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ABSTRACT
Many search engines and other web applications suggest
auto-completions as the user types in a query. The sugges-
tions are generated from hidden underlying databases, such
as query logs, directories, and lexicons. These databases
consist of interesting and useful information, but they are
typically not directly accessible.

In this paper we describe two algorithms for sampling sug-
gestions using only the public suggestion interface. One of
the algorithms samples suggestions uniformly at random and
the other samples suggestions proportionally to their pop-
ularity. These algorithms can be used to mine the hidden
suggestion databases. Example applications include com-
parison of popularity of given keywords within a search en-
gine’s query log, estimation of the volume of commercially-
oriented queries in a query log, and evaluation of the extent
to which a search engine exposes its users to negative con-
tent.

Our algorithms employ Monte Carlo methods in order to
obtain unbiased samples from the suggestion database. Em-
pirical analysis using a publicly available query log demon-
strates that our algorithms are efficient and accurate. Re-
sults of experiments on two major suggestion services are
also provided.

1. INTRODUCTION
Background and motivation. In an attempt to make
search experience easier and faster, search engines and other
interactive web sites suggest users auto-completions of their
queries. Figure 1 shows the suggestions provided by the
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Figure 1: Google Toolbar Suggest.

Google Toolbar1 when typing the query “weather”. Other
suggestion services include Yahoo! Search Assist2, Windows
Live Toolbar3, Ask Suggest4, and Answers.com5.

A suggestion service accepts a string currently being typed
by the user, consults its internal index for possible comple-
tions of this string, and returns the user the top k com-
pletions. The internal index is based on some underlying
database, such as a log of past user queries, a dictionary
of place names, a list of business categories, or a repository
of document titles. Suggestions are usually ranked by some
query-independent scoring function, such as the popularity
of suggestions in the underlying database.

Suggestion databases frequently contain valuable and in-
teresting information, to which the suggestion interface is
the only public access point. This is especially true for
search query logs that are kept confidential, due to user
privacy constraints. Extracting aggregate, non-specific, in-
formation from hidden suggestion databases could be very

1toolbar.google.com.
2search.yahoo.com.
3toolbar.live.com.
4www.ask.com.
5www.answers.com.



useful for online advertising, for evaluating the quality of
search engines, and for user behavior studies. We elaborate
below on the two former applications.

Online advertising and keyword popularity estima-
tion. In online advertising, advertisers bid for search key-
words that have the highest chances to funnel user traffic
to their websites. Finding which keywords carry the most
traffic requires access to the hidden search engine’s query
log. The algorithms we describe in this paper can be used
to estimate the popularity of given keywords. Using our
techniques, an advertiser who does not have access to the
search engine’s logs, would be able to compare alternative
keywords and choose the ones that carry the most traffic.
By applying our techniques continuously, an advertiser can
track the popularity of her keywords over time.6

Search engine evaluation and ImpressionRank sam-
pling. External and objective evaluation of search en-
gines is important for enabling users to gauge the quality of
the service they receive from different search engines. Ex-
ample metrics of search engine index quality include the
index’s coverage of the web, the freshness of the index,
and the amount of negative content (pornography, virus-
contaminated files, spam) included in the index. The limited
access to search engines’ indices via their public interfaces
make the problem of evaluating the quality of these indices
very challenging. Previous work [5, 3, 6, 4] has focused on
generating random uniform sample pages from the index.
The samples have then been used to estimate index quality
metrics, like index size and index freshness.

One criticism of this evaluation approach is that it treats
all pages in the index equally, regardless of whether they
are actually being actively served as search results or not.
To overcome this difficulty, we define a new measure of “ex-
posure” of pages in a search engine’s index, which we call
“ImpressionRank”. Every time a user submits a query to
the search engine, the top ranking results receive “impres-
sions” (see more details in Section 7 how the impressions
are distributed among the top results). The Impression-
Rank of a page x is the (normalized) amount of impressions
it receives from user queries in a certain time frame. By
sampling queries from the log proportionally to their pop-
ularity and then sampling results of these queries, we can
sample pages from the index proportionally to their Impres-
sionRank. These samples can then be used to obtain more
sensible measurements of index quality metrics (coverage,
freshness, amount negative content), in which high-exposure
pages are weighted higher than low-exposure ones.

Our techniques can be also used to compare different sug-
gestion services. For example, we can find the size of the
suggestion database, the average number of words in sug-
gestions, or the fraction of misspelled suggestions.

Our contributions. We propose algorithms for sampling
and mining suggestions using only the public suggestion in-
terface. Specifically, our algorithms can be used either to
sample suggestions from the suggestion database according
to a given target distribution (e.g., uniform or popularity-
induced) or to compute integrals over the suggestions in the

6Google Trends (google.com/trends) provides a similar
functionality for popular queries, building on its privileged
access to Google’s query logs. Our techniques can be used
with any search engine and with any keyword (regardless of
its popularity), and without requiring privileged access to
the log.

database relative to some target measure. Such primitives
can then be used to accomplish various mining tasks, like
the ones mentioned above.

We present two sampling/mining algorithms: (1) an algo-
rithm that is suitable for uniform target measures (i.e., all
suggestions have equal weights); and (2) an algorithm that is
suitable for popularity-induced distributions (i.e., each sug-
gestion is weighted proportionally to its popularity). Our
algorithm for uniform measures is provably unbiased: we
are guaranteed to obtain truly uniform samples from the
suggestion database. The algorithm for popularity-induced
distributions has some bias incurred by the fact suggestion
services do not provide suggestion popularities explicitly.

The performance of suggestion sampling and mining is
measured in terms of the number of queries sent to the sug-
gestion server. This number is usually the main performance
bottleneck, because queries require time-consuming commu-
nication over the Internet.

Using the publicly released AOL query log [22], we con-
structed a home-grown suggestion service. We used this ser-
vice to empirically evaluate our algorithms. We found that
the algorithm for uniform target measures is indeed unbiased
and efficient. The algorithm for popularity-induced distri-
butions requires more queries, since it needs to also estimate
the popularity of each sample using additional queries.

Finally, we used both algorithms to mine the live sug-
gestion services of two major search engines. We measured
their database sizes and their overlap; the fraction of sug-
gestions covered by Wikipedia articles; and the density of
“dead links” in the search engines’ indices when weighting
pages by their ImpressionRank.

Techniques. Sampling suggestions directly from the tar-
get distribution is usually impossible, due to the restricted
interface of the suggestion server. We therefore resort to the
Monte Carlo simulation framework [18], used also in recent
works on search engine sampling and measurements [3, 6, 4].
Rather than sampling directly from the target distribution,
our algorithms generate samples from a different, easy-to-
sample-from, distribution called the trial distribution. By
weighting these samples using “importance weights” (spec-
ifying for each sample the ratio between its probabilities
under the target and trial distributions), we simulate sam-
ples from the target distribution. As long as the trial and
target distributions are sufficiently close, few samples from
the trial distribution are need to simulate each sample from
the target distribution.

