
Local Approximation of PageRank and Reverse PageRank ∗

Ziv Bar-Yossef
Department of Electrical Engineering

Technion, Haifa, Israel
and

Google Haifa Engineering Center, Haifa, Israel
zivby@ee.technion.ac.il

Li-Tal Mashiach
Department of Computer Science

Technion, Haifa, Israel
litalma@cs.technion.ac.il

ABSTRACT
We consider the problem of approximating the PageRank of a target
node using only local information provided by a link server. This
problem was originally studied by Chen, Gan, and Suel (CIKM
2004), who presented an algorithm for tackling it. We prove that
local approximation of PageRank, even to within modest approxi-
mation factors, is infeasible in the worst-case, as it requires probing
the link server for Ω(n) nodes, where n is the size of the graph. The
difficulty emanates from nodes of high in-degree and/or from slow
convergence of the PageRank random walk.

We show that when the graph has bounded in-degree and admits
fast PageRank convergence, then local PageRank approximation
can be done using a small number of queries. Unfortunately, natu-
ral graphs, such as the web graph, are abundant with high in-degree
nodes, making this algorithm (or any other local approximation
algorithm) too costly. On the other hand, reverse natural graphs
tend to have low in-degree while maintaining fast PageRank con-
vergence. It follows that calculating Reverse PageRank locally is
frequently more feasible than computing PageRank locally.

We demonstrate that Reverse PageRank is useful for several ap-
plications, including computation of hub scores for web pages,
finding influencers in social networks, obtaining good seeds for
crawling, and measurement of semantic relatedness between con-
cepts in a taxonomy.

Categories and Subject Descriptors: H.3.3: Information Search
and Retrieval.

General Terms: Algorithms.

Keywords: PageRank, reverse PageRank, lower bounds, local ap-
proximation.

1. INTRODUCTION
∗A short version of this paper is to appear as a poster at SIGIR 2008.
This work was supported by the European Commission Marie Curie Inter-
national Re-integration Grant, by the Israel Science Foundation and by IBM
faculty award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

Over the past decade PageRank [27] has become one of the most
popular methods for ranking nodes by their “prominence” in a net-
work.1 PageRank’s underlying idea is simple but powerful: a promi-
nent node is one that is “supported” (linked to) by other prominent
nodes. PageRank was originally introduced as means for rank-
ing web pages in search results. Since then it has found uses in
many other domains, such as measuring centrality in social net-
works [20], evaluating the importance of scientific publications,
prioritizing pages in a crawler’s frontier [10], personalizing search
results [8], combating spam [17], measuring trust, selecting pages
for indexing, and more. While the significance of PageRank in
ranking search results seems to have diminished, due to the emer-
gence of other effective alternatives (e.g., clickthrough-based mea-
sures), it is still an important tool in search infrastructure, social
networks, and analysis of large graphs.

Local PageRank approximation. The vast majority of algorithms
for computing PageRank, whether they are centralized, parallel, or
decentralized, have focused on global computation of the PageR-
ank vector. That is, PageRank scores for all the graph’s nodes are
computed. While in many applications of PageRank a global com-
putation is needed, there are situations in which one is interested in
computing PageRank scores for just a small subset of the nodes.

Consider, for instance, a web site owner (e.g, a small or a large
business), who would like to promote the web site in search engine
rankings in order to attract traffic of potential clients. As PageR-
ank is used by search engines to determine whether to crawl/index
pages and to calculate their relevance scores, tracking the PageR-
ank of the web site would enable the web site owner to better un-
derstand its position in search engine rankings and potentially take
actions to improve the web site’s PageRank. In this case, the web
site owner is interested only in the PageRank score of his own web
site (and maybe also in the scores of his competitors’ web sites),
but not in the PageRank scores of all other web pages.

Major search engines choose to keep the PageRank scores of web
pages confidential, since there are many variations of the PageRank
formula, and making the exact PageRank values public may enable
spammers to promote illegitimate web sites. Some search engines
publish crude PageRank values (e.g., through the Google Toolbar),
but these are usually given in a 1 to 10 logarithmic scale. Users who
wish to obtain more accurate PageRank scores for pages of their
choice are left to compute them on their own. Global PageRank
computation for the entire web graph is out of the question for most
users, as it requires significant resources and knowhow. This brings
up the following natural question: can one compute the PageRank
score of a single web page using reasonable resources?

1According to Google Scholar (http://scholar.google.com), as of April 2008
the PageRank paper has 1,973 citations.

The same question arises in other contexts, where PageRank is
used. For example, a Facebook2 user may be interested in measur-
ing her PageRank popularity by probing the friendship graph. Can
this be done efficiently without traversing the whole network?

Chen et al. [9] were the first to introduce the problem of local
PageRank approximation. Suppose we have an access to a large
graph G through a link server3, which for every given query node
x, returns incoming and outgoing edges incident to x.4 Can we
use a small number of queries to the link server to approximate the
PageRank score of a target node x with high precision?

Chen et al. proposed an algorithm for solving this problem. Their
algorithm crawls backwards a small subgraph around the target
node, applies various heuristics to guess the PageRank scores of
the nodes at the boundary of this subgraph, and then computes the
PageRank of the target node within this subgraph. Chen et al. em-
pirically showed this algorithm to provide good approximations on
average. However, they noted that high in-degree nodes sometimes
make the algorithm either very expensive or inaccurate.
Lower bounds. We study the limits of local PageRank approxi-
mation. We identify two factors that make local PageRank approx-
imation hard on certain graphs: (1) the existence of high in-degree
nodes; (2) slow convergence of the PageRank random walk.5

In order to demonstrate the effect of high in-degree nodes, we
exhibit for every n a family of graphs of size n whose maximum
in-degree is high (Ω(n)) and on which any algorithm would need
to send Ω(

√
n) queries to the link server in order to obtain accurate

PageRank approximations. For very large n, fetching
√

n pages
from the network or sending

√
n queries to a search engine is very

costly (for example, for the web graph n ≥ 10B, and thus
√

n ≥
128K). The lower bound we prove applies to both randomized and
deterministic algorithms. For deterministic algorithms, we are able
to prove an even stronger (and optimal) Ω(n) lower bound.

Similarly, to demonstrate the effect of slow PageRank conver-
gence, we present a family of graphs on which the PageRank ran-
dom walk converges rather slowly (in Ω(log n) steps) and on which
every algorithm needs to submit Ω(n

1
2−ε) queries in order to ob-

tain good PageRank approximations (ε > 0 is a small constant
that depends on the PageRank damping factor). Again, this lower
bound holds for both randomized and deterministic algorithms. For
deterministic algorithms, we show an optimal Ω(n) lower bound.

We note that the two lower bounds do not subsume each other,
as the family of hard graphs constructed in the first bound has very
fast PageRank convergence (2 iterations), while the family of hard
graphs constructed in the second bound has bounded in-degree (2).
Sufficiency. Having proved that local PageRank approximation
is hard for graphs that have high in-degree or do not admit quick
PageRank convergence, it is natural to ask whether local PageRank
approximation is feasible for graphs of bounded in-degree and on
which PageRank converges quickly. We observe that a variation
of the algorithm of Chen et al. works well for such graphs: if the
PageRank random walk converges on the graph in r steps and if the
maximum in-degree of the graph is d, then the algorithm crawls a
subgraph of size at most dr and thus requires at most this number
2http://www.facebook.com/.
3Also known as a remote connectivity server. See Bharat et al. [4].
4If G is the web graph, out-links can be extracted from the content of x
itself and in-links can be retrieved from search engines using the link:
query. As opposed to PageRank scores, in-links are information that search
engines are willing to disclose.
5The convergence rate of PageRank on a given graph is an intrinsic property
of the graph, not of the particular algorithm used to compute PageRank.
The convergence rate is governed by the difference between the first and
the second eigenvalues of PageRank’s transition matrix (see [19]).

of queries to the link server. When d and r are small, the algorithm
is efficient. This demonstrates that the conditions we showed to be
necessary for fast local PageRank approximation are also sufficient.

