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ABSTRACT

We consider the problem of approximating the PageRank afa ta
get node using only local information provided by a link sgrwe
prove that local approximation of PageRank is feasible if anly

if the graph has low in-degree and admits fast PageRank conve
gence. While natural graphs, such as the web graph, are atund
with high in-degree nodes, making local PageRank apprdioma
too costly, we show thakeverse natural graphs tend to have low in-
degree while maintaining fast PageRank convergence. ltvisl
that calculatindReverse PageRank locally is frequently more feasi-
ble than computing PageRank locally. Finally, we demotestitze
usefulness of Reverse PageRank in five different applicstio
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1. INTRODUCTION

Over the past decade PageRank [6] has become one of the mo
popular methods for ranking nodes by their “prominence” ire&
work.! PageRank’s underlying idea is simple but powerful: a promi-
nent node is one that is “supported” (linked to) by other pgramt
nodes. PageRank was originally introduced as means foimngnk
web pages in search results. Since then it has found usesnyn ma
other domains, such measuring centrality in social neteja@kalu-
ating the importance of scientific publications, prioiitig pages in
a crawler’s frontier, personalizing search results, cdingsspam,
measuring trust, selecting pages for indexing, and mordlénte
significance of PageRank in ranking search results seemavio h
diminished, due to the emergence of other effective alteem
(e.g., clickthrough-based measures), it is still an imguartool in
search infrastructure, social networks, and analysisrgélgraphs.

Local PageRank approximation. The vast majority of algorithms
for computing PageRank, whether they are centralized|lphrar
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decentralized, have focused global computation of the PageR-
ank vector. That is, PageRank scoresdidrthe graph’s nodes are
computed. While in many applications of PageRank a globai-co
putation is needed, there are situations in which one isdsted in
computing PageRank scores for just a small subset of thesnode

Consider, for instance, a web site owner (e.g, a small orgelar
business), who would like to promote the web site in searginen
rankings in order to attract traffic of potential clients. RageR-
ank is used by search engines to determine whether to cnaeXi
pages and to calculate their relevance scores, trackinBageR-
ank of the web site would enable the web site owner to better un
derstand its position in search engine rankings and paigntake
actions to improve the web site PageRank. In this case, tiee we
site owner is interested only in the PageRank score of hisveamn
site (and maybe also in the scores of his competitors’ weds)sit
but not in the PageRank scores of all other web pages.

Major search engines choose to keep the PageRank scorek of we

- pages confidential, since there are many variations of thefRank

formula, and making the exact PageRank values public maylena
spammers to promote illegitimate web sites. Some seardhesg
publish crude PageRank values (e.g., through the Googliedigp
S?ut these are usually givenin a 1 to 10 logarithmic scalerséjsbo
wish to obtain more accurate PageRank scores for pagesiof the
choice are left to compute them on their own. Global PageRank
computation for the entire web graph is out of the questiomfost
users, as it requires significant resources and knowhows biririgs
up the following natural question: can one compute the PagkR
score of a single web page using reasonable resources?

The same question arises in other natural contexts, wheeRRa
ank is used. For example, a Facebbaiser may be interested
in measuring her PageRank popularity by probing the frieipds
graph. Can this be done efficiently without traversing theoleh
network?

Chen, Gan, and Suel [1] were the first to introduce the problem
of local PageRank approximation. Suppose we are given access
to a large graphG through alink server, which for every given
query noder, returns the edges incident fo(both incoming and
outgoing)® Can we then use a small number of queries to the link
server to approximate the PageRank score of a target mdde
within high precision?

Chenet al. proposed an algorithm for solving this problem. Their
algorithm crawls backwards a small subgraph around theettarg

2http://www.facebook.com/.

3If G is the web graph, out-links can be extracted from the coniént
itself and in-links can be retrieved from search engineagugiel i nk:
query. As opposed to PageRank scores, in-links are infoométat search
engines are willing to disclose.



node, applies various heuristics to guess the PageRan&ssobr
the nodes at the boundary of this subgraph, and then comihetes
PageRank of the target node within this subgraph. Gheh em-
pirically showed this algorithm to provide good approximoat on
average. However, they noted that high in-degree nodestsoese
make the algorithm either very expensive or inaccurate.

Lower bounds. In this work we study the limits of local PageRank
approximation. We identify two factors that make local FRaek
approximation hard on certain graphs: (1) the existenceigif h
in-de?ree nodes; (2) slow convergence of the PageRank mando
walk.

