumEst, we use the valid queries graph, and the same estimation procedures to compute
the same importance weight function:

u(q,x) = 7p(x) - PSE-degy (q) - IDE(x).

31

(Recall that PSE is the estimator for |Py| and IDE(x) is the estimator for 1/ degy (x).) Note that
unlike in estimator for sums, u is not an unbiased estimator for way,, since

E(u(q,x)) = E(Zx, - mp(x) - PSE-degy(q) - IDE(x)) = Zn, - wavg(q, %),
where Z,, is the unknown normalization constant of 7p.

By Theorem 5.5, and since u(q, X) /Wayg (4, X) = Zr,, using approximate importance weight function
u instead of the exact one w,yg incurs a multiplicative bias Z,:

E(AIS(Q,X)) = sumgq,(f) - Znp + Znp - cov(f(Y), Zrp) = sumq,(f) - Zrp-

In order to obtain an unbiased estimator for sum,, (f) we have to eliminate the Z., factor. In the
next subsection we propose a method for decreasing the bias.

8.1 Approximate ratio importance sampling

In this subsection we show how to overcome the multiplicative bias incurred by using approximate
importance weight function. This technique is not limited to the search engine estimation setting,
thus we state it in general terms and then, in Section 8.2, apply it to estimating averages over
search engine corpora.

For an instance x € €, the ratio u(x)/w(x) is called the weight skew at z. It is easy to see
that the multiplicative bias factor (Zr, in our case) is the expected weight skew relative to the

target distribution 7": E(u(Y)/w(Y)). Can we eliminate the multiplicative bias by estimating the
expected weight skew and dividing the (biased) result of AIS by the bias estimate?

Let us assume we have some unbiased weight skew estimator WSE(X) for E (Z((\;))) It follows from
Theorem 5.5 that:

E(AIS(X))
E(WSE(X))

Ly - COV (f(Y), Z(g,)))
Bh)

Note that WSE(X) depends on the same sample X used by the importance sampling estimator.

sumg(f) +

(2)

Thus, the ratio of the expectations of the two estimators, AIS(X) and WSE(X), gives us the desired

result (sumr(f)), modulo an additive bias factor. Ignoring for the moment this additive bias, it
would seem that a good estimator for sum(f) is the ratio V@éSE%()) However, there is one problem:

AIS(X AIS(X))
WSE X)) # E(WSE(X)) "

the expectation of a ratio is not the ratio of the expectations, i.e., E (

To solve this problem, we resort to a well-known trick from statistics: if we replace the numerator
and the denominator by averages of multiple independent instances of the numerator estimator
and of the denominator estimator, the difference between the expected ratio and the ratio of
expectations diminishes to 0.

We can therefore define the approximate ratio importance sampling estimator for sumg,(f) as
follows: |

n Zi:l AIS(X;)
5 i WSE(X)'

ARIS(Xy,...,X,) =

32

where Xi,...,X, are n independent samples from the trial distribution p. The following two
lemmas analyze the bias and the variance of the estimator.

Lemma 8.1. [f E(WSE(X)) =E (;‘jf(g) then

- COV U(Y)
E(ARIS(X,, ..., X,)) — sumn(f) = o -eov (1, 565) 40 (i)

In Appendix B we provide the proof of the lemma and specify the high order term in the O(1/n)
expression. This term depends, among other factors, on sum,(f), variance of u/w, and covariance
of f and u/w. We conclude from the lemma that if we use sufficiently many samples, then we are
likely to get an estimate of sumg(f), which has only additive bias that depends on the correlation
between f and u/w.

The next lemma shows that the variance of the estimator decreases to 0 as 1/n.

Lemma 8.2.
var(ARIS(X1,..., X)) = O(1/n).

In Appendix B we provide the proof of the lemma and specify the high order term in the O(1/n)
expression. This term depends on sum,(f), the bias of ARIS, the coefficients of variation of f - u
and u/w, and the coefficient of covariation of f - u and u/w.

8.2 The estimator for averages

We now apply the results of the previous section to design AvgEst — a search engine estimator for
averages.

Recall (Section 5.3) that our estimators sample query-document pairs from the set of edges of the
valid queries graph &y and that m is the extension of mp onto &. To employ the approximate
ratio importance sampling estimator described above, we need to come up with the weight skew
estimator whose expectation equals E(u(R,Y)/wave(R,Y)), where (R,Y) is distributed according
to 7. In our case u(X,y)/Wave(X,y) = Zrp, thus the multiplicative bias and the expected weight
skew equal Z,,. Observe that by Theorem 5.5, if we set f = 1, then u(Q, X) itself is an unbiased
estimator for Z., (the covariance term is 0 since f is a constant function).

We thus set WSE(Q, X) = u(Q, X) and define AvgEst as follows:

LY F(X) - u(Q, Xy)
% Z?:l U(Qz’ X’L) ’

where (Qq,X1),...,(Q,,X,) are n independent samples from the trial distribution p. Algorithm
12 is the implementation of AvgEst. Note that the PSE factor in u cancels out since it appears
in both the numerator and the denominator. Like in estimateSum, we cache all the query and
document requests made by the estimator.

AvgEst =

33

Algorithm 12 estimateAverage(n)

1: sumg, :=0

2: WSE :=0

3: for ¢ :=1ton do

(Q,X) := samplePair(V)

mp(X) := computeTargetMeasure(X)
degy (Q) := | getDocuments; (Q)]
IDE(X) := estimateInverseDegree (X)
u(Q,X) = 7p(X) - degy (Q) - IDE(X)
Sull,,, := sumy,, + computeTargetFunction(X) - u(Q, X)
100 WSE := WSE +u(Q, X)

11: return sum,, / WSE

8.3 Analysis

Proposition 8.3. The bias of AvgEst is O(1/n).

Proof. By Lemma 8.1, the bias of the estimator is at most

n

u(R,Y
Znp - COV (f(Y), 7wav(g(R,)Y)) 1
+0(—-]),
wavg(R,Y)
where (R,Y) oc 7. Recall that u(q,y)/wave(d,y) = Zrp - degy(y) - IDE(y). Since degy (Y) -

IDE(Y) is uncorrelated with f(Y), and since E(u(R,Y)/wavg(R,Y)) = Zr, is a constant, then

cov (f(Y), %) = 0. Hence, we get the proposition. O

Proposition 8.4. The costs of estimatedverage are equal to those of estimateSum (see Theorem

7.4).