PageRank vs. Reverse PageRank. As natural graphs, like the
web graph and social networks, are abundant with high in-degree
nodes, our first lower bound suggests that local PageRank approx-
imation is frequently infeasible on such graphs. We substantiate
this observation with an empirical analysis of a 280,000 crawl of
the www.stanford.edu site. We show that locally approximat-
ing PageRank is especially difficult for the high PageRank nodes.
These findings provide analytical and empirical explanations for
the difficulties encountered by Chen et al.

We then demonstrate that reverse natural graphs (the graphs ob-
tained by reversing the directions of all links) are more suitable
for local PageRank approximation. By analyzing the stanford.
edu crawl, we show that the reverse web graph, like the web graph,
admits quick PageRank convergence (on 80% nodes of the reverse
graph, PageRank converged within 20 iterations). We also show
that the reverse graph has low in-degree (only 255 as opposed to
38,606 in the regular graph). These findings hint that local PageR-
ank approximation should be feasible on the reverse graph.

To put this hypothesis to test, we measured the performance of
our variation of the Chen et al. algorithm on a sample of nodes from
the stanford.edu graph. We show that for highly ranked nodes
the performance of the algorithm on the reverse graph is up to three
times better than on the regular graph.

We conclude from the above that the reverse web graph is much
more amenable to efficient local PageRank approximation than the
regular web graph. Thus, computing Reverse PageRank (PageRank
of the reverse graph; “RPR” in short) is more feasible to do locally
than computing regular PageRank. Social networks and other nat-
ural graphs possess similar properties to the web graph (power law
degrees, high in-degree vs. low out-degree) and are thus expected
to exhibit similar behavior.

Applications of Reverse PageRank. While locally approximating
RPR is easier than locally approximating PageRank, why would
one want to compute RPR in the first place? We observe that
RPR has a multitude of applications: it has been used to select
good seeds for the TrustRank measure [17], to detect highly influ-
ential nodes in social networks [20], and to find hubs in the web
graph [15]. We present two additional novel applications of RPR:
(1) finding good seeds for crawling; and (2) measuring the “seman-
tic relatedness” of concepts in a taxonomy. In three of the above
applications of RPR, local computation is useful: in estimating the
influence score of a given node in a social network, in computing
the hub score of a given page on the web, and in measuring the
semantic relatedness of two given given concepts.

2. RELATED WORK
There is a large body of work on PageRank computation, varying

from centralized algorithms (e.g., [22, 5]), to parallel algorithms
(e.g., [24, 23]), to decentralized P2P algorithms (e.g., [34, 28]).
All of these are designed to compute the whole PageRank vector
and are thus not directly applicable to our problem. See a survey
by Berkhin [3] for an extensive review of PageRank computation
techniques.

Apart from Chen et al., also Davis and Dhillon [12] and Wu [35]
consider computations of global PageRank values over subgraphs.
These two works, however, do not rely on a link server and thus
work in a different model than what we consider in this paper.

3. PRELIMINARIES
PageRank overview. Let G = (V, E) be a directed graph on n
nodes. Let M be the n × n probability transition matrix of the
simple random walk on G:

M(u, v) =

{
1

outdeg(u)
, if u → v is an edge,

0, otherwise.

Let U be the probability transition matrix of the uniform random
walk, in which at each step a node is chosen uniformly at random
independently of the history: U(u, v) = 1

n
.

Given a damping factor 0 ≤ α ≤ 1, PageRank [27] (denoted
PRG(·)) is defined as the limit distribution of the random walk in-
duced by the following convex combination of M and U:

P = αM + (1− α)U.

α = 0.85 is a typical choice, and we use it in our experiments.
Personalized PageRank [18, 21] is a popular generalization of PageR-
ank, in which the uniform distribution in U is replaced by a differ-
ent, “personalized”, distribution. Everything we do in this paper
can be rather easily generalized to the personalized case. For sim-
plicity of exposition we choose to stick to the uniform case.
Local PageRank approximation. A local algorithm working on
an input graph G is given access to G only through a “link server”.
Given an id of a node u ∈ V , the server returns the IDs of u’s
neighbors in G (both in-neighbors and out-neighbors).

DEFINITION 1. An algorithm is said to locally approximate PageR-
ank, if for any graph G = (V, E), for which it has local access, any
target node u ∈ V , and any error parameter ε > 0, the algorithm
outputs a value PR(u) satisfying:

(1− ε)PRG(u) ≤ PR(u) ≤ (1 + ε)PRG(u).

If the algorithm is randomized, it is required to output, for any
inputs G, u, ε, a 1 ± ε approximation of PRG(u) with probability
at least 1 − δ, where 0 < δ < 1 is the algorithm’s confidence
parameter. The probability is over the algorithm’s internal coin
tosses.

We measure the performance of such algorithms in terms of their
query cost, which is the number of queries they send to the link
server for the worst-case choice of graph G and target node u. Typ-
ically, the actual resources used by these algorithms (time, space,
bandwidth) are proportional to their query cost. We will view poly-
logarithmic cost (O(logO(1)(n)) as feasible and polynomial cost
(Ω(n1−ε) for some ε > 0) as infeasible.
PageRank and influence. Jeh and Widom [21] provide a useful
characterization of PageRank in term of the notion of “influence”.
We present a different variation of influence, which divides the in-
fluence of a node into layers. This will make the analysis easier.

The influence [9] of a node v ∈ G on the PageRank of u ∈ G is
the fraction of the PageRank score of v that flows into u, excluding
the effect of decay due to the damping factor α:

DEFINITION 2. For a path p = (u0, u1, . . . , ut), define

weight(p) =

t−1∏
i=0

1

outdeg(ui)
.

Let pathst(v, u) be the set of all paths of length t from v to u. The
influence of v on u at radius t is:

inft(v, u) =
∑

p∈pathst(v,u)

weight(p).

(For t = 0, we define inf0(u, u) = 1 and inf0(v, u) = 0, for all
v 6= u.) The total influence of v on u is:

inf(v, u) =

∞∑
t=0

inft(v, u).

Note that the same node v may have influence on u at several differ-
ent radii. Using influence, we define the PageRank value of u at ra-
dius r to be: PRG

r (u) = 1−α
n

∑r
t=0

∑
v∈G αt inft(v, u). PRG

r (u)
represents the cumulative PageRank score that flows into u from
nodes at distance at most r from u. We show below a characteriza-
tion of PageRank in terms of influence, which is similar to the one
appearing in the work of Jeh and Widom [21].

THEOREM 3. For every node u ∈ G, PRG(u) = limr→∞ PRG
r (u).

PROOF. First, let us express PR as a power series in terms of P
and M:

LEMMA 4. For every r ≥ 1,

PRG
r−1(u) = Pr(1, u)− αrMr(1, u).