When designing our algorithms we faced two technical
challenges. The main challenge was to calculate importance
weights in the case of popularity-induced target distribu-
tions. Note that suggestion services do not provide any ex-
plicit popularity information, so it may not be clear how to
estimate the popularity-induced probability of a given sug-
gestion. To overcome this difficulty we exploited the implicit
scoring information latent in the rankings provided by the
suggestion service as well as the power law distribution of
query popularities learned from the AOL query log.

The second challenge was to create an efficient sampler
that produces samples from a trial distribution that is close
to the target distribution. While the correctness of our sam-
pling algorithms is independent of the choice of the trial
distribution (due to the use of Monte Carlo simulation), the
efficiency of the algorithms (how many queries are needed
to generate each sample) depends on the distance between



the trial and target distributions. We observe that a “flat
sampler” (one that samples a random string and outputs
the first suggestion succeeding this string in lexicographi-
cal order), which is popular in database sampling applica-
tions [24], is highly ineffective in our setting, as suggestions
are not evenly spread in the string space. Empirical analy-
sis of this sampler on the AOL data set revealed that about
1093(!) samples from this sampler are needed to generate a
single uniform sample.

We use instead a random walk sampler that can effectively
“zero-in” on the suggestions (a similar sampler was proposed
in a different context by Jerrum et al. [13]). This sampler
relies on the availability of a black-box procedure that can
estimate the weights of a given string x and all continua-
tions thereof under the target distribution. We present an
efficient heuristic implementation of this procedure, both for
the uniform and the popularity-induced target distributions.
In practice, these heuristics proved to be very effective. We
note that in any case, the quality of the heuristics impacts
only the efficiency the importance sampling estimator and
not its accuracy.

2. RELATED WORK
Several previous works [5, 16, 11, 7, 3, 6, 4] studied meth-

ods for sampling random documents from a search engine’s
index using its public interface. The problem we study in
this paper can be viewed as a special case of search engine
sampling, because a suggestion service is a search engine
whose “documents” are suggestions and whose “queries” are
prefix strings. Most of the existing search engine sampling
techniques rely on the availability of a large pool of queries
that “covers” most of the documents indexed by the search
engine. That is, they assume that every document belongs
to the results of at least one query from the pool. In the sug-
gestions setting, coming up with such a pool is very difficult.
Since the suggestion server returns up to 10 completions for
each prefix string, most suggestions are returned as a result
of a small number of prefix strings. Thus, a pool that cov-
ers most suggestions must be almost of the same size as the
suggestion database itself. This is of course impractical.

On the other hand, suggestion sampling has two unique
characteristics that are used by the algorithms we consider
in this paper. First, “queries” (= prefix strings) are al-
ways prefixes of “documents” (= suggestions). Second, the
scoring function used in suggestion services is usually query-
independent.

Jerrum et al. [13] presented an algorithm for uniform sam-
pling from a large set of combinatorial structures, which is
similar to our tree-based random walk sampler. However,
since their work is mostly theoretical, they have not ad-
dressed some practical issues like how to estimate sub-tree
volumes (see Section 6). Furthermore, they employed only
the rather wasteful rejection sampling technique rather than
the more efficient importance sampling.

Recently, Dasgupta, Das, and Mannila [9] presented a tree
random walk algorithm for sampling records from a database
that is hidden behind a web form. Here too, suggestion sam-
pling can be cast as a special case of this problem, because
suggestions represent database tuples, and each character
position represents one attribute. Like Jerrum et al, Das-
gupta et al. do not employ volume estimations or importance
sampling. Another difference is that a key ingredient in their
algorithm is a step in which the attributes are shuffled ran-

domly and then queried one by one. In our setting, the
server interface enables querying character positions only in
order, making this technique inapplicable.

Several papers studied techniques for random sampling
from B-trees [24, 21, 20]. Most of these assume the tree
is balanced, and are therefore not efficient for highly un-
balanced trees, as is the case with the suggestion TRIE.
Moreover, these works assume data is stored only at leaves
of the tree (in our case internal nodes of the TRIE can also
be suggestions), that nodes at the same depth are connected
by a linked list (does not hold in our setting), and that nodes
store aggregate information about their descendants (again,
not true in out setting).

Finally, another related problem is tree size estimation [15]
by sampling nodes from the tree. The standard solutions
for this problem employ importance sampling estimation.
We use this estimator in our algorithm for sampling from
popularity-induced distributions.

3. PRELIMINARIES

3.1 Sampling and mining suggestions
Let S be a suggestion database, where each suggestion is

a string of length at most ℓmax over an alphabet Σ. The
suggestion database is typically constructed by extracting
terms or phrases from an underlying base data set, such
as a document corpus, a query log, or a dictionary. The
search engine defines a scoring function, score : S → [0,∞)
over the suggestions in S. The score of a suggestion x
represents its prominence in the base data set. For exam-
ple, if the base data set is a query log, the popularity of
x in the log could be its score.7 A suggestion server sug-
gests auto-completions from S to given query strings. For-
mally, for a query string x, let completions(x) = {z ∈ S |
x is a prefix of z}. Given x, the suggestion server orders the
suggestions in completions(x) using the scoring function s
and returns the k top scoring ones. (k is a parameter of the
suggestion server. k = 10 is a typical choice.)

Several remarks are in order. (1) Actual suggestion servers
may return also suggestions that are not simple continua-
tions of the query string x (e.g., suggest “George Bush” for
“Bus” or “Britney Spears” for “Britni”). In this work we
ignore such suggestions and focus only on simple string com-
pletions. (2) We assume x is a completion of itself. Thus,
if x ∈ S, then x ∈ completions(x). (3) The scoring function
used by the suggestion server is query-independent. (4) The
scoring function induces a partial order on the suggestion
database. The partial order is typically extended into a to-
tal order, in order to break ties (this is necessary when more
than k results compete for the top k slots). (5) In principle,
there could be suggestions in S that are not returned by
the suggestion server for any query string, because they are
always beaten by other suggestions with higher score. Since
there is no way to know about such suggestions externally,
we do not view these as real suggestions, and eliminate them
from the set S.

In this paper we address the suggestion sampling and min-
ing problems. In suggestion sampling there is a target dis-

tribution π on S and our goal is to generate independent

7Any scoring function is acceptable. For example, if the
scoring is personalized, the resulting samples/estimates will
reflect the scoring effectively “visible” to the user performing
the experiment.



samples from π. In suggestion mining, we focus on min-
ing tasks that can be expressed as computing discrete inte-
grals over the suggestion database. Given a target measure

π : S → [0,∞) and a target function f : S → R, the integral
of f relative to π is defined as:

Intπ(f) =
∑

x∈S

f(x)π(x).

Many mining tasks can be written in this form. For example,
the size of the suggestion database is the integral of the con-
stant 1 function (f(x) = 1, ∀x) under the uniform measure
π(x) = 1, ∀x. The average length of suggestions is the inte-
gral of the function f(x) = |x| under the uniform probability
measure π(x) = 1/|S|, ∀x. For simplicity of exposition, we
focus on scalar target functions, yet vector-valued functions
can be handled using similar techniques.