Proof. estimateAverage differs from estimateSum only by the calculation of WSE, which does
not incur any additional costs. O

9 More efficient implementation of the estimators

In this section we use a cheaper procedure for computing importance weights, and show how to
apply Rao-Blackwellization to obtain more efficient versions of estimators for sums and averages:
EffSumEst and Eff AvgEst.

In the estimators proposed in the previous sections we used accurate but rather expensive pro-
cedures for calculating importance weights. One of the main bottlenecks was the estimation of
1/ degy (x), which required submitting several queries to the search engine per each sample from
the trial distribution. In the estimators we consider in this section, instead of using IDE(x) as an
estimate of 1/ degy (x), we use 1/ degp(x). To compute degp(x) we need a single document fetch

34

Notation | Meaning

Ueff The approximate importance weight function of the efficient
estimators for sums and averages.
EffSumEst | The efficient estimator for sums.
EffAvgEst | The efficient estimator for averages.
AIS"B The Rao-Blackwellized approximate importance sampling estimator.

Table 6: Notation used in Section 9.

and no search engine queries. Unfortunately, since degp(x) # degy (x), the resulting estimator is
biased. We analyze this bias and propose bias reduction techniques.

Recall that the importance weight function for SumEst is

mp(x) - [Pv| - degy (q)
degy (x)

wsum(q7 X) =

and the importance weight function for AvgEst is
mp(x) - [Py| - degy (a)
degy (x)

We use the same approximate importance weight function wueg for both the efficient estimator for
sums and the efficient estimator for averages:

mp(x) - PSE - degy ()
degp(x)
(Recall that PSE is the estimator for |Py| and that we assume PSE = [Py|.)

Wavg (Cb X) =

ueff((L X) =

We start with describing the efficient estimator for averages, and then derive from it the efficient
estimator for sums.

Since ueg is only an approximation of wsye, we resort to approximate importance sampling (see
Section 5.6). We now have to come up with a weight skew estimator. By Theorem 5.5 with f =1,

R,Y R,Y
Ueff())>+Z7rn‘COV<1, Ueﬁ()))7
Wavg (R, Y) D Wavg (R, Y)
where (Q,X) o p, (R,Y) o< 7". Note that since 77, is a distribution, sumzn (1) = Zz» = 1, and
that the covariance term is 0 since 1 is a constant function. Thus,

uet(R,Y))
wavg(R,Y))’

E(uer(Q, X)) = sumyn (1) - E <

E(uer(Q.X)) = E (3)

and ueg(Q, X) is the unbiased weight skew estimator we need.

EffAvgEst is then defined as follows:

i J(X3) - enr(Qy Xo)
% i uen(Qiy Xi)
where (Q,X1),...,(Q,,X,) are n independent samples from the trial distribution p.

EffAvgEst

35

Proposition 9.1. The bias of EffAvgEst is:

cov (f(Y),vdensity(Y)) 1
E (vdensity(Y)) 0 (n) ’

where Y o< mp.

Proof. The weight skew of the estimator is

Uert(d, X) degy (x) :
— = 7, - ———~% = Z. -vdensity(x).
wavg(q7 X) P degP(X) ? ()

Substituting into Lemma 8.1 we get the lemma (since 7% is a distribution, Znn = 1):

Znn - cov (f(Y), Zrp - vdensity(Y)) 1
E (Zr, - vdensity(Y)) © ()
1+ Zrpy - cov (f(Y), vdensity(Y)) Lo (1)
Zrp - E (vdensity(Y))

cov (f(Y), vdensity(Y)) 1
E (vdensity(Y)) +0 < >

O]

We conclude that as long as the target function is not correlated with validity density, the bias is
low.

9.1 Rao-Blackwellization

There is some inherent inefficiency in the importance sampling estimators: although each random
query they submit to the search engine returns many results, they use at most a single result
per query. All other results are discarded. The corpus size estimator of Broder et al. [10] uses
all query results, and not just one. We observe that what they did is an instance of the well-
known Rao-Blackwellization technique for reducing estimation variance. Thanks to the cheap
importance weight computation we propose in this section, we can apply Rao-Blackwellization on
our importance sampling estimators.

Recall that EffAvgEst repeatedly computes the basic approximate importance sampling estimator
ATS(Q, X) = f(X) - uer(Q, X), where (Q, X) is a sample from the trial distribution p and ueg(Q, X)
is its approximate importance weight. In order to obtain the sample (Q, X), we choose a random
query Q from Py and then pick a single random document X from documentsy (Q), discarding
other results. Suppose now that instead of using only this single document in the approximate
importance sampling estimator, we use all the query results:

ASUQ) = g Y) wa(Qu)

xEdocumentsy (Q)

36

Each instance of AIS™ is an average over several correlated instances of AIS. Mathematically,
ATIS®B(Q) is the conditional expectation of AIS(Q, X) given Q:

AIS™(Q) = E(AIS(Q,X) [Q).

The main point is that computing these correlated instances in bulk can be done with a single
search engine query. The Rao-Blackwell theorem implies that AIS*®(Q) can be only better than
AIS(Q, X) as an estimator for sumg,, (f):

Theorem 9.2. AIS®® has the same bias as AIS:

E(AIS™(Q)) = E(AIS(Q X)).

The variance of AIS™® can only be lower:

var(AIS™(Q)) = var(AIS(Q, X)) — E(var(AIS(Q, X)|Q)).
Proof. Follows immediately from the Rao-Blackwell theorem (cf. [11]). O

By the above theorem, the expected reduction in variance is E(var(f(X) - ug(Q, X))|Q), where Q
is a uniformly chosen query from Py and X is a uniformly chosen document from documentsy (Q).
That is, the more variable are the results of queries w.r.t. the target function f, the higher are
the chances that Rao-Blackwellization will help. The worst-case scenario is that all results of each
query are the same, in which case Rao-Blackwellization does not reduce basic estimation variance
at all. In our empirical study, however, we show that in practice Rao-Blackwellization can make a
dramatic effect. See Section 11.