The proof of the lemma can be found in the full version of the
paper6. Assuming the correctness of the lemma:

lim
r→∞

PRG
r (u) = lim

r→∞
(Pr+1(1, u)− αr+1Mr+1(1, u))

= lim
r→∞

Pr+1(1, u)− lim
r→∞

αr+1Mr+1(1, u).

As Mr+1 is a probability transition matrix, Mr+1(1, u) ≤ 1, and
thus αr+1Mr+1 < 1. Therefore, as r →∞, αr+1Mr+1(1, u) →
0. This means that: limr→∞ PRG

r (u) = limr→∞Pr+1(1, u).
Now Consider the initial distribution p0 = (1, 0, . . . , 0), and

let pr = p0P
r . Recall that limr→∞(pr) = PRG. In particular,

limr→∞(pr(u)) = PRG(u). As pr(u) = Pr(1, u), we conclude
that: limr→∞ PRG

r (u) = PRG(u).

Note that PRG
r (u) approaches PRG(u) from below. Throughout

this paper, we will use the following notion of influence conver-
gence rate, which is reminiscent of the standard mixing time [32]
of Markov Chains:

DEFINITION 5. For a graph G, a target node u, and an approx-
imation parameter ε > 0, define the pointwise influence mixing
time as:

Tε(G, u) = min{r ≥ 0 | PR
G(u)− PRG

r (u)

PRG(u)
< ε}.

The standard convergence rate of PageRank is defined as the rate
at which the rows of the matrix Pr approach the PageRank vector
as r → ∞. Lemma 4 implies that the difference from the above
notion of mixing time is at most O(log(1/ε)) and thus the two
notions are essentially equivalent. Therefore, for the rest of the
paper when we say that “the PageRank random walk converges in
r iterations on a node u”, we will actually mean that Tε(G, u) ≤ r.

4. LOWER BOUNDS
In this section we present four lower bounds on the query com-

plexity of local PageRank approximation, which demonstrate the
two major sources of hardness for this problem: high in-degrees
and slow PageRank convergence. The first two lower bounds (one
for randomized and another for deterministic algorithms) address
6Available at http://www.ee.technion.ac.il/people/zivby/.

high in-degrees, while the other two address slow PageRank con-
vergence. For lack of space, we provide a proof of only the first
lower bound. The other proofs appear in the full draft of this paper.

High in degree. The first two lower bounds demonstrate that
graphs with high in-degree can be hard for local PageRank approx-
imation. The hard instances constructed in the proofs are 3-level
“tree-like” graphs with very high branching factors.7 Thus, PageR-
ank converges very quickly on these graphs (in merely 2 iterations),
yet local PageRank approximation requires lots of queries, due to
the high degrees. The first lower bound (Ω(

√
n)) holds for any al-

gorithm, even randomized ones, and the second lower bound (an
optimal Ω(n)) holds for deterministic algorithms only.

THEOREM 6. Fix any α ∈ (0, 1), δ ∈ (0, 1), and ε ∈ (0, 1
2
).

Let A be an algorithm that locally approximates PageRank to within
relative error ε and confidence 1 − δ. Then, for every sufficiently
large n, there exists a graph G on at most n nodes and a node u ∈
G on which A uses Ω(

√
n) queries. Furthermore, the maximum

in-degree of G is Ω(
√

n), while PageRank converges in merely 2
iterations on G.

PROOF. We prove the lower bound by a reduction from the OR
problem. In the OR problem, an algorithm is given a vector x of m
bits (x1, . . . , xm), and is required to output the OR x1∨x2∨· · ·∨
xm. The algorithm has only “local access” to x, meaning that in
order to recover any bit xi, the algorithm must send a query to an
external server. The goal is to compute the OR with as few queries
to the server as possible. A simple sensitivity argument (cf. [6, 1])
shows that m(1 − 2δ) queries are needed for computing OR to
within confidence 1− δ.

We reduce the OR problem to local PageRank approximation as
follows. We assume n ≥ max{(1

α
+ 1)2 · (4

α
+ 1) + 1, 36

α
+ 10}.

Define m = b
√

n−1
4
α

+1
c and k = bn−1

m
c − 1. Note that by the

choice of n, m ≥ 1, k ≥ 1. Furthermore, m ≥ Ω(
√

n). Let S
be the maximum number of queries A uses on graphs of size ≤ n.
We will use A to construct an algorithm B that computes the OR
function on input vectors of length m using at most S queries. That
would imply S ≥ m(1− 2δ) = Ω(

√
n).

We map each input vector x = (x1, . . . , xm) into a graph Gx

on n′ = m(k + 1) + 1 nodes (see Figure 1). Note that n′ ≤ n
and therefore A uses at most S queries on Gx. Gx contains a
tree of depth 2, whose root is u . The tree has one node at level 0
(namely, u), m nodes at level 1 (v1, . . . , vm), and mk nodes at level
2 (w11, . . . , w1k, . . . , wm1, . . . , wmk). All the nodes at level 1 link
to u. For each i = 1, . . . , m, the k nodes wi1, . . . , wik either all
link to vi (if xi = 1) or all link to themselves (if xi = 0). Finally,
u links to itself. Note that Gx is sink-free and has a maximum in-
degree ≥ m ≥ Ω(

√
n). Furthermore, since the longest path in Gx

is of length 2 (excluding self loops), PageRank converges in merely
2 steps on any node in G.

For each node y, we denote by PRGx(y) the PageRank of y in the
graph Gx. The following claim shows that PRGx(u) is determined
by the number of 1’s in x:

CLAIM 7. Let |x| be the number of 1’s in x. Then,

PRGx(u) =
1− α

n′
(1 + αm + α2k|x|).

PROOF. Using the influence characterization of PageRank (The-

7Strictly speaking, each graph we create is a union of a 3-level tree with a
bunch of singleton nodes with self loops.

u

………..
x1 = 1

…
x2 = 0

…
xm = 1

…

Figure 1: Hard graph (Theorem 6).

orem 3),

PRGx(u) =
1− α

n′

∞∑
t=0

∑
v∈Gx

αt inft(v, u). (1)

In Gx every node v ∈ Gx has at most one path to u. Further-
more, all the nodes along this path are of out-degree 1. There-
fore, inft(v, u) = 1, if the path from v to u is of length t, and
inft(v, u) = 0, otherwise. There is one node (u) whose path to u
is of length 0, m nodes (v1, . . . , vm) whose path to u is of length
1, and k|x| nodes (nodes wij for i’s s.t. xi = 1 and j = 1, . . . , k)
whose path to u is of length 2. We can now rewrite Equation 1 as
follows: PRGx(u) = 1−α

n′ (1 + αm + α2k|x|).
Note that PRGx(u) is the same for all x that have the same num-

ber of 1’s. Furthermore, it is monotonically increasing with |x|.
Let p0 = 1−α

n′ (1 + αm) and p1 = 1−α
n′ (1 + αm + α2k).

The algorithm B now works as follows. Given an input x, B
simulates A on Gx and on the target node u. In order to simulate
the link server for Gx, B may resort to queries to its own external
server (which returns bits of x): (a) If A probes the link server for
u, B returns u,v1, . . . , vm as the in-neighbors and u as the single
out-neighbor. In this case, B’s simulation of the link server is inde-
pendent of x, so there is no need to probe the external server. (b) If
A probes a node vi, for i = 1, . . . , m, B sends i to its own server;
if the answer is xi = 1, B returns wi1, . . . , wik as the in-neighbors
and u as the out-neighbor; if the answer is xi = 0, B returns only
u as the out-neighbor. (c) If A probes a node wij , B sends i to
the external server; if xi = 1, B returns vi as the out-neighbor; if
xi = 0, B returns wij as the out-neighbor and in-neighbor. Af-
ter the simulation of A ends, B declares the OR to be 1, if A’s
estimation of PRGx(u) is at least p1(1− ε), and 0 otherwise.