We would like to design sampling and mining algorithms
that access the suggestion database only through the pub-
lic suggestion server interface. Such algorithms do not have
any privileged access to the suggestion database or to the
base data set. The prior knowledge these algorithms have
about S is typically limited to the alphabet Σ and the max-
imum suggestion length ℓmax, so even the size of the sugges-
tion database |S| is not assumed to be known in advance.
(In cases we assume more prior knowledge about S, we will
state this explicitly.) Due to bandwidth limits, the sam-
pling and mining algorithms are constrained to submitting
a small number of queries to the suggestion server. Thus,
the number of requests sent to the server will be our main
measure of cost for suggestion sampling/mining algorithms.
The cost of computing the target function f on given in-
stances is assumed to be negligible.

This conference version of the paper is devoted primarily
to the suggestion mining problem. Similar techniques can
be used to perform suggestion sampling.

3.2 Tree mining
We next show that suggestion mining can be expressed as

a special case of tree mining. This will allow us to describe
our algorithms using standard tree and graph terminology.

Throughout, we will use the following handy notation:
given a tree T and a node x ∈ T , Tx is the subtree of T
rooted at x.

Let T be a rooted tree of depth d. Suppose that some of
the nodes of the tree are “marked” and the rest are “un-
marked”. We denote the set of marked nodes by S.8 Each
marked node x has a non-negative score: score(x). We fo-
cus on tree mining tasks that can be expressed as computing
an integral Intπ(f) of a target function f : S → R relative
to a target measure π : S → [0,∞). The mining algorithm
knows the tree T in advance but does not know a priori
which of its nodes are marked and which are not. In order
to gain information about the marked nodes, the algorithm
can probe a tree server. Given a node x ∈ T , the tree server
returns an ordered set results(x) — the k top scoring marked

nodes in the subtree Tx. The goal is to design tree mining
algorithms that send a minimal number of requests to the
tree server.

The connection between suggestion mining and tree min-
ing should be quite obvious. The tree T in the suggestion

8We later show that in the case of suggestion mining, the
marked nodes coincide with the suggestions, so both are
denoted by S.

mining case is a TRIE representing all the strings of length
at most ℓmax over Σ. Thus, T is a complete |Σ|-ary tree
of depth ℓmax. There is a natural 1-1 correspondence be-
tween the nodes of this tree and strings of length at most
ℓmax over Σ. The nodes of T that correspond to suggestions
are marked and the rest of the nodes are unmarked. Since
the nodes in the subtree Tx correspond to all the possible
continuations of the string x, the suggestion server returns
exactly the top k marked nodes in Tx. We conclude that
suggestion mining is a special case of tree mining, and thus
from now on we primarily focus on tree mining (in cases
where we use the specific properties of suggestion mining,
this will be stated explicitly).

3.3 Randomized mining
Due to the limited access to the set of marked nodes S, it

is typically infeasible for tree mining algorithms to compute
the target integral exactly and deterministically. We there-
fore focus on randomized (Monte Carlo) algorithms that es-

timate the target integral. These estimations are based on
random samples drawn from S.

Our two measures of quality for randomized mining algo-
rithms will be: (1) bias: the expected difference between the
output of the algorithm and the target integral; and (2) the
variance of the estimator. We will shoot for algorithms that
have little bias and small variance. This will guarantee (via
Chebyshev’s inequality) that the algorithm produces a good
approximation of the target integral with high probability.

3.4 Training and empirical evaluation
In order to train and evaluate the different mining algo-

rithms we present in this paper, we built a suggestion server
based on the AOL query logs [22]. For this data set we
have “ground truth”, and we can therefore use it to tune
the parameters of our algorithms as well as to evaluate their
quality and performance empirically.

The AOL query log consists of about 20M web queries (of
which about 10M are unique), collected from about 650K
users between March 2006 and May 2006. The data is sorted
by anonymized user IDs and contains, in addition to the
query strings, also the query submission times, the ranks of
the results on which users clicked, and the landing URLs of
the clicked results. We extracted 10M unique query strings
and their popularities and discarded all other data.

From the unique query set we built a simple suggestion
server, while filtering out a negligible amount of queries con-
taining non-ASCII characters.

remark. In spite of the controversy surrounding the
release of the AOL query log, we have chosen to use it in
our experiments and not a proprietary private query log, for
several reasons: (1) The prominent feature of our algorithms
is that they do not need privileged access to search engine
data; hence, we wanted to use a publicly available query log.
(2) Among the public query logs, AOL’s is the most recent
and comprehensive. (3) The use of a public query log makes
our results and experiments reproducible by anyone.

3.5 Importance sampling
A naive Monte Carlo algorithm for estimating the integral

Intπ(f) draws random samples X1, . . . , Xn from the target
measure π and outputs 1

n

∑n
i=1 f(Xi). However, implement-

ing such an estimator is usually infeasible in our setting,
because: (1) π is not necessarily a proper distribution (i.e.,



∑

x∈S π(x) need not equal 1); and (2) even if π is a distri-
bution, we may not be able to sample from it directly using
the restricted public interface of the tree server.

The estimators we consider in this paper use the Im-

portance Sampling framework [19, 12]. Rather than sam-
pling marked nodes from the target measure π, the algo-
rithm draws n samples X1, . . . , Xn from a different, easy-
to-sample-from, trial distribution p. The sampler from p is
required to provide with each sample X also the probability
p(X) with which this sample has been selected. The algo-
rithm then calculates for each sample node X an importance

weight w(X) = π(X)/p(X). Finally, the algorithm outputs

1

n

n
∑

i=1

w(Xi)f(Xi)

as its final estimate. It is easy to check that as long as the
support of p is a superset of the support of π, this is indeed
an unbiased estimator of Intπ(f).

In some cases, we will be able to compute the target
measure only up to normalization. For example, when the
target measure is the uniform distribution on S (π(x) =
1/|S|, ∀x), we will be able to compute its unnormalized form
only (π̂(x) = 1, ∀x). If the estimator uses unnormalized im-
portance weights instead of the real importance weights (i.e.,
ŵ(X) = π̂(X)/p(X)), then the resulting estimate is far off
the target integral by the unknown normalization factor. It
turns out that 1

n

∑n
i=1 ŵ(Xi) is an unbiased estimator of

the normalization factor, so we use the following ratio im-

portance sampling estimator to estimate the target integral:
∑n

i=1 ŵ(Xi)f(Xi)
∑n

i=1 ŵ(Xi)
.

It can be shown (cf. [18]) that this estimator has small bias,
yet the bias diminishes to 0 as n → ∞.

Also the variance of the importance sampling estimator di-
minishes to 0 as n → ∞ [18] (this holds for both the regular
estimator and the ratio estimator). This variance depends
also on the variance of the basic estimator w(X)f(X) =
π(X)f(X)

p(X)
, where X is a random variable with distribution

p. When the target function f is uncorrelated with the trial
and target distributions, this variance depends primarily on
the similarity between p(X) and π(X). The closer they are,
the lower is the variance of the basic estimator, and thus
the lower is the number of samples (n) needed in order to
guarantee the importance sampling estimator has low vari-
ance. Liu’s “rule of thumb” [17] quantifies this intuition:
in order for the importance sampling estimator to achieve
the same estimation variance as if estimating Intπ(f) by
sampling m independent samples directly from π (or the
normalized version of π, if π is not a proper distribution),
n = m(1 + var(w(X))) samples from p are needed. We will
therefore always strive to find a trial distribution for which
var(w(X)) is as small as possible.

