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ABSTRACT
We consider the problem of approximating the PageRank of a tar-
get node using only local information provided by a link server. We
prove that local approximation of PageRank is feasible if and only
if the graph has low in-degree and admits fast PageRank conver-
gence. While natural graphs, such as the web graph, are abundant
with high in-degree nodes, making local PageRank approximation
too costly, we show thatreverse natural graphs tend to have low in-
degree while maintaining fast PageRank convergence. It follows
that calculatingReverse PageRank locally is frequently more feasi-
ble than computing PageRank locally. Finally, we demonstrate the
usefulness of Reverse PageRank in five different applications.

Categories and Subject Descriptors:H.3.3: Information Search
and Retrieval.

General Terms: Algorithms.

Keywords: PageRank, reverse PageRank, lower bounds, local ap-
proximation.

1. INTRODUCTION
Over the past decade PageRank [6] has become one of the most

popular methods for ranking nodes by their “prominence” in anet-
work.1 PageRank’s underlying idea is simple but powerful: a promi-
nent node is one that is “supported” (linked to) by other prominent
nodes. PageRank was originally introduced as means for ranking
web pages in search results. Since then it has found uses in many
other domains, such measuring centrality in social networks, evalu-
ating the importance of scientific publications, prioritizing pages in
a crawler’s frontier, personalizing search results, combating spam,
measuring trust, selecting pages for indexing, and more. While the
significance of PageRank in ranking search results seems to have
diminished, due to the emergence of other effective alternatives
(e.g., clickthrough-based measures), it is still an important tool in
search infrastructure, social networks, and analysis of large graphs.

Local PageRank approximation. The vast majority of algorithms
for computing PageRank, whether they are centralized, parallel, or
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decentralized, have focused onglobal computation of the PageR-
ank vector. That is, PageRank scores forall the graph’s nodes are
computed. While in many applications of PageRank a global com-
putation is needed, there are situations in which one is interested in
computing PageRank scores for just a small subset of the nodes.

Consider, for instance, a web site owner (e.g, a small or a large
business), who would like to promote the web site in search engine
rankings in order to attract traffic of potential clients. AsPageR-
ank is used by search engines to determine whether to crawl/index
pages and to calculate their relevance scores, tracking thePageR-
ank of the web site would enable the web site owner to better un-
derstand its position in search engine rankings and potentially take
actions to improve the web site PageRank. In this case, the web
site owner is interested only in the PageRank score of his ownweb
site (and maybe also in the scores of his competitors’ web sites),
but not in the PageRank scores of all other web pages.

Major search engines choose to keep the PageRank scores of web
pages confidential, since there are many variations of the PageRank
formula, and making the exact PageRank values public may enable
spammers to promote illegitimate web sites. Some search engines
publish crude PageRank values (e.g., through the Google Toolbar),
but these are usually given in a 1 to 10 logarithmic scale. Users who
wish to obtain more accurate PageRank scores for pages of their
choice are left to compute them on their own. Global PageRank
computation for the entire web graph is out of the question for most
users, as it requires significant resources and knowhow. This brings
up the following natural question: can one compute the PageRank
score of a single web page using reasonable resources?

The same question arises in other natural contexts, where PageR-
ank is used. For example, a Facebook2 user may be interested
in measuring her PageRank popularity by probing the friendship
graph. Can this be done efficiently without traversing the whole
network?

Chen, Gan, and Suel [1] were the first to introduce the problem
of local PageRank approximation. Suppose we are given access
to a large graphG through alink server, which for every given
query nodex, returns the edges incident tox (both incoming and
outgoing).3 Can we then use a small number of queries to the link
server to approximate the PageRank score of a target nodex to
within high precision?

Chenet al. proposed an algorithm for solving this problem. Their
algorithm crawls backwards a small subgraph around the target

2http://www.facebook.com/.
3If G is the web graph, out-links can be extracted from the contentof x

itself and in-links can be retrieved from search engines using thelink:
query. As opposed to PageRank scores, in-links are information that search
engines are willing to disclose.



node, applies various heuristics to guess the PageRank scores of
the nodes at the boundary of this subgraph, and then computesthe
PageRank of the target node within this subgraph. Chenet al. em-
pirically showed this algorithm to provide good approximations on
average. However, they noted that high in-degree nodes sometimes
make the algorithm either very expensive or inaccurate.

Lower bounds. In this work we study the limits of local PageRank
approximation. We identify two factors that make local PageRank
approximation hard on certain graphs: (1) the existence of high
in-degree nodes; (2) slow convergence of the PageRank random
walk.4

In order to demonstrate the effect of high in-degree nodes, we
exhibit for everyn a family of graphs of sizen whose maximum
in-degree is high (Ω(

√
n)) and on which any algorithm would need

to sendΩ(
√

n) queries to the link server in order to obtain accurate
PageRank approximations. For very largen, fetching

√
n pages

from the network or sending
√

n queries to a search engine is very
costly (for example, for the web graphn ≥ 10B, and thus

√
n ≥

128K). The lower bound we prove applies to both randomized and
deterministic algorithms. For deterministic algorithms,we are able
to prove an even stronger (and optimal)Ω(n) lower bound.