Note that each query A sends to the link server incurs at most
one query to B’s server. So B uses a total of at most S queries. To
prove that B is always correct, we analyze two cases.
Case 1:

∨m
i=1 xi = 1. In this case |x| ≥ 1. Therefore, by Claim 7,

PRGx(u) ≥ p1. This means that A’s output will satisfy PRx(u) ≥
p1(1 − ε) with probability ≥ 1 − δ. In this case B outputs 1, as
needed.
Case 2:

∨m
i=1 xi = 0. In this case |x| = 0. Therefore, by Claim 7,

PRGx(u) = p0. Hence, A’s output will satisfy PRx(u) ≤ p0(1+ε)
with probability≥ 1−δ. The following claim shows that this value
is less than p1(1− ε), and thus B outputs 0, as needed.

CLAIM 8. p0(1 + ε) < p1(1− ε).

PROOF. To prove the claim, it suffices to show that p1−p0
p1+p0

>

ε. Expanding the LHS, we have: p1−p0
p1+p0

= α2k
2+2αm+α2k

. By the
choice of n,

m = b
√

n− 1
4
α

+ 1
c ≥

√
(1

α
+ 1)2(4

α
+ 1)

4
α

+ 1
−1 = (

1

α
+1)−1 =

1

α
.

Therefore, 2 + 2αm ≤ 4αm, and thus

α2k

2 + 2αm + α2k
≥ α2k

4αm + α2k
=

1
4m
αk

+ 1
.

From k’s definition,

k

m
=
bn−1

m
c − 1

m
≥

n−1
m

− 2

m
=

n− 1

(b
√

n−1
4/α+1

c)2
− 2

b
√

n−1
4/α+1

c

≥ n− 1
n−1

4/α+1

− 2√
n−1

4/α+1
− 1

≥ 4/α + 1− 2√
36/α+9
4/α+1

− 1
=

4/α + 1− 2√
9− 1

= 4/α.

Since ε < 1
2

, ε
1−ε

> 1. Therefore, k
m
≥ 4

α
> 4

α
· ε

1−ε
. Hence,

1
4m
αk

+1
> ε.

For deterministic algorithms, we are able to strengthen the lower
bound to the optimum Ω(n):

THEOREM 9. Fix any α ∈ (1
2
, 1) and ε ∈ (0, 2

4+α
). Let A

be a deterministic algorithm that locally approximates PageRank
to within a factor of 1 ± ε. Then, for every n > 4, there exists a
graph G on at most n nodes and a node u ∈ G on which A uses
Ω(n) queries. Furthermore, the maximum in-degree of G is Ω(n)
and PageRank converges in merely 2 iterations on G.

The proof uses a reduction from the “majority-by-a-margin” prob-
lem (determine whether a sequence of m bits has at least (1

2
+ ε)m

1’s or (1
2

+ ε)m 0’s). As majority-by-a-margin has a Ω(1
ε2

) lower
bound for randomized algorithms [7, 1], when the approximation
factor ε is small (ε ≤ 1√

n
), we obtain an Ω(n) lower bound also

for randomized algorithms. It remains open to determine whether
an Ω(n) lower bound holds for randomized algorithms when the
approximation factor is large.
Slow PageRank convergence. The next two lower bounds demon-
strate that slow PageRank convergence is another reason for the in-
tractability of local PageRank approximation. We show an Ω(nγ)
lower bound for randomized algorithms (where γ < 1

2
depends on

α) and an Ω(n) lower bound for deterministic algorithms. The hard
instances constructed in the proofs are deep binary trees. So, the
maximum in-degree in these graphs is 2, and the high query costs
are incurred by the slow convergence (O(log n) iterations). The
proofs of these two lower bounds are similar to the proofs of Theo-
rems 6 and 9. They essentially trade fast convergence for bounded
in-degree, by transforming the hard input graphs from shallow trees
of large in-degree into deep trees of bounded in-degree.

THEOREM 10. Fix any α ∈ (1
2
, 1), ε ∈ (0, 1), and δ ∈ (0, 1

2
).

Let A be an algorithm that locally approximates PageRank to within
relative error ε and confidence 1 − δ. Then, for every sufficiently
large n, there exists a graph G on at most n nodes and a node

u ∈ G on which A uses Ω(n
1+log α
2+log α) queries. Furthermore, the

maximum in-degree of G is 2 and PageRank converges in Ω(log n)
iterations on u.

Note that the lower bound depends on α. The closer α is to 1, the
closer is the lower bound to Ω(

√
n).

THEOREM 11. Fix any α ∈ (1
2
, 1) and ε ∈ (0, 2α−1

2α+1
). Let A

be a deterministic algorithm that locally approximates PageRank

to within relative error ε. Then, for every n > 4, there exists a
graph G on at most n nodes and a node u ∈ G on which A uses
Ω(n) queries. Furthermore, the maximum in-degree of G is 2 and
PageRank converges in Ω(log n) iterations on u.

As before, when the approximation factor is small (ε ≤ 1√
n

), the
proof of this theorem gives also an Ω(n) lower bound for random-
ized algorithms. It remains open to determine whether an Ω(n)
lower bound holds for randomized algorithms when the approxi-
mation factor is large.

5. UPPER BOUNDS
The above lower bounds imply that high in-degrees and slow

PageRank convergence make local PageRank approximation dif-
ficult. We next show that local PageRank can be approximated
efficiently on graphs that have low in-degrees and that admit fast
PageRank convergence. In fact, a variant of the algorithm proposed
by Chen et al. [9] is already sufficient for this purpose. In the fol-
lowing we present this novel variant. We also explain the difference
between the variant and the original algorithm below.

The algorithm. The algorithm performs a brute force computation
of PRG

r (u) (see Figure 2). Recall that

PRG
r (u) =

1− α

n

r∑
t=0

∑
v∈G

αt inft(v, u).

The algorithm crawls the subgraph of radius r around u “back-
wards” (i.e., it fetches all nodes that have a path of length ≤ r to
u). The crawling is done in BFS order. For each node v at layer t,
the algorithm calculates the influence of v on u at radius t. It sums
up the influence values, weighted by the factor 1−α

n
αt. In order

to compute the influence values, the algorithm uses the following
recursive property of influence:

inft(v, u) =
1

outdeg(v)

∑
w:v→w

inft−1(w, u). (2)

That is, the influence of v on u at radius t equals the average in-
fluence of the out-neighbors of v on u at radius t − 1. Thus, the
influence values at layer t can be computed from the influence val-
ues at layer t− 1. Note that for nodes w that do not have a path of
length t − 1 to u, inft−1(w, u) = 0. Therefore, in the expression
2, we can sum only over out-neighbors w of v that have a path of
length t − 1 to u. In the pseudo-code below, layert consists of all
nodes that have a path of length t to u.

procedure LocalPRAlpgorithm(u)
1: PRG

0 (u) := 1−α
n

2: layer0 := {u}
3: inf0(u, u) := 1
4: for t = 1, . . . , r do
5: layert := Get all in-neighbors of nodes in layert−1

6: for each v ∈ layert do
7: inft(v, u) := 1

outdeg(v)

∑
w∈layert−1,v→w inft−1(w, u)

8: end for
9: PRG

t (u) := PRG
t−1(u) + 1−α

n

∑
v∈layert

αt inft(v, u)

10: end for
11: return PRG

r (u)

Figure 2: The local PR approximation algorithm.