In order to design a tree mining algorithm that uses the
importance sampling framework, we need to accomplish two
tasks: (1) build an efficient procedure for computing the tar-
get weight of each given node, at least up to normalization;
(2) come up with a trial distribution p that has the follow-
ing characteristics: (a) we can sample from p efficiently us-
ing the tree server; (b) we can calculate p(x) easily for each
sampled node x; (c) the support of p contains the support
of π; (d) the variance of w(X) is low.

1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000 100000

Query popularity

C
o

m
u

la
tiv

e 
n

u
m

b
er

 o
f d

is
tin

ct
 

q
u

er
ie

s

Popularity distribution

Power law with alpha = 2.55

Figure 2: Cumulative number of distinct queries by
popularity in the AOL data set (log-log scale). The
graph indicates an almost power law with exponent
α = 2.55.

4. TARGET WEIGHT COMPUTATION
When the target measure is uniform (π(x) = u(x) ,

1, ∀x), then computing the target weight is trivial. When the
target measure is the uniform distribution (π(x) = 1/|S|, ∀x),
we compute the target weight only up to normalization,
π̂(x) = u(x) = 1, ∀x, and then apply ratio importance sam-
pling.

The case the target measure is the score distribution (π(x) =

s(x) , score(x)/score(S)) is much harder to deal with, as
we do not receive any explicit score information from the tree
server. Nevertheless, the server provides some cues about
the scores of nodes, because it orders the results by their
score. We will use these cues as well as the assumption
that the scores have a power law distribution with a known
parameter to sample nodes proportionally to their scores.

The rest of this section is devoted to describing our al-
gorithm for estimating the target probability s(x) (up to
normalization) for the case π is the score distribution. We
assume in this section that scores are integers, as is the case
with popularity-based scores. This assumption only makes
the algorithm more difficult to design (dealing with contin-
uous scores is easier).

Score rank. Our first step is to reduce the problem of
calculating s(x) to the problem of calculating the relative
“score rank” of x. Let us define the relative score rank of
a node x ∈ S to be the fraction of nodes whose score is at
least as high as the score of x:

srank(x) =
1

|S|
|{y ∈ S | score(y) ≥ score(x)}|.

Thus, srank(x) ∈ [1/|S|, 1]; it is at least 1/|S| for the top
scoring node(s) and it is 1 for the lowest scoring node(s).

It has been observed before (see, e.g., [23, 25]) that the
popularity distribution of queries in query logs is close to
being a power law. We verified this fact also on the AOL
query log (see Figure 2). We found that the popularity
distribution is at total variation distance distance of merely
11% from a power law whose exponent is α = 2.55

We can thus write the probability of a uniformly chosen
node X ∈ S to have score at least s to be:

Pr(score(X) ≥ s) ≈
( smin

s

)α−1

, (1)



where smin is the score of the lowest scoring node.
remark. The above expression for the cumulative den-

sity is only approximate, due to the following factors: (1)
The score distribution is slightly different from a true power
law. (2) The CDF of a discrete power law is approximated
by the CDF of a continuous power law (see [8]). (3) The
CDF of a “chopped” power law (all values above some finite
n have probability 0) is approximated by the CDF of an
unbounded power law. The latter two errors should not be
significant when n is sufficiently large. For simplicity of ex-
position, we suppress the approximation error for the rest of
the presentation. In Section 7, we provide empirical analysis
of the overall estimation error incurred by our algorithm.

Note that for a given node x, Pr(score(X) ≥ score(x)) =
srank(x). Therefore, we can rewrite score(x) in terms of
srank(x) as follows:

score(x) =

[

smin

srank(x)1/(α−1)

]

. (2)

(In order to make sure score(x) is an integer, we round the
fraction to the nearest integer (cf. [8]).) If both the ex-
ponent α and the minimum score smin are known in ad-
vance, then by the above equation we can use srank(x) to
calculate s(x) = score(x)/score(S) up to normalization:
ŝ(x) = score(x). The unknown normalization constant is
score(S) (recall that calculating s(x) up to normalization is
enough, because we can apply ratio importance sampling).

Typically, we expect the minimum score smin to be 1. If
we do not want to rely on the knowledge of smin, then we
can set the unnormalized target weight as follows:

ŝ(x) =
1

srank(x)1/(α−1)
. (3)

Suppressing the small rounding error, ŝ(x) is the same as
s(x), up to the unknown normalization constant score(S)/smin.

Why can we assume the exponent α to be known in ad-
vance? Due to the scale-free nature of power laws, the ex-
ponent α is independent of the size of the query log and of
smin. α is dependent mainly on the intrinsic characteristics
of the query log, which are determined by the profile of the
search engine’s user population. In our experiments, we as-
sumed the AOL exponent (α = 2.55) holds for other search
engines as well, as we expect query logs of different major
search engines to have similar profiles.9 Note that using an
inaccurate exponent can bias our target weight estimations.
Thus, one should always use the most accurate and up-to-
date information she has about the exponent of the search
engine being mined.

Score rank estimation. We showed that in order to
calculate the unnormalized target weight ŝ(x) of a given
node x, it suffices to calculate srank(x). We next show how
we estimate the score rank of a node by further reducing
it to estimation of an integral relative to a uniform target
measure.

Let sorder(x, y) be the score order indicator function:

sorder(x, y) =

{

1, if score(x) ≥ score(y),

0, if score(x) < score(y).

9Previous studies (e.g., [1, 2]) also reported estimates of
query log exponents. Not all these reports are consistent,
possibly due to differences in the query log profiles studied.

For a given node x, let sorderx(y) = sorder(x, y). We can
write srank(x) as an integral of sorderx relative to the uni-
form distribution:

srank(x) =
1

|S|

∑

y∈S

sorderx(y).

Now, assuming we can compute sorder (and thus sorderx in
particular), the expression for srank(x) is a discrete integral
of a computable function over the set of marked nodes S
relative to the uniform distribution. We can thus apply our
tree mining algorithm with the uniform target distribution
to estimate this integral.

Score order approximation. Following the above reduc-
tions, we are left to show how to compute the score order
sorder(x, y) for two given nodes x, y.

The naive way to compute the score order of x, y would
be to find their scores and compare them. This is of course
infeasible, because we do not know how to calculate scores.
A slight variation of this strategy is the following. Suppose
we could come up with a function b : S → R that satisfies
two properties: (1) b is easily computable; (2) b is order-

consistent with s (that is, for every x, y ∈ S, score(x) ≥
score(y) if and only if b(x) ≥ b(y)). Given such a function
b, we can compute sorder(x, y) by computing b(x) and b(y)
and comparing them.

We next present a function b that is relatively easy to
compute and has high order correlation with s.

We say that an ancestor z of x exposes x, if x is one of
the top k marked descendants of z, i.e., x ∈ results(z). The
highest exposing ancestor of x, a(x), is the highest ancestor
of x that exposes it.