The variance reduction achieved by Rao-Blackwellization can lead to lower costs, as fewer instances
of the estimator are needed in order to obtain a desired accuracy guarantee. On the other hand,
each instance of the estimator requires many more weight and function calculations (as many as
the number of results of the sampled query), and if these are very costly (as is the case with the
estimators SumEst and AvgEst), then the increase in cost per instance may outweigh the reduction
in the number of instances, eventually leading to higher amortized costs. We conclude that Rao-
Blackwellization should be used judiciously.

In our case, we expect query cost to be the main bottleneck, so using Rao-Blackwellization is
justified. We thus redefine EffAvgEst as follows:

% Z?:1 m erdocumentsV(Qi) J(x) - ue(Qy, x)

EffAvgEst = i o)
n Z?:l degy, (Q;) erdocumentsv (Q) ueﬁ(Qi? X)
where Qg, ..., Q,, are n uniform independent samples from Py . Algorithm 13 is the implementation

of EffAvgEst. Note that the PSE and the degy (Q;) factors in ueg cancel out and are thus not
computed. Like in estimateSum and estimateAverage, we cache all the query and document
requests made by the estimator.

We now analyze the query cost, the fetch cost, and the function cost of the estimator.

37

Algorithm 13 estimateAverageEfficiently(n)

1: sumg, :=0
2: WSE :=0
3: for i :=1ton do
(Q,X) := samplePair(V)
documentsy (Q) := getDocumentsy (Q)
for x € documentsy (Q) do
mp(x) := computeTargetMeasure(x)
degp(x) := getDegreep(x)
e (Q, %) 1= 7 (x), degp (x)
10: SU,, = sulmy, + computeTargetFunction(x) - ues(Q, X)
11: WSE := WSE +ue(Q, x)
12: return sumy, / WSE

Theorem 9.3.

P
E(qcost(estimatedverageEfficiently)) = n- ||7)|’
v
P
E(fetchcost(estimatedverageEfficiently)) = n- ||PV|’ -avg ep degg(q)-

E(funccost(estimatedverageEfficiently)) = n-avg,p, degy(q).
Proof. Search engine queries are submitted in the following functions of the estimator:

e samplePair(V)

e getDocumentsy (Q)

1|1h|e query costs of these procedures were analyzed in the proof of the Theorem 7.4 and they are
P

Pl and 0 respectively.

Documents are fetched in the following functions of the estimator:

e samplePair(V)

e getDocumentsy (Q)

e getDegreep(x)
The fetch costs of the first two procedures was analyzed in the proof of Theorem 7.4 and they are
|P|/IPy|-avg,ep degs(q) and 0, respectively. getDegreep(x) fetches a single document x. However,

since this document was necessarily already fetched by getDocuments; (Q), and since documents
are cached, the effective fetch cost of getDegreep(x) is 0.

It is easy to see that computeTargetFunction(x) is called exactly degy (Q) times per external
iteration of estimateAverageEfficiently. Since the sampled queries are distributed uniformly

38

in Py, the expected function cost of estimateAverageEfficiently is

1
E(funccost(estimateAverageEfficiently)) = nm Z degy(q) = n-avgyep, degy(q).
1%

q€Py
O

9.2 Adaptation to estimation of sums

We now reduce estimating sums to estimating averages, and thus obtain an efficient estimator for
sums, requiring one-time invocation of SumkEst in the preprocessing step.

Recall that the “efficient” importance weight function is defined as follows:
mp(x) - [Pv| - degy (q)
degp(x)

Similarly to the efficient estimator for averages, since uog is only an approximation of wgym, we
use approximate importance sampling. In order to do this, we have to come up with an unbiased

ueﬂ(qv X) =

weight skew estimator whose expectation equals E (%), where (R,Y) o 7",

Unfortunately, ues(Q, X) itself is not an unbiased weight skew estimator (as it was for the efficient
estimator for averages), since by Theorem 5.5 with f = 1 (the covariance term is 0 since f is a
constant function),

E(uei(Q, X)) = summ(l).E(W> _y, uer(R,Y)

B2 L)

wsum(Ra Y) " (wsum(Ra Y) >

where (Q,X) o« p and (R,Y) o 7". Note that sumy, (1) = Z;, is unknown. Suppose for the
moment Zr, s known and thus can be used in the estimator.

EffSumEst can then be defined as follows:
] % Z?:1 J(X5) - uer(Q;, Xi)
% S uem(Qy Xi)
where (Qq,X1),...,(Q,,X,) are n independent samples from the trial distribution p. Observe that

EffSumEst is equal to EffAvgEst up to the factor Z,. Therefore, we can reduce EffSumEst to
EffAvgEst as follows:

EffSumEst = Z,,

EffSumEst = Z., - EffAvgEst. (4)

Zr, can be estimated in a preprocessing step, e.g., by using SumEst with f = 1. The cost of
this one-time preprocessing can be amortized over multiple estimations that use the same target
measure.

Proposition 9.4. The bias of EffSumEst is

Zrp - cov (f(Y), vdensity(Y)) 1
E (vdensity(Y)) +0 <n> ’

where Y o< 7.

39

Proof. The weight skew of the estimator is

d
et (4, X) = gy (x) = vdensity(x).
wsum(Qa X) degp (X)
The lemma follows by substituting this into Lemma 8.1. O

The costs of the estimator are equivalent to those of estimateAverageEfficiently (see Theorem
9.3) up to the costs of estimating Z.,. Indeed, if an estimate of Z., is not available in advance,
estimateSumEfficiently is not more efficient than estimateSum. However, in many practical
situations, estimate of Zr, is available as a byproduct of another estimation, so that its cost for
estimateAverageEfficiently is zero.

10 Summary

This section compares the search engine estimators developed in this paper and previously proposed
search engine estimators based on their analytical bias and cost guarantees. We also outline con-
siderations in choosing the query pool in order to optimize the bias and the costs of the estimators.

10.1 Comparison of the estimators

Tables 7 and 8 summarize the bias and efficiency guarantees of the search engine estimators we
propose and of the previously proposed estimators®. Empirical analysis of the estimation variance
is given in the experimental results (Section 11).