Recall that PRG
r (u) converges to PRG(u) as r → ∞ (Theorem

3). So, ideally, we would like to choose r = Tε(G, u). Since

the algorithm computes PRG
r (u), it is immediate from the defini-

tion of Tε(G, u) that if the algorithm runs with r = Tε(G, u),
it is guaranteed to output a value which is in the interval [(1 −
ε)PRG(u),PRG(u)]. In practice, calculating Tε(G, u) may be hard.
So, we can do one of two things: (1) run the algorithm with r,
which is guaranteed to be an upper bound on Tε(G, u) (see below
for details); or (2) run the algorithm without knowing r a priori, and
stop the algorithm whenever we notice that the value of PRG

r (u)
does not change by much. This latter approach is not guaranteed to
provide a good approximation but it works well in practice.
Difference from the algorithm of Chen et al.. Also the algorithm
of Chen et al. constructs a subgraph by crawling the graph back-
wards from the target node. There are two major differences be-
tween our variant and their algorithm, though. First, the algorithm
of Chen et al. attempts to estimate the influence of the "boundary"
of the graph that was not crawled, while our algorithm refers only to
the impact of the crawled subgraph. Thus, while our algorithm al-
ways provides an under-estimate of the true PageRank value, their
algorithm can also over-estimate it. Second, our algorithm itera-
tively computes the "influence at radius r" on the target node, while
their algorithm applies the standard iterative PageRank computa-
tion. The advantage in our approach is that one can bound the gap
between the produced approximation and the real PageRank value
in terms of the PageRank convergence rate. On the other hand, the
heuristic estimation Chen et al. provide for the boundary influence
may sometimes lead to large approximation errors.
Complexity analysis. The following notion will be used to quan-
tify the number of nodes the local PR algorithm needs to crawl:

DEFINITION 12. For a graph G, a target node u, and r ≥ 0,
the neighborhood of u at radius r is:

NG
r (u) = {v ∈ G | ∃ a path from v to u whose length ≤ r}.

NG
r (u) consists of all the nodes in the graph whose distance to u is

at most r. The following is immediate from the above definition:

PROPOSITION 13. If the local PR algorithm runs for r itera-
tions, then its cost is |NG

r (u)|.
Thus, the performance of the local PR algorithm depends on two
factors: (1) how large r needs to be in order to guarantee a good ap-
proximation of PRG(u); and (2) how quickly the neighborhood of
u grows with r. The following is a trivial worst-case upper bound
on the latter:

PROPOSITION 14. Let d be the maximum in-degree of G. Then,

|NG
r (u)| ≤ dr.

Thus, the size of the neighborhood grows at most exponentially
fast with the number of iterations r, where the base of the ex-
ponent is the maximum in-degree d (in practice, the growth rate
could be much lower than exponential). If d is constant, then a
sub-logarithmic r (e.g., a constant r) would guarantee that the al-
gorithm’s cost is sub-linear (i.e., ¿ |G|).

Next, we provide a bound on the number of iterations that the lo-
cal PR algorithm needs to run. We show that r = O(log(1/PRG(u)))
is always sufficient (in practice much lower r may be enough).
Hence, if the PR of u is large, few iterations will be needed. The
minimum PR value of any node is at least 1−α

|G| , and thus in the
worst-case O(log(1/PRG(u))) = O(log(|G|) iterations are needed.

THEOREM 15. Let G be any directed graph and let u ∈ G.
Then, for any ε > 0,

Tε(G, u) ≤ d 1

1− α

(
ln

1

PRG(u)
+ ln

2

ε

)
e − 1.

PROOF. Let r = d 1
1−α

(
ln 1

PRG(u)
+ ln 2

ε

)
e−1. We will show:

PRG(u)− PRG
r (u)

PRG(u)
< ε.

It would follow from Definition 5 that r ≥ Tε(G, u).
Let us denote by P the PageRank transition matrix.

PRG(u)− PRG
r (u)

PRG(u)

=
PRG(u)−Pr+1(1, u) + Pr+1(1, u)− PRG

r (u)

PRG(u)

≤ |PRG(u)−Pr+1(1, u)|
PRG(u)

+
|Pr+1(1, u)− PRG

r (u)|
PRG(u)

.(3)

We will show that each of the above two terms is at most ε/2. We
start with the first term. According to Sinclair’s bound on the point-
wise mixing time [31] (see Proposition 2.1, pages 47–48),

|PRG(u)−Pr+1(1, u)|
PRG(u)

≤ λr+1
max

PRG(u)
,

where |λ1| ≥ |λ2| ≥ · · · ≥ |λ|G|| are the eigenvalues of P ordered
by absolute values and λmax = max{|λi| : 2 ≤ i ≤ |G|} is the
second largest eigenvalue. Haveliwala and Kamvar showed in [19]
that for the PageRank matrix, |λmax| ≤ α, and therefore,

λr+1
max

PRG(u)
≤ αr+1

PRG(u)
.

To bound the latter, we use the following calculation:

CLAIM 16. If r ≥ 1
1−α

(ln 1
PRG(u)

+ ln 2
ε
)− 1, then

αr+1

PRG(u)
≤ ε

2
.

The proof of claim 16 can be found in the full version of this paper.
This shows that the first term in Equation 3 is at most ε/2. We

now bound the second term. By Lemma 4,

|Pr+1(1, u)− PRG
r (u)| = αr+1Mr+1(1, u).

Since Mr+1(1, u) ≤ 1, |αr+1Mr+1(1, u)| ≤ αr+1. Therefore,

|Pr+1(1, u)− PRG
r (u)|

PRG(u)
≤ αr+1

PRG(u)
.

Claim 16 shows that the latter is at most ε/2. The theorem fol-
lows.

Optimizing by pruning. To lower the cost of the local PR al-
gorithm in practice, we follow Chen et al. and apply a pruning
heuristic. The idea is simple: if the influence of a node v on u at
radius r is small, then only a small fraction of its score eventually
propagates to PRG

r (u) and thus omitting v from the computation
of PRG

r (u) should not do much harm. Furthermore, nodes whose
paths to u pass only through low influence nodes are likely to have
low influence on u as well, and thus pruning the crawl at low influ-
ence nodes is unlikely to neglect high influence nodes.

The pruning heuristic is implemented by calling the procedure
depicted in Figure 3. The procedure removes all nodes whose in-
fluence is below some threshold value T from layer r. Thus, these
nodes will not be expanded in the next iteration.

The problem of the pruning heuristic is that stopping the crawl
whenever the PageRank value does not change much does not guar-
antee an approximation. In the full version of the paper we give an
example for that.

procedure Prune(r)
1: for each v ∈ layerr do
2: if αr infr(v) < T then
3: remove v from layerr

4: end if
5: end for

Figure 3: The pruning procedure.

6. PAGERANK VS. REVERSE PAGERANK
In the previous sections we established that there are two nec-

essary and sufficient conditions for a graph to admit efficient local
PageRank approximation: (1) quick PageRank convergence; and
(2) bounded in-degree. In this section we compare two graphs in
light of these criteria: the web graph and the reverse web graph. We
demonstrate that while both graphs admit fast PageRank conver-
gence, the reverse web graph has bounded in-degree and is there-
fore more suitable for local PageRank approximation. We also
show empirically that the local approximation algorithm performs
better on the reverse web graph rather than on the web graph.