Let pos(x) be the position of x in results(a(x)). By def-
inition, score(x) ≥ score(y) for every y ∈ Sa(x), except
maybe for the pos(x) − 1 nodes that are ranked above x in
results(a(x)). Due to the scale-free nature of power laws,
we expect the distribution of scores in each subtree of T to
be power-law distributed with the same exponent α. This
means that the larger is the number of nodes that are scored
lower-or-equal to x in Sa(x), the higher is its score. This mo-
tivates us to define b(x) to be the number of nodes whose
score is lower-or-equal to score(x) in Sa(x):

b(x) = |Sa(x)| − pos(x) + 1.

The above intuition suggests that b is order-consistent with
s. Empirical analysis on the AOL query log indeed demon-
strates that b is order-consistent with s for high scoring
nodes. It is not doing as well for low-scoring nodes. The
reason for this is the following. By its definition, b imposes
a total order on nodes that belong to the same subtree.
This is perfectly okay for high scoring nodes, where it is
very rare for two nodes to have exactly the same score. On
the other hand, for low scoring nodes (e.g., nodes of score
1), this introduces an undesirable distortion. To circumvent
this problem, we flatten the values of b for nodes that are
placed close the leaves of the tree:

b(x) =

{

|Sa(x)| − pos(x) + 1, if |Sa(x)| − pos(x) + 1 > C,

1, if |Sa(x)| − pos(x) + 1 ≤ C,

where C is some tunable threshold parameter (we used C =
20 in our experiments). We measured the Kendall tau corre-
lation10 between the rankings induced by s and b on the AOL

10Kendall tau is a measure of correlation between rankings,



query log and found it to be 0.8. This suggests that while
not perfectly order-consistent, b has high order-correlation
with s.

How can we compute b(x) efficiently? In order to find
the ancestor a(x), we perform a binary search on x’s ances-
tors. As we shall see below, the random walk sampler that
produces x queries all its ancestors, so this step does not re-
quire any additional queries to the tree server. The position
pos(x) of x in results(a(x)) can be directly extracted from
results(a(x)).

To estimate the volume |Sa(z)|, we observe that it can be
written as an integral of the constant 1 function over Sh(x)

relative to the uniform measure:

|Sa(x)| =
∑

y∈Sa(x)

1.

Therefore, applying again our tree miner with a uniform
target measure on the subtree Ta(x), we can estimate this
integral accurately and efficiently (note that our tree miners
can mine not only the whole tree T but also subtrees of T ).

Recap. The algorithm for estimating the unnormalized
target weight ŝ(x) of a given node x works as follows:

1. Sample nodes Y1, . . . , Ym from a trial distribution p on
T using the random walk sampler (see Section 5).

2. Compute estimators B(x) for b(x) and B(Y1), . . . , B(Ym)
for b(Y1), . . . , b(Ym), respectively (see below).

3. For each i, estimate sorderx(Yi) as follows:

SOx(Yi) =

{

1, if B(x) ≥ B(Yi),

0, otherwise.

4. Estimate srank(x) as

SR(x) =

∑m
i=1

1
p(Yi)

SOx(Yi)
∑m

i=1
1

p(Yi)

.

5. Output the estimator for ŝ(x):
[

smin

SR(x)1/(α−1)

]

.

In order to estimate the value b(y), we perform the fol-
lowing steps:

1. Extract a(y) and pos(y) from the list of y’s ancestors.

2. Compute an estimate V (a(y)) for |Sa(y)| using the ran-
dom walk sampler applied to the subtree Ta(y) with a
uniform target measure and a constant 1 function.

3. If V (a(y)) − pos(x) + 1 > C, set B(y) = V (a(y)) −
pos(y) + 1. Otherwise, set B(y) = 1.

Recycling samples. The algorithm, as described, is rather
costly. It runs three importance sampling estimators nested
within each other. The first estimator generates n samples
X1, . . . , Xn, in order to estimate an integral relative to the

which assumes values in the interval [-1,1]. It is 1 for identi-
cal rankings and -1 for opposite rankings. We used a variant
of Kendall tau, due to Fagin et al. [10], that can deal with
rankings with ties.

score distribution. For each sample Xi, the algorithm esti-
mates ŝ(Xi). To this end, the algorithm generates m sam-
ples Y1, . . . , Ym that are used to estimate srank(Xi). Finally,
for each Yj , the algorithm generates ℓ samples Z1, . . . , Zℓ

that are used to estimate |Sa(Yj)|. m, n, ℓ are chosen to be
sufficiently large, so the corresponding estimators have low
variances. To conclude, each integral estimation invokes the
random walk sampler m · n · ℓ times, where each invocation
incurs several queries to the tree server (see Section 5).

In order to reduce this significant cost, we recycle sam-
ples. Rather than generating fresh samples Y1, . . . , Ym for
each Xi, we use X1, . . . , Xn themselves as substitutes. That
is, the second level estimator uses X1, . . . , Xn to estimate
srank(Xi).

This recycling step reduces the number of samples per in-
tegral estimation from mnℓ to nℓ. It introduces some depen-
dencies among the samples from s, yet our empirical results
indicate that this does not have a significant effect on the
quality of the estimation.

Analysis. The algorithm for estimating ŝ(x) incurs bias
due to several factors:

1. As mentioned above, the expression (1) for srank(x) =
Pr(S(X) ≥ score(x)) is only approximate. This means
that ŝ(x), as defined in Equation (3), is not exactly
proportional to s(x).

2. In the estimation of ŝ(x), we do not compute srank(x)
deterministically, but rather only estimate it. Since
ŝ(x) is not a linear function of srank(x), then even if we
have an unbiased estimator for srank(x), the resulting
estimator for ŝ(x) is biased.

3. In the estimation of srank(x), we do not compute sorderx,
but rather only approximate it using the function b.
Thus, the estimator for srank(x) is biased.

4. The function b is not computed deterministically, but
is rather estimated, again contributing to possible bias
in the estimation of srank(x).

We measured empirically the bias incurred by the above
factor (excluding the score rank estimation bias) on the AOL
data set, and found the total variation distance between the
true score distribution and the distribution of target weights
calculated by the above algorithm to be merely 22.74%.

5. RANDOM WALK SAMPLER
In this section we describe the trial distribution sampler

used in our tree miners. The sampler is based on a random
walk on the tree. It gradually collects cues from the tree and
uses them to guide the random walk towards concentrations
of marked nodes. Whenever the random walk reaches a
marked node and the sampler decides it is time to stop, the
reached node is returned as a sample.

We first need to introduce some terminology and notation.
Recall that the algorithm knows the whole tree T in advance,
but has no a priori information about which of its nodes are
marked. The only way to gain information about marked
nodes is by probing the tree server.

We use Tx to denote the subtree of T rooted at x and
Sx to denote the set of marked nodes in Tx: Sx = Tx ∩ S.
We call π̂(Sx) =

∑

y∈Sx
π̂(y) the volume of Sx under π̂,

where π̂ is an unnormalized form of the target distribution



π (e.g., for a uniform target measure, the volume of Sx is
simply its size). We say that a node x is empty if and only if
π̂(Sx) = 0. Assuming the support of π covers all the marked
nodes (which is the case both for the uniform and the score-
induced distributions), every marked node is non-empty.