In the tables, n is the number of samples generated by the estimator, X is a random document
distributed according to the trial distribution pp (defined in Section 7), and Y is a random document
distributed according to the target distribution 7.

Table 7 shows that SumEst has no bias at all, while the bias of AvgEst diminishes to 0 with the
number of iterations n performed by the estimator. EffSumEst and EffAvgEst may have higher
bias, depending on the correlation between the target function f and the expected validity density
of documents. The bias of the rejection sampling estimator from [5] is similar to that of Eff SumEst
and EffAvgEst, however it is much less efficient (see below). The bias of the estimator of Broder et
al. [10] is proportional to the expected validity density, regardless of whether it is correlated with
the target function. Since vdensity(x) < 1, this estimator typically underestimates the true corpus
size.

The costs of computing SumEst and AvgEst (see Table 8) are combinations of four components:
(1) The number of samples n generated in order to reduce estimation bias and/or variance; (2)
The ratio |P|/|Py| that quantifies the fraction of non-isolated queries in the query pool (queries

SFor simplicity, the costs of the rejection sampling estimator are given for the uniform target distribution. For
general results refer to [5]. Note that the queries-documents graphs in [5] do not contain overflowing queries, which
makes stating results from [5] in terms of the queries-documents graphs of this work slightly imprecise. The bias and
the costs of the estimator of Broder et al. [10] are based on our analysis of their estimator.

40

Estimator Objective Bias
SumEst sum 0
AvgEst average O(1/n)
v(f(Y),vdensity(Y)) 1
BtsunEst | o | 7y SIS o
EffAvgEst average Covg(%gii;?%)(w) +0 (%)
Rejection cov(f(Y),vdensity(Y))
sampling [5] average E(vdensity(Y))
Broder et al. | corpus size (sum .
0] F=n E(l) |D| - (E(vdensity(Y)) — 1)

Table 7: Worst-case guarantees on the bias of the search engine estimators, after n iterations.

Estimator Query Cost Fetch Cost Function Cost
Slil\?;]g: n <% +E (m)) n % avgqep degg(q) n
];jilﬁffSAufggZ? n % n % avgqep degg(q) | n - avgyep, degy (q)
Rejection . %#ﬁm avgep dogs() .
sampling [5] % . m E(vdensity(Y))
Br(();le; (;t;l.lglO} n- % n - % - avgep degs(q) 0

Table 8: Expected costs of n iterations of the search engine estimators.

that are incident to at least one edge); (3) The expected inverse document validity density; and
(4) The average degree of queries. The gap between the query cost of computing SumEst and
AvgEst and the query cost of computing Eff SumEst, Eff AvgEst, and the estimator of Broder et al.

isn-E (W), which in our experiments was the larger of the two terms that comprise the
query cost of computing SumEst and AvgEst. The query cost of the rejection sampling estimator is
higher by several additional multiplicative factors, which can add up to several orders of magnitude
as demonstrated in our experimental results (Section 11.1).

The fetch cost of all estimators except rejection sampling is roughly the same and depends on the
average degree of queries and on the fraction of non-isolated queries in the pool. The fetch cost of
the rejection sampling depends on the average degree of documents and on average validity density.

The function cost of computing Eff SumEst and EffAvgEst is higher than the function cost of other
estimators by a factor of average document degree (avgqepv degy (q)), since the former use all edges
incident to a query while the latter only one edge.

The tables demonstrate the superiority of SumEst and AvgEst in terms of bias and the advantage
of EffSumEst and EffAvgEst in terms of cost. The bias of EffSumEst and EffAvgEst estimators
remains low as long as the target function is not correlated with document validity density.

41

10.2 Considerations in choosing the query pool and the predicted queries graph

Recall (Section 6.4) that the valid queries graph (V') used by our estimators is an intersection of
the search queries graph (S) and the predicted queries graph (P). In order for these estimators to
be accurate and efficient, we need V' to be as close as a possible to S. Since the document corpus
(the right hand side of each of these graphs) and the edges of the search graph S are dependent on
the search engine, we do not have any control over their choice. We do have freedom in choosing
the query pool P (the left hand side of each of the above graphs) and the edges of the predicted
queries graph. We overview below considerations that should be taken into account when making
these choices.

Corpus coverage. As mentioned in Section 4.5, the estimator’s bias depends on the coverage of
D by V. In order to achieve high coverage by V, we need: (a) to achieve high coverage of D by S;
and (b) make sure that V' contains enough edges from S, so that the coverage of D by V is similar
to the coverage of D by S.

The coverage of D by S depends only on the choice of the query pool P. The pool must consist
of sufficiently many queries so that almost every document in D is actually returned by the search
engine on some query(s) in P. The main difficulty is in covering low PageRank documents that
are usually not returned on popular queries. To address such documents, the pool must consist of
many ”long-tail” queries that have few matching results (fewer than the result set size limit k). The
search engine is more likely to return low PageRank documents on such queries. We found phrase
queries, consisting of multiple terms, to be a good source of such long-tail queries. Another example
is “inurl:” queries, that return only pages whose URL matches query keywords. In our empirical
study, we used inurl queries of long numerical strings and conjunctions of two terms extracted from
Wikipedia and from the ODP corpus.

In order to make sure P has enough edges from S, we would like as many of the search queries
incident to each document x in D to be also incident to x in the predicted queries graph. If we
had access to the index of the search engine, we could have connected x in P to all the queries by
which x is indexed. Note that this set of queries is a superset of the queries that are incident to x
in S, because the latter are the queries on which the search engine returns x as one of the top k
results. As we do not have access to the index of the search engine, all we can do is try to mimic the
indexing process of the search engine. That is, we need to find the sources of queries by which the
document is indexed (e.g., the document’s URL, content, anchor text), to parse these sources into
tokens, to determine phrase boundaries, etc. In our empirical study we used only the document’s
URL as the source for predicted queries and we tried to mimic the tokenization techniques used by
major search engines.