In order to demonstrate the effect of high in-degree nodes, w
exhibit for everyn a family of graphs of size: whose maximum
in-degree is high®(1/n)) and on which any algorithm would need
to send2(1/n) queries to the link server in order to obtain accurate
PageRank approximations. For very langefetching /n pages
from the network or sending/n queries to a search engine is very
costly (for example, for the web graph> 10B, and thus,/n >
128 K). The lower bound we prove applies to both randomized and
deterministic algorithms. For deterministic algorithme are able
to prove an even stronger (and optim@lyn) lower bound.

Similarly, to demonstrate the effect of slow PageRank cenve
gence, we present a family of graphs on which the PageRank ran
dom walk converges rather slowly (log n) steps) and on which

every algorithm needs to subnﬂ(n%*e) queries in order to ob-
tain good PageRank approximations £ 0 is a small constant
that depends on the PageRank damping factor). Again, thisrlo
bound holds for both randomized and deterministic algorghFor
deterministic algorithms, we show an optin§aln) lower bound.

We note that the two lower bounds do not subsume each other, a
the family of hard graphs constructed in the first lower bobad
very fast PageRank convergence (2 iterations), while thelyeof
hard graphs constructed in the second lower bound has bdunde
in-degree (2).

Sufficiency. Having proved that local PageRank approximation
is hard for graphs that either have high in-degree or do net ad

mit quick PageRank convergence, it is natural to ask whdther
cal PageRank approximation is feasible for graphs of bodimae

culties encountered by Chehal.

We then demonstrate thesverse natural graphs (the graphs ob-
tained by reversing the directions of all links) are moreahle
for local PageRank approximation. By analyzing the stahéatu
crawl, we show that the reverse web graph, like the web giagbh,
mits quick PageRank convergence (on 80% nodes of the reverse
graph, PageRank converged within 20 iterations). We alsavsh
that the reverse graph has a much lower in-degree (only 255 in
the stanford.edu crawl), and thus crawl growth rates ardand
get nodes are moderate. These findings hint that local PaieRa
approximation should be feasible on the reverse graph.

To test this hypothesis, we measured the performance oflour a
gorithm on a sample of nodes from the stanford.edu graph.oTo d
the comparison, we selected random nodes from the grapHh-as fo
lows. We ordered all the nodes in the graph by their PageRank,
from highest to lowest. We divided the nodes into bucketspbe
nentially increasing sizes (the first bucket had the top &apthe
second one had the next 24 nodes, and so on). We picked frdm eac
bucket 100 random nodes (if the bucket was smaller we todtsall
nodes). We then calculated, for each bucket, the averagécos-
ber of queries to the link server) of the runs on samples fitwam t
bucket. The plot for the reverse graph was constructed goasdy.

The results of this experiment show that the cost of the élgar
on the reverse graph is significantly lower than on the regukph,
especially for highly ranked nodes. For example, the aeecagt
of the algorithm on the first bucket of PageRank was threegstime
higher than the cost of the algorithm on the first buckeReferse
PageRank (PageRank of the reverse graph; “RPR” in short). On
the other hand, for the low ranked nodes, the performancheof t
algorithm on the reverse graph and on the regular graph aesal

She same. For example, the average cost of the algorithmedash

bucket of PageRank was 13 and for Reverse PageRank it was 14.
We conclude from the above that computing Reverse PageRank

is more feasible to do locally than computing regular PagéRa

Social networks and other natural graphs possess simdpepies

to the web graph (power law degrees, high in-degree vs. ldw ou

degree) and are thus expected to exhibit similar behavior.

Applications of Reverse PageRank. While locally approximat-
ing RPR s easier than locally approximating PageRank, winylelv

degree and on which PageRank converges quickly. We present a,,q \yant to compute RPR in the first place? We observe that RPR

variation of the algorithm by Chea al. and prove that it works
well for such graphs: if the PageRank random walk converges o
the graph in- steps, then the algorithm needs to crawl backwards
a subgraph of radius around the target node. In particular, if the
maximum in-degree in this subgraphdsthen the algorithm re-
quires at mostl” queries to the link server. This demonstrates that
the two conditions we showed to be necessary for fast loggRa
ank approximation are also sufficient.

PageRank vs. Reverse PageRank.As natural graphs, like the
web graph and social networks, are abundant with high imegeg
nodes, our first lower bound suggests that local PageRankyapp
imation is frequently infeasible to do on such graphs. Westarb
tiate this observation with an empirical analysis of a 280,6rawl

of the www.stanford.edu sifeWe show that this graph has a rela-
tively high in-degree (38,606) and as a result the sizeshfisphs

has a multitude of applications. It has been used beforeléztse
good seeds for the TrustRank measure [3], to detect higlfily-in
ential nodes in social networks [5], and to find hubs in the web
graph [2]. We present two additional novel applications &R

(1) finding good seeds for crawling; and (2) measuring thetae

tic relatedness” of concepts in a taxonomy.
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