Similarly, to demonstrate the effect of slow PageRank conver-
gence, we present a family of graphs on which the PageRank ran-
dom walk converges rather slowly (inΩ(log n) steps) and on which

every algorithm needs to submitΩ(n
1

2
−ǫ) queries in order to ob-

tain good PageRank approximations (ǫ > 0 is a small constant
that depends on the PageRank damping factor). Again, this lower
bound holds for both randomized and deterministic algorithms. For
deterministic algorithms, we show an optimalΩ(n) lower bound.

We note that the two lower bounds do not subsume each other, as
the family of hard graphs constructed in the first lower boundhas
very fast PageRank convergence (2 iterations), while the family of
hard graphs constructed in the second lower bound has bounded
in-degree (2).

Sufficiency. Having proved that local PageRank approximation
is hard for graphs that either have high in-degree or do not ad-
mit quick PageRank convergence, it is natural to ask whetherlo-
cal PageRank approximation is feasible for graphs of bounded in-
degree and on which PageRank converges quickly. We present a
variation of the algorithm by Chenet al. and prove that it works
well for such graphs: if the PageRank random walk converges on
the graph inr steps, then the algorithm needs to crawl backwards
a subgraph of radiusr around the target node. In particular, if the
maximum in-degree in this subgraph isd, then the algorithm re-
quires at mostdr queries to the link server. This demonstrates that
the two conditions we showed to be necessary for fast local PageR-
ank approximation are also sufficient.

PageRank vs. Reverse PageRank.As natural graphs, like the
web graph and social networks, are abundant with high in-degree
nodes, our first lower bound suggests that local PageRank approx-
imation is frequently infeasible to do on such graphs. We substan-
tiate this observation with an empirical analysis of a 280,000 crawl
of the www.stanford.edu site.5 We show that this graph has a rela-
tively high in-degree (38,606) and as a result the sizes of subgraphs
of even small radii around target nodes tend to be high. These
findings provide analytical and empirical explanations forthe diffi-

4Note that the convergence rate of PageRank on a given graph isan intrin-
sic property of the graph, not of the particular algorithm used to compute
PageRank. The convergence rate is governed by the difference between the
first and the second eigenvalues of PageRank’s transition matrix.
5While this crawl is relatively small, its structural properties have been
shown before to be representative of the whole web graph [4].

culties encountered by Chenet al.
We then demonstrate thatreverse natural graphs (the graphs ob-

tained by reversing the directions of all links) are more suitable
for local PageRank approximation. By analyzing the stanford.edu
crawl, we show that the reverse web graph, like the web graph,ad-
mits quick PageRank convergence (on 80% nodes of the reverse
graph, PageRank converged within 20 iterations). We also show
that the reverse graph has a much lower in-degree (only 255 in
the stanford.edu crawl), and thus crawl growth rates aroundtar-
get nodes are moderate. These findings hint that local PageRank
approximation should be feasible on the reverse graph.

To test this hypothesis, we measured the performance of our al-
gorithm on a sample of nodes from the stanford.edu graph. To do
the comparison, we selected random nodes from the graph as fol-
lows. We ordered all the nodes in the graph by their PageRank,
from highest to lowest. We divided the nodes into buckets of expo-
nentially increasing sizes (the first bucket had the top 12 nodes, the
second one had the next 24 nodes, and so on). We picked from each
bucket 100 random nodes (if the bucket was smaller we took allits
nodes). We then calculated, for each bucket, the average cost (num-
ber of queries to the link server) of the runs on samples from that
bucket. The plot for the reverse graph was constructed analogously.

The results of this experiment show that the cost of the algorithm
on the reverse graph is significantly lower than on the regular graph,
especially for highly ranked nodes. For example, the average cost
of the algorithm on the first bucket of PageRank was three times
higher than the cost of the algorithm on the first bucket ofReverse
PageRank (PageRank of the reverse graph; “RPR” in short). On
the other hand, for the low ranked nodes, the performance of the
algorithm on the reverse graph and on the regular graph are almost
the same. For example, the average cost of the algorithm on the last
bucket of PageRank was 13 and for Reverse PageRank it was 14.

We conclude from the above that computing Reverse PageRank
is more feasible to do locally than computing regular PageRank.
Social networks and other natural graphs possess similar properties
to the web graph (power law degrees, high in-degree vs. low out-
degree) and are thus expected to exhibit similar behavior.

Applications of Reverse PageRank. While locally approximat-
ing RPR is easier than locally approximating PageRank, why would
one want to compute RPR in the first place? We observe that RPR
has a multitude of applications. It has been used before to select
good seeds for the TrustRank measure [3], to detect highly influ-
ential nodes in social networks [5], and to find hubs in the web
graph [2]. We present two additional novel applications of RPR:
(1) finding good seeds for crawling; and (2) measuring the “seman-
tic relatedness” of concepts in a taxonomy.

2. REFERENCES
[1] Y. Chen, Q. Gan, and T. Suel. Local methods for estimatingPageRank

values. InCIKM, pages 381–389, 2004.
[2] D. Fogaras. Where to start browsing the Web? InIICS, pages 65–79,

2003.
[3] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating Web

Spam with TrustRank. InVLDB, pages 576–587, 2004.
[4] T. H. Haveliwala and S. D. Kamvar. The second eigenvalue of the

Google matrix. Technical report, Stanford University, 2003.
[5] A. Java, P. Kolari, T. Finin, and T. Oates. Modeling the spread of

influence on the Blogosphere. Technical report, Universityof
Maryland, Baltimore County, 2006.

[6] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: Bringing order to the Web. Technical report, Stanford
Digital Library Technologies Project, 1998.