Validity density. The query cost of computing SumEst and AvgEst depends on the document
validity density: the higher the expected validity density, the lower the query cost of computing
SumEst and AvgEst. Also the bias of EffSumEst and EffAvgEst depends on validity density: if
the validity density is high (i.e., close to 1, which is its upper bound), its variance is low, and
consequently also its correlation with any target function is low. Thus, high validity density is
beneficial for reducing the bias of Eff SumEst and EffAvgEst.

How do we promote high validity density? Recall (Section 6.3) that a major factor causing low

42

validity density is overflowing queries (queries on which not all matching documents are returned).
One way to dilute the effect of overflowing queries is to use many “long-tail” queries in the pool,
where each such query has a small number of matching documents, but collectively they cover
sufficiently many documents from the corpus.

Pool size. Recall that Py denotes the collection of queries in P having at least one incident
document in the valid queries graph. The query and the fetch costs increase as % decreases.
One should thus avoid pools including queries likely to return little or no results, such as pools

consisting of very long phrase queries or of conjunctive queries comprising of many unrelated terms.

Average query degree. The fetch and the function costs depend on the average degree of queries
in S and in V, respectively. We would thus like the average query degrees in these graphs to be as
low as possible. Of course, this may interfere with the coverage: if the average degree is too low,
more queries are needed to achieve sufficient coverage.

Result set size limit k. Higher k typically leads to higher variance of query degrees. This higher
variance, in turn, increases the variance of the importance weights and, consequently, the variance
of the importance sampling estimators. Thus, the amortized costs increase with k. On the other
hand, higher k£ means less queries overflow, thus increasing validity density. As described above,
higher validity density reduces the bias and the query cost of the estimators.

Remark. Note that the considerations described above do not imply that the query pool should
consist of queries “similar” to real user queries. In fact, the opposite is true: real queries are likely
to overflow, making the validity density low. Moreover, obtaining real user query logs may be
difficult. In our experiments with real search engines (Section 11.2) we found that a pool consisting
of synthetic queries of the form rarely submitted by human users results in estimators that have
high coverage and low cost.

11 Experimental results

We conducted two sets of experiments. In the first set we performed comparative evaluation of
the bias and amortized costs of our new estimators, of the rejection sampling estimator from our
previous paper [5], and of the Broder et al. estimator [10]. To this end, we ran all these estimators
on a local search engine that we built over 2.4 million English documents crawled from ODP [14]
hierarchy. Although compared to the web the ODP corpus is very small, we know the ground truth
about it and thus can accurately evaluate the bias and the costs of our algorithms.

To demonstrate that our estimators scale to the real-world search engines, was conducted the second
set of experiments over two major commercial search engines. We used SumkEst to estimate the
corpus size of each the search engines, with and without duplicate elimination. (More accurately,
we estimated the sizes of large subsets of the search engine corpora.). We then used AvgEst to
estimate the index freshness, the fraction of pages containing advertisements, and the distribution
of web server types.

43

11.1 Evaluation experiments

Experimental setup. We used the same local search engine as in our previous paper [5]. The
corpus of this search engine consists of 2.4 million English-language text, HI'ML, and pdf documents
from the ODP hierarchy. Each document was given a serial id and indexed by single terms and
phrases. Only the first 10,000 terms in each document were considered. Exact phrases were not
allowed to cross boundaries, such as paragraph boundaries. We used static ranking by serial id to
rank query results.

In order to construct a query pool for the evaluation experiments, we split the ODP data set
into two parts: a training set, consisting of every fifth page (when ordered by id), and a test set,
consisting of the rest of the pages. We used the training set to create a pool of 43 million exact
phrase queries of length 4. The measurements were done only on the test set.

We compared the following 6 estimator configurations: (1) SumEst; (2) EffSumEst; (3) AvgEst; (4)
EffAvgEst; (5) the Broder et al. estimator; (6) the rejection sampling estimator from our previous

paper.

We used the estimators to measure two metrics: (1) corpus size (i.e., the size of the test set); (2)
density of pages in the test set about sports (we used a simple keyword based classifier to determine
whether a page is about sports or not). Note that corpus size is a sum metric, while the density of
sports pages is an average metric. We did not use the rejection sampling estimator for estimating
corpus size, as it can handle only average metrics. We did not use the Broder et al. estimator for
estimating the density of sports pages, because it can handle only sum metrics.

In order to have a common baseline, we allowed each estimator to sample exactly 1 million non-
underflowing queries (queries having at least one result) from the pool. Each estimator submitted
these queries to the local search engine and computed its estimate. Some estimator used additional
search engine requests for estimating document degrees.

We ran each experiment four times, with different values of the result set size limit k (k =
5,20,100,200). This was done in order to track the dependence of the estimator bias on the
validity density (the lower is k, the higher this density is expected to be), and the dependence of
the estimator cost on the result set sizes (which increase with k).

For each produced estimate, we measured relative bias and amortized query cost’ as follows. Let F
be the estimation result and let I be the true value of the parameter being estimated. The relative
bias is |E — I|/I. The amortized query cost of an estimator M is qcost(M) - Tz 8:/[/[)) (see Section 4.2).
We used the total number of queries made by the estimator during its execution as an estimate
of qcost(M). The measured empirical variance of M was used as an estimate of var(M), and M’s

output was used as an estimate of E(M).

Results.

Figure 5(a) compares the relative bias of SumEst and the estimator of Broder et al. when measuring

"We focus on query cost since in practice, search engine queries are the most expensive resource because search
engines pose rate limits on the queries they accept from a user. Fetch cost is distributed among multiple web servers,
and function cost depends on the function being estimated and is typically limited by computational resources of the
one performing the estimation.

44

70% 60%
O SumEst mAvgEst
60% 1 50% A -
Broderetal. EffAvgEst
) 50% 9 . . .
o » 40% 1| B Rejection sampling
< ©
O 40% A s
g © 30%
S 300 3
o <
o D 20%
20% 1 o
10% 1 §§§§ 10% 1
ooh oo |
5 20 100 5 20 100 200
Resultsetsize limit (k) Resultsetsize limit (k)
(a) Corpus size. (b) Density of sports pages.