The random walk sampler uses as a black box two pro-
cedures: a “target weight estimator” and a “volume es-
timator”. Given a node x, the target weight estimator,
TargetEstπ̂(x), and the volume estimator, VolEstπ̂(x), re-
turn estimates of π̂(x) and π̂(Sx), respectively. We describe
the implementation of these procedures for the uniform and
for the score-induced target measures in the next section.

The goal of the random walk sampler is to generate sam-
ples whose distribution is as close as possible to π. As we
shall see below, the closeness of the sample distribution to
π depends on the quality of the target weight and volume
estimations. In particular, if TargetEstπ̂(x) always returns
π̂(x) and VolEstπ̂(x) always returns π̂(Sx), then the sample
distribution of the random walk sampler is exactly π.

The main idea of the random walk sampler (see Figure 3)
is as follows. The sampler performs a random walk on the
tree starting at the root. At each step, the random walk
either stops (in which case the reached node is returned as
a sample), or continues to one of the children of the current
node.

When visiting a node x, the sampler determines its next
step in such a way that the probability to eventually return
any node z ∈ Sx is proportional to the probability of z under
the target distribution restricted to Sx. In order to achieve
this, the sampler computes a volume estimate VolEstπ̂(y),
for each child y of x. y is selected as the next step with
probability VolEstπ̂(Sy)/ VolEstπ̂(Sx). If x itself is marked,
the sampler computes an estimate TargetEstπ̂(x) of its tar-
get weight and stops the random walk, returning x, with
probability TargetEstπ̂(x)/ VolEstπ̂(Sx).

Testing whether a node x is marked (line 9) is simple: we
query the tree server for x and determine that it is marked
if and only if x itself is returned as one of the results. Find-
ing the non-empty children of a node x (line 4) is done by
querying the tree server for all the children of x and checking
whether each child y is marked or has a marked descendant
(i.e., results(y) 6= ∅).

The following proposition shows that in the ideal case the
the estimators TargetEstπ̂ and VolEstπ̂ are always correct,
the sampling distribution of the random walk sampler is
exactly π:

Proposition 5.1. If for all x, TargetEstπ̂(x) = π̂(x) and

VolEstπ̂(x) = π̂(Sx), then the sampling distribution of the

random walk sampler is π.

Proof. Let x be a marked node. Let x1, . . . , xt be the
sequence of nodes along the path from the root of T to x.
In particular, x1 = root(T ) and xt = x. x is selected as
the sample node if and only if for each i = 1, . . . , t − 1, the
sampler selects xi+1 as the next node and for i = t it decides
to stop at xt. The probability of the sampler to select xi+1

as the next node of the random walk, conditioned on the
current node being xi, is π̂(Sxi+1)/π̂(Sxi

). The probability
of the sampler to stop at xt is π̂(x)/π̂(Sxt). Therefore, the
probability of outputting x = xt as a sample is:

t−1
∏

i=1

π̂(Sxi+1)

π̂(Sxi
)

·
π̂(x)

π̂(Sxt)
=

π̂(x)

π̂(Sx1)
=

π̂(x)

π̂(S)
= π(x).

procedure RWSampler(T )

1: x := root(T )
2: trial prob := 1
3: while true do
4: children := GetNonEmptyChildren(x)
5: for each child y ∈ children do
6: V (Sy) := VolEstπ̂(y)
7: end for
8: V (Sx) :=

∑

y∈children V (Sy)

9: if IsMarked(x) then
10: T (x) := TargetEstπ̂(x)
11: V (Sx) := V (Sx) + T (x)
12: if children = ∅ then
13: return (x, trial prob)
14: end if
15: stop prob := T (x)/V (Sx)
16: toss a coin whose heads probability is stop prob
17: if coin is heads then
18: trial prob := trial prob · stop prob
19: return (x, trial prob)
20: else
21: trial prob := trial prob · (1 - stop prob)
22: end if
23: end if
24: select y ∈ children with probability V (Sy)/V (Sx)
25: x := y
26: trial prob := trial prob · V (Sy)/V (Sx)
27: end while

Figure 3: The random walk sampler.

When the estimators TargetEstπ̂ and VolEstπ̂ are not accu-
rate, the sampling distribution of the random walk sampler
is no longer guaranteed to be exactly π. However, the better
the estimations, the closer will be the sampling distribution
to π. Recall that the distance of the sampling distribution
of the random walk sampler from the target distribution π
affects only the efficiency of the importance sampling esti-
mator and not its accuracy.

6. VOLUME AND TARGET ESTIMATIONS
In this section we describe implementations of the esti-

mators TargetEstπ̂ and VolEstπ̂. The implementations vary
between the case π̂ is a uniform measure u and the case π is
a score-induced distribution s. In both cases we ensure that
the support of the trial distribution induced by TargetEstπ̂

and VolEstπ̂ contains the support of the corresponding tar-
get measure.

The implementations were designed to be extremely cheap,
requiring a small number of queries to the tree server per
estimation. This design choice necessitated us to resort to
super-fast heuristic estimations, which turned out to work
well in practice. The savings gained by these cheap esti-
mator implementations well paid off the reduced efficiency
incurred by the less qualitative trial distributions.

6.1 Uniform target measure
Target weight estimation. When π̂ is a uniform measure
u, we set TargetEstu(x) = 1 for every x, and thus the target
weight estimator is trivial in this case.

Uniform volume estimation. Since π̂ = u is the con-
stant 1 function, VolEstu(Sx) = |Sx|. We first show an ac-



curate, yet inefficient, “naive volume calculator”, and then
propose a more efficient implementation.

Naive volume calculator. The naive volume calculator
builds on the following observation: Whenever we send a
node x, for which |Sx| < k, to the tree server, the server
returns all the marked descendants of x, and thus |Sx| =
|results(x)|. Conversely, whenever |results(x)| < k, we are
guaranteed that |Sx| = |results(x)|. Therefore, the naive cal-
culator applies the following recursion: it sends x to the tree
server; if |results(x)| < k, the calculator returns |results(x)|.
Otherwise, it recursively computes the volumes of the chil-
dren of x and sums them up. It also adds 1 to the volume,
if x itself is marked.

It is immediate to verify that this algorithm always re-
turns the exact volume. Its main caveat is that it is very
expensive. The number of queries needed to be sent to the
server may be up to linear in the size of the subtree Tx. This
could be prohibitive, especially for nodes that are close to
the root of the tree.

The actual volume estimator, VolEstu, applies three dif-
ferent volume estimators and then combines their outputs
into a single estimation. We now overview each of the esti-
mators and then describe the combining technique.

Naive estimator. The first volume estimator used by
VolEstu is the naive estimator, which runs the naive calcu-
lator for one level, i.e., it sends only x to the tree server. It
then outputs the following volume estimation:

VolEstnaive
u (x) =

{

|results(x)|, if |results(x)| < k,

a if |results(x)| = k.
.