Experimental setup. We base our empirical analysis on a 280,000
page crawl of the www.stanford.edu domain performed in
September 2002 by the WebBase project8. We built the adjacency
matrices of these graphs, which enabled us to calculate their true
PR and RPR as well as to simulate link servers for the local ap-
proximation algorithm. In the PR and RPR iterative computations
we used the uniform distribution as the initial distribution.

The same stanford.edu crawl has been previously used by
Kamvar et al. [22] to analyze the convergence rate of PageRank on
the web graph. Kamvar et al. also showed that the convergence rate
of PageRank on a much larger crawl of about 80M pages is almost
the same as the one on the stanford.edu crawl. In addition,
Dill et al. [14] showed that the structure of the web is “fractal-
like”, i.e., cohesive sub-regions exhibit the same characteristics as
the web at large. These observations hint that the results of our ex-
periments on the relatively small 280,000 page crawl are applicable
also to larger connected components of the web graph.

Convergence rate. We start by analyzing the PageRank conver-
gence rate. Kamvar et al. [22] already observed that PageRank con-
verges very quickly on most nodes of the web graph (in less than 15
iterations on most nodes, while requiring about 50 iterations to con-
verge globally). In Figure 4, we show that a similar phenomenon
holds also for the reverse web graph. The two histograms specify
for each integer t, the number of pages in the stanford.edu
graph on which PageRank and Reverse PageRank converge in t it-
erations. We determine that PageRank converges on a page u in t

steps, if
|PRG

t (u)−PRG
t−1(u)|

PRG
t−1(u)

< 10−3. As can be seen from the re-

sults, RPR converges only slightly slower than PR: on about 80%
of the nodes it converges in less than 20 iterations.

Crawl growth rate. Previous studies [30] have already shown
that the maximum out-degree of the web graph is much lower than
its maximum in-degree. The same holds in the stanford.edu
graph, whose maximum in-degree is 38,606, while its maximum
out-degree is only 255. We show a more refined analysis, which
demonstrates that the average growth rate of backward BFS crawls
around target nodes with high PageRank is much slower in the re-
verse web graph than in the web graph.

In Figure 5, we plot the average size of a backward BFS crawl as
a function of the crawl depth for the stanford.edu graph and

8Available at vlado.fmf.uni-lj.si/pub/networks/data/mix/mixed.htm.

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of iterations

N
um

be
r

of
 P

ag
es

PR
RPR

Figure 4: Convergence times for PageRank and Reverse
PageRank on the stanford.edu graph.

for its reverse. To create the plot for the regular graph, we selected
random nodes from the graph as follows. We ordered all the nodes
in the graph by their PageRank, from highest to lowest. We divided
the nodes into buckets of exponentially increasing sizes (the first
bucket had the top 12 nodes, the second one had the next 24 nodes,
and so on). We picked from each bucket 100 random nodes (if the
bucket was smaller we took all its nodes), and performed a back-
ward BFS crawl from each sample node up to depth 9. For each
bucket and for each t = 1, . . . , 9, we calculated the average num-
ber of nodes crawled up to depth t when starting the crawl from a
node in the bucket. The plot for the reverse graph was constructed
analogously. We present in Figure 5 the results for the top bucket
(12 pages with highest PageRank/Reverse PageRank), the middle
bucket (768 pages with intermediate PR/RPR) and the last bucket
(85,000 pages with lowest PR/RPR).

0 2 4 6 8
0

2

4

6

8

10

12
x 10

4

Crawl Depth

C
ra

w
l S

iz
e

PR top bucket
RPR top bucket
PR middle bucket
RPR middle bucket
PR last bucket
RPR last bucket

Figure 5: Average growth rates of backward BFS crawls at the
stanford.edu graph and its reverse.

The graph clearly indicates that the growth rate of the backward
BFS crawl in the reverse web graph is slower than in the regular
graph for pages with high PR/RPR. For example, the average crawl
size at depth 6 in the top bucket on the regular graph was 77,480,
while the average crawl size at depth 6 in the top bucket on the re-
verse graph was 15,980 (a gap of 80%). The situation was opposite
for the low ranked nodes. For example, the average crawl size at
depth 6 in the last bucket on the reverse graph was 10,835, while the

average crawl size at depth 6 in the last bucket on the regular graph
was 4,701 (a gap of 57%). As we show below, the decreased crawl
growth rate for the highly ranked nodes well pays off the increase
in crawl growth rate for the low ranked nodes.

Algorithm’s performance. We made a direct empirical compar-
ison of the performance of the algorithm on the web graph vs. the
reverse web graph. To do the comparison, we used the same buck-
ets and samples as the ones used for evaluating the crawl growth
rate. We then calculated, for each bucket, the average cost (num-
ber of queries to the link server) of the runs on samples from that
bucket. The results are plotted in Figure 6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3
x 10

4

Buckets by PR/RPR

A
ve

ra
ge

 C
os

t

PR
RPR

Figure 6: Average cost of the local approximation algorithm
by PageRank/Reverse PageRank values. Results of runs on the
stanford.edu graph and its reverse.

The graph shows that the cost of the algorithm on the reverse
graph is significantly lower than on the regular graph, especially
for highly ranked nodes. For example, the average cost of the al-
gorithm on the first bucket of PR was three times higher than the
cost of the algorithm on the first bucket of RPR. On the other hand,
for the low ranked nodes, the increased crawl growth rate on the
reverse graph and the regular graph are almost the same. For exam-
ple, the average cost of the algorithm on the last bucket of PR was
13 and for RPR it was 14.

7. APPLICATIONS OF REVERSE PAGER-
ANK

RPR has already been used in the past to select good seeds for the
TrustRank measure [17], to detect highly influential nodes in social
networks [20], and to find hubs in the web graph [15]. In this sec-
tion we present two additional novel applications: (1) finding good
seeds for crawling; and (2) measuring the “semantic relatedness”
of concepts in a taxonomy.

We note that local RPR approximation is potentially useful in
several of these applications. For example, to estimate the influence
score of a given node in a social network, the hub score of a given
page on the web, or the semantic relatedness of two given concepts
in a taxonomy. Social networks exhibit similar properties to the
web graph [26], such as the power law degree distribution and the
gap between in- and out- degrees. As shown below, the same holds
for the taxonomy graph extracted from the Open Directory Project.

7.1 Finding crawl seeds
Discoverability of the web. Motivated by the fast pace of web
growth and the need of crawlers to discover new content quickly,
Dasgupta et al. [11] have recently posed the following question:
how can a crawler discover as much new content as possible, while

incurring as little “overhead” as possible? Dasgupta et al. define
the overhead of a crawler to be the average number of old pages it
needs to refetch per new discovered pages. Formally, if the crawler
refreshes a set S of “seed” pages previously crawled, resulting in
a set N(S) of new pages being discovered, then the overhead is
|S|/|N(S)|. Dasgupta et al. present crawling algorithms that en-
sure low overhead and analyze them theoretically and empirically.