Figure 5: Relative bias of the estimators.

corpus size. Note that when estimating corpus size, EffSumEst is equivalent to SumEst: in Equation
4, since f(x) = 1 for each x, EffAvgEst returns 1, while Z, is computed by invoking SumEst.
Therefore, results of Eff SumEst are omitted from Figure 5(a). Figure 5(b) compares the relative
bias of our two estimators and the rejection sampling estimator when measuring density of sports

pages.

The results for the corpus size clearly show that our estimator has no bias at all, while the estimator
of Broder et al. suffers from significant bias, which grows with the density of overflowing queries
in the pool. For example, for k = 5, the relative bias of the Broder et al. estimator is about 60%,
while the relative bias of our estimators below 1%.

The results for the density of sports pages show that AvgEst is practically unbiased, as expected.
EffAvgEst has small bias, which emanates from a weak correlation between the function value and
the validity density. The rejection sampling method has a large observed bias, primarily because
it produced a small number of uniform samples and thus its variance is still high.

Figures 6(a) and 6(b) compare the amortized query costs of our estimators, and demonstrate the
effect of Rao-Blackwellization on the query cost of the efficient estimators. The cost of the estimator
of Broder et al. is the same as the cost of EffSumEst with Rao-Blackwellization. The amortized
query costs of the rejection sampling estimator were 5600, 14100, 80200, 84700 for £ = 5, 20, 100,
200 respectively. They are omitted from Figure 6(b) as they are significantly higher than the costs
of the other estimators and would distort the plot. The cost of EffSumEst does not include the
cost of the preprocessing step.

The amortized query cost increases with k due to increasing variance of query degrees (see Section
10.2). The results clearly indicate that Rao-Blackwellization is effective in reducing estimation
variance (and therefore also amortized cost) in all estimators. For example, in the estimation of
the density of sports pages, when k = 200, Rao-Blackwellization reduced the amortized query
cost of EffAvgEst by 80%. Furthermore, the amortized cost of the rejection sampling estimator is
tremendously higher than the amortized cost of our new estimators (even the non-Rao-Blackwellized

45

300 1000
mSumEst 900 1 mAvgEst
250
7 B EffSumEstwithout RB o 5 B EffAvgEstwithoutRB
@ 700
S 200 1 9 i
é‘ BEffSumEstwith RB, Broderet al. g‘ 600 8 EffAvgEstwith RB
L 150 L s00
-g 3 400 1
gloo g 300
£ €
o © 200
U= k. ks [FE ']
5 20 100 200 5 20 100 200
Resultsetsize limit (k) Resultsetsize limit (k)
(a) Sum metric. (b) Average metric.

Figure 6: Amortized query cost of the estimators.

ones). For example, when k = 100, Rao-Blackwellized EffAvgEst was 1,500 times more efficient
than rejection sampling]!

11.2 Experiments on real search engines

Experimental setup. The experiments on real search engines were conducted in July 2009. We
created a query pool based on guidelines described in Section 10.2. Unlike our previous works [5, 3],
where we used phrase queries, here we used inurl queries (i.e., "inurl:<term>") of single terms
and two-term conjunctions. Inurl queries return only pages whose URL contains the query terms.
This is different from regular queries which return pages based on matching content, URL, anchor
text, etc. The main advantage of the pool of inurl queries over the pool we have used before is that
it covers more types of documents (images, flash, etc.) and non-English documents. Note that this
pool too is not guaranteed to cover 100% of all the pages in the corpus. For example, pages whose
URLs consist only of non-English terms are less likely to be covered.

To obtain comprehensive pool of queries, covering as many documents in search engine corpora
as possible, we generated 2.37 billion queries from the following sources: (1) 1.11 billion decimal
strings of 5 to 9 digits, (2) 7.26 million single terms extracted from snapshots of the English parts of
the Wikipedia site and of the ODP directory®, (3) 10.7 million single terms extracted from the list
of URLs in the ODP directory, (4) 1.25 billion two-term conjunctions of the 50,000 most frequent
single terms (excluding the 100 most frequent ones) from (2) and (3).

To further increase corpus coverage we disabled the standard result filtering performed by the
engines (duplicate filtering and host collapsing) by adding suitable arguments to the requests we
sent to the search engines.

Corpus size. We used our most accurate sampler, SumEst, to estimate the corpus sizes of two

8We further removed all terms containing non-ASCII characters. Despite that, the extracted terms still contained
a small fraction of non-English words

46

major search engines. For reference, we also ran the Broder et al. estimator with the same query
pool. In addition to the corpus measurement with result filtering disabled, we performed additional
measurements with both duplicate filtering and host collapsing enabled, which is the default setting
for regular web search. The results and their standard deviations are plotted in Figure 7.

We note that our estimates may underestimate the true corpus sizes of the search engines since
they effectively measure the sizes of only subsets of the corpora—the indexed pages that match at
least one query from the pool.

The results show that the degree mismatch problem affects the Broder et al. estimator also on live
search engines. Its estimate of the corpus size of the first search engine was 3.8 times lower than
our estimate, and its estimate of the corpus size of the second search engine was 3.5 times lower
than our estimate.

Finally, the experiments reveal that duplicate filtering and host collapsing make about half of the
corpora “invisible” for the queries in our pool.

35 — 8%
B No filtering
o 301 SBroderetal, no filtering 9 %7
e :
v] ER wDefaultfiltering g 6% 1
3’(/? e ho] o e
Q= o I 5% el
O O 20 A e . [} S
o= ey | E 4% - --§
RS i ﬁ'ﬁ 2 o B2
2 i E g 3% G i
o 10 4 0000 ..::q o e ..:..:.:.q
< % H i g 2% i e
s{ EN ;;;§ 100 |
._:_x:. e
o LB N - e SR
SE1 SE2 SE1 SE2

Figure 7: Corpus sizes of two major search Figure 8: Percentage of inaccessible pages.
engines, with and without host collapsing and
elimination of duplicates.

Corpus freshness. We used AvgEst to estimate the percentage of dead pages (ones returning
a 4xx HTTP return code) in the full corpora (with both duplicate filtering and host collapsing
disabled). The results and their standard deviations are plotted in Figure 8. Observe that both
corpora have a comparable, yet non-negligible, fraction of inaccessible pages.