Thus, for each node x whose volume is < k, the estimator
provides the exact volume. The estimator cannot differenti-
ate among nodes whose volume is ≥ k, and therefore outputs
the same estimate a for all of them. Here a ≥ k is a tunable
parameter of the estimator. a = k is a conservative choice,
meaning that VolEstnaive

u (x) is always a lower bound on |Sx|.
Higher values of a may give better estimations on average.

Sample-based estimator. The second estimator we con-
sider assumes the sampler is given as prior knowledge a ran-
dom sample S ′ of nodes from S. Given such a random sam-
ple, we expect it to hit every subset of S at the right pro-

portion. That is, for every subset B ⊆ S, |B∩S′|
|S′|

≈ |B|
|S|

. In

particular, |B∩S ′| · |S|
|S′|

is an unbiased estimator of |B|. Ap-

plying this for volume estimations, we obtain the following
estimator for |Sx|:

|S ′
x| ·

|S|

|S ′|
.

Note that the more samples fall into S ′
x, the more accurate

we expect this estimator to be. Therefore, we will use this
estimator only as long as |S ′

x| ≥ b, for some tunable param-
eter b.

In order to transform the above estimator into a practical
volume estimator, we need to guess the ratio |S|/|S ′|. Let c
be another tunable parameter that represents the guess for
|S|/|S ′|. We use it to define the estimator as follows:

VolEstsample
u (x) =

{

c|S ′
x|, if |S ′

x| ≥ b,

0, otherwise.

We need to address two questions: (1) how can we get
such a random sample of nodes from S? (2) how can we

guess the ratio |S|/|S ′| (which is equivalent to guessing the
size of S)?

Assuming query logs of different search engines have sim-
ilar profiles, we can view a public query log (such as the
AOL data set) as a random sample from hidden query logs.
In reality, a public query log is not a truly random sample
from hidden query logs, because: (1) query logs change over
time, and thus the public query log may be outdated; (2)
different search engines may have different user populations
and therefore different query log profiles. Yet, as long as
the public query log is sufficiently close to being representa-
tive of the hidden query log, the crude estimations produced
from the public query log may be sufficient for our needs.

remark. We stress again that accurate volume estima-
tion is needed only to obtain a better trial distribution and,
consequently, a more efficient tree miner. If the AOL query
log is not sufficiently representative of other query logs, as
we speculate, then all this means is that our tree miner will
be less efficient. Its accuracy, on the other hand, will not be
affected, due to the use of importance sampling.

Guessing the ratio |S|/|S ′| is more tricky. Clearly, the
further away c is from |S|/|S ′|, the worse is the volume es-
timation, and consequently the trial distribution we obtain
is further away from the target distribution. What we do in
practice is simply “guess” c, run the importance sampling
estimator once to estimate the size of |S| (possibly incurring
many queries in this first run due to the error in c), and then
use the estimated value of |S| to set a more reasonable value
for c for further runs of the estimator.

Score-based estimator. The score-based estimator re-
lies on the same observation we made in the computation of
the function b in the algorithm for computing target weights
(see Section 4): due to the scale-free nature of power laws,
there is positive correlation between the score of a node x
and the volume of Sa(x), where a(x) is the highest ancestor
of x, for which x is one of the top k scoring descendants. In
Section 4, we used this observation to order scores using vol-
umes. Here, we use it in the reverse direction: we estimate
volumes using scores.

For a node x, let score(Sx) be the “score volume” of Sx,
i.e.,

∑

z∈Sx
score(z). Assuming the correlation between uni-

form volume and score volume, we have:

|Sx|

|Sparent(x)|
≈

score(Sx)

score(Sparent(x))
.

It follows that |Sx| ≈ |Sparent(x)|·(score(Sx)/score(Sparent(x))).
|Sx|is then estimated by multiplying an estimate for |Sparent(x)|
with an estimate for score(Sx)/score(Sparent(x)).

To estimate |Sparent(x)|, the score-based estimator uses the
the naive and sample-based estimators:

v(parent(x)) =
∑

y∈child(parent(x))

VolEstnaive
u (y)+VolEstsample

u (y).

Next, the score-based estimator looks for the node z ∈ Sx

that ranks the highest in results(parent(x)) (if no such node
exists, the score-based estimator outputs 0). Note that given
the estimate for |Sparent(x)|, we can estimate the fraction of
nodes in Sparent(x) whose score is at least as high as score(z)
(the “score rank” of z): it is pos(z)/v(parent(x)), where
pos(z) is the position of z in results(parent(x)).

Assuming the scores in Sparent(x) have the same power
law distribution as the global score distribution, we can use
Equation 2 from Section 4 to estimate score(z) from the



score rank of z. Since z ∈ Sx, score(z) is a lower bound on
score(Sx). The score-based estimator simply uses score(z)
as an estimate for score(Sx).

Finally, to estimate score(Sparent(x)), the scored-based es-
timator uses the estimate of |Sparent(z)| as well as the as-
sumed power law distribution to estimate the sum of the
scores of all nodes in Sparent(z).

The combined estimator. The combined volume esti-
mator for x is the sum of the naive, the sample-based, and
the score-based estimators. Note that if |results(x)| < k,
the naive estimator produces the exact volume, so we set
VolEstu(x) = VolEstnaive

u (x). Otherwise, if |results(x)| ≥ k,

VolEstu(x) = VolEstnaive
u (x)+VolEstsample

u (x)+VolEstscoreu (x).

The rationale for adding (and not, e.g., averaging) the es-
timations is that the accuracy of the sample-based and the
score-based estimators is proportional to the magnitude of
their output (the higher the values they output, the more
likely they are to be accurate). The output of the naive es-
timator is always constrained to lie in the interval [0, a]. By
adding the estimates, we give the score-based and sample-
based estimators higher weight only when they are accurate.
When they are inaccurate the naive estimator dominates the
estimation.

We used the AOL query log to tune the different param-
eters of the above estimators as well as to evaluate their
accuracy.

6.2 Score-induced target distribution
Target weight estimation. To implement TargetEstŝ(x),
we use the same algorithm we presented in Section 4 with
one modification. We replace the costly uniform volume
estimations applied at the computation of the function b
with cheap uniform estimations VolEstu, as described above.

Score volume estimation. To estimate the volume of
Sx when π is the score distribution, we combine the target
weight estimator described above with the uniform volume
estimator. We simply set:

VolEstŝ(x) = VolEstu(x) +
∑

y∈Sx

TargetEstŝ(y).

7. EXPERIMENTAL RESULTS

7.1 Bias estimation
We used the AOL query log to build a local suggestion

service, which we could then use to empirically evaluate the
accuracy and the performance of our algorithms. The score
of each query was set to be the popularity of that query in
the AOL query log.

We first ran the uniform sampler against the local sugges-
tion service. We used the samples to estimate the suggestion
database size. Figure 4 shows how the estimation bias ap-
proaches 0 as the estimator generates more samples (and
thereby uses more queries). The empirical bias becomes es-
sentially 0 after about 400K queries. However, it is already
at most 3% after 50K queries.