Selecting seeds using Reverse PageRank. We show that RPR is
an effective strategy for finding good seeds. Our algorithm simply
chooses the nodes with highest Reverse PageRank values to be the
seed set. The intuition behind this is the following. A page p has
high RPR if many pages are reachable from p by short paths, and
moreover these pages are not reachable from many other pages.
Thus, by selecting p as a seed, we benefit from discovering many
new pages without doing too many fetches (because the paths lead-
ing to them are short) and furthermore these new pages are not
“covered” by other potential seeds. Assuming the web graph does
not change drastically between two crawls, we can predict the Re-
verse PageRank of the nodes in the new graph by calculating RPR
on the already known sub-graph.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of seeds

F
ra

ct
io

n
of

 n
ew

 p
ag

es
 d

es
co

ve
re

d

RPR
Random
Out−Degree
PR

(a) Fraction of the new pages discovered by the
crawler versus the number of seeds.

0 10 20 30 40 50
0

20

40

60

80

100

120

140

Number of seeds

O
ve

rh
ea

d

RPR
Random
Out−Degree
PR

(b) Overhead versus the number of seeds.

Figure 7: 4-level BFS crawl.

Experimental results. To evaluate this seed selection strategy,
we used two 1 million page Stanford WebBase crawls9. The two
crawls are of the same sites and were conducted one week apart
in May 2006. The later crawl consists of 132,000 new pages. We
compared four seed selection strategies: the k pages with highest
RPR scores, the k pages with highest PR scores, the k pages with
9http://www-diglib.stanford.edu/ testbed/doc2/WebBase.

largest out-degree, and k random pages. We chose the seeds from
the nodes of the first crawl and performed a BFS crawl for t levels
starting from these seeds on the second crawl. Figure 7 shows the
results for t = 4. We can see that RPR performs significantly
better than the rest of the strategies, discovering more than twice
new content with less overhead compared to any other strategy.10

7.2 Measuring semantic relatedness
Semantic relatedness indicates how much two concepts are re-

lated to each other. Semantic relatedness is used in many appli-
cations in natural language processing, such as word sense disam-
biguation, information retrieval, interpretation of noun compounds,
and spelling correction (cf. [33]).

In the experiments below, we focus on measuring semantic re-
latedness between concepts represented as nodes in the Open Di-
rectory Project11 (ODP) taxonomy. Given two nodes in ODP, we
wish to find the relatedness between the concepts corresponding to
these nodes. Note that the ODP is a directed graph, whose links
represent an is-a relation between concepts. Thus two concepts
should be related if the sets of nodes that are reachable from them
are “similar”.

Previously, Strube and Ponzetto [33] used Wikipedia for com-
puting semantic relatedness. Given a pair of words w1 and w2,
their method, called WikiRelate!, searches for Wikipedia articles,
p1 and p2 that respectively contain w1 and w2 in their titles. Se-
mantic relatedness is then computed using various distance mea-
sures between p1 and p2. Also the ODP was previously used to
measure semantic relatedness by Gabrilovich and Markovitch in
[16]. The authors used machine learning techniques to explicitly
represent the meaning of any text as a weighted vector of concepts.
We show that (personalized) Reverse PageRank can be also used to
measure semantic relatedness. Note that to this end we do not use
any textual analysis of the taxonomy, only its graph structure.

Given two nodes x, y in the ODP graph, we compute two per-
sonalized Reverse PageRank vectors RPRx and RPRy . RPRx is
the personalized Reverse PageRank vector of the ODP graph cor-
responding to a personalization vector that has 1 in the position
corresponding to x and 0 everywhere else. Note that for a node a,
a high value of RPRx(a) implies there are many short paths from x
to a. This implies a is a prominent sub-concept of x and it is not
a prominent sub-concept for (many) other nodes. Thus, the vector
RPRx represents x by the weighted union of its sub-concepts.

We evaluate two alternative techniques for using these vectors in
measuring semantic relatedness: (1) Reverse PageRank: the mea-
sure of y as a sub-concept of x is the score RPRx(y) and the mea-
sure of x as a sub-concept of y is the score RPRy(x); (2) Reverse
PageRank similarity: two concepts will be similar in case they
have significant overlap between their Reverse PageRank vectors.
Therefore, the similarity between x and y is the cosine similarity
between the vectors RPRx and RPRy . At first glance, RPR similar-
ity seems more accurate than RPR, but RPR has a computational
advantage since we can calculate RPRx(y) by using the local ap-
proximation algorithm. In our experiments we compare the quality
of these two measures.

An alternative graph-based approach for finding related nodes in
a graph is the cocitation algorithm [13]. Two nodes are cocited if
they share a common parent. The number of common parents of
two nodes is their degree of cocitation. This measure is not suitable
for us, since parent sharing is quite rare in the ODP. Another mea-
sure of semantic relatedness is the path-based measure [29], which

10The “knee” that shows up on both graphs at seed no. 15 is due to
the fact this specific seed node happens to be a very good hub.

11http://www.dmoz.org.

defines the semantic distance (inverse of relatedness) between two
nodes as the length of the shortest path between them in the graph.

Experimental results. We base our experiment on a 110, 000
page crawl of the ODP. First, we verified that the reverse ODP
graph admits the two conditions of efficient local PageRank ap-
proximation. We analyzed the Reverse PageRank convergence rate
and saw that more than 90% of the nodes converged in less than 20
iterations. The maximum out-degree of the graph was 2745.

To evaluate the semantic relatedness measures, we chose a col-
lection of concepts (“main concepts”) from the ODP and ranked
another collection of concepts (“test concepts”) according to their
relatedness to the main concepts. We used three methods for mea-
suring relatedness: Reverse PageRank, Reverse PageRank similar-
ity, and inverse path-based. Table 8(a) shows the ordering of the
test concepts by relatedness to the main concept “Einstein” using
each one of the techniques. Table 8(b) shows a similar comparison
for the main concept “ice climbing”.

SodokuPizzaSodoku HelicopterSodokuPizza Ronald ReaganUnited StatesItaly World War IIInternetRonald Reagan ItalyItalyHelicopter Newton, IsaacRonald ReaganInternet PhysicsHelicopterWorld War II United StatesAgricultureUnited States PizzaWorld War IIAgriculture Physics PrizeNuclearNuclear NuclearPhysicsNewton, Isaac InternetPhysics PrizePhysics AgricultureNewton, IsaacPhysics Prize Einstein, AlbertEinstein, AlbertEinstein, Albert Path-basedRPR similarityRPR

(a) Relatedness to “Einstein”.

HikingIrelandCard games IrelandCard gamesYoga YogaGardeningIreland MountaineeringYogaDogs HuntingBaseballGardening DogsDogsCamping Card gamesCampingBaseball GardeningFishingFishing FishingHuntingHunting BaseballHikingHiking Rock climbingClimbingRock Climbing CampingMountaineeringMountaineering ClimbingRock ClimbingClimbing Ice climbingIce climbingIce climbing Path-basedRPR similarityRPR

(b) Relatedness to “Ice climbing”.

Figure 8: Test concepts ordered by their relatedness to a main
concept.

As can be seen from the results, the Reverse PageRank-based
rankings were much better than the path-based ranking: while the
path-based measure ranked “Agriculture” and “Internet” as very re-
lated concepts to “Einstein”, both our measures ranked “physics
prize” and “Newton, Issac” on the top of the list. For the “ice
climbing” concept, the path-based measure ranked “Basketball”
and “Card game” before “Mountaineering” and “Hiking”, while
both of them were ranked high by the RPR measures. We can also
see from the experiment that the quality of RPR measure is almost
the same as RPR similarity measure, which means we can use the
local approximation algorithm to find semantic relatedness.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have studied the limitations of local PageR-

ank approximation. We have shown that in the worst-case Ω(
√

n)
queries to the link server are needed in order to obtain a good
PageRank approximation. For deterministic algorithms, a stronger
(and optimal) Ω(n) lower bound was shown. For future work, it
will be interesting to determine whether an Ω(n) lower bound holds
for randomized algorithms as well.