Ads. We used AvgEst to estimate the fraction of the indexed pages containing at least one ad.
We used a simple ad detection heuristic that checked whether the page contains a string of the form
"http://..." (including quotes) containing one of the following substrings: googlesyndication,
googlesyndication, googleadservices, doubleclick, adsense, omniture, atdmt, aolcdn,
eiv.baidu.com, ma.baidu.com, /spcjs.php?, /ck.php?, adserver.yahoo.com, adsfac.net,
ad.yieldmanager.com, adbureau.net, ads.revsci.net, blogads, or one of the regular expres-
sions /ads\W, /ad\W. The results and their standard deviations are plotted in Figure 9. The results
indicate that more than 30% of the indexed pages contains at least one ad.

47

45% 80% 11 BApache
40% 70% - Microsoft-11S
B 2 m Others ﬁk
0 9 "
f_—s S ?E?J.'E.ﬁ.‘ ” 60% 1 iz
= 30(y- o o :
z U [R % 50% fEE
o 25% - [i Q fEE
% P o "'6 40% 1 i
o 20% 1 R i s fEE
5 e S o 30% :
S 15% P G o i
Sl | . g o
() e o - o e J2 2
QO 5% - B H 10% 1 :
e o o o ez]
0% B . - 0% e
SE1 SE2 SE1

Figure 9: Percentage of pages containing ads. Figure 10: Distribution of web server types
hosting the indexed pages.

Web server types. Finally, we used AvgEst to estimate the distribution of web server types
hosting the indexed pages. We used the “Server” attribute of the http response to determine the
server type. The results and their standard deviations are plotted in Figure 10. Apache-based
servers clearly host the majority of the indexed pages while Microsoft-IIS is a distant second.
Other server types are below the error margin of our measurements and are thus aggregated under
category “Others”.

12 Conclusions

In this paper we presented two new estimators for aggregate function over search engine corpora that
can be expressed as discrete integrals. Our estimators are able to overcome the “degree mismatch”
problem and thereby be accurate and efficient at the same time. We show both analytically and
empirically that our estimators beat recently proposed estimators [5, 10].

In designing our estimators we employ a combination of statistical tools, like importance sampling
and Rao-Blackwellization. By carefully analyzing the effect of approximate weights on the bias of
importance sampling, we were able to design procedures to mitigate the bias. This bias-elimination
technique for approximate importance sampling may be applicable in other scenarios as well.

An interesting open problem remains the coverage of search engine corpora. For our algorithms
to be accurate, the query pool they use has to contain enough queries so that each document in a
corpus is returned as one of the results on at least one of these queries. In our experimental study
we built our pool by crawling and parsing a large collection of documents. While this approach
worked well in practice, it is hard to guarantee high coverage of an arbitrary corpus by such a pool.
It remains an interesting open problem to come up with an efficient technique for generating query
pools that provide high coverage of arbitrary corpora and for measuring the coverage of a given
pool.

48

References

1]

[2]

[10]

[11]

[12]

A. Anagnostopoulos, A. Z. Broder, and D. Carmel. Sampling search-engine results. World
Wide Web, 9(4):397-429, 2006.

Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and D. Weitz. Approximating aggregate
queries about Web pages via random walks. In Proc. 26th VLDB, pages 535-544, 2000.

7. Bar-Yossef and M. Gurevich. Efficient search engine measurements. In Proceedings of the
16th International World Wide Web Conference (WWW), pages 401-410, New York, NY,
USA, 2007. ACM.

Z. Bar-Yossef and M. Gurevich. Mining search engine query logs via suggestion sampling.
PVLDB, 1(1):54-65, 2008.

Z. Bar-Yossef and M. Gurevich. Random sampling from a search engine’s index. J. ACM,
55(5):1-74, 2008.

7. Bar-Yossef and M. Gurevich. Estimating the impressionrank of web pages. In WWW “09:
Proceedings of the 18th international conference on World wide web, pages 41-50, New York,
NY, USA, 2009. ACM.

E. Baykan, M. R. Henzinger, S. F. Keller, S. D. Castelberg, and M. Kinzler. A comparison of
techniques for sampling web pages. In STACS, pages 13-30, 2009.

K. Bharat and A. Broder. A technique for measuring the relative size and overlap of public
Web search engines. In Proc. 7th WWW, pages 379-388, New York, NY, USA, 1998. ACM.

E. T. Bradlow and D. C. Schmittlein. The little engines that could: Modeling the performance
of World Wide Web search engines. Marketing Science, 19:43-62, 2000.

A. Broder, M. Fontoura, V. Josifovski, R. Kumar, R. Motwani, S. Nabar, R. Panigrahy,
A. Tomkins, and Y. Xu. Estimating corpus size via queries. In Proc. 15th CIKM, pages
594-603, New York, NY, USA, 2006. ACM.

G. Casella and C. P. Robert. Rao-Blackwellisation of sampling schemes. Biometrika, 83(1):81—
94, 1996.

M. Cheney and M. Perry. A comparison of the size of the Yahoo! and Google in-
dices. Available at http://www.mostpopularsites.net/MPS_News/Search_Engine_Facts/
A_Comparison_of_the_Size_of_the_Yahoo!_and_Google_Indices, 2005.

A. Dasgupta, G. Das, and H. Mannila. A random walk approach to sampling hidden databases.
In SIGMOD °07: Proceedings of the 2007 ACM SIGMOD international conference on Man-
agement of data, pages 629-640, New York, NY, USA, 2007. ACM.

dmoz. The open directory project. http://dmoz.org.

A. Dobra and S. E. Fienberg. How large is the worldwide web? In Web Dynamics, pages
23-44. 2004.

49

[16]

[17]

[18]

[19]

[20]

[21]
22]
[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

O. Goldreich. A sample of samplers - a computational perspective on sampling (survey).
Electronic Colloguium on Computational Complezity (ECCC), 4(20), 1997.

A. Gulli and A. Signorini. The indexable Web is more than 11.5 billion pages. In Proc. 14th
WWW, pages 902-903, 2005.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97-109, 1970.

M. R. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. Measuring index quality
using random walks on the Web. In Proc. 8th WWW, pages 213-225, 1999.

M. R. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. On near-uniform URL
sampling. In Proc. 9th WWW, pages 295-308, 2000.