In order to make sure the uniform and the score-induced
samplers do not generate biased samples, we also studied
the distribution of samples by their score. We ran the two
samplers against the local suggestion service and collected
10, 000 samples. Figure 5 shows the distribution of samples
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Figure 5: Distribution of samples by score.

by their score. We ordered the queries in the data set by
their score, from highest to lowest, and split them into 10
deciles. For the uniform sampler each decile corresponds to
10% of queries in the log, and for the score-induced sam-
pler, each decile corresponds to 10% of the “score volume”
(the sum of the scores of all queries). The results indi-
cate that the uniform sampler is practically unbiased, while
the score-induced sampler has minor bias towards medium-
scored queries.

7.2 Experiments on real suggest services
We ran the score-induced suggestion sampler on two live

suggestion services, belonging to two large search engines.
The experiments were performed in February-March 2008.
The sampler used the AOL query log for the sample-based
volume estimation. The sampler focused only on the stan-
dard ASCII alphanumeric alphabet, and thus practically ig-
nored non-English suggestions. All suggestions were con-
verted to lowercase. We sampled from a score-induced trial
distribution, and, for each sample, computed both the uni-
form and the score-induced target weights. We thus could
reuse the same samples for estimating functions under both
uniform and score-induced distributions. Overall, we sub-
mitted 5.7M queries to the first suggestion service and 2.1M
queries to the second suggestion service, resulting in 10,000
samples and 3,500 samples, respectively. The number of
submitted queries includes the queries used for sampling
suggestions as well as the addition queries used for score-
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(c) Search results contain-
ing Wikipedia pages.
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(d) Dead search results.

Figure 6: Experimental results on real suggest services.

induced target weight estimation.
We used the collected samples to estimate several parame-

ters of the suggestion databases. Additionally, we submitted
the sampled suggested queries to the corresponding search
engines and obtained a sample of documents from their in-
dex, distributed according to ImpressionRank (see Section
1). We then estimated several parameters on that document
sample.

The error bars throughout the section indicate standard
deviation.

Estimation efficiency. The variance of the importance
weights for the uniform and the score-induced target distri-
bution was 6.7 and 7.7 respectively in SE1, and 13.5 and
43.7 respectively in SE2. That is, by Liu’s rule of thumb,
our estimator is at most 8 to 45 times less efficient than an
estimator that could sample directly from the target distri-
bution. These results indicate that our volume estimation
technique is quite effective, even when using a relatively old
AOL query log.

Suggestion database sizes. Figure 6(a) shows the abso-
lute and the relative sizes of suggestion databases. Rather
surprisingly, there is a large, 10-fold, gap between the num-
ber of distinct queries in the two databases. However, when
measured according to the score-induced distribution, the
relative sizes are much closer. These results indicate high
overlap between popular suggestions in both databases, while
the SE2 database contains many more less-popular sugges-
tions.

Suggestion database coverage by Wikipedia. In this
experiment we estimated the percentage of suggested queries
for which there exists a Wikipedia article exactly match-
ing the query. For example, for the query “star trek 2” we
checked whether the web page http://en.wikipedia.org/

wiki/Star_Trek_2 exists. Figure 6(b) shows the percent-
age of queries having the corresponding Wikipedia article.
While only a small fraction of the uniformly sampled sug-
gestions are covered by Wikipedia, the score-proportional
samples are covered much better. If we assume suggestion
scores are proportional to query popularities, we can con-
clude that for more than 10% of the queries submitted to
SE1 and for more than 20% of the queries submitted to
SE2, there is an answer in Wikipedia (although, it may not
be necessarily satisfactory).

ImpressionRank sampling. Our next goal was to es-

timate search engine index metrics relative to the Impres-
sionRank measure. To sample documents from the index
proportionally to their ImpressionRank, we sampled sug-
gestions from each of the two search engines proportionally
to their popularity (again, we assume suggestion scores cor-
respond to popularities). We submitted each sample sug-
gestion to the search engine from whose suggestion service
we sampled it and downloaded the result page, consisting
of the top 10 results. Next, we sampled one result from
each result page. We did not sample results uniformly, as
it is known that the higher results are ranked the higher is
the attention they receive from users. To determine the re-
sult sampling distribution, we used the study of Joachims et
al. [14], who measured the relative number of times a search
result is viewed as a function of its rank.

In the first experiment we estimated the reliance of search
engines on Wikipedia as an authoritative source of search re-
sults. For queries having a relevant article in Wikipedia (as
defined above), we measured the fraction of these queries on
which the search engine returns the corresponding Wikipedia
article as (1) the top result, and (2) one of the top 10 re-
sults. Figure 6(c) indicates that on almost 20% of queries
that have a relevant Wikipedia article, search engines re-
turn that article as a top result. For more than 60% of
these queries, the Wikipedia article is returned among top
10 results. This indicates a rather high reliance of search
engines on Wikipedia as a source.

We next estimated the fraction of “dead links” (pages re-
turning a 4xx HTTP return code) under ImpressionRank.
Figure 6(d) shows that for both engines, less than 1% of the
sampled results were dead. This indicates search engines do
a relatively good job at cleaning and refreshing popular re-
sults. We note that one search engine returns slightly more
dead links than the other.

Query popularity estimation. In this experiment we
compared the relative popularity of various related keywords
in the two search engines. Such comparisons can be useful
to advertisers for selecting the targeting keywords for their
ads. The results are shown in Table 1. In each category,
keywords are ordered from the most popular to the least
popular.

8. CONCLUSIONS
In this paper we introduced the suggestion sampling and

mining problem. We described two algorithms for sugges-



SE1 SE2
barack obama hillary clinton
john mccain barack obama
george bush john mccain
hillary clinton george bush
aol google
microsoft aol
google microsoft
yahoo yahoo
madonna britney spears
christina aguilera madonna
britney spears christina aguilera

Table 1: Queries ranked by their popularity.

tion sampling/mining: one for uniform target measures and
another for score-induced distributions. The algorithms em-
ploy importance sampling to simulate samples from the tar-
get distribution by samples from a trial distribution. We
show both analytically and empirically that the uniform
sampler is unbiased and efficient. The score-induced sampler
has some bias and is slightly less efficient, but is sufficiently
effective to produce useful measurements.

Several remarks are in order about the applications of our
algorithms to mining query logs. We stress that our algo-
rithms do not compromise user privacy because: (1) they use
only publicly available data provided by search engines; (2)
they produce only aggregate statistical information about
the suggestion database, which cannot be traced to a par-
ticular user.

A possible criticism of our methods is that they reflect the
suggestion database more than the underlying the query log.
Indeed, if in the production of the suggestion database, the
search engine employs aggressive filtering or does not rank
suggestions based on their popularity, then the same distor-
tions may be surfaced by our algorithms. We note, how-
ever, that while search engines are likely to apply simple
processing and filtering on the raw data, they typically try
to maintain the characteristics of the original user-generated
content, since these characteristics are the ones that guar-
antee the success of the suggestion service. We therefore
believe that in most cases the measurements made by our
algorithms are faithful to the truth.

Generating each sample suggestion using our methods re-
quires sending a few thousands of queries to the sugges-
tion server. While this may seem a high number, in fact
when submitting the queries sequentially at sufficiently long
time intervals, the added load on the suggestion server is
marginal.
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