We have identified two graph properties that make local PageR-
ank approximation hard: abundance of high in-degree nodes and
slow convergence of the PageRank random walk. We have shown
that graphs that do not have these properties do admit efficient local
PageRank approximation. We note that our lower bounds are based
on worse-case examples of graphs. It would be interesting to an-
alyze more “realistic” graph models, such as scale-free networks,
and check whether local approximation is hard for them as well
(we suspect they are, due to high in-degree nodes). Another future
direction could be to explore whether it is easier to estimate the rel-
ative order of PageRank values locally, rather than approximating
the actual PageRank values.

As the web graph has many high in-degree nodes, we suspect
that it is not suitable for local PageRank approximation. We have
validated this conclusion by empirical analysis over a large crawl.
We then have shown that the reverse web graph is amenable to ef-
ficient local PageRank approximation, as it has bounded in-degree
and it admits quick PageRank convergence. We have demonstrated
empirically that the local approximation algorithm indeed performs
much better on the reverse web graph than on the web graph. We
leave for a future work to evaluate the property of the crawl growth
rate for certain models of the Web graphs, such as preferential at-
tachment [2], the copying model [25], etc.

Finally, we have presented two novel applications of Reverse
PageRank. The first application is detecting good seeds for crawl-
ing. In our experiments we have compared the Reverse PageRank
to three other methods for seeds choice. As part of future work it
would be interesting to compare our method to additional known
methods in different crawler models, for example, the ones that
were presented by Cho et al. in [10]. The second novel applica-
tion is measuring semantic relatedness between concepts in a tax-
onomy. The experimental study we have conducted on the ODP
taxonomy shows promising directions. In the future it will be in-
teresting to evaluate the Reverse PageRank measures on the more
complex wikipedia12 graph.

9. REFERENCES
[1] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Sampling algorithms:

Lower bounds and applications. In STOC, pages 266–275, 2001.
[2] A. L. Barabasi and R. Albert. Emergence of scaling in random

networks. Science, 286(5439):509–512, 1999.
[3] P. Berkhin. A survey on PageRank computing. Internet Mathematics,

2(1):73–120, 2005.
[4] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and

S. Venkatasubramanian. The connectivity server: Fast access to
linkage information on the web. In 7th WWW, pages 469–477, 1998.

[5] A. Z. Broder, R. Lempel, F. Maghoul, and J. O. Pedersen. Efficient
PageRank approximation via graph aggregation. Inf. Retr.,
9(2):123–138, 2006.

[6] H. Buhrman and R. de Wolf. Complexity measures and decision tree
complexity: a survey. Theoretical Comp. Sc., 288(1):21–43, 2002.

[7] R. Canetti, G. Even, and O. Goldreich. Lower bounds for sampling
algorithms for estimating the average. Information Processing
Letters, 53:17–25, 1995.

[8] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: a

12http://www.wikipedia.org/.

new approach to topic-specific Web resource discovery. Computer
Networks, (11–16):1623–1640, 1999.

[9] Y. Chen, Q. Gan, and T. Suel. Local methods for estimating
PageRank values. In Proc. CIKM, pages 381–389, 2004.

[10] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling through
URL ordering. Computer Networks and ISDN Systems,
30(1–7):161–172, 1998.

[11] A. Dasgupta, A. Ghosh, R. Kumar, C. Olston, S. Pandey, and
A. Tomkins. The discoverability of the web. In Proc. 16th WWW,
pages 421–430, 2007.

[12] J. V. Davis and I. S. Dhillon. Estimating the global PageRank of Web
communities. In Proc. 12th SIGKDD, pages 116–125, 2006.

[13] J. Dean and M. R. Henzinger. Finding related pages in the World
Wide Web. Computer Networks, 31(11–16):1467–1479, 1999.

[14] S. Dill, R. Kumar, K. Mccurley, S. Rajagopalan, D. Sivakumar, and
A. Tomkins. Self-similarity in the web. ACM Trans. Internet Techn.,
2(3):205–223, 2002.

[15] D. Fogaras. Where to start browsing the Web? In IICS, pages 65–79,
2003.

[16] E. Gabrilovich and S. Markovitch. Computing semantic relatedness
using wikipedia-based explicit semantic analysis. In Proc. 20th
IJCAI, pages 250–257, 2007.

[17] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating Web
Spam with TrustRank. In VLDB, pages 576–587, 2004.

[18] T. H. Haveliwala. Topic-sensitive PageRank: a context-sensitive
ranking algorithm for web search. IEEE Trans. on Knowledge and
Data Engineering, 15(4):784–796, 2003.

[19] T. H. Haveliwala and S. D. Kamvar. The second eigenvalue of the
Google matrix. Technical report, Stanford University, 2003.

[20] A. Java, P. Kolari, T. Finin, and T. Oates. Modeling the spread of
influence on the Blogosphere. Technical report, University of
Maryland, Baltimore County, 2006.

[21] G. Jeh and J. Widom. Scaling personalized Web search. In Proc. 12th
WWW, pages 271–279, 2003.

[22] S. Kamvar, H. Haveliwala, and G. Golub. Adaptive methods for the
computation of PageRank. Linear Algebra and its Applications,
386:51–65, 2004.

[23] C. Kohlschütter, P. A. Chirita, and W. Nejdl. Efficient parallel
computation of PageRank. In Proc. 28th ECIR, pages 241–252, 2006.

[24] G. Kollias and E. Gallopoulos. Asynchronous computation of
PageRank computation in an interactive multithreading environment.
In Web Information Retrieval and Linear Algebra Algorithms, 2007.

[25] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins,
and E. Upfal. Stochastic models for the web graph. In 41th IEEE
FOCS, pages 57–65, 2000.

[26] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The web
and social networks. Computer, 35(11):32–36, 2002.

[27] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: Bringing order to the Web. Technical report,
Stanford Digital Library Technologies Project, 1998.

[28] J. X. Parreira, D. Donato, S. Michel, and G. Weikum. Efficient and
decentralized PageRank approximation in a Peer-to-Peer Web search
network. In Proc. 32nd VLDB, pages 415–426, 2006.

[29] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and
application of a metric on semantic nets. IEEE Trans. on Systems,
Man and Cybernetics, 19(1):17–30, 1989.

[30] M. A. Serrano, A. G. Maguitman, M. Boguñá, S. Fortunato, and
A. Vespignani. Decoding the structure of the WWW: A comparative
analysis of Web crawls. TWEB, 1(2), 2007.

[31] A. Sinclair. Algorithms for Random Generation and Counting: a
Markov Chain Approach. Birkhauser Verlag, Basel, Switz., 1993.

[32] A. Sinclair and M. Jerrum. Approximate counting, uniform
generation and rapidly mixing markov chains. Inf. Comput.,
82(1):93–133, 1989.

[33] M. Strube and S. P. Ponzetto. WikiRelate! computing semantic
relatedness using Wikipedia. In AAAI 2006, pages 1419–1424, 2006.

[34] Y. Wang and D. J. DeWitt. Computing PageRank in a distributed
Internet search engine system. In VLDB, pages 420–431, 2004.

[35] Y. Wu. Subgraphrank: PageRank approximation for a subgraph or in
a decentralized system. VLDB PhD workshop, 2007.