T. C. Hesterberg. Advances in Importance Sampling. PhD thesis, Stanford University, 1988.
S. Lawrence and C. L. Giles. Searching the World Wide Web. Science, 5360(280):98, 1998.

S. Lawrence and C. L. Giles. Accessibility of information on the Web. Nature, 400:107-109,
1999.

S.-M. Lee and A. Chao. Estimating population size via sample coverage for closed capture-
recapture models. Biometrics, 50(1):88-97, 1994.

J. S. Liu. Metropolized independent sampling with comparisons to rejection sampling and
importance sampling. Statistics and Computing, 6:113-119, 1996.

J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2001.

A. W. Marshall. The use of multi-stage sampling schemes in Monte Carlo computations. In
Symposium on Monte Carlo Methods, pages 123-140, 1956.

K. McCurley. Income inequality in the attention economy. http://mccurley.org/papers/
effective, 2007.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of state
calculations by fast computing machines. J. of Chemical Physics, 21:1087-1091, 1953.

P. Rusmevichientong, D. Pennock, S. Lawrence, and C. L. Giles. Methods for sampling pages
uniformly from the World Wide Web. In Proc. AAAI Symp. on Using Uncertainty within
Computation, 2001.

D. Siegmund. Sequential Analysis - Tests and Confidence Intervals. Springer-Verlag, 1985.

A. Stuart and J. K. Ord. Kendall’s advanced theory of statistics. Vol.1: Distribution theory.
London: Hodder Arnold, 1994.

J. von Neumann. Various techniques used in connection with random digits. In John von
Neumann, Collected Works, volume V. Oxford, 1963.

50

A Search engine importance sampling estimation

Importance sampling with approximate degrees

Theorem 5.5 (restated)

BAIS(0) = sune(f)E (2] “)

w(Y) w(Y)

where X is distributed according to the trial distribution p, Y is distributed according to the target
distribution ©", and Z is the normalization constant of .

) + Zy - cov <f(Y),

Proof. Since supp(u) C supp(w),

E(AIS(X)) = E(f(X)-u(X))

B Importance sampling estimator for averages

Approximate importance sampling

Below we define the ratio estimator and show that its bias and variance decrease to 0 as 1/n.

o1

Definition B.1 (Ratio estimator). Suppose M and N are two estimators such that E((]\A/{)) =1. Let
M,...,M, and Ny,..., N, be n independent instances of M and N, respectively. Define M, =
LS M; and N,, £ 157" | N;. Then,

RE, =

7=

s a ratio estimator of order n induced by M and N.

Theorem B.2. Assume that M and N have finite variance and that N, > 0. Then, the bias of

RE,, is:
E(RE,) - = - <I- ?Ea;((]\]\]])) + COI‘FQ%M

n

> +o(1/n).

Proof. We use the Delta method in statistics (see, e.g., [32], section 10.5, pages 350,371) to approx-
imate E(RE,).

cov(M,, N,,)
E*(Nn)
Since E(M,,) = E(M), E(N,,) = E(N), and cov(M,,N,,) = cov(M, N)/n, we simplify it as follows:

() = 1o (8-S o

+o(1/n).

O

Note that the bias decreases to 0 as 1/n, and depends on the coefficient of variation of N (the
standard deviation of N divided by its expectation) as well as on the correlation between M and
N. If N has low variance and M and N have low correlation (e.g., if they are independent), then
few instances will be needed in order to make the bias small.

The next theorem quantifies the variance of the ratio estimator.
Theorem B.3. Assume that M and N have finite variance and that N,, > 0. Then, the variance

of RE,, is:
var _p. L var(M) | var(N) = 2cov(M, N)
(REq) = I7- <E2(M) + =0~ EGDED

) +o(1/n).

Proof. Here too, we use the Delta method in statistics (see, e.g., [32], section 10.5, pages 350-351)
to approximate var(RE,,).

E(Mn)>2<var(1\/[n) var(N,,) 2cov(1;/I

var(RE,) = <E(Nn) EQ(MH) E2(Nn) E(M

<) + ot/

E(N»)

which is further simplified as follows:
var(M) var(N) 2cov(M, N))

+ - +o(1/n).
200 T BN EenEN)) Y

1
var(RE,) = I% - — - (
n

52

Similarly to the bias, the variance decreases to 0 as 1/n. It can be seen that the variance depends
on the coefficients of variation of M and N and on their coefficient of covariation.

Lemma 8.1 (restated) IfE(WSE(X)) =E (;EQ), then
E(ARIS(Xy,...,X,)) —sumz(f)

B 1 <um . var(WSE(X)) cov(AIS(X), WSE(X)) o(1/n
=0 g <(() +0) E*(WSE(X)) E*(WSE(X))) olt/n).
where
o Zx - COV (f(Y), ZE%)
N E (u(Y))
w(Y)
Proof. From Theorem B.2,
E(ARIS(Xy,...,X,)) — m
1 (E(AIS(X)) var(WSE(X)) COV(AIS(X),WSE(X))) + o(1/n)
n \E(WSE(X)) E?(WSE(X)) E2(WSE(X)) '
The lemma follows by substituting Equation 2
BAISCO) _ o Do (S, i)
E(WSE(X)) " 2 (20)
into the above expression. O

Lemma 8.2 (restated) Let C be the highest order term of the bias of the ARIS estimator:
_ u(Y)
Zq - COV (f(Y)’w(Y)>

C:

Then,
var(ARIS(X3,..., X))
1
= — (sumy (f) + C)?

_ (Var(AIS(X)) var(WSE(X)) 2cov(AIS(X), WSE(X))
E2(AIS(X)) E?(WSE(X)) E(AIS(X)) E(WSE(X))

> +o(1/n).

Proof. By Theorem B.3,

var(ARIS(Xy,...,X,))
E2(AIS(X)) 1 (Var(AIS(X)) var(WSE(X)) 2(:0V(AIS(X),WSE(X))>

E2(WSE(X)) E2(AIS(X)) * E2(WSE(X)) E(AIS(X)) - E(WSE(X))
+o(1/n).
The lemma follows by substituting % from Equation 2. O

